Наука на просторах Интернета

Юрий ЛЕБЕДЕВ


На этот раз главным источником информации нашего обзора станет новый сайт http://postnauka.ru/

.


Его девиз – амбициозен: «Все, что вы хотели знать о науке, но не знали, у кого спросить».

Его тематика весьма обширна – астрономия

, биология

, история

, технологии

, культура

, математика

, медицина

, психология

, право

, социология

, физика

, философия

, химия

, экономика

, язык

.

Его интерфейсы многообразны и современны: журнал

, книги

, видео

, прямая речь

, телевидение

и др.

В его весьма представительный авторский коллектив входят как известные профессиональные ученые, так и наиболее интересные научные журналисты (часто в одном лице совмещающие эти ипостаси) – Михаил Гельфанд

, Станислав Дробышевский

, Анатолий Засов

, Александр Каплан

, Петр Образцов

, Сергей Попов

, Валерий Рубаков

, Владимир Сурдин

, Михаил Эпштейн

и многие другие.

И если и в дальнейшем научный и дизайнерский уровень этого интернет-ресурса будет столь же высок, он наверняка станет одним из лидеров научной популяризации в русскоязычном Интернете.

Поверьте, что все сказанное не является ни «заказным материалом», ни коммерческой рекламой. И появление такого не государственного и не коммерческого сайта, декларирующего своей целью, как сказал один из его создателей Ивар Максутов, только «популяризацию науки и повышение статуса ученого в современном обществе», внушает сдержанный оптимизм относительно будущности российской науки. Подробности о возникновении и принципах работы этого интернет-ресурса можно получить здесь http://trv-science.ru/2012/07/03/nauka-iz-pervykh-ruk/

.

Теперь перейдем от событий околонаучных к собственно научным.

Самым важным научным событием последних месяцев каждого года является присуждение Нобелевских премий и обсуждение открытий, за которые они присуждены. Им и будет посвящен наш обзор.

Рассмотрим достижения естественных наук (биологии, химии, физики), которые получили признание Нобелевского комитета в 2012 году.

Лауреатами Нобелевской премии в области физиологии и медицины в 2012 году стали британский ученый Джон Гердон и японский исследователь Синъя Яманака за «открытие возможности перепрограммирования зрелых клеток в плюрипотентные».

Джон Гердон родился 2 октября 1933 года в Великобритании. После обучения в Итонском колледже он поступил в колледж Крайст-Черч Оксфордского университета , где вначале изучал антиковедение , но впоследствии переключился на зоологию . Его диссертация на соискание степени PhD была посвящена трансплантации ядер клеток шпорцевых лягушек . Научную деятельность Гердон продолжил в Калифорнийском технологическом институте . В 1962–1971 годах он работал на кафедре зоологии Оксфордского университета . В 1971–1983 годах Гердон работал в Лаборатории молекулярной биологии Кембриджского университета . С 1983 года по настоящее время он является сотрудником кафедры зоологии Кембриджского университета . В 1989 году Гердон основал в Кембридже институт клеточной биологии и онкологии и до 2001 года занимал должность его руководителя.

Синъя Яманака родился 4 сентября 1962 , в г. Хигасиосака , профессор Института передовых медицинских наук в Университете Киото , директор Центра по исследованию и применению iPS-клеток Университета Киото, ведущий исследователь Института сердечно-сосудистых заболеваний Гладстона в Сан-Франциско . В 2006 году впервые в мире получил индуцированные плюрипотентные стволовые клетки (iPS-клетки) , благодаря чему приобрел всемирную известность.

Попробуем разобраться с сутью работы Гердона и Яманаки, используя комментарий о «биологическом нобеле-2012» к.б.н, с.н.с. НИИ физико-химической биологии имени А. Н. Белозерского МГУ Евгения Шеваля. (http://postnauka.ru/faq/5510)

Напомним, что все клетки многоклеточного организма делятся на две большие группы: гаметы (от греч. Gamete – жена, gametes – муж) – это половые, или репродуктивные, клетки животных и растений и соматические клетки – все остальные клетки тела («уῶмб» – тело по древнегречески).

В процессе роста организма животного потенциал развития клеток сужается. Из оплодотворенной яйцеклетки можно получить любую клетку. Это свойство оплодотворенной клетки называется плюрипотентностью, («возможность развития по разным сценариям»). А вот возможности трансформации соматических клеток гораздо уже. Нейрон не превратится в клетку кожи, а клетка кожи не превратится в кардиомиоцит – клетку ткани сердца.

Наибольшим потенциалом среди соматических клеток обладают стволовые клетки. Сегодня об этих клетках слышали все, а открыты они были в 1908 г. Термин «стволовая клетка» (Stammzelle) был предложен к широкому использованию русским гистологом Александром Максимовым (1874 – 1928). (Маленькая историческая деталь. В 1919 году его избирают профессором эмбриологии Петроградского университета, в 1920 году он становится членом-корреспондентом Академии Наук, а зимой 1922 года А. А. Максимов покинул Россию. Причина понятна. Как пишут политкорректные источники, «после Октябрьского переворота А. А. Максимов, не приняв нового строя, эмигрировал сначала в Финляндию, а затем в США» (http://molbiol.ru/forums/lofiversion/index.php/t228462.html ), в «Википедии» же добавляется красочная деталь: «Зимой 1922 года он покинул Россию после того, как большевики заставили его убирать метлой двор».

А уже в апреле 1922 года А. А. Максимов начал работу в качестве профессора кафедры анатомии и возглавил лабораторию экспериментального исследования тканей в Чикагском университете).

Вернемся к работам нобелевских лауреатов. Работа, опубликованная Джоном Гердоном в 1962 году (награда долго ждала героя!), давно уже стала классической и приводится в любом серьезном учебнике эмбриологии. Суть проста. Была взята яйцеклетка лягушки, ядро в которой было «убито» облучением. В такую безъядерную клетку было подсажено ядро из клетки кишечника. Таким образом, соматическая специфика клетки уничтожалась, но сохранялся геном данного организма. (Геном – это совокупность наследственного материала, заключенного в клетке организма). И из такой гибридной клетки развивались головастики.

Этот эксперимент, в частности, доказывал, что геном соматической клетки содержит всю ту информацию, которая есть в яйцеклетке, а значит, сужение потенций клеток в ходе развития не связано с кокой-то деградацией части генов. Следовательно, развитие можно обратить вспять, превратив соматическую клетку в плюрипотентную с помощью такой вот хирургии на клеточном уровне. Из этого эксперимента, в частности, берут начало все работы по клонированию животных.

Заслуга Синъя Яманаки состоит в том, что ему первому удалось получить плюрипотентные клетки из зрелых соматических клеток, не используя эмбриональные клетки в качестве индуктора плюрипотентности. Активировав всего четыре гена, он превратитил обычные дифференцированные клетки соединительной ткани в стволовые. Это и есть перепрограммирование соматических клеток. В результате получаются так называемые индуцированные стволовые клетки, которые потом могут дать начало практически любым клеткам взрослого организма. По сути, в данном случае происходит омоложение, так как расширение «возможности развития по разным сценариям» – это и есть признак молодости на клеточном уровне.

Важность этих исследований состоит еще и в том, что подобный подход позволяет отказаться от работы с эмбриональным и абортивным материалом, который обычно служит источником стволовых клеток. В случае с человеком это сопряжено с этическими проблемами. Если же создавать плюрипотентные клетки из соматических, то такого рода сложностей не возникает. А стволовые клетки можно использовать для восстановления поврежденных болезнью или состарившихся органов и тканей. В настоящее время многие рассчитывают, что на основе этих работ удастся разработать методы получения необходимых стволовых клеток для медицины. Это дает надежду на то, что многие неизлечимые в настоящее время болезни когда-нибудь будут побеждены.

Если говорить проще, то работы этих ученых показали что биологические часы возможно запустить вспять…

Нобелевскию премию по химии в этом году получили два американских профессора – Роберт Лефковиц из университета Дьюка в Северной Каролине и Брайан Кобилка из Стэндфордского университета в Калифорнии – «за исследования рецепторов, сопряженных с G-белком».

Разбираться со смыслом этой формулировки мы будем на основании комментария Вадима Черезова, руководителя лаборатории на факультете молекулярной биологии Института Скриппса (США) (http://postnauka.ru/faq/5510).

Несколько слов об авторах работ.

Роберт Лефковиц родился 15 апреля 1943 года в Бронксе , был единственным ребенком в семье Макса и Розы Лефковиц, выходцев из семей еврейских эмигрантов из Польши . Отец работал бухгалтером в Швейном квартале Нью-Йорка. Роберт Лефковиц обучался в Колумбийском колледже Колумбийского университета, где в 1962 году получил степень бакалавра искусств. В 1966 году окончил Колледж терапевтов и хирургов при Колумбийском университете. С 1976 года Лефковиц является сотрудником Медицинского института Говарда Хьюза. На сегодняшний день Лефковиц является одним из наиболее цитируемых специалистов в области биологии , биохимии , фармакологии , токсикологии и клинической медицины.

Брайан Кобилка родился в 1955 году в городке Литл-Фолс штата Миннесота , США . Он окончил Дулутский университет Миннесоты, где получил степень бакалавра. Впоследствии он с отличием окончил медицинский факультет Йельского университета . После прохождения резидентуры (аналог ординатуры) на медицинском факультете Университета Вашингтона в Сент-Луисе , Кобилка устроился исследователем под руководством Роберта Лефковица в Университете Дьюка . В 1989 году Кобилка переехал в Стэнфорд . В 19872003 годы он работал исследователем в Медицинском институте Говарда Хьюза.

Его дед и отец, как и он сам, родились в городке Литл-Фолс и работали в пекарне. Его бабушка, Изабелла Сьюзан Кобилка (урожденная Медведь, 1891 1980), происходила из семей Медведь и Кивель, с 1888 года управлявших исторической пивоварней Kiewel Brewery в Литл-Фолс.

Теперь о сути открытия. Прежде всего рассмотрим цепь передачи сигнала в клетку. Сигналом является какая-то молекула, появившаяся во внеклеточной среде. Например, адреналин. Адреналин является гормоном надпочечников и попадает в кровь человека в состоянии стресса. Стресс представляет собой общую неспецифическую нейрогормональную реакцию организма на любое воздействие экстремальных факторов. Факторы могут быть как физическими, так и психическими: жара, холод, травмы, ожоги, опасность, радость, конфликты и так далее. Реакция на адреналин возникает в тот же момент, как только он попадает в кровь человека. Запомните: адреналин воздействует на ваш организм не больше пяти минут. Это происходит из-за того, что в момент его выделения начинают активироваться все системы, предусмотренные для его «погашения». (http://www.tiensmed.ru/news/adrenalin2.html).

Физиологи называют реакцию организма на адреналин реакцией типа «бей или беги» . Для этого нужно много энергии и она высвобождается из «энергетических запасов» клеток. Под влиянием адреналина происходит повышение содержания глюкозы в крови и усиление тканевого обмена.

Достаточно давно было установлено, что адренорецепторы («адреналиновые рецепторы») имеются чуть ли не во всех тканях нашего организма. Но как они работают, т. е. как клетки узнают о том, что нужно запускать процессы «погашения» адреналина?

Адреналин захватывается адренорецептором, который «встроен» сквозным элементом в клеточную мембрану. Рецептор, начав взаимодействие с молекулой адреналина на внешней поверхности клеток, затем втягивает ее внутрь клеточной мембраны. При этом изменяется пространственное расположение (конформация) семи связанных друг с другом сегментов (доменных элементов) адренорецептора, которые с внутренней стороны мембраны связаны с особым белком (G-белок). Понятно, что внедрение молекулы адреналина внутрь рецептора, изменяющее его структуру, изменяет и характер связи элементов рецептора с G-белком. Это воздействие активирует его.

Внутриклеточные G-белки и являются универсальными посредниками при передаче гормональных сигналов от рецепторов клеточной мембраны к другим, находящимся внутри клетки белкам («эффекторным белкам»), которые и вызывают конечный клеточный ответ.

Не рассматривая подробно механизм действия активированного G-белка, скажем только, что он является катализатором процесса энерговыделения в клетке и, как всякий катализатор, запустив процессы работы эффекторных белков, возвращается в состав рецептора в исходном неактивном состоянии.

Рецепторы, за исследование которых была получена премия, называются GPCR – G-protein-coupled receptors. (Они известны и под названиями семиспиральные рецепторы или серпентины).

Серпентины являются передатчиками сигналов внутрь клеток, позволяя им, различным органам и системам организма общаться друг с другом, а также получать информацию об окружающей среде. Существует более 800 различных GPCR, которые находятся в мембранах клеток человека и распознают широкий диапазон внеклеточных агентов, включающих ионы, гормоны, пептиды и т. д. Примерами хорошо известных молекул, на которые реагируют рецепторы, кроме адреналина, являются серотонин, дофамин, гистамин, кофеин, опиоиды и многие другие. Функции около 150 рецепторов, обнаруженных в геноме человека, остается невыясненной.

Процессы, контролируемые GPCR, дают нам возможность видеть, ощущать запахи, реагировать на опасность, испытывать боль или чувствовать эйфорию, поддерживать кровяное давление и регулировать сердцебиение, т. е. все, что необходимо для регулирования жизнедеятельности организма. Иногда сигнальные процессы нарушаются, приводя к многочисленным и зачастую тяжелым заболеваниям. Многие заболевания, однако, возможно излечить, воздействуя на рецепторы лекарственными препаратами. На самом деле около половины всех современных лекарств нацелены на рецепторы, сопряженные с G-белками. Таким образом, исследования, направленные на определения структуры GPCR рецепторов и механизмов передачи сигналов, должны позволить глубже понять причины многих заболеваний, а также дать толчок к разработке более эффективных лекарств с минимальными побочными эффектами.

История исследований GPCR насчитывает более 100 лет. Рецептор, реагирующий на свет – родопсин – был обнаружен и выделен в 1870 году немецким ученым Вильгельмом Кюне. К началу 70-х годов ХХ века было известно, что мышечные клетки можно активировать или тормозить путем воздействия определенными молекулами. Часть механизма внутриклеточных реакций тоже была известна, а также было ясно, что молекулы, возбуждающие клетки, не проникают внутрь клеток. Таким образом, было постулировано существование некоторой рецепторной субстанции, которая реагирует на внеклеточные молекулы и передает сигнал внутрь клеток.

Вот здесь и начинается химия. Поиском этой неуловимой рецепторной субстанции и занялся Роберт Лефковиц, используя адреналин со встроенным радиоактивным изотопом йода. Эти исследования позволили определить, что адреналин связывается с некоторым белком на поверхности клетки, который и является рецептором. То, что сигнал внутри клетки передается путем активирования G-белков внутри клетки, было к этому времени уже обнаружено Родбеллом и Гиллманом (за что оба ученых получили Нобелевскую премию по медицине в 1994 году).

Однако химическая идентификация рецепторного белка, требующая определения аминокислотной последовательности GPCR, оставалась большой проблемой, поскольку все рецепторы – за исключением родопсина – производятся клетками в исключительно малом количестве. Впервые выделить и определить последовательность бета-адренорецептора (рецептора, реагирующего на адреналин) удалось в 1986 году опять же в лаборатории Лефковица с участием Брайана Кобилки, проводившего постдокторальные исследования.

Исследование принесло большой сюрприз: анализ аминокислотной последовательности показал, что адренорецептор состоит из семи трансмембранных альфа-спиралей и очень похож на зрительный рецептор родопсин. К тому времени изучение структуры родопсина было более продвинутым благодаря работам нескольких лабораторий, включая советских ученых под руководством Юрия Овчинникова.

Эти работы Лефковица и Кобилки показали, что рецепторы с совершенно различными функциями химически могут быть близкими родственниками и что, возможно, существуют и другие рецепторы с похожей структурой. Действительно, секвенирование генома человека позволило обнаружить более 800 генов, кодирующих серпентины. (Секвенирование – определение аминокислотной последовательности, от лат. sequentum – последовательность). Стало ясно, что передача сигналов с помощью GPCR является универсальным механизмом общения между клетками, а также клеток с окружающей средой.

Для того чтобы полностью понять механизм работы GPCR, необходимо было знание их пространственной структуры с атомным разрешением. А это – чисто химическая задача! Такие структуры можно описать только с помощью рентгеноструктурного анализа, требующего выращивания высокоупорядочных кристаллов. Серпентины, однако, были знамениты трудностью их кристаллизации, которой занимались многие во всем мире.

Первую структуру GPCR получил Пальчевский в 2000 году, закристаллизовав тот же родопсин, который является наиболее стабильным и наименее подвижным из всех серпентинов. Понадобилось еще 7 лет, прежде чем была определена первая структура человеческого рецептора, реагирующего на адреналин.

Структура бета-адренорецептора была опубликована в журнале Science в 2007 г. и названа одним из 10 научных достижений года. В этой работе есть вклад и Вадима Черезова, который смог закристаллизовать модифицированный адренорецептор. За последние 5 лет были определены структуры 15 различных GPCR – в основном лабораториями Кобилки и Стивенса.

Таким образом, благодаря героическим усилиям Лефковица, Кобилки и других ученых в течение последних 40 лет мы узнали о существовании уникального и разнообразного семейства рецепторов, сопряженных с G-белками, которые контролируют все жизненно важные процессы в организме человека. Структурные исследования последних пяти лет принесли знания трехмерных структур этих рецепторов, позволили понять, как внеклеточные агенты распознаются рецепторами, а также каким образом происходит передача сигналов к G-белкам.

Эти пионерские работы положили начало более детальным исследованиям, которые в будущем позволят узнать необходимые нюансы, отличающие эти рецепторы друг от друга и позволяющие им селективно реагировать только на определенные агенты, лучше понять фармацевтические детали передачи сигнала.

Все это, возможно, приведет к появлению медицины нового уровня, когда лекарства будут более эффективными, перестанут вызывать побочные явления и будут подбираться согласно генетической информации о GPCR конкретного пациента.

Нобелевскую премию по физике 2012 года получили американец Дэвид Уайнленд из Национального института стандартов и француз Серж Арош из Эколь Нормаль за «развитие основополагающих экспериментальных методов измерения и манипуляций над одиночными квантовыми системами».

Дэвид Джеффри Уайнленд родился в Милуоки, штат Висконсин, США. В 1961 году закончил школу Энсина в Сакраменто, Калифорния. Физику изучал сначала в Калифорнийском университете в Беркли, потом в Гарвардском университете, где и защитил диссертацию в 1970 году. Она была посвящена мазерам на атомарном дейтерии. Некоторое время Уайнленд вел научные исследования в Вашингтонском университете в группе Ханса Георга Демельта , а в 1975 году перешел на работу в Национальное бюро стандартов в Боулдере, штат Колорадо (в 1988 году было переименовано в Национальный институт стандартов и технологий), где и работает в настоящее время. Именно там он выполнил свои основные эксперименты. Сферой его исследований являлась оптика и, в частности, лазерное охлаждение ионов в квадрупольных ионных ловушках с последующим использованием захваченных ионов для выполнения квантовых вычислений. Параллельно 68-летний профессор Уайнленд преподает в Колорадском университете.

Уайнленд является членом Американского физического общества и Американского оптического общества. В 1992 году он был избран членом Национальной академии наук США. (http://www.nobeliat.ru/laureat.php?id=859 )

Серж Арош родился 11 сентября 1944 года в Касабланке , в еврейской семье марокканского (по отцу) и российского (по матери) происхождения. Его мать – уроженка Одессы Валентина Арош (урожденная Рублева, 1921 – 1998) – работала учительницей, отец – Альбер Арош (1920 – 1998, родом из Марракеша) – был адвокатом. Его бабушка и дедушка (Исаак и Эстер Арош) возглавляли школу Всемирного еврейского союза . Бабушка и дедушка по материнской линии, врачи Александр Рублев и София Фромштейн, покинув в начале 1920-х годов Советский Союз, поселились в Париже , а оттуда перебрались в Касабланку.

Когда Сержу было 12 лет, Марокко провозгласило независимость, и его семья переехала во французскую метрополию . Учился в Политехнической школе , Высшей Нормальной школе и Парижском университете (1963–1967). В 1971 году защитил диссертацию в Университете Пьера и Марии Кюри.

Арош работал научным сотрудником Национального центра научных исследований (CNRS, 1967–1975), затем на протяжении года стажировался в Стэнфордском университете в группе Артура Шавлова . В 1975 году он был назначен профессором Университета Пьера и Марии Кюри . В 1974–1984 годах преподавал также в парижской Политехнической школе . В 1994–2000 годах возглавлял отделение физики Высшей нормальной школы . С 2001 года – профессор Коллеж де Франс , где он заведует кафедрой квантовой механики (с сентября 2012 года также администратор колледжа). Серж Арош является членом Французского, Европейского и Американского физических обществ.

Разобраться с сутью открытий Уайнленда и Ароша нам поможет д.ф.-м.н., профессор, заведующий лабораторией квантовой информации и квантовой оптики кафедры квантовой электроники физического факультета МГУ Сергей Кулик.(http://postnauka.ru/faq/5510 )

Начиная с 20-х годов предыдущего столетия физики стали понимать, что микромир описывается законами квантовой механики. Однако выделить изолированную квантовую систему оказывается чрезвычайно сложно – она всегда стремится взаимодействовать с окружением. Поэтому исследования, проводимые в XX веке, в основном ограничивались ансамблями, содержащими большое число квантовых частиц.

Начиная с 70–80-х годов XX столетия в распоряжении экспериментаторов оказались технологии, позволяющие чрезвычайно хорошо изолировать квантовые системы от внешнего мира и контролировать их эволюцию.

Развитые лауреатами экспериментальные методы позволяют управлять состоянием отдельных изолированных атомов с помощью одиночных фотонов и наоборот. Отметим, что изоляцию квантовой системы от остального мира характеризует величина, называемая в физике добротностью (чем больше добротность, тем лучше изолирована система), а качество приготовления заданного состояния – температурой системы (идеально приготовленная система должна иметь нулевую, т. е. минимально возможную температуру). Несколько впечатляющих цифр, характеризующих уровень достижений лауреатов: в экспериментах С. Ароша добротность резонаторов составляла 4х1010, а разработанная Д. Уайлендем техника сателлитного охлаждения позволяет охлаждать ионы до температур порядка нанокельвинов. Для сравнения, добротность маятника механических часов в десятки миллионов раз меньше, а температура в межзвездном космическом пространстве в миллиарды раз больше.

А научный обозреватель одного из ведущих российских новостных интернет-изданий «Lenta.ru» Андрей Коняев (http://lenta.ru/articles/2012/10/09/phnobel/) обращает внимание на то, что результаты работ нобелевских лауреатов укрепляют позиции эвереттовской интерпретации квантовой механики: «Чаще всего, говоря о квантовой механике, придерживаются так называемой копенгагенской интерпретации, которую сформулировали Нильс Бор и Вернер Гейзенберг в 20-х годах прошлого века. До недавнего времени это была самая популярная интерпретация после сугубо инструментального подхода, сформулированного Дэвидом Мермином в словах «заткнись и считай» (часто эту фразу приписывают Ричарду Фейнману), однако в последние годы она стала терять свои позиции. Сейчас копенгагенская уступает так называемой многомировой интерпретации». То есть жизнь показывает, что физическая сторона эвереттики уже перестала быть «гадательной» и перешла в область лабораторной практики.

Вот что говорит об этом А. Коняев.

Эксперимент Ароша выглядел следующим образом. Он брал резонатор, состоящий из двух зеркал, охлажденных почти до абсолютного нуля и расположенных на расстоянии около трех сантиметров друг от друга. Внутри резонатора создавалось электромагнитное поле, то есть, по сути, от стенки к стенке летали фотоны.

Сквозь этот резонатор пропускали ридберговские атомы – атомы, один из электронов которых находится на очень высоком энергетическом уровне. С классической точки зрения, это означает, что данный электрон движется вокруг ядра по орбите с очень большим радиусом. «Остаток» атома можно рассматривать как отдельный катион, то есть положительно заряженный ион. В результате структура получившегося атома напоминает классическую схему атома водорода. Радиус таких атомов на несколько порядков больше обычных – в 2008 году атом калия удалось «раздуть» до 1 миллиметра! В работе Ароша использовались атомы рубидия диаметром 125 нанометров. Скорость ридберговских атомов была подобрана таким образом, что они не поглощали фотон. Но особым образом подобранные исходные состояния атомов менялись специфическим образом, проходя через резонатор. Если быть точным, то состояние атома можно представлять в виде волны Де-Бройля. И если в резонаторе был фотон, то происходила интерференция и пики этой волны смещались. А это, в свою очередь, можно было зарегистрировать уже обычными измерениями. Развивая идеи и используя несколько атомов, Арош создал технологию подсчета количества фотонов в резонаторе.

Американец Дэвид Уайленд, в отличие от Ароша, интересовался ионами. Объектом его исследований были ионы, помещенные в ловушку. Ловушка представляет собой вакуумную камеру, в которой присутствует статическое и колебательное электрическое поле. Эти поля позволяют удерживать и изучать одиночные ионы – за разработку такой ловушки, получившей название ловушки Пауля, Вольфганг Пауль и Ханс Демельт в 1989 году получили Нобелевскую премию по физике.

Главным достижением Уайнленда стало умелое использование лазерных импульсов. Например, оказалось, что, подбирая особым образом такие импульсы, можно «затолкать» ион в самое нижнее энергетическое состояние. А после, с помощью уже других импульсов, перевести ион в суперпозицию нижнего и следующего за ним энергетического состояния. Суперпозицией в квантовой механике называется ситуация знаменитого «кота Шредингера» – одновременное существование в нескольких состояниях. В данном случае, в двух. Получив ион в состоянии настоящей квантовой суперпозиции, физики наконец смогли изучать эти загадочные объекты.

Результаты нобелевских лауреатов позволили создать сверхточные атомные часы (в этой деятельности сам Уайнленд принимал посильную роль). В частности, ученые создали часы, в которых роль маятника исполняет ион, а второй используется для считывания «колебаний» первого без разрушения его квантового состояния. В 2008 году вышла работа, в которой Уайнленд показал, что такие часы позволяют добиться точности на два порядка выше распространенных сейчас цезиевых часов. Эта точность настолько велика, что при поднятии часов в лаборатории буквально на 30 сантиметров, они начинают идти по-другому из-за ничтожной разницы на этих высотах земного гравитационного поля!

Самыми известными из экспериментов Уайнленда и Ароша стали эксперименты по квантовым вычислениям.

Уайнленд стал первым, кто сумел собрать из двух кубитов логическую систему, реализующую отрицание NOT. Нельзя сказать, что это было очень уж впечатляюще. Да и на пути к созданию квантового компьютера предстоит решить еще множество сложнейших практических задач. Но это не отменяет достижений американца.

Если говорить коротко, не углубляясь в научные понятия, то ситуация такова: Дэвид Уайнленд и Серж Арош не сделали великих открытий. Они не обнаружили ускоренное расширение Вселенной, не открыли графен. Но их невероятная любознательность и инженерный талант позволили ученым преодолеть, казалось бы, нерушимый барьер и получить возможность изучать физически реальные квантовые суперпозиции. И это продолжает приносить удивительные, пусть и не всегда понятные плоды.

И среди этих непонятностей одна принципиальная. Работы Уайнленда и Ароша – это эксперименты с квантовыми суперпозициями. Разумеется, очень многочисленны и теоретические проработки свойств этих объектов. И они даже породили попытку новой интерпретации квантовой механики – информационную интерпретацию в нескольких вариантах. В их основе лежит идея о том, что при измерении наблюдатель извлекает из системы некоторую информацию. Эта информация, с одной стороны, воспринимается как результат наблюдения, с другой – меняет саму измеряемую квантовую систему, поскольку квантовая система информацию теряет. Информация приобретает, как говорят философы, онтологический статус – становится физической сущностью.

Но, если применить «бритву Оккама», то окажется, что введения этой сущности можно избежать в рамках многомировой интерпретации, вспомнив о том, что возникновение различных соотнесенных состояний как раз и порождает «рождение» и «исчезновение» информации. Так что «информационная интерпретация» оказывается все той же многомировой, но выраженной в иных понятиях.

С учетом сказанного любопытен опрос, проведенный на конференции «Квантовая механика и природа реальности», проходившей в июле 2011 года в Австрии. Среди вопросов был и вопрос о «справедливости» известных интерпретаций квантовой механики. Интересен этот опрос и тем, что после него можно увидеть динамику «общественного мнения» физиков. Дело в том, что в 1997 году известный физик и космолог Макс Тегмарк провел аналогичный опрос на конференции «Фундаментальные проблемы в квантовой теории».

И вот к чему приводит это сравнение (http://www.lenta.ru/articles/2013/01/21/quantum/): «Оказалось, что 42 процента поддерживают копенгагенскую интерпретацию, 24 процента – теорию квантовой информации и только 18 – многомировую интерпретацию квантовой механики. Еще 9 процентов придерживаются интерпретации Пенроуза об объективности коллапса волновой функции». Здесь я позволю себе не согласиться с А. Коняевым, автором этого материала, в связи с употребленным им эмоциональным наречием «только». Ведь, учитывая результат применения «оккамовского инструмента», если сложить 24% и 18%, то получится 42%. То есть и за «Копенгагена» и за «Эверетта» оказалось равное число голосов! А по опросу Тегмарка 1997 года было 27% у «Копенгагена» и 17% у «Эверетта». Так что с течением времени «Эверетт» все более укрепляется в научном мейнстриме.

Конечно, научные вопросы не решаются «демократическим голосованием» и этот пассаж – не более чем «игра с числами». Впрочем, как известно, вся наша жизнь – игра!..


Загрузка...