ГЛАВА 37 Ящик Пандоры*

Ферми и другие его единомышленники не стремились найти сундук с золотом на конце радуги. Они стремились к знаниям, позволившим бы расширить и углубить представление человека об окружающем его мире.

Они знали, что в ядре атома заключен ответ на некоторые самые основные загадки природы, загадки гигантских систем звезд, движущихся по своим орбитам в беспредельном космическом пространстве, и столь же огромных систем клеток, составляющих все живое — растения, животных и людей. И они искали ключ или, скорее, крошечную замочную скважину, через которую можно было бы увидеть хоть немногое из того, что находится за воротами, ведущими в эту цитадель Вселенной.

* Ящик Пандоры в переносном смысле означает источник всяких бед. По древнегреческому мифу Пандора — прекрасная женщина, созданная Гефестом,— вопреки запрещению Зевса открыла ящик, где были спрятаны несчастья, и они разлетелись по всему свету.— Прим, перев.

В маленький герметичный стеклянный сосуд Ферми поместил небольшое количество порошка бериллия, наполнил сосуд радоном — естественным радиоактивным газом, излучающим, как и радий, альфа-частицы, т. е. ядра атомов гелия. Очень немногие из этих ядер, не более чем один из каждой сотни тысяч, вылетающих с колоссальной скоростью из ядер радона, попадают в ядро атома бериллия. При таком столкновении происходит синтез ядер гелия и бериллия, т. е. точно такой же процесс, который наблюдается в неизмеримо большем масштабе при взрыве водородной бомбы. Таким образом, крошечный стеклянный сосуд являлся миниатюрным прототипом этого апокалипсического оружия.

Чтобы понять это явление, необходимо лишь произвести элементарные расчеты. Ядро атома гелия состоит из двух протонов и двух нейтронов, а ядро атома бериллия— из четырех протонов и пяти нейтронов. Таким образом, в сумме получается шесть протонов и семь нейтронов.

Когда ядра гелия сливаются с ядрами бериллия, в крошечном стеклянном сосуде происходит чудо сотворения: два протона и два нейтрона гелия сливаются с четырьмя протонами и четырьмя нейтронами бериллия, образуя таким образом необходимый для жизни элемент — углерод с ядром из шести протонов и шести нейтронов.

Когда же происходит слияние ядер двух легких элементов в более тяжелый элемент, около пяти сотых процента общего количества массы всего гелия и бериллия превращается в ядерную энергию, которая приблизительно в 1 500 000 раз больше энергии, высвобождаемой при сгорании такого же количества угля, и в десять миллионов раз больше взрывчатой силы тротила. Но все это, конечно, происходит в очень небольшом масштабе, так как сливаются всего несколько атомов.

Однако Ферми и его группу интересовало не получение углерода и не высвобождение энергии синтеза. Их интересовал седьмой нейтрон, освобождаемый в процессе превращения элементов. Они построили небольшой аппарат для синтеза, желая иметь источник свободных нейтронов, ведь свободные нейтроны — явление очень редкое во Вселенной, где все они накрепко связаны в ядрах атомов.

Этот небольшой стеклянный сосуд со смесью порошка бериллия и газа радона должен был служить Ферми нейтронной пушкой для получения изотопов элементов — тех элементов, которые в силу своей высокой радиоактивности давно исчезли на Земле,— или служить для создания совершенно новых, никогда ранее не существовавших в природе элементов.

Дело в том, что нейтрон — по-своему самый замечательный из основных компонентов природы. Так как он электрически нейтрален, то может проникать сквозь гигантскую стену положительного электричества, окружающую ядро атома, которое состоит из положительно заряженных протонов. Это свойство делает нейтрон самым мощным орудием для проникновения в цитадель Вселенной — атомное ядро — с целью изучения ее сокровенных тайн.

Другое замечательное свойство нейтрона — его способность подвергаться полному превращению. Когда нейтрон попадает в ядро атома, то при определенных условиях может потерять отрицательный электрон и таким образом стать протоном. Или же нейтрон может выбить положительный заряд у одного из протонов ядра, таким образом превратив его в нейтрон.

Итак, природа создала свои девяносто два элемента, от водорода — элемента № 1 (один протон в ядре) до урана — элемента № 92 (девяносто два протона в ядре), из определенного числа протонов, уравновешенных определенным, но не всегда равным числом нейтронов. Для устойчивых легких элементов отношение числа нейтронов к числу протонов равно один к одному. Для более тяжелых элементов это соотношение неуклонно возрастает. Например, как мы уже видели, ядро углерода содержит шесть протонов и шесть нейтронов, а ядро последнего и самого тяжелого природного элемента, урана, состоит из 92 протонов и 146 нейтронов, т. е. отношение числа протонов к числу нейтронов в нем составляет примерно 1 : 1,6.

Когда в ядро атома любого элемента стреляют лишним нейтроном, природа всячески старается восстановить утраченное равновесие. Она достигает этого несколькими путями: превращением нейтронов в протон, таким образом прибавляя еще один протон к ядру и создавая элемент, находящийся на одну ступеньку выше в периодической системе элементов, или превращением протона в нейтрон, что в свою очередь заставляет элемент спуститься на одну ступеньку ниже по природной лестнице.

Ферми и его группа первыми начали бомбардировать из своей нейтронной пушки ядра всех элементов, начиная с самого легкого (водорода) и кончая самым тяжелым (ураном). После целого ряда разочарований, когда, казалось, ничего не происходило, они начали пожинать богатый урожай радиоактивных элементов.'Один за другим элементы, бомбардируемые из нейтронной пушки, стали превращаться под действием нейтронов, излучаемых из маленького стеклянного сосуда, в доселе невиданные радиоактивные элементы.

И вот в 1934 г. наступил день, когда Ферми и его коллеги нацелили свою нейтронную пушку на цитадель самого тяжелого элемента в природе — на ядро урана, и в атомном мире поднялась настоящая буря.

Исследователи возлагали большие надежды на эксперимент с ураном, ибо этот элемент обещал принести ни с чем не сравнимые результаты. Природа создала девяносто два элемента, из которых уран был последним, и на этом остановилась. Если элементы тяжелее урана когда-нибудь и существовали, они уже давно исчезли. И вот Человек хочет пойти дальше, чем смогла Природа. Из урана, элемента 92, он создаст еще более тяжелый элемент, элемент 93. А после этого, возможно, даже и элемент 94. Он воздвигнет новые надстройки на здании, созданном Природой.

Большие надежды Ферми и его сотрудников основывались не просто на слепой удаче, а на результатах опытов, ранее проведенных с другими элементами. Они полагали. что ядро урана уже загружено до предела 146 нейтронами. Если выстрелить в него еще одним нейтроном, возможно, один из 147 нейтронов превратится в протон. А это будет означать искусственное создание нового, 93-го элемента, с ядром из 93 протонов и 146 нейтронов, который расположен за ураном.

Как мы сейчас знаем, именно это и происходит при попадании нейтрона в ядро урана-238. Один из нейтронов излучает отрицательный электрон, превращаясь в протон. Уран с атомным весом 238 (92 протона, 146 нейтронов) превращается, таким образом, в 93-й элемент (93 протона, 146 нейтронов), который назвали нептунием, так как он расположен за ураном.

И, как мы узнали спустя семь лет, нептуний существует немногим более двух дней. Один из его 146 нейтронов выбрасывает отрицательный электрон и становится протоном, таким образом увеличивая число протонов в ядре до 94. Другими словами, 93-й элемент — нептуний — спонтанно, т. е. самопроизвольно, превращается в 94-й (искусственный) элемент— плутоний.

Сейчас нет сомнений в том, что эти новые трансурановые элементы и были получены в приборе Ферми. Действительно, не только чисто теоретические рассуждения, но и предварительный химический анализ, казалось, ясно показывали, что создан 93-й элемент — элемент, расположенный за ураном. Однако Ферми был глубоко смущен, когда в мировой прессе появились сообщения, в которых говорилось о получении 93-го элемента как о безусловном факте. (В заголовке статьи на две колонки «Нью- Йорк тайме» писала: «Итальянец создает 93-й элемент бомбардировкой урана».)

Ферми искал более веское доказательство того, что им действительно создан 93-й элемент. Но чем больше опытов он проводил, тем более непонятным казалось явление. Вместо одного или двух элементов появилось множество, по-видимому, новых радиоактивных веществ, которые не поддавались идентификации.

На самом деле, как мы узнали через пять лет, в лаборатории Ферми произошло несколько исключительно важных явлений. Некоторые нейтроны проникли в ядро урана-238 и превратили его в 93-й элемент (нептуний), который спонтанно превратился через два дня в 94-й элемент (плутоний).

Но многие нейтроны не проникли в ядро урана-238. Вместо этого они попали в ядро- гораздо более редкой разновидности (изотопа) урана с атомным весом 235, на которую приходится лишь 0,7% природного урана. А когда нейтрон попадает в ядро урана-235, природа, действительно, сходит с ума. Нейтрон вместо того, чтобы остаться внутри ядра, превратив его в более тяжелый элемент, расщепляет ядро на две неравные части, создавая таким образом два легких элемента из одного тяжелого. Применяя современную терминологию, можно сказать, что ядро урана-235 делится, и это деление сопровождается выделением чудовищного количества ядерной энергии — энергии, которая требовалась, чтобы удерживать вместе две части ядра урана-235.

В ядре урана-235 92 протона могут быть разделены по-разному (например, 47—45, 48—44, 49—43, 50—42, 51—41, 56—36 и т. д.), поэтому при расщеплении ядра даже одного тяжелого элемента можно получить более тридцати легких элементов. А так как 143 нейтрона ядра урана-235 также можно расщепить по-разному — такое же количество протонов может быть соединено с различным количеством нейтронов,— то в результате при делении ядра урана можно создать до девяноста радиоактивных изотопов.

Когда Ферми проводил свои первые опыты, не было даже известно о существовании урана-235. Лишь в 1935 г., через год после исследований Ферми, было впервые открыто существование этого элемента — единственного элемента, сделавшего возможным наступление атомного века.

Это открытие должно стоять в ряду самых важных открытий в современной истории, потому что без этого изотопа было бы невозможно применять энергию атома, которая навсегда осталась бы недосягаемой. И, однако, лишь немногие знают имя открывателя, скромного пионера в искусстве определения редких изотопов природы— Артура Дж. Демпстера — профессора физики Чикагского университета.

Мир не обратил особого внимания на кончину этого физика-канадца 11 марта 1950 г., в возрасте 63 лет. Но без его открытия наступление атомного века было бы отложено на несколько лет. Когда-нибудь человечество воздвигнет памятник этому скромному труженику науки за его открытие ключевого изотопа атомного века.

Хотя Ферми, проводя опыты с ураном, не знал о существовании урана-235 и обнаружил его лишь через год, это ни в коей мере не умаляет значения Великого Чуда 1934 г. Даже ничего не зная о существовании урана-235, ученые разработали средства, которые, если бы их применили, привели бы к открытию уранового деления уже в 1934 г.

В лабораториях всего мира физики, повторяя опыты Ферми, самоотверженно трудились, стараясь пролить свет на странные шутки, которые выкидывала природа.

Ученые полагали, что из урана в экспериментальной камере получены новые элементы, но как они ни старались, все же не могли идентифицировать эти элементы. Физики считали, что эти элементы тяжелее урана, в то время как на самом деле они были элементами, вес которых составлял примерно половину атомного веса урана,— потомство урана, размножившееся делением, подобно живым клеткам.

Загрузка...