ГЛАВА 2 И осуществилось вычисление

В XVI и XVII веках науки, и в частности математика, переживали период своего расцвета. В значительной степени наступивший прогресс был связан с основами анализа бесконечно малых. Были решены многие классические задачи, но их место заняли новые, которые ставила перед учеными природа. Хотя Ньютон и Лейбниц считаются основателями этого анализа, сами они опирались на работы многих других известных математиков.

В конце марта 1672 года Лейбниц впервые приехал в Париж с целью защищать египетский проект, составленный совместно с Бойнебургом. Однако Англия уже вступила в войну с Нидерландами, и Франция сделала то же самое через неделю после его приезда, так что поездка Лейбница оказалась лишена смысла. Тогда он сосредоточился на дипломатических усилиях, стараясь оградить от этого конфликта Германию.

Несколько месяцев ученый провел в ожидании высочайшей аудиенции, отдавая себе отчет, что шансы на успех невелики. Через полгода его вынужденного бездействия в Париж приехал Фридрих фон Шёнборн, племянник курфюрста Майнца и зять Бойнебурга. Целью фон Шёнборна было принять участие в официальных мирных переговорах и предложить провести мирный конгресс в Кёльне. Не добившись никакого положительного результата, фон Шёнборн позже вместе с Лейбницем уехал в Англию.

Смерть Бойнебурга, случившаяся в следующем месяце, оказалась тяжелым ударом для Лейбница. Барон поддерживал его в научной деятельности и особенно помог ему наладить связи с учеными, политиками и государственными людьми, которые помогли последнему добиться должности советника курфюрста Майнца. Сам Лейбниц говорил о Бойнебурге как об "одном из самых великих людей этого века, особая дружба с которым была [для него] большой честью".


БЕСЕДЫ С УЧЕНЫМИ

Во время ожидания аудиенции Лейбниц воспользовался возможностями, которые предоставлял Париж, и встретился с многими известными учеными и интеллектуалами.

Летом 1672 года он навестил великого нидерландского ученого Христиана Гюйгенса, с научной работой которого он был частично знаком. Во время этой встречи Лейбниц показал ему первую модель своей арифметической машины, выполненную из дерева и еще далеко не совершенную. Позже Гюйгенс писал Ольденбургу: данная машина — большое достижение, даже несмотря на то что ее необходимо усовершенствовать.

Лейбниц также ознакомил Гюйгенса со своими наработками по суммированию бесконечных рядов — одной из проблем, больше всего занимавших математиков того времени. Тот посоветовал ему изучить сочинения английского математика Джона Уоллиса, а также Грегуара де Сен-Венсана (1584-1667), работу которого ученый прочел в королевской библиотеке. Другая важная встреча состоялась у Лейбница с королевским библиотекарем Пьером де Каркави, который очень хотел посмотреть на арифметическую машину. Также Лейбниц выполнил несколько его поручений, например оценил работу, связанную с вакуумом, написанную немецким физиком Отто фон Герике (1602-1686). Этот ученый был изобретателем вакуумного насоса и в 1654 году осуществил знаменитый эксперимент с магдебургскими полушариями. Герике соединил два полушария диаметром 50 см и создал между ними вакуум. С каждой стороны получившейся сферы он поставил по восемь лошадей, тянувших за полушария, чтобы разделить их, но им этого не удалось.

Провалив дипломатическую миссию во Франции, Лейбниц получил указание сопровождать фон Шёнборна в Англию и затем вернуться в Майнц через Нидерланды.


ХРИСТИАН ГЮЙГЕНС

Христиан Гюйгенс (1629-1695), родившийся в Гааге, был одним из самых известных ученых своего времени. Он был математиком, физиком, астрономом и изобретателем. Гюйгенса связывали дружеские отношения с философом и математиком Рене Декартом, который оказал большое влияние на его исследования. В качестве посла Нидерландов Гюйгенс посетил такие города, как Копенгаген, Рим и Париж. В Париже он и обосновался в 1660 году. В следующем году ученый поехал в Лондон и там был принят в Королевское общество. В 1666 году он возвратился в столицу Франции, где стал членом Парижской академии наук.


Научные достижения

Гюйгенс был отличным шлифовщиком линз и построил много телескопов, причем некоторые из них были огромного размера. Он открыл кольца Сатурна (первым их наблюдал Галилей, но не понял, что это такое), а также спутник Сатурна, Титан. Когда Европейское космическое агентство отправило зонд для исследования Титана, оно назвало его в честь ученого — зонд "Гюйгенс". В математике Гюйгенс стоял у истоков создававшейся в то время теории вероятностей и изучал длины различных кривых, таких как циссоида или циклоида, а также площади ограниченных ими фигур. Таким образом, он внес вклад в создание анализа бесконечно малых. Кроме того, Гюйгенс работал над некоторыми аспектами механики, в особенности над теорией колебаний и над принципом сохранения "живой силы". В оптике ученый разработал волновую теорию света.


Он намеревался добиться того, чтобы обе нации начали мирные переговоры. Итак, Лейбниц поехал в Лондон в начале 1673 года. Оказавшись там, он встретился с немецким теологом и дипломатом Генри Ольденбургом, который созвал заседание Королевского общества, чтобы ученый мог представить свою арифметическую машину Вообще, во время пребывания в Лондоне Лейбниц смог присутствовать на нескольких заседаниях Королевского общества. По случайности он пропустил одно из них, на котором Гук сделал несколько нелестных комментариев о его машине, в то время работавшей, как мы уже упомянули, не очень хорошо.

Надо сказать, что Роберт Гук — один из самых значительных ученых-экспериментаторов в истории. Его интересовали совершенно разные дисциплины. В 1662 году он занимал в Королевском обществе должность куратора экспериментов. В его обязанности входило делать еженедельный доклад, посвященный новым открытиям, и проводить публичные эксперименты, эти открытия подтверждающие. В 1677 году он стал секретарем Общества. Ученый утверждал, что у него были идеи, затрагивающие многие великие открытия его времени, однако другие развивали и публиковали их быстрее, чем он. Из-за этого он всегда был вовлечен в многочисленные споры об авторстве того или иного открытия. Особое место занимает его полемика с Исааком Ньютоном по поводу приоритета в открытии закона всемирного тяготения. Ненависть между ними достигла такой степени, что после смерти своего оппонента Ньютон уничтожил все его портреты, поэтому Гук является единственным членом Королевского общества, чей облик нам неизвестен.

В любом случае Лейбниц был так доволен своим участием в собраниях Общества, что подал заявку на вступление в него до того, как покинул Лондон, и его приняли в середине апреля.

На встрече с Сэмюэлем Морлендом оба ученых продемонстрировали друг другу свои вычислительные машины. Лейбниц также навестил Роберта Бойля и познакомился с математиком Джоном Пеллом (1611-1685), с которым обсуждал методы нахождения суммы ряда и метод разностей, изобретенный Лейбницем для вычисления суммы рядов.

До того как ученый покинул Англию, он получил новость о смерти курфюрста Майнца, так что дипломатическая миссия, которую ему поручили, была отложена. Это позволило ему не ехать в Нидерланды и вернуться в Париж.


СОВЕТНИК ПРИ ГАННОВЕРСКОМ ДВОРЕ

В 1675 году Лейбниц находился в Париже, не имея никаких конкретных поручений. Было очевидно, что он хочет остаться в столице Франции, чтобы принять участие в научной революции. Из-за этого он отказался от должности секретаря первого министра короля Дании и от должности советника герцога Иоганна Фридриха Ганноверского. В конце года ученый попытался получить оплачиваемое место в Парижской академии наук, однако Академия ответила, что Гюйгенс и Кассини занимают все предназначенные для иностранцев места.

Лейбниц написал герцогу Иоганну Фридриху Ганноверскому под предлогом разговора об арифметической машине (к тому времени она получила большую похвалу в Академии, так как ученый представил исправно работающий экземпляр) и заодно согласился на должность, которую тот ему предложил несколько месяцев ранее. В январе 1676 года он занял должность советника, одновременно получив назначение советником нового курфюрста Майнца.

Лейбниц пытался не оставлять Париж и время от времени ездил в Ганновер и Майнц. Он старался поддерживать политические связи и не терять прямого контакта с Академией, а также с учеными и философами, которые посещали город. Благодаря поездкам он мог сообщать о наиболее важных достижениях науки своим покровителям.

В течение нескольких месяцев Лейбницу поступали из Ганновера требования немедленно переехать в этот город, но он тянул с ответом. В итоге ученому поставили ультиматум, поскольку он должен был не только стать советником, но и занять вакантное место библиотекаря герцогской библиотеки. Благодаря этой должности он много разъезжал, покупая частные собрания книг, в которых попадались интересные экземпляры для герцогской библиотеки.

В конце концов в начале октября 1676 года Лейбниц покинул Париж. Больше он туда никогда не возвращался. Путь Лейбница лежал из Кале через Лондон: там он снова встретился с Ольденбургом, которому показал улучшенный прототип арифметической машины, а также с библиотекарем Королевского общества, математиком Джоном Коллинзом, оставшимся под большим впечатлением от эрудиции Лейбница.


Бесконечные ряды

Кроме арифметической машины одним из первых результатов своих исследований, с которыми Лейбниц познакомил Королевское общество, был метод нахождения суммы членов бесконечных рядов.


СУММА ЧЛЕНОВ ГЕОМЕТРИЧЕСКОЙ ПРОГРЕССИИ

Первая известная сумма бесконечных членов найдена для так называемой геометрической прогрессии. Результаты вычисления суммы этого ряда фигурируют уже в папирусе Ринда. Задача заключается в том, чтобы найти сумму бесконечного количества степеней, основание которых — число, меньшее единицы. Самый традиционный пример — сумма геометрической прогрессии:

1/2+(1/2)2+(1/2)3+(1/2)4+ ... + 1/2+1/4+1/8+1/16+ ...= 1

Этот процесс нагляден: возьмем за единицу площадь квадрата, который мы разделим на две части, и одну из них — снова напополам; из двух оставшихся частей одна снова делится посередине, и теоретически можно продолжить данный процесс до бесконечности. Суммой всех полученных нами фигур является исходный квадрат, то есть единица. С этим типом рядов, которые обычно представлены следующим выражением:


rn = 1+r+r2+r3+r4+...

n≥0

знакомы и работают ученики средней школы. Чтобы найти значение суммы, нам нужно сложить п членов геометрической прогрессии, а затем умножить эту сумму на знаменатель прогрессии г. Затем вычитаем одно выражение из другого:

S = (1+r+r2+r3+r4+...+rn)- (r • S = r+r2+r3+r4+r5+...+rn+1)/(S - r • S = 1 - rn+1)

Таким образом мы можем выделить S и получить значение суммы, которое мы искали:

S = (1-rn+1)/(1-r)

Теперь, если принять, что r имеет значение, меньшее 1, и что вместо сложения п членов мы складываем бесконечное количество, значение rn+1 становится нулем, и, следовательно, сумма сводится к:

S = 1/(1-r)


Математики всегда искали формулы, которые бы позволили с легкостью складывать большое число членов. Уже в античности были известны суммы членов рядов первых степеней: n, n2 и n3.

1+2+3+4+5+6+7+...+ = n(n+1)/2 = n2/2+n/2,

12+22+32+...+n2 = n(n+1)(2n+1)/6 = n3/3+n2/2+n/6,

13+23+33+...+n3 = n2(n+1)2/4 = n4/4+n3/2+n2/4.

Но с самого начала математики были очень заинтересованы в изучении конкретного случая, когда сумма бесконечного числа членов дает конечное значение. Над этой проблемой работали, например, Демокрит и Архимед.

На основе геометрического ряда

∑rn

n≥1

в Средние века исследовали ряды степеней, в которых менялись местами основание и показатель степени, например:

∑nr

n≥1

Вскоре было замечено: если показатель степени r положительный, а n — целое число, сумма превращается в бесконечность. Когда показатель степени r отрицательный, получаются степени дробей, меньших единицы, то есть сумма

∑(1/n)r, где r больше единицы.

n≥1

Французский математик Николай Орезмский (1323— 1382) получил много результатов, исследуя ряды, и первым доказал, что гармонический ряд, то есть ряд, составленный из членов, обратных числам натурального ряда, для r = 1 является расходящимся. Следовательно, сумма большого числа членов стремится к бесконечности. В то время доказательства приводили в буквальном виде, описывая шаги, которые нужно сделать, но мы рассмотрим это искусное рассуждение, пользуясь более привычными символами. Орезмский сгруппировал члены, то есть у него был первый член, два следующих, четыре следующих, восемь следующих и так далее:

1/2+1/3+1/4+1/5+1/6+1/7+1/8+...+ = 1/2+(1/2+1/4)+(1/5+1/6+1/7+1/8)+...+ = 1/2+7/12+533/840+...

Так получается ряд дробей, каждая из которых больше 1 /2, то есть сумму ряда можно сделать больше любого указанного числа, просто взяв достаточное число членов ряда.

Индийский математик и астроном Мадхава из Сангамаграма (1350-1425) описал среди прочих бесконечных рядов ряды тригонометрических функций синуса и косинуса. Он также нашел ряд арктангенса:

arct x = x - x3/3 + x5/5 + x7/7 + ,,,

Через несколько лет шотландский математик Джеймс Грегори (1638-1675) первым в Европе открыл этот ряд, о нем узнал Лейбниц и воспользовался им для выведения первого ряда для числа π, недостатком которого было то, что он очень медленно приближается к истинному значению. Он известен как ряд Грегори — Лейбница, хотя другие авторы сегодня его называют рядом Мадхавы — Лейбница:

π/4 = 1 - 1/3 + 1/5 + 1/7 + ... + (-1)n/(2n+1) + ...

И Ньютон, и Лейбниц также вычисляли ряды степеней других тригонометрических функций.

Вычисление числа k было постоянным предметом поиска математиков всех времен. Это число определяется как отношение между длиной окружности и ее диаметром. Многие пытались найти наибольшее количество десятичных знаков данного числа, и одним из использованных методов был метод числовых рядов. Он подразумевает, что по мере того, как вычисляется больше членов, появляется большее количество точных знаков после запятой.

Ряды не всегда были суммами. Например, математик Франсуа Виет (1540-1603), один из создателей современной алгебры, представил первое бесконечное произведение, приближающееся к значению π, таким образом:

π = 2 • 2/√2 • 2/√(2+√2) • 2/√(2+√(2+√2)) • 2/√(2+√(2+√(2+√2)))

Сам Грегори, в свою очередь, пытаясь вычислить площадь круга, пришел к другому выражению для вычисления я:

π/2 = (2 • 2 • 4 • 4 • 6 • 6 • 8 • 8 ...)/(1 • 3 • 3 • 5 • 5 • 7 • 7 • 9 ...)

XVII век был временем популярности сумм бесконечных рядов степеней, которые служили для поиска квадратуры фигур, ограниченных различными типами кривых, то есть площади сегмента какой-либо кривой.


ЛЕЙБНИЦ И БЕСКОНЕЧНЫЕ РЯДЫ

Когда в 1672 году Лейбниц навестил Гюйгенса в Париже, он рассказал ему о методе, над которым работал. Он использовался для нахождения суммы членов бесконечных рядов чисел и состоял в том, чтобы учитывать разность между членами последовательности. Если у нас есть ряд членов a0123<... an, то возьмем разности b1= a1-a0; b2= а21; b3= а32; ..., и тогда нулевая сумма а00 + а1 - а1 + а2 - а2 +...+ an-1 - an-1 + + an - an = а0 + b1 + b2 +...+ bn - an = 0, откуда следует, что сумма разностей равна:

b1 + b2 + b3 + ... + bn = an - a0

Лейбниц утверждал, что его метод разностей может быть применен для нахождения суммы любого ряда чисел, построенного в соответствии с правилом, и даже для бесконечных рядов — при условии, что они сходятся.

На той же встрече Гюйгенс задал Лейбницу задачу, которую он сам уже решил, чтобы тот проверил свой метод, — найти сумму чисел, обратных треугольным, то есть следующий ряд:

1 + 1/3 + 1/6 + 1/10 + ...

Лейбниц разделил на два каждый член, разложив дроби на разность двух:

1/2+1/6+1/12+1/20+...+1/2+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...+1/2+1/2 = 1

следовательно, значение искомой суммы членов данного ряда составляет 2(1 + 1).

Также Лейбниц сформулировал то, что известно как теорема сходимости знакочередующихся рядов, то есть рядов, в которых чередуются складываемые и вычитаемые члены. В основном это выражение вида:

∑(-1)n • an = a0 - a1 + a2 - a3 + a4 - ... при an ≥ 0.

n=0

Данный критерий впервые появился в письме, адресованном Иоганну Бернулли (1667-1748) в 1713 году.

Для многих математиков критерии сходимости, которыми они пользовались, были основаны на том, чтобы найти частичные суммы ряда членов, например п членов. Они пытались найти упрощенное выражение, связанное с гг, а затем изучить, что произойдет, если число членов возрастет до бесконечности. Но не все математики были согласны с данным подходом, поскольку появлялись так называемые логические парадоксы, то есть ряды, расходящиеся при одном методе, а при применении других методов — наоборот.

Один из главных парадоксов того времени был связан с нахождением суммы знакочередующегося ряда, в котором an = 1 для любого n. То есть речь идет о ряде:

∑(-1)n = 1-1+1-1+1-1+1-1+...

n=1

Если взять четное число членов, частичная сумма равна 0, в то время как если взять нечетное число, частичная сумма равна 1. Лейбниц в итоге присвоил этой сумме значение 1/2.

Простое рассуждение для получения этого решения следующее:

5=1-1 + 1-1 + 1-1 + 1 -... = 1 - (1-1 + 1-1 + 1-1 +...) = 1-S,

откуда после упрощения получается 2S = 1, и, следовательно, искомая сумма равна S = 1/2.

Во время визита к Роберту Бойлю Пелл указал Лейбницу на то, что математик Франсуа Рейно уже опубликовал общий метод прерывания рядов с помощью разностей. Ученый ознакомился с данным исследованием, выяснил, что его метод отличается от метода Рейно, и написал свою работу для представления в Королевском обществе. Однако эта работа была встречена довольно холодно, и его даже обвинили в плагиате. Сам Лейбниц позже признал, что там действительно не содержалось никакого нового результата, а вся изюминка заключалась в новом представленном методе.

Провал работы заставил ученого понять, что ему очень не хватает математических сведений: он не знал о многом из того, что уже было опубликовано. Поэтому Лейбниц потратил почти год на самосовершенствование в этой области.


НОВОЕ ЗАНЯТИЕ

Когда Лейбниц покидал Париж, он уже был советником герцога Ганновера, то есть занимал должность, оставшуюся за ним до конца жизни. С 1677 года Лейбниц стал тайным советником герцога Иоганна Фридриха: это была наиболее ответственная и оплачиваемая должность. Решив свои финансовые проблемы, ученый смог использовать возможности, которые давало ему его новое положение, для исследования интересующих его научных проблем. Сначала Лейбниц нехотя согласился на эту должность, но позднее выражал свое удовлетворение ролью, которую играл.

Став библиотекарем герцога, он начал расширять библиотеку, заполняя ее книгами из всех самых важных областей знания, больше заботясь о качестве, чем о количестве, для чего использовал собственный опыт и связи в ученом мире. Новое

занятие позволяло ему ездить в другие города в поисках интересных книг для герцогской библиотеки. Например, в 1678 году Лейбниц посетил Гамбург, чтобы купить библиотеку Мартина Фогеля, последователя немецкого ученого Иоахима Юнга.

По возвращении он написал для герцога ряд сочинений на такие разнообразные темы, как улучшение государственного управления, организация архивов, практика сельского хозяйства и работа на фермах. В них Лейбниц доказывал, что, заботясь об увеличении благосостояния народа, нужно иметь четкое представление об имеющихся в распоряжении ресурсах, как человеческих, так и природных. Кроме того, он изложил герцогу идею, которая только начинала зарождаться в его голове: создать в Германии академию наук. Лейбниц даже представил ряд изобретений, предназначенных для повышения эффективности горнодобывающей промышленности, таким образом намереваясь получить средства на создание этого учреждения.

Несмотря на то что Лейбниц обосновался в Ганновере, он не потерял связи с образованными людьми и учеными Лондона и Парижа. Он продолжал получать информацию о достижениях науки и вел переписку с влиятельными людьми своего времени. Например, в то время ученый переписывался с Анри Жюстелем (1620-1693), который был секретарем короля Франции, хотя позже и переехал в Англию. Для Жюстеля Лейбниц осуществил небольшое исследование истории графского рода Ловенштайн. Это была первая написанная им историческая работа.


ПОД НОВЫМ РУКОВОДСТВОМ

Герцога Иоганна Фридриха сменил его брат Эрнст Август (1629-1698), герцог Брауншвейг-Люнебургский, который позже стал первым курфюрстом Ганновера, то есть одним из тех, кто имел право участвовать в выборах императора Германии.

После прибытия в Ганновер Лейбниц познакомился также с Софией (1630-1714), супругой Эрнста Августа. Она была дочерью Фридриха V, короля Богемии, и Елизаветы Стюарт, принцессы Баварии, Шотландии и Англии, а также внучкой Якова I, короля Англии (он же Яков VI, король Шотландии). Следовательно, София являлась претенденткой по прямой линии на трон Великобритании как самая прямая протестантская наследница королевы Англии, и только ее смерть за два месяца до кончины королевы Анны Стюарт помешала ей взойти на трон. Ее сын Георг Людвиг позже стал королем Англии под именем Георга I и основателем Ганноверской династии.

Отношения между Лейбницем и Софией становились с годами все более близкими и в итоге вылились в крепкую дружбу. Принцесса очень интересовалась интеллектуальной деятельностью во многих сферах, которые она часто обсуждала с Лейбницем, что подтверждает существующая обширная переписка.

Должности Лейбница были сохранены. Он написал доклад для нового герцога, где сообщал о деталях своей карьеры и о ряде проектов, которые задумал. Лейбниц предложил дополнить герцогскую библиотеку лабораторией и музеем, а также создать герцогскую типографию. В документе, направленном первому министру Францу Эрнесту фон Платену (1631- 1709), он предложил свои услуги для составления истории династии Брауншвейг-Люнебург. Лейбниц явно не представлял себе, в какие дебри забирается, поскольку это исследование будет преследовать его всю оставшуюся жизнь.


НОВЫЕ ПРОЕКТЫ

Несмотря на многочисленные задания, которые он получал от герцога, у Лейбница были силы и способность заниматься исследованиями во многих областях науки. В 1681 году Отто Менке посетил Ганновер и встретился с Лейбницем, чтобы поговорить об издании журнала "Акты ученых". Менке также попросил коллегу прислать одну из своих работ для публикации в журнале. Кроме собственных исследований, Лейбниц также писал рецензии на другие сочинения, как, например, на труд Джона Уоллиса по алгебре или на работу математика Жака Озанама, в которой он представлял свои тригонометрические таблицы.

Он продолжал писать сочинения для герцога в абсолютно разных сферах. Например, Лейбниц исследовал методы улучшения организации армии и повышения ее боевого духа и продумывал способы сохранения физического и психического здоровья солдат. Для этого ученый предлагал снабдить их продовольствием, одеждой и подходящими лекарствами, а также использовать их в мирное время на общественных работах, таких как строительство сооружений, дренаж болот и проведение канализации, что сделало бы более сносной рутину военных тренировок. Кроме того, Лейбниц представил проект профилактических средств для борьбы с эпидемией, которая в то время терзала Европу, поскольку врачам не удалось найти никаких средств против нее. Он предложил помешать перемещению зараженных людей и изолировать их.

По поручению герцогского советника Отто Гроте Лейбниц подготовил меморандум об увеличении числа курфюршеств в Германии. В то время существовало восемь курфюршеств — пять католических и три протестантских. В своей работе ученый отстаивал необходимость создания девятого, протестантского. Через несколько лет, в 1692 году, герцог Эрнст Август был объявлен курфюрстом. Лейбниц участвовал в проекте от начала и до конца и после предоставления герцогу избирательного права создал памятную медаль, а также подготовил речь, содержащую исторический обзор, которую зачитал Отто Гроте на процедуре получения титула от императора.

По сути Лейбниц принимал участие в любом политическом деле в Ганновере. Во время одной из поездок в Италию ученый по просьбе принцессы Софии добился политического альянса посредством брака между Шарлоттой Фелицитас, старшей дочерью герцога Иоганна Фридриха, с герцогом Ринальдо из Модены, а также помолвки младшей дочери герцога, Вильгельмины, с королем Венгрии и будущим императором Иосифом I Габсбургским.

Кроме научных исследований самой важной задачей Лейбниц в эти годы была, как мы уже сказали ранее, разработка истории династии Брауншвейг-Люнебург для герцога. Лейбниц считал, что история и генеалогия стали науками и поэтому для них необходима достоверная документация, основанная на первичных источниках и работах авторов эпохи. Таким образом, ученый добился у герцога пожизненной пенсии и освобождения от обычных обязанностей, чтобы посвятить себя исключительно этому делу.

Кроме того, в то время Лейбниц уже совершил открытие, с которым вошел в историю как один из самых выдающихся математиков: анализ бесконечно малых.


МАТЕМАТИКА В ДРЕВНЕЙ ГРЕЦИИ

Ученые Древней Греции создали математику как науку. Предыдущие цивилизации использовали ее для решения практических проблем повседневной жизни. Например, египтяне пользовались теоремой Пифагора для построения прямого угла и с ее помощью могли восстанавливать границы полей, затопленных Нилом. Для греков занятие математикой было самоцелью, их не волновало ее практическое применение. Это не означает, что они также не использовали свои знания для нахождения решений в конкретных ситуациях, но они четко разграничивали, как мы могли бы сказать, теорию и практику. Например, древнегреческие ученые различали арифметику, то есть абстрактную теорию чисел, и логистику, что по- гречески означало "счетное искусство", то есть прикладную арифметику. Они считали важным изучение математики как таковой и посвящали этому свои работы, но в известной степени презирали прикладную математику, с помощью которой решались каждодневные задачи.

В более позднюю эпоху, во время расцвета Александрии, греческие ученые, продолжая культивировать чистую науку, начали развивать и ее прикладную часть. Александрийцы изобрели насосы, чтобы поднимать воду из колодцев, шкивы и системы зубчатых передач, чтобы передвигать большие грузы; они использовали силу воды и пара для движения машин, огонь, чтобы заставить статуи двигаться, или сжатый воздух, чтобы бросать предметы на большие расстояния.

В то время как в предыдущих цивилизациях знания приобретались с помощью опыта, индукции или экспериментов, древнегреческие ученые развивали дедукцию. На основе ряда понятий выводились новые умозаключения при применении строгих дедуктивных правил рассуждения. Например, Аполлоний (ок. 262-190 до н. э.) в своей книге "Конические сечения" представил 487 пропозиций, выведенных из аксиом, собранных в "Началах" Евклида. Главной целью ученых Древней Греции было желание понять физический мир, они считали математические законы основой природы и полагали, что эти законы необходимы для изучения Вселенной. Это был критический и рациональный способ познания природы.

Древнегреческие математики должны были доказывать свои рассуждения исчерпывающе, не оставляя возможности для каких-либо лазеек. К такому подходу математика вновь обратилась только в XIX веке, и именно благодаря ему древнегреческие работы были настолько совершенны, что невозможно было понять, как получались столь удивительные результаты. Считалось, что определенную роль сыграла изобретательность древнегреческих ученых, некая счастливая мысль, которая помогала им прежде прийти к заключению, а уже потом исчерпывающим образом его доказать. Многие математики начиная с эпохи Возрождения были убеждены в том, что ученые Древней Греции владели каким-то секретным методом. Это видно из следующего комментария Декарта:


"Так же как многие ремесленники скрывают секрет своих изобретений, Папп и Диофант, возможно опасаясь, что из-за простоты и легкости своего метода он потеряет ценность, предпочли, чтобы вызвать всеобщее восхищение, представить нам плод своей деятельности как чистую истину, очень тонко выведенную, вместо того чтобы показать метод, которым пользовались".


ПАЛИМПСЕСТ АРХИМЕДА

Палимпсест — это текст, написанный на пергаменте поверх другого текста. Благодаря такой рукописи мы знаем одно из самых важных сочинений Архимеда. Многие работы гения из Сиракуз сохранились для потомков благодаря арабским и латинским копиям. Однако математикам XVI века хотелось понять, каким методом он пользовался, чтобы прийти к своим открытиям. Книги ученого содержали схематические и полные доказательства, но было неизвестно, как он пришел к этим результатам до того, как их доказать. Думали, что у него не было никакого метода открытия своих блестящих идей, а если и был, то он не оставил его для потомков.


"Метод"

В 1906 году датский филолог Йохан Людвиг Гейберг получил новость о палимпсесте математического содержания, хранящемся в монастыре в Константинополе. При помощи фототехники ему удалось скопировать оригинальный спрятанный текст, и то, что он обнаружил, оказалось сочинениями Архимеда. Оригинальный текст — это копия некоторых работ древнегреческого ученого, сделанная в X веке. Поверх него впоследствии были нанесены религиозные тексты. Большинство из найденных работ Архимеда были известны, но среди них также обнаружена единственная известная копия сочинения "О механическом методе доказательства теорем", более известного как "Метод". Данная работа — письмо Архимеда Эратосфену, в нем ученый объясняет метод получения результатов, которые потом он доказывал с максимальной строгостью. При этом Архимед пользуется смесью рассуждений о бесконечно малых и механики для нахождения площадей и объемов. Многие из идей, изложенных в этой работе, появились в математике только через две тысячи лет, в XVII веке. В целом считают, что если бы "Метод" стал известен вместе с прочими сочинениями Архимеда, анализ бесконечно малых был бы создан намного раньше.



Наибольшего расцвета в области вычислений математика добилась в александрийскую эпоху, когда такие математики, как Архимед, Эратосфен и Гиппарх, получили много результатов вычисления длин кривых, площадей и объемов разных фигур. Тем не менее в течение еще многих веков говорили о квадратуре, если речь шла о площади, и о кубатуре для объема. Согласно Паппу, александрийскому математику III—IV веков, кривые можно классифицировать следующим образом.

— Плоские, которые строятся из прямых и окружностей.

— Конические, которые состоят из точек конуса.

— Линейные, то есть все остальные кривые, которые невозможно создать предыдущими методами, такие как спирали, конхоиды, циссоиды и так далее. Эти кривые обычно не рассматривали.

Многие греческие математики были предшественниками современного математического анализа. Например, Папп упоминал математика Зенодора, который в своей книге об изопериметрических фигурах выводил следующие теоремы.

— Среди многоугольников с п сторонами одинакового периметра правильный многоугольник имеет наибольшую площадь.

— Среди правильных многоугольников одинакового периметра тот, у которого больше сторон, имеет наибольшую площадь.

— У круга — большая площадь, чем у правильного многоугольника того же периметра.

— Из всех твердых тел одинаковой площади поверхности наибольший объем — у шара.


АРХИМЕД СИРАКУЗСКИЙ

Нельзя начинать разговор об анализе бесконечно малых, не поговорив о главном математике античности. Архимед (ок. 287- 212 до н. э.) родился в Сиракузах, греческой колонии на Сицилии, и был сыном астронома Фидия. Он учился в Александрии и вернулся в Сиракузы, где развивал свой талант до самой смерти. Архимед обладал необычайным умом и большим кругом интересов, ему нравилось заниматься как теоретическими, так и прикладными проблемами. Его значимость доказывает фраза философа и писателя Вольтера: "В голове Архимеда было больше воображения, чем в голове Гомера".

Кроме математики, ученый также занимался исследованиями рычага. Известна его фраза: "Дайте мне точку опоры, и я переверну Землю". Архимед был первооткрывателем основного закона гидростатики, известного также как закон Архимеда, согласно которому на любое тело, погруженное в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости.


Тот, кто поймет Архимеда и Аполлония, будет меньше восхищаться достижениями самых известных людей своего времени.

Готфрид Вильгельм Лейбниц


С этим законом связана одна из знаменитых историй об Архимеде. Гиерон, тиран Сиракуз, заказал себе корону и выдал ювелиру определенное количество золота. Когда корона была ему вручена, он засомневался: использовал ювелир все золото или смешал его с серебром? Архимед, к которому обратился Гиерон, начал думать над этой задачей и нашел решение... принимая ванну. Согласно легенде, он выскочил из ванной и голым побежал по улицам Сиракуз, крича: "Эврика!" ("Нашел!"). Теперь ему было достаточно погрузить в жидкость по очереди слиток золота и слиток серебра, равных по весу короне, и взвесить вытесненную слитками жидкость, а потом проделать то же самое с короной. Так он узнал, что в корону было добавлено серебро.

Винт Архимеда. Хотя обычно данное изобретение приписывают древнегреческому ученому, есть мнение, что его применяли уже в Древнем Египте.


Работы Архимеда были очень короткими, и в них очень строго доказывались и решались задачи. В названиях автор прямо указывал тематику: "О квадратуре параболы", "О шаре и цилиндре", "О спиралях", "Об измерении круга", "О плавающих телах", "О равновесии плоских фигур" и так далее. Некоторые его сочинения были потеряны, например его работы о тяготении, рычагах и оптике.

Но именно талант изобретателя сделал Архимеда известным среди его современников. В молодости он сделал устройство, которое с помощью гидравлического механизма воссоздавало движение планет. Также Архимед разработал блочный механизм, позволивший ему спустить на воду огромный корабль царя Гиерона. Кроме того, он создал большое количество разнообразных военных машин, с помощью которых жители Сиракуз два года отражали атаки осаждавших их римлян. Согласно легенде ученый использовал большие зеркала, чтобы сжигать вражеские корабли. И, само собой, он был создателем винта Архимеда (см. рисунок), механического приспособления для поднятия воды из колодцев и цистерн, состоящего из металлической полосы, идущей спирально вокруг центрального стержня и спрятанной внутри цилиндра.

Однако все эти изобретения были, как пишет Плутарх в жизнеописании Марцелла, римского военачальника, завоевавшего Сиракузы, просто "развлечением для геометра". Плутарх объясняет нам, каковы были интересы гения:


"Хотя открытия обеспечили ему имя и славу, не человеческую, а божественную, он не захотел оставить ни одного трактата о них, а считал инженерное дело и любое утилитарное ремесло неблагородным и грубым и претендовал только на области, красота и утонченность которых не связаны с потребностями и не могут сравниться с другими областями; он открыл диспут о материи и доказательстве, где первое предоставляет силу и красоту, а второе — точность и высочайшую силу, потому что невозможно найти в геометрии более сложные и важные пропозиции, изложенные в рамках более чистых и четких понятий".


Архимед пользовался методом исчерпывания для строгого доказательства своих результатов. В работе "О шаре и цилиндре" первая аксиома, которую он выдвигает, заключается в том, что из всех линий, имеющих одни и те же концы, самая короткая — прямая. В нее включены другие аксиомы, связанные с длинами кривых и площадей поверхностей.


НЕ ГЕОМЕТРИЕЙ ЕДИНОЙ

В области геометрии у древнегреческих ученых было правило — рассматривать только те фигуры, которые можно построить с помощью линейки и циркуля. Поэтому они были ограничены знаменитыми задачами на построение: удвоение куба, квадратура круга и трисекция угла.

В греческой математике не было создано общих методов для решения различных задач. Кроме того, после подчинения геометрии математической строгости доказательства стали каждый раз все более сложными. Это мешало двигаться дальше в развитии вычислений.


МЕТОД ИСЧЕРПЫВАНИЯ

Этот метод обязан своим существованием греческому математику Евдоксу Книдскому (ок. 390-337 до н.э.). Он состоит в приближении неизвестной площади, которую нужно вычислить, к большей или меньшей площади. Метод основывается на принципе, который упоминается в "Началах" Евклида:

"Если при данных двух неравных величинах из наибольшей величины вычесть величину, большую ее половины, а из остатка — другую величину, большую ее половины, и последовательно повторять процесс, в итоге останется величина, меньшая наименьшей из заданных величин".

Попробуем найти площадь круга (рисунок 1). Для этого впишем в него квадрат (площадью, большей половины круга) и вычтем его площадь из круга. На сторонах квадрата построим равнобедренные треугольники, вписанные в сегменты круга, а затем вычтем площадь данных треугольников. Повторяя последнюю операцию нужное количество раз, мы последовательно подходим к площади круга сколь угодно близко.

РИС. 1

На рисунках видно, что каждый раз происходит вписывание в круг многоугольников с большим числом сторон, площадь которых каждый раз все больше приближается к искомой площади круга. Такие же рассуждения можно применить к описанному квадрату (рисунок 2).

РИС. 2



Изначально развитие греческой арифметики было обусловлено потребностями геометрии, поскольку математики сводили ее к вычислению геометрических или тригонометрических величин. Позже арифметика и алгебра разделились и начали развиваться как независимые дисциплины. Математики христианской эпохи, такие как Герои Александрийский (I в.), Никомах Герасский (II в.) и Диофант Александрийский (III в.), развивали арифметику и алгебру без оглядки на потребности геометрии. Никомах, следовавший пифагорейской традиции и написавший "Введение в арифметику", считал, что его труд имел такое же значение для арифметики, как "Начала" Евклида — для геометрии.

Древнегреческая алгебра добилась огромных успехов благодаря Диофанту. Его "Арифметика" состоит из серии задач с решениями и необходимыми разъяснениями. Это сочинение было написано для обучения алгебре. Здесь мы встречаем задачи, которые, кажется, взяты из современного учебника средней школы. Например: "Найти два числа, сумма которых равна 20, а произведение — 96". Способ, которым ее решает Диофант, если использовать нашу современную терминологию, выглядит следующим образом. Сумма равна 20, а произведение 96; пусть 2х есть разность между наибольшим и наименьшим числом; следовательно, оба числа равны 10 + х и 10 - х, а их произведение (10+х)(10-х) = 100 - х2 = 96, х2 = 4. Следовательно, х = 2, поскольку ученые Древней Греции не учитывали отрицательных решений. Искомые числа — 12 и 8.

К сожалению, большая часть наследия греческой культуры исчезла, уничтоженная христианами. Тысячи рукописей были сожжены, и большая часть научного знания пропала. В течение целого тысячелетия в геометрию не было привнесено ничего нового. Практически до 1600 года в этой области не происходило никакого развития.

В середине XVI века по Европе начали распространяться латинские переводы сохраненных арабскими учеными основных греческих текстов, которые были с энтузиазмом приняты математиками того времени. Началось тщательное изучение решений задач и доказательств, найденных древнегреческими учеными. Восхищение математиков XVI и XVII веков знаниями греков было бесспорным.


РАЗВИТИЕ АЛГЕБРЫ

Геометрия в течение тысячелетия стояла на месте, но алгебра немного развивалась, что сделало возможным создание математического анализа. Алгебра все еще была тесно связана с геометрией. Математик Мухаммад ибн Муса Аль-Хорезми (780- 850) работал в Багдаде. От его имени происходит слово алгоритм. Также благодаря ему появилось слово алгебра, поэтому многие авторы считают Аль-Хорезми отцом алгебры. Однако метод, которым он пользовался для решения своих уравнений, оставался в основном геометрическим.

Одним из наиболее известных ученых XVI века, внесших колоссальный вклад в развитие алгебры, был уже ранее упомянутый Франсуа Виет. Он активно работал над алгебраическими символами, пользуясь буквами для обозначения математических параметров: для неизвестных параметров он использовал гласные, а для всех прочих — согласные. В своих работах Виет давал сначала решение задачи в общем виде и только потом приводил числовой пример. Так он перешел от изучения частных проблем к развитию общих методов, что было очень важно для прогресса анализа бесконечно малых. Именно его работа обеспечила дорогу к появлению аналитической геометрии.

Символические величины, использованные Виетом, могут рассматриваться как длины отрезков или меры углов, а символические операции могут считаться, в свою очередь, геометрическими построениями. Следовательно, полученные решения могут относиться как к числовым, так и к геометрическим задачам.


ИЗМЕНЕНИЕ ПОДХОДА

В эпоху Возрождения искусство и литература получили значительное развитие, в то время как наука оказалась несколько подзабыта. Одним из создателей научного метода считается Фрэнсис Бэкон. В его сочинении, вдохновившем многие научные сообщества, "Новая Атлантида", правители были учеными, которые накапливали научные и технологические знания. Бэкон жаловался на то, что общество предпочитает гуманитарные и метафизические дисциплины, при этом пренебрегая работой ученого в лаборатории. А веком позже уже появилось большое количество работ с экспериментальными результатами.

Отношение к математике с середины XVI века радикально изменилось по сравнению с отношением к ней в Древней Греции. Появились новые задачи, происходящие из других наук и практических потребностей. Математика повернулась лицом к миру физики. Постепенно наука все больше основывалась на математических принципах, а математика все больше базировалась на других науках для своего дальнейшего развития.

Математики того времени были великими учеными и развивали свои знания во многих различных областях. Декарт говорил, что математика является наукой о порядке и мере и включает в себя, кроме алгебры и геометрии, астрономию, музыку, оптику и механику. Столпами механики Ньютона были сила и движение. Двумя главными моторами, двигавшими науку вперед, были астрономия и механика, развиваемые Галилеем и Кеплером. Например, конические сечения применяли к разным наукам: эллипсы — это траектории планет, а параболы — траектории снарядов.

Греческая строгость доказательства была оставлена в пользу эмпиризма. Для Галилея имели одинаковое значение как дедуктивная, так и экспериментальная части. В отличие от древнегреческих ученых он был больше заинтересован в получении новых результатов, чем в их безупречном обосновании. Время на строгую формулировку найдется и потом, поскольку самым важным является открытие само по себе. Убежденность в том, что полученные результаты затем можно доказать методами древнегреческих ученых, выражена в следующем высказывании Гюйгенса:

Гравюра Теобальда Фрайхера фон Ёра(1807- 1885), на которой изображен Лейбниц во время открытия Берлинской академии.

Гравюра, на которой изображено уничтожение Архимедом римских кораблей с помощью солнечных лучей.

Портрет Лейбница около 1700 года, работа Христофа Бернхарда Франке.


"Абсолютное доказательство не слишком интересно после того, как мы увидели, что может быть найдено идеальное доказательство. Признаю, что лучше бы оно было представлено в четком, искусном и элегантном виде, как во всех работах Архимеда. Но первое и самое главное — метод открытия сам по себе".


Но когда открытия излагались в эмпирической форме, без древнегреческой строгости, некоторые результаты не принимались другими учеными или вступали в противоречие с их данными. Еще одним важным аспектом было то, что проблемы нельзя ставить независимо друг от друга. Декарт утверждал, что схожие задачи должны решаться общим методом.


ДЕКАРТОВЫ КООРДИНАТЫ

Основная идея аналитической геометрии основывается на декартовых координатах.

Любая точка на плоскости обозначается двумя числами, которые отражают ее положение.

Декартовы оси состоят из двух перпендикулярных прямых, пересекающихся в одной точке — начале координат. Если нанести деления на прямые, каждой точке будут соответствовать два числовых значения, отмеряемых на обеих осях. Первое отмечается на горизонтальной оси, называемой осью абсцисс, а второе — на вертикальной оси, называемой осью ординат. Точка записывается как Р (х, у), где х — абсцисса, а у — ордината.

РИС. 1


Две прямые при пересечении делят плоскость на четыре области, которые получают название квадрантов и нумеруются от I до IV, начиная с квадранта, в котором обе координаты положительные, и следуя против часовой стрелки (рисунок 1). Однако изначально понятия осей не существовало. Ферма определял координаты следующим образом: положение точки Р задано двумя длинами — одной, отмеряемой по горизонтали от точки О до точки I, и другой, отмеряемой наклонно от I до Р (рисунок 2). Эти измерения — наши сегодняшние х и у. Как можно увидеть, на рисунке не определены оси и нет отрицательных координат.

РИС. 2



АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Значительный скачок для перехода от геометрии к алгебре произошел с созданием аналитической геометрии, которая позволяет заменять кривые уравнениями, чтобы работать напрямую с алгебраическим решением. Кривая с точки зрения аналитической геометрии — это множество точек, которое удовлетворяет одному условию и связано с алгебраическим уравнением.

Как в то время нередко случалось, аналитическая геометрия была открыта независимо двумя учеными, результаты которых не были полностью одинаковыми. Создателями ее были французы Пьер Ферма (1601-1665) и Рене Декарт (1596— 1650).

Ферма некоторые даже называли принцем любителей, поскольку на самом деле один из создателей теории чисел был судейским чиновником и занимался математикой в свободное время. Больше всего он известен благодаря знаменитой Великой теореме Ферма, которую смогли доказать только три века спустя. Также он был одним из создателей теории вероятностей. При жизни Ферма не опубликовал ни одного исследования, поэтому его труды стали известны благодаря письмам и бумагам, которыми он обменивался с друзьями и знакомыми.

Декарт, философ, физик и математик, занимался геометрией, опираясь, как и Ферма, на классиков. В 1637 году он опубликовал свою великую работу "Рассуждение о методе", где излагал свою философию и куда включил три приложения: "Диоптрика", "Метеоры" и "Геометрия".

Таким образом началась одна из самых больших полемик века о том, кто был первым создателем аналитической геометрии. С одной стороны, в работе Ферма "Введение к теории плоских и пространственных мест", написанной в 1629 году, но опубликованной только в 1679 году, ее автор уже высказывает основные идеи аналитической геометрии, которые оказались близки к сегодняшним представлениям о ней. С другой стороны, нидерландский ученый Исаак Бекман (1588-1637), считающийся одним из первых исследователей вакуума, друг и наставник Декарта с 1619 года, утверждал, что в то время у его ученика уже было понимание метода решения всех задач, которые могут стоять перед геометрией.

Похоже, Ферма был первым, кто разработал аналитическую геометрию, но Декарт первым опубликовал работу о ней. Подобные ситуации случались в то время очень часто. Но так как эти ученые обменивались информацией в эпистолярной форме через Мерсенна, возникли обвинения в плагиате. Тем не менее кажется очевидным, что они оба пришли к своим выводам независимо друг от друга, поскольку их подходы различаются. Декарт исходит из геометрической кривой и изучает ее уравнение, в то время как Ферма исходит из уравнения и изучает, какая кривая ему соответствует и каковы ее свойства. Это прохождение одного пути с двух противоположных сторон.


ФУНДАМЕНТ АНАЛИЗА

Первым, кто попытался продвинуться в методе вычисления площадей и объемов, работая в строгом девнегреческом стиле, был Бонавентура Кавальери (1598-1647), ученик Галилея. В 1635 году он опубликовал свою работу "Геометрия, развитая новым способом при помощи неделимых непрерывного". Ученый утверждал, что все фигуры образованы из ряда базовых элементов, которые он называет неделимыми. То есть площадь образована неопределенным числом параллельных отрезков (см. рисунок), а объем — параллельными плоскими поверхностями.

Любая поверхность образована неопределенным числом параллельных отрезков.


Неделимые — это минимальные элементы, на которые можно разложить фигуру. В "Шести геометрических этюдах" (1647) Кавальери изложил идею о том, что линия состоит из точек, как бусы из четок; плоскость сделана из линий, как волокна на ткани, а твердое тело образовано плоскими поверхностями, как листы в книге. Благодаря этой идее ему удалось найти квадратуру, то есть площадь, кривых типа xk для значений k, равных 6 и 9. Если использовать современную запись, Кавальери доказал, что:

a

∫xn dx = (an+1)/(n+1)

0

Он сформулировал утверждение, известное как принцип Кавальери: "Если при пересечении двух тел любой плоскостью, параллельной некоторой заданной плоскости, получаются сечения равной площади, то объемы тел равны между собой". На рисунке 1 на следующей странице можно увидеть конкретный случай из двух треугольников с одинаковым основанием и высотой, где неделимые одинаковы, следовательно площадь одна и та же.

Несмотря на критику, которую получил метод Кавальери, многие математики пошли по тому же пути неделимых. Ферма, Торричелли, Паскаль и Роберваль также предложили похожие методы, хотя и заменив линии другими элементами, такими как прямоугольники, треугольники, параллелепипеды или цилиндры.

РИСУНОК 1. Два треугольника с одинаковым основанием и высотой имеют одну и ту же площадь.

РИСУНОК 2. Метод Кавальери для нахождения площади области, ограниченной параболой.


Жиль де Роберваль, один из членов-основателей Парижской академии наук, заменил линии Кавальери бесконечно малыми прямоугольниками. Он чертил ряд прямоугольников одной и той же ширины и предполагал, что площадь под кривой можно приблизить к площади этих прямоугольников, если их ширина достаточно мала. Для нахождения площади под параболой, например, он следовал методу, показанному на рисунке 2. В современной записи речь бы шла о том, чтобы найти

a

∫x2 dx .

0

Возьмем n прямоугольников, расположенных на горизонтальной оси. При этом t означает порядковый номер прямоугольника. Пусть подобный прямоугольник имеет основание е, тогда высотой его будет значение функции параболы, соответствующее абсциссе t • е. Следовательно, его площадь равна е • (t • е)2. Если сложить все прямоугольники, получится:

А = е -е2 + е • (2е)2 + е • (Зе)2 + ... + е- (ne)2 =

= е3 + 4е3 + 9е3 +... + n2 • е3 = е3-( 1 + 4 + 9 +... + n2).

Сумма членов ряда квадратов уже нам известна и равна:

n3/3+n2/2+n/6,

и если обозначить через а сумму п значений ширины прямоугольников, то есть a = ne, то:

e = a/n,

и предыдущее выражение превращается в:

A = (a/n)3(n3/3+n2/2+n/6) = a3(n3/3n3+n2/2n3+n/6n3) = a3(1/3+1/2n+1/6n2).

Поскольку предполагается, что n — достаточно большое число для оптимального приближения, дробями с n в знаменателе можно пренебречь, ведь значение этих дробей приближается к нулю, и получается, что площадь под параболой равна:

a3/3.


ГИГАНТЫ

Были и другие математики, которые настолько близко подошли к определению анализа бесконечно малых, что как бы расстелили ковровую дорожку, по которой Ньютон и Лейбниц вошли в историю. Английский математик Джон Уоллис, королевский криптограф, представил в 1656 году свою главную работу "Арифметика бесконечного", в которой на основе работ Декарта и Кавальери изложил свой метод работы с бесконечно малыми. Уоллис вычислил квадратуру гипербол, то есть кривых, уравнения которых имеют вид:

1/xr

где r не равно 1.

В своем методе он пользовался скорее алгебраической базой, чем геометрической, как частично делали Ферма и Роберваль. Чтобы найти площадь, замыкаемую кривой у = х3, Уоллис использовал отношение между треугольниками и квадратами с одинаковой длиной основания. В них он провел неделимые линии, которые их образовывают, и сложил кубы их длин, поскольку мы работаем с х3. Если есть только две линии, в треугольнике мы получаем длины со значениями 0 и 1, в то время как в квадрате обе линии равны 1. Получается следующее отношение:

(03+13)/(13+13) = 1/2 = 1/4+1/4.

Если взять три линии, то длины линий, находящихся в треугольнике, будут равны 0, 1 и 2, в то время как в квадрате во всех трех случаях они будут равны 2. Если взять четыре линии (см. рисунок), то в треугольнике измерения равны 0, 1, 2 и 3, в то время как в квадрате все линии имеют размер 3:

(03+13+23)/(23+23+23) = 9/24 = 6/24+3/24 = 1/4+1/8,

(03+13+23+33)/(33+33+33+33) = 36/108 = 27/108+9/108 = 1/4+1/12.

Как можно заметить, по мере увеличения числа линий результатом всегда является дробь 1/4 плюс каждый раз все меньшая дробь. При увеличении количества линий наступит момент, когда вторая дробь станет меньше любого заметного числа и, следовательно, практически равной нулю, так что площадь под кривой равна 1/4.

Метод Уоллиса для нахождения отношения между треугольником и квадратом в случае, когда имеется четыре линии.


Одним из самых серьезных ученых был англичанин Исаак Барроу (1630-1677), теолог и математик, преподаватель Ньютона на Лукасовской кафедре математики в Кембридже. На его трудах основывались Ньютон и Лейбниц.

Его главным вкладом в математику являются "Лекции по оптике и геометрии" (1669), в которых Барроу изложил свой анализ. Если бы не его чрезмерная увлеченность геометрическими методами, основателем математического анализа мог бы стать он сам. Обзор этой работы дает нам представление об элементах анализа: построение касательных, дифференцирование произведения и частного, дифференцирование степени, спрямление кривых, замена переменной в определенном интеграле и дифференцирование неявных функций. Барроу также осознавал, что вычисление квадратуры и дифференцирование были взаимно обратными операциями, о чем уже говорил шотландский ученый Джеймс Грегори, но тогда никто на это высказывание не обратил внимания. Барроу изложил свои идеи в геометрическом виде и только для некоторых функций.


ПРОБЛЕМЫ АНАЛИЗА

Один из наиболее связанных с математикой аспектов — это движение. Вспомним, что многие математики считали кривую точкой в движении. В связи с движением выделялось два вопроса: найти скорость и ускорение объекта, когда известно расстояние, которое он проходит в зависимости от времени, и обратная задача — найти скорость и пройденное расстояние, когда известно ускорение. Однако на самом деле основная задача состояла в том, чтобы выяснить, какова мгновенная скорость. Если мы проехали 90 км за один час, мы знаем, что средняя скорость этой поездки была 90 км/ч, но очень вероятно, что за этот час мы иногда набирали большую скорость, а иногда меньшую. Аналогично, если мы знаем скорость в определенный момент и время движения, мы также не можем знать пройденного расстояния, поскольку эта скорость постоянно меняется. Чтобы перейти от средней скорости к мгновенной, мы должны совершить переход к пределу, который был неизвестен в XVII веке.

Второй основной задачей было нахождение касательной к кривой. Практическое применение ее решения встречается непосредственно в оптике. В задачах с линзами важно знать угол, который образует луч с линзой, поскольку он будет таким же, как и угол преломления. Угол измеряется между лучом и перпендикуляром к касательной в точке падения луча. Также при криволинейном движении мгновенная скорость направлена по касательной к траектории. Можно представить себе очень простой эксперимент, чтобы проверить это: если привязать груз к веревке и быстро раскрутить его, то когда мы отпустим веревку, груз не будет продолжать вращаться, а переместится в направлении касательной к окружности, описываемой им ровно в тот момент, когда мы отпустили веревку.

Для древнегреческих ученых касательной к кривой была прямая, у которой была единственная общая точка с кривой и которая вся находилась с одной стороны от нее. Но в XVII веке ее определяли в терминах движения и сил.


МЕХАНИЧЕСКИЕ КРИВЫЕ: ЦИКЛОИДА

Для греков кривые могли быть плоскими (их можно получить только с помощью линейки и циркуля), коническими (они получаются при сечении конуса) или линейными (не входят в предыдущие группы, для их построения нужен какой-нибудь механический метод). Декарт, говоривший, что использование линейки и циркуля — это также способ построения кривых, назвал геометрическими кривыми те, уравнение которых является полиномиальной функцией вида f (х, у) = 0, то есть многочленом для х и у. Например, это окружность, центр которой — точка О (a, b), а радиус г соответствует уравнению (х - a)2 + (y - b)2 = r2 (рисунок 1). Остальные кривые Декарт назвал механическими. Это спирали, показательные и логарифмические функции или цепная линия, то есть кривая, форму которой принимает веревка, закрепленная с двух сторон, например кабели между двумя опорами линии электропередач. Без сомнения, главной механической кривой того времени была циклоида: кривая, описываемая точкой окружности, которая катится по полу, не проскальзывая (рисунок 2). Представим себе колесо велосипеда с приклеенной к шине жевательной резинкой: кривая, которую будет описывать резинка, когда мы приведем велосипед в движение, — это циклоида.

РИС. 1 Геометрическая кривая.

РИС. 2 Циклоида


Свое название циклоида получила благодаря Галилею. Робервалю удалось найти квадратуру сегмента циклоиды, и хотя он пытался выявить способ построения касательной, это получилось сделать только у Ферма. Паскаль поставил перед научным миром задачу нахождения площади любого сегмента циклоиды и центра его тяжести. Из всех откликнувшихся он наиболее высоко оценил работу Кристофера Рена. В свою очередь Гюйгенс сформулировал задачу построения кривой, имеющей минимум, или нижнюю точку, причем если уронить шарик, который катится без учета силы трения по этой кривой вследствие тяготения, он потратит одно и то же время, чтобы достичь нижней точки, независимо оттого, из какой точки кривой он начнет движение. Эту кривую Гюйгенс назвал таутохронной. Паскаль доказал, что решением данной задачи является обратная циклоида. Лейбниц переименовал кривые, назвав их вместо геометрических алгебраическими и поменяв название механических на трансцендентные. Эта терминология все еще используется сегодня.


Так, Роберваль считал, что на движущуюся точку влияют две силы, горизонтальная и вертикальная. Диагональ прямоугольника, образованного обеими прямыми, дает направление касательной (см. рисунок).

Направление касательной по Робервалю.


Третьей основной задачей было вычисление максимумов и минимумов. Такая проблема возникала во многих повседневных ситуациях. Считается, что задачи подобного рода появились, когда Кеплер начал изучать оптимальные формы, которые должны были иметь бочонки с вином. Он доказал, что из всех прямоугольных параллелепипедов с квадратным основанием и одной и той же площадью поверхности у куба наибольший объем. Подобного рода задачи также встречались в баллистике и при изучении движения планет.

Четвертой группой задач были измерения, предполагавшие спрямление кривых, то есть трансформацию фрагмента кривой в отрезок той же длины, в связи с чем можно было узнать размер этого фрагмента кривой: нахождение квадратуры кривой, то есть площади, ограниченной этой кривой, и нахождение кубатуры тела, то есть его объема. В данную группу задач входило также вычисление центров тяжести тел и гравитационного притяжения между ними.


И ПРИШЛИ ГЕНИИ

Практически все великие математики XVII века внесли что- нибудь в развитие анализа. Ферма, например, использовал тот же самый метод построения касательных и нахождения экстремальных значений, максимумов и минимумов. Грегори и Барроу выяснили, что вычисление квадратуры и нахождение касательной были взаимосвязаны.

Нужно было, чтобы пришел кто-то с еще лучшим зрением, чтобы увидеть связи между этими проблемами. Как Ньютон, так и Лейбниц сделали качественный скачок в создании анализа посредством двух фундаментальных аспектов. Во-первых, они нашли общий метод, который можно было применить к любому типу задач. Во-вторых, они доказали, что раз задачи по дифференцированию и нахождению квадратур взаимно обратны, то, чтобы решить одну из них, достаточно инвертировать метод и найти решение другой. Этот результат известен как основная теорема анализа. Таким образом после Лейбница и Ньютона четыре проблемы анализа свелись только к двум проблемам дифференцирования и интегрирования.


ИСААК НЬЮТОН

Исаак Ньютон (1642-1727) был математиком, физиком, алхимиком, теологом и изобретателем. Он учился в Кембриджском университете, где посещал лекции Барроу, которого он затем заменил на должности преподавателя. В 1665 году Ньютон вернулся в свою родную деревню, когда университет закрылся из-за чумы, в то время опустошавшей Англию. Два года вынужденных каникул ученый занимался исследованиями в трех больших областях: оптика, тяготение и движение тел и, наконец, анализ бесконечно малых.

Ньютон всегда сопротивлялся публикации своих результатов, потому что не хотел вступать в полемику, и предпочитал посылать свои открытия в виде писем другим ученым. Из-за этого его исследования публиковались через много лет после того, как они были сделаны, что вызывало споры об авторстве.


"Начала"

В 1686 году появился первый из трех томов работы Ньютона "Математические начала натуральной философии", более известной как "Начала". В нем был изложен знаменитый закон всемирного тяготения.

В 1696 году Ньютон оставил преподавание и стал сначала смотрителем, а затем управляющим Лондонского монетного двора. Занимая эту должность, он активно содействовал проходившей в Англии денежной реформе. В 1703 году Ньютон был избран председателем Королевского общества и оставался им до самой смерти. Он также недолго входил в состав парламента, а в 1705 году королевой Анной был возведен в рыцари.


Кроме того, эти ученые предложили вычисление, абсолютно не связанное с геометрией, после чего математический анализ стал отдельной дисциплиной. Она пользовалась алгебраическими понятиями, что позволяло разработать метод, который был бы применим для любого вида функции или задачи.

Несмотря на тяжкую полемику о том, кто раньше изобрел анализ бесконечно малых, подходы Лейбница и Ньютона отличались. Ньютон вычислял производную и первообразную с помощью бесконечно малых приращений, а Лейбниц имел дело напрямую с дифференциалами. С другой стороны, Ньютон всегда работал с производными и интегралами с точки зрения относительного изменения переменных, в то время как Лейбниц использовал в своей работе суммирование членов рядов для нахождения площадей или объемов. Кроме того, Ньютон широко применял ряды для представления функций, а Лейбниц напрямую работал с общим уравнением функции. Кроме того, немецкий ученый занимался формулированием правил анализа, что не интересовало его коллегу из Англии. Если Лейбниц искал подходящие и легко используемые символы записи, то Ньютон не задавался этим вопросом. Сегодня мы применяем форму записи, созданную Лейбницем, несмотря на то что концепция анализа Ньютона более близка современной.

Ньютон изложил свой анализ в нескольких работах. Первая из них — "Анализ с помощью уравнений с бесконечным числом членов", написанная в 1669 году, но опубликованная в 1711-м; вторая — "Метод флюксий и бесконечные ряды", законченная в 1671 году, но опубликованная только в 1736-м. В этой работе Ньютон определил свои основные элементы, флюэнты и флюксию. Первые он охарактеризовал как переменные величины, так как рассматривал прямые, плоскости и объемы как непрерывное движение точек, прямых и поверхностей. Относительное изменение этих флюэнт он назвал флюксией. Эти понятия приблизительно соответствуют нашим переменным, функциям и их производным. Если х и у — флюэнты, то их флюксии ученый обозначил как х' и у'. Флюксия флюксии, то есть вторая производная, обозначена x" и y" и так далее. Ньютон также определил момент флюэнты, который обозначил о, как очень маленькое изменение переменной, бесконечно малый интервал изменений.

В третьей работе, "О квадратуре кривых", написанной в 1676 году и опубликованной в 1704-м в качестве приложения к своему труду по оптике, Ньютон частично изменил подход к бесконечно малым, больше приблизившись к интуитивной идее предела.

Посмотрим, как ученый использовал эти элементы для нахождения производной. Возьмем функции у = xn. Ньютон говорит, что если переменная х флюирует, то есть бесконечно мало изменяется до х + o, то функция превращается в (х + o)n. Далее из этого двучлена он получает ряд:

(x+o)n = xn + n · xn-1 · o + n(n-1)/2 · xn-2 · o2 + ...

Если вычесть из данного выражения значение у = хn получится, что приращение к переменной х, то есть о, равносильно приращению к переменной y, то есть:

n · xn-1 · o + n(n-1)/2 · xn-2 · o2 + ...

Если мы проведем преобразование, то получим выражение:

n · xn-1 + n(n-1)/2 · xn-2 · o + ...

Теперь, как говорил сам Ньютон, "пусть эти приращения испарятся": все члены с приращением исчезают, если это значение стремится к нулю. Таким образом, найденная производная равная n · хn-1.


АНАЛИЗ ЛЕЙБНИЦА

После 1675 года в заметках Лейбница уже появляются идеи, которые привели его, по ходу дела серьезно меняясь, к собственному пониманию анализа. Однако похоже, что идеи, которые направили ученого по этому пути, зародились еще раньше. В своем труде "Об искусстве комбинаторики" Лейбниц работал с последовательностями и разностями между их членами. Он исходил, например, из последовательности квадратов 0, 1, 4,9,16, 25,...

Первые разности были 1, 3, 5, 7, 9, ... вторые — 2, 2, 2, 2, 2, ... а третьи все были нулевые. Если взять третью степень, то все четвертые разности были нулевыми, и так далее.

Он убедился, что при сложении первых членов последовательности первых разностей получается следующий член исходной последовательности, то есть при сложении двух первых членов (1 +3 = 4) получается третий член последовательности. Если сложить три первых члена 1 + 3 + 5 = 9, то получается четвертый член, и так далее.

Таким образом, анализ бесконечно малых Лейбница основывается на суммах и разностях членов последовательностей. Сумма дает нам интегральное исчисление, то есть площадь, ограниченную кривой, а разности — производную.

Лейбниц считал, что кривые сформированы из бесконечного числа прямолинейных бесконечно малых отрезков, которые составляют касательные к кривой. То есть для каждой точки у нас есть значение х, значение у и значение отрезка, соответствующего кривой; значит, у нас есть последовательности чисел, к которым можно применить сложение и вычитание.

В первой главе статьи об анализе, опубликованной Лейбницем в 1684 году в журнале "Акты ученых" под названием "Новый метод максимумов и минимумов, а также касательных, для которого не служат препятствием ни дробные, ни иррациональные величины, и особый для этого род исчисления", ученый представил свой метод и применил его для решения задачи, поднятой картезианцем Флоримоном де Боном: нахождения кривых с постоянной подкасательной. Рассмотрим его в современной записи.

Подкасательная — это проекция на ось X отрезка от места пересечения касательной с осью X до точки касания; на рисунке на следующей странице это отрезок АВ. Мы хотим, чтобы он был постоянным и был равен с. В этом доказательстве Лейбниц использовал то, что известно как характеристический треугольник, которым также пользовались Паскаль и Барроу, с катетами dx и dy, а в качестве гипотенузы — один из бесконечно малых отрезков, которые составляли кривую.

Отрезок BQ равен у. Поскольку треугольник ABQ подобен характеристическому треугольнику:

dy/dx = y/c,

то

dy/y = dx/c.

После интегрирования этого выражения получается

ln(y) = x/c.

Следовательно, кривые с постоянной подкасательной — это кривые, заданные функцией у = ex/c, то есть экспоненциальные. Лейбниц так находил производную произведения:


"d(xy) — то же самое, что разность между двумя смежными ху, одно из которых равно ху, а другое — (х + dx) (у + dy). Тогда d(xy) = (x + dx)(y + dy)-xy = xdy + ydx + dxdy, и это равно xdy + ydx, если величину dxdy опустить, поскольку она бесконечно мала относительно остальных величин, так как dx и dy, предполагается, бесконечно малы".


Характеристический треугольник Лейбница, в котором появляются касательная к кривой и ее подкасательная.


ПОЛЕМИКА ОБ АНАЛИЗЕ

Сегодня признается, что Ньютон был первым, кто разработал принципы анализа, а Лейбниц первым опубликовал результаты. Они оба пришли к нему независимо, базируясь на одном и том же фундаменте.

Уже в 1674 году Лейбниц мимоходом упоминал в письме Ольденбургу, что он нашел квадратуру круга с помощью открытого им общего метода. А в 1675 году ученый сообщал ему, что нашел метод для решения квадратур, который можно обобщить, но не сказал ничего более подробного. В том же самом году в Париж через Лондон приехал благородный саксонец Вальтер фон Чирнхаус с письмами от Ольденбурга для Лейбница и Гюйгенса. Фон Чирнхаус работал какое-то время с Лейбницем, например над рукописями Паскаля, которые потом пропали, и знаем мы о них теперь только благодаря Лейбницу. Было ясно, что Чирнхаус не испытывал никакого интереса к анализу бесконечно малых, поэтому он ни о чем не мог проинформировать Лейбница. Чирнхаус утверждал: все, сделанное Барроу и другими английскими математиками,— лишь ответвления от того, что привнес Декарт. Чтобы оспорить это мнение, Коллинз, библиотекарь Королевского общества, написал работу примерно на 50 страниц, известную как Historiola, в которой объяснял анализ, разработанный Барроу и Ньютоном. В 1675 году он послал отрывок Чирнхаусу и Лейбницу, хотя у последнего уже был разработан собственный анализ.

В октябре 1676 года по пути из Парижа в Ганновер Лейбниц провел неделю в Лондоне. Тогда Коллинз позволил ему списать фрагменты Historiola и "Анализа" самого Ньютона.

Ньютон и Лейбниц несколько раз обменивались письмами через Ольденбурга. Пятого августа 1676 года Ольденбург отправил Лейбницу письмо Ньютона, известное как Epistola prior, через Самуэля Кёнинга, который был с визитом в Париже; послание затерялось в бумагах и дошло до адресата только 26 числа этого месяца. В этом письме Ньютон делал особенный акцент на биноме и представлял еще несколько результатов, уже известных Лейбницу, не объясняя методов, с помощью которых он их получил. Лейбниц ответил ему на следующий день, уверяя, что его метод — другой. Во время полемики о первенстве открытия анализа многие делали акцент на том, что у Лейбница было почти три недели для внимательного изучения письма до того, как он ответил.

В 1677 году ученый получил второе письмо Ньютона, Epistola posterior, в котором тот объяснял ему все о своей работе с бесконечными рядами и также говорил о своем анализе, хотя представил его в виде криптограммы, основанной на латинских словах:

"Основа этих операций довольно очевидна, но поскольку я сейчас не могу продолжить объяснение, я предпочел оставить его скрытым: 6accd et 13eff.71319n4o4orr4s8tll2vx".

Эта бессмыслица после перевода с латыни означала: "Если задано любое уравнение, включающее некоторое число величин-флюэнт, найти флюксии, и наоборот". Она дополнялась еще более распространенной анаграммой, которая даже после дешифровки давала мало информации тому, кто не был знаком с данной темой.


Вторые изобретатели не берутся в расчет.

Исаак Ньютон о Лейбнице после полемики о первенстве


ОТКРЫТИЯ АНАЛИЗА БЕСКОНЕЧНО МАЛЫХ

После публикации своей первой статьи, посвященной анализу, в 1684 году у Лейбница возникли проблемы с авторством. И хотя он настаивал на том, что его метод отличается и что он нашел его до того, как познакомился с какой-либо работой Ньютона, о чем свидетельствовали письма, написанные Ольденбургу, это не помогло. Дело обострилось, когда Никола Фатио де Дюилье, ученик Ньютона, обвинил Лейбница в плагиате.

Обвинения начали летать туда-сюда между континентом и островом, а математики вставали на сторону того или другого ученого. Полемика разгорелась так жарко, что Лейбниц потребовал создать комиссию Королевского общества, чтобы определить, кто был прав в этой дискуссии. Комиссия, которая была создана Ньютоном, бывшим в то время председателем научного общества, пришла к выводу, что первенство было за английским ученым.

Из-за этого спора английские и европейские интеллектуалы прервали отношения и перестали обмениваться информацией. Ученые с континента поддержали Лейбница, а английские — Ньютона, но так как английская версия анализа в большей степени основывалась на геометрических методах, чем европейская, это стало помехой для английской математики, которая в условиях изоляции отстала от континентальной.


РАСПРОСТРАНЕНИЕ АНАЛИЗА

Метод Лейбница был быстро принят математиками европейского континента. Самыми преданными его "апостолами" были братья Якоб и Иоганн Бернулли, первые из большой семьи известных математиков. Работа Лейбница была оригинальной и результативной, но несколько незаконченной: иногда ей было сложно следовать. К счастью, братья Бернулли упорядочили ее, привнеся множество примеров и новых деталей. Лейбниц признал большой вклад, сделанный Бернулли, и даже подчеркнул, что они стали первыми, кто применил новый метод к решению физических проблем.

Якоб Бернулли (1654-1705) являлся самоучкой и был хорошо знаком с трудами главных предтеч анализа: Декарта, Уоллиса и Барроу. Он работал преподавателем математики в Базельском университете. Найдя одну из первых работ Лейбница по данной теме, Якоб самостоятельно освоил дифференциальное и интегральное исчисление. Он объяснил суть нового метода своему брату Иоганну, и они оба начали работать над анализом Лейбница. В 1690 году в "Актах ученых" Якоб опубликовал статью, в которой говорил о собственных методах анализа и решил задачу, предложенную Лейбницем за три года до этого: "Найти кривую, расположенную в вертикальной плоскости, по которой материальная точка опускается на одну и ту же длину за одно и то же время".

У Иоганна Бернулли (1667-1748) по прозвищу Задира было больше таланта и изобретательности, чем у брата. Он был великим геометром, хотя и не очень скромным (на его могильной плите выгравирована надпись: "Здесь лежит Архимед своего времени"). Он был убежденным защитником Лейбница и сторонником его приоритета в создании математического анализа. Иоганн поссорился с несколькими математиками, особенно со своим братом Якобом и сыном Даниилом. Он был преподавателем Эйлера и объяснял анализ маркизу Лопиталю, знатоку математики.

Действительно, Гийом Франсуа Антуан, маркиз де Лопиталь (1661-1704), нанял Иоганна для того, чтобы тот объяснил ему детали анализа бесконечно малых. На основе полученной на этих уроках информации он опубликовал первый в истории учебник математического анализа: "Анализ бесконечно малых для исследования кривых линий" (1696). Лопиталь издал его под своим именем, хотя большинство результатов, представленных в этой книге, принадлежали самому Бернулли.

Оба брата решили множество задач с помощью нового метода: спрямление кривых, вычисление кривизны, эвольвенты, эволюты и точки перегиба. Якоб уделил особое внимание логарифмической спирали и так восхищался ей, что в итоге распорядился изобразить ее на своей надгробной доске.

Одной из форм, благодаря которой больше всего распространялся анализ, была постановка задач. Предложить задачу, чтобы остальные математики ее решали, — в то время такой метод был очень популярен.

В статье 1690 года Якоб решил задачу, предложенную Лейбницем, но также поставил другую: найти форму, которую примет идеально гибкая и однородная кривая под действием только веса, если она закреплена с двух концов. Решением оказалась кривая, известная как цепная линия. Ответ на задачу, помимо Гюйгенса и Лейбница, был найден братом Якоба, Иоганном. Сам Лейбниц позже, в 1692 году, опубликовал статью в "Журналь дэ саван", где снова представил решение и объяснил, как использовать цепную линию в навигации.

В 1696 году Иоганн Бернулли снова бросил вызов математическому миру, особенно английскому, с целью доказать, кто лучше разбирается в новом вычислении. Он просил найти кривую, по которой тело опускается между двух точек, не выстроенных ни в вертикальную, ни в горизонтальную линию, за наименьшее возможное время. Данная кривая называлась брахистохрона. До окончания предусмотренного срока только Лейбниц представил решение, сочтя это очень красивой и до того времени неизвестной задачей. Он же попросил увеличить предоставленное время, чтобы другие математики смогли в срок найти решение. После окончания нового срока было предъявлено только пять решений: Лейбница, братьев Бернулли, Лопиталя и анонимное, присланное из Англии. Изучив последнее, Иоганн сказал: "Льва узнают по когтям". Конечно, оно принадлежало Ньютону. Итак, во всех решениях использовалось новое вычисление. Кстати, решение этой задачи — также обратная циклоида.

Загрузка...