Операционные основы квантовой механики были представлены в 1920-х годах.
Век спустя полемика о ее смысле все еще не утихла. Шрёдингер стал одним из первых, кто попытался объяснить абсурдные аспекты этой теории. Для этого он предложил мысленный эксперимент, в котором кот был приговорен к самой парадоксальной из смертей.
Так родился один из символов физики — кот Шрёдингера.
Австрия, встретившая Эрвина и Аннемари, очень отличалась от той страны, которую они покинули в 1920-х годах. Грац превратился в рассадник нацистов, и Шрёдингер каждый день наблюдал такие же сцены, как и те, которые немногим ранее приводили его в ужас в Берлине. В 1933 году в республике сменилась власть, и к прибытию Шрёдингеров здесь уже был установлен тоталитарный фашистский режим.
Первое время Эрвину и Аннемари удалось укрыться от окружающего мира, посвятив себя устройству семейного гнезда. Шрёдингер начал перепланировку и переделал второй этаж их нового жилья в квартиру, где устроились Рут и Хильда, тогда как Артур Марх оставался в Инсбруке. Удивительно, но такая совместная жизнь шла только на пользу отношениям между Эрвином и Аннемари, которая обожала малышку. Однако вскоре идиллию смел ураган.
В марте 1938 года, вследствие борьбы между Италией и Германией, Австрия уступила давлению Адольфа Гитлера и была присоединена к Третьему рейху. Толпы людей с энтузиазмом скандировали лозунг: «Одна нация — одно государство». Антисемиты сразу же начали совершать акты вандализма. Писатель Карл Цукмайер, сценарист фильма «Голубой ангел» (1930), присутствовал при том, что он назвал открытием «врат ада». Евреи были ограблены, уволены, публично унижены, ущемлены в правах. В это же время Ганс Тирринг был лишен поста директора Института теоретической физики при Венском университете. Скорость происходящего ошеломила Шрё- дингера, и он заставил себя сделать несколько па в дипломатическом вальсе. Ученый выразил свое согласие с националистической доктриной в письме под названием Confession аи Fuhrer {«Признание фюрера»), опубликованном в газетах, и это повредило его репутации, особенно среди изгнанников. Сейчас трудно сказать, какими были его истинные намерения в той взрывоопасной ситуации. Послание Шрёдингера было прочитано, его дом окружила толпа, ему задавали неприятные вопросы. Гибель была совсем рядом. Друзья ученого посчитали, что письмо он написал чуть ли не под диктовку с пистолетом у виска. Но более вероятно, что ученый в это время просто решил пойти по тому же пути, что и Гейзенберг, пытавшийся ужиться с нацистским режимом. Эту версию Шрёдингер сам представил позже Эйнштейну:
«В министерстве я сказал начальнику департамента: «Если вы мне дадите ружье, я буду счастлив защищаться, но не оставляйте меня заложником в нацистском Гарце». Представьте, что я почувствовал, едва прошло несколько недель после погрома, когда увидел подпись этого человека на приказах нового министра. Я надеюсь, что вы не слишком строго осудили мое последующее заявление, хотя оно было очевидно подлым. Я хотел сохранить свою свободу... А это было невозможно без компромисса».
Конечно, нацисты не поверили в искренность раскаяния Шрёдингера. В Берлине составили докладную записку, в которой были перечислены все его ужасные прегрешения перед новой властью. Во-первых, в 1933 году ученый покинул Германию по «политическим причинам», во-вторых, в Граце он проявил себя как «фанатичный враг Новой Германии и национал-социализма», в-третьих — продолжал контактировать с изгнанниками. Шрёдингеру сообщили 26 августа, что он уволен из университета Граца в связи с «политической неблагонадежностью».
К счастью, в это же время его пригласили в Институт высших исследований, который как раз создавался в Дублине. Это предложение ему было передано по цепочке, которая начиналась в Дублине, а заканчивалась матерью Аннемари. Эта пожилая уже женщина не доверяла своей памяти, поэтому она была единственным человеком, кто сохранил часть сообщения на клочке бумаги. Эрвин и Аннемари прочитали записку три раза, а потом сожгли ее. Они составили список самых необходимых вещей и кое-как уместили их в трех чемоданах. Чтобы не привлекать внимания, Шрёдингеры купили два билета туда и обратно до Рима. Обратными билетами они так и не воспользовались.
В Германии если что-то не разрешено, это запрещено. В Англии если что-то не запрещено, это разрешено. В Австрии и Ирландии — запрещено это или нет — люди делают то, что хотят.
Шрёдингер об атмосфере толерантности, которая царила в Ирландии
Вот уже семь долгих лет Шрёдингер наслаждался спокойствием в Дублине: «То, что в 53 года иностранное правительство позволяет мне вновь почувствовать себя в полной безопасности, наполняет меня... вечной признательностью к этой стране». Корреспондент журнала Time так описал эту идиллию:
«Его манера говорить, пленительная и вдохновляющая, и его особая улыбка неотразимы. Жители Дублина гордятся тем, что живут рядом с лауреатом Нобелевской премии». Таким образом, Шрёдингер чувствовал себя в новом пристанище довольно уютно.
Ирландия была нейтральной страной, так что раскаты Второй мировой войны сюда почти не доносились. Шрёдингер пользовался заслуженным авторитетом в недавно открытом институте. Благодаря его способности привлекать к себе людей вскоре в Дублин на научные встречи стали приезжать Эддингтон, Дирак, Паули и Борн. Жители Дублина привыкли к тому, что ученый каждый день независимо от погоды — и в дождь, и в солнце — совершал по городу велосипедные прогулки. Его дом стал центром бурлящей общественной жизни.
Шрёдингер с удовольствием выступал на открытых конференциях, запланированных в Тринити-колледже. В феврале 1943 года он без подготовки показал три эксперимента, пояснявших его оригинальное видение, основанное на законах физики и материальных принципах. Интерес к конференциям превзошел все предположения, и от него ждали новых выступлений. Через год ученый объединил все свои доклады в сборнике под названием «Что такое жизнь?», в котором выдвинул ряд фундаментальных идей. Вообще деятельность Шрёдингера на стыке физики и биологии вызывала немалый интерес, тем более что ему удалось предвосхитить некоторые важные направления биологии. В это время уже существовало представление о том, что гены человека имеют вид больших молекул. Шрёдингер предположил, что молекула, несущая наследственную информацию, должна иметь структуру, характеризующуюся некоторой закономерностью, но без точных повторений — ученый назвал эту структуру апериодическим кристаллом. Повторяющиеся структуры в такой наследственной молекуле напоминают своего рода алфавит — код, который несет генетическую информацию. В целом термин «апериодический кристалл» вполне можно принять в качестве описания двойной спирали. Конфигурация молекулы включала не только сами инструкции для организма, программу жизни, но и способствовала исполнению этой программы: «Это одновременно и проект архитектора, и рабочие руки строителя».
Честь открытия структуры ДНК принадлежит Розалинде Франклин, Морису Уилкинсу, Джеймсу Уотсону и Фрэнсису Крику. Половина этих ученых были физиками, откликнувшимися на призыв биологов после прочтения книги Шрёдингера. Джеймс Уотсон планировал посвятить себя орнитологии, однако в его руки попал экземпляр сборника «Что такое жизнь?». «Мне понравилась идея, согласно которой жизнь могла продолжаться благодаря учебнику с инструкциями, записанными в виде секретного кода».
В Дублине Шрёдингер посвятил себя еще одной большой научной работе, связанной с объединением гравитации и электромагнетизма. Проект отнял восемь лет, с 1943 по 1951 год.
Отправной точкой была основная теория относительности Эйнштейна. Идея работы состояла в том, чтобы геометризовать электрические и магнитные поля, что было возможным с математической точки зрения. Однако все сформулированные в этой сфере теории либо не описывали природу, либо не соответствовали наблюдаемым феноменам. Эйнштейн начиная с 1920-х годов вел аналогичный поиск, так что они со Шрёдингером обсуждали свои достижения в активной переписке. Оба ученых в значительной степени отказались принимать во внимание 20-летний прогресс в ядерной физике, который привел к открытию новых фундаментальных взаимодействий, сильных и слабых.
В своем возрасте я уже отбросил всякую надежду на то, чтобы заложить новый краеугольный камень в здание науки.
Речь Шрёдингера о его намерении объединить гравитацию и электромагнетизм
Осторожность ученых, безусловно, была пропорциональна степени их упорства, но Шрёдингер, который приближался к 60-летию, грешил избытком уверенности. Он пригласил прессу и объявил о создании единой теории, в которой релятивизм Эйнштейна сводился к «простому частному случаю». Он осознавал, как высоки ставки: «Если я ошибся, то стану посмешищем». Эйнштейн был ошеломлен новостью. Когда редактор научной колонки New York Times спросил его мнение, он резко раскритиковал Шрёдингера. В их отношениях наступило внезапное охлаждение. Все их прежнее научное сотрудничество превратилось в дым и развеялось на ветру, как, впрочем, и их надежды на единую теорию. Эта цель оказалась не по силам не только Эйнштейну и Шрёдингеру, но и другим ученым, которые пришли им на смену, захваченные тем же желанием объединить все известные теории в одну. В результате этой ссоры
Шрёдингер решил осуществить свою давнюю мечту и посвятить больше времени двум своим еще юношеским увлечениям — философии и поэзии.
Шрёдингер не страдал от отсутствия источников поэтического вдохновения, так как, несмотря на возраст, его чувственный пыл не угас. Ученый снял квартиру в центре города для встреч — с актрисой и активистской Шейлой Мэй, а также неизвестной молодой ирландкой. Через положенное время у него родились еще две внебрачные дочери. Хильда решила, что пришло время вернуться в Инсбрук.
Шрёдингер провел под небом Дублина около 17 лет. Наконец, в 1956 году пришло время помириться с Австрией. Возвращение ученого сопровождалось всенародными торжествами. Ученому предоставили персональную должность профессора теоретической физики в Венском университете. Наконец-то он мог насладиться почетом и уважением на родине, но губительное время потихоньку делало свое дело. В легких ученого прослушивались хрипы, Шрёдингер страдал от одышки и аритмии, и обследование показало, что в его альвеолах затаился застарелый туберкулез, подхваченный после войны. Болезнь, усугубленная постоянным курением трубки, ждала, когда ученый постареет и уже не сможет сопротивляться.
На протяжении совместной жизни Эрвин и Аннемари повстречали на своем пути многих людей, но к ее концу оказалось, что главными действующими лицами друг для друга были они сами. Теперь, расставаясь даже ненадолго, супруги обменивались любовными письмами, которые были очень похожи на те, что они писали в молодости, в самом начале отношений. Шрёдингер — любитель парадоксов, авантюрист и консерватор, завершил карьеру Дон Жуана ухаживаниями за собственной женой.
В первую неделю января 1961 года его сердце и его легкие начали отказывать. Шрёдингер не хотел умирать в больнице. Он говорил: «Я родился в своем доме и там умру, даже если от этого моя жизнь будет короче». Его последние слова были обращены к супруге: «Аннемари, любовь моя, останься со мной, пока я не умру».
Мы проделали долгий путь и за это время отвергли некоторые модели атома (представляющие собой Солнечную систему в миниатюре), чтобы заменить их более совершенными (электронные облака и орбитали). Нам осталось преодолеть последний этап. «Видя» электроны, которые занимали орбитали s, р или d, мы предполагаем, что знаем заранее, каково энергетическое состояние атома. Речь идет о мысленном построении, ведь в лаборатории перед началом опыта исследователь не знает, возбужден электрон или находится в своем фундаментальном состоянии.
Возьмем атом водорода с одиноким электроном. В его распоряжении находятся все орбитали, как если бы он был постояльцем отеля с бесконечным множеством свободных номеров. Волновая функция скажет нам о вероятности зафиксировать частицу в какой-то точке пространства, в фундаментальном состоянии и с минимальной энергией Е1; волновая функция ψ2 покажет вероятность найти его в состоянии энергии Е2 и так далее. Но прежде чем зафиксировать излучаемую им энергию и переход между уровнями, как мы узнаем, в какую энергетическую комнату он вернулся? Вероятность того, что он находится в какой-то точке (какой бы ни была его энергия), можно представить более сложной волновой функцией, получаемой при сложении функций, описывающих каждое отдельное состояние. С технической точки зрения сложение функций Ψа и Vb образует новую функцию, которая также является решением уравнения Шрёдингера. Как следствие, в случае с атомом водорода мы можем включить все состояния:
Ψ = a1Ψ1 + а2Ψ2 + а3Ψ3 + а4Ψ4 + а5Ψ5 + ... +аnΨn
Функция ψ, которую мы получили, нанизывая друг на друга решения для каждого конкретного уровня, является решением уравнения Шрёдингера, которое предполагает все энергетические состояния. Чему соответствует это сложение в физическом смысле? Это электрон перед измерением; в этот момент он характеризуется таким свойством, как наложение состояний (суперпозиция). По отношению к различным возможностям ψ всегда предпочитает соединительный союз «и» разъединительному союзу «или», таким образом, электрон одновременно находится во всех состояниях и ни в одном из них. Мы имеем дело с соединением в один момент времени всех возможных состояний. Шрёдингер говорил о функции ψ как о списке ожиданий. Функция показывает все возможные состояния и определяет, какова вероятность того, что при произведенном измерении каждое из них воплотится.
Экспериментальный результат, полученный ученым, выражается в конкретном измерении, частном положении электрона, длине волны спектральной линии, определенной интенсивности. В принципе, никто не наблюдает за фантасмагорическим наложением состояний, поскольку не существует множества одновременно дрожащих точек на экране детектора, как и различных размытых линий. Закономерно возникает вопрос: что именно определяет состояние, которое может быть материализовано при измерении? Чтобы отделить список ожиданий, предлагаемый функцией ψ для каждого наблюдаемого объекта и полученного конечного результата, была введена концепция коллапса волновой функции. Речь идет о мгновенной, если так можно выразиться, кристаллизации функции, когда исчезают все возможности списка за исключением одной (откуда термин «коллапс») — той, которая и регистрируется. Уравнение Шрёдингера не говорит нам, когда происходит это мгновенное изменение, и не описывает его. Конечное состояние должно вполне соответствовать естественному положению вещей, поскольку решение в пользу одной из возможностей случайно принимает сама природа (см. рисунок).
Коллапс волновой функции ставит очень много вопросов, для разрешения которых предлагается исходить из противоположных положений. Довольно долго наиболее распространена была копенгагенская интерпретация, основные черты которой были сформированы в ходе дискуссии между Гейзенбергом и Бором, хотя ученые так и не пришли к полному согласию.
В общих чертах эта интерпретация защищает прагматическую точку зрения, лишенную излишнего философствования. Она довольствуется тем фактом, что теория работает, потому что осуществляются все ее прогнозы. Поскольку квантовая механика работает и позволяет нам конструировать микросхемы и сверхпроводники, зачем требовать от нее обязательного соответствия рациональным ожиданиям, следующим из нашего видения макроскопического мира? Гейзенберг предостерегал:
«Если несмотря ни на что мы хотим провести математические расчеты для наглядного описания феноменов, необходимо ограничиться неполными моделями, например моделями волны или частицы». Копенгагенская интерпретация десятилетиями использовалась при преподавании квантовой механики, акцент в ней был сделан на овладении уравнениями, а все метафизические рассуждения учебники по возможности оставляли в стороне.
Наблюдения нарушают не только то, что было измерено, но и то, что они производят.
Замечание немецкого физика Паскуаля Йордана о процессе измерения в квантовой механике
Теория заканчивается в тот момент, когда она представляет список ожиданий; на этом описание завершается. Использование нематематических доводов для объяснения того, что не охватывают уравнения, не помогает. Перед измерением есть только функция ψ, «сущность», принадлежащая абстрактному, но не физическому пространству. По завершении измерений из мира абстракций внезапно материализуются конкретные значения частоты v или положения х . Известные свойства какой-либо частицы могут быть лишь вероятностным наброском, не имеющим никакого смысла до того момента, пока кто-то не решит этот смысл определить. Как говорил физик Джон Арчибальд Уилер, один из великих теоретиков второй половины XX века, «никакой квантовый феномен не является феноменом, пока он не является наблюдаемым (регистрируемым) феноменом». Мы понимаем, что наблюдение вызывает коллапс волновой функции вокруг определенного значения, но в результате в определенной точке пространства и в определенный момент времени появляется электрон.
Копенгагенская интерпретация требует примирения с ограниченностью наших знаний. Все объекты из нашего макроскопического окружения имеют четкую форму и свойства, но этого нельзя требовать от атомных явлений. Мозг на основе наших ощущений создает реальность, но мы не видим, не чувствуем протоны и электроны, мы не можем к ним прикоснуться. Эти частицы не могут стать частью обычной реальности, так как нам не хватает для этого наглядных представлений. Нужно признать, что говоря о частице (точка, не имеющая размеров и обладающая такими свойствами, как электрический заряд или масса), мы будем делать исключительно умозрительные выводы, и это отличается от ситуации, когда объектом нашего внимания является, например, обычный камень. Физика пытается предложить связное описание, без логических противоречий, для широкого диапазона результатов всех известных опытов. В ходе лабораторного опыта нельзя увидеть идеальные мерцающие точки, так что нам приходится довольствоваться мысленным построением, при котором мы на математическом языке описываем фундаментальные концепции. Однако рано или поздно наступает момент, когда изображение концептуального и воображаемого хаоса, который обрел формы макроскопического мира, перестает быть адекватным. Конструкции, используемые для описания атомов, слишком далеки от чувственного опыта. При этом они могут быть вполне обоснованы теоретически и отвечать математическим моделям. Нам нужно ограничиться расчетами и рассматривать любой поиск смысла или любой спор, касающийся истинного понимания реальности, в качестве интеллектуальной игры — насколько увлекательной, настолько и бесплодной.
В ортодоксальной версии квантовой механики ничто не угрожает ее тайнам — они остаются во власти микроскопической области, от которой нас отделяет непреодолимый барьер. И лишь с увеличением размера объектов вновь начинают работать классические законы.
Развитие волновой функции до ее выравнивания при измерении.
Шрёдингера эта интерпретация не удовлетворяла. Эйнштейн тоже был от нее не в восторге: «Думать так логически допустимо, но это настолько противоречит моему научному инстинкту, что я не могу отказаться от поисков более полной концепции».
Многие физики предпочли не заострять внимание на существующей пропасти между выбором возможностей, который отображала волновая функция, не приближаясь ни к одной из них, и конкретным вариантом, материализующимся в момент измерения. Однако в этом случае в состав теории должен был войти и коллапс функции. Само уравнение Шрёдингера необходимо было изменить таким образом, чтобы оно описывало динамику волновой функции во время всего процесса измерения. Чтобы описывать систему в любой момент времени, функция ψ должна очень быстро меняться, пока она не приведет к нужному результату (см. рисунок). Существующее уравнение для этого не подходило — требовалось новое, а его никто не смог предложить.
Шрёдингер отметил странную природу «квантовой запутанности», характерной для квантовых состояний, являющихся суперпозицией состояний двух систем. Гейзенберг уже давно утверждал, что поведение электронов и атомов не имеет ничего общего с нашим повседневным опытом. И это заявление сразу делало все вокруг зыбким и призрачным. Как же так? Ведь наше тело состоит из органов, органы — из тканей, ткани — из клеток, клетки — из молекул, молекулы — из атомов, атомы — из ядер и электронов... Классический и квантовый миры едины и в то же время работают по разным законам? Теория, которая не может представить привычные для нас объекты с перспективы элементарной частицы, априори является неполной. Полная теория описывает мир с точки зрения как классической механики, так и странных квантовых переходов.
Чтобы продемонстрировать несовершенство квантовой механики при переходе от субатомных систем к макроскопическим, Эрвин Шрёдингер взял кота и поместил его в крайне рискованную ситуацию.
Шрёдингер представил обществу знаменитый мысленный эксперимент в длинной статье, опубликованной в 1935 году в журнале Die Naturwissenschaften {«Естественные науки») под названием «Текущая ситуация в квантовой механике». Ученый тщательно изложил теорию, используя живой и непринужденный стиль. В своих рассуждениях он обратил внимание на одну из характеристик квантовой теории, беспокоившую его больше всего, и представил ее в ироничной ситуации, в которой квантовые эффекты должны были проявляться в макроскопических декорациях. В результате мысленного эксперимента он смог сформулировать собственный список вероятностей, и при первом же взгляде на него несовершенство теории становилось очевидным. Предупреждаем: эксперимент придется не по вкусу защитникам животных.
«Некий кот заперт в стальной камере вместе со следующей адской машиной (которая должна быть защищена от прямого вмешательства кота): внутри счетчика Гейгера находится крохотное количество радиоактивного вещества, столь небольшое, что в течение часа может распасться только один атом, но с такой же вероятностью может и не распасться; если это случится, считывающая трубка разряжается и срабатывает реле, спускающее молот, который разбивает колбочку с синильной кислотой. Если на час предоставить всю эту систему самой себе, то можно сказать, что кот будет жив по истечении этого времени, коль скоро распада атома не произойдет. Первый же распад атома отравил бы кота. Пси-функция системы в целом будет выражать это, смешивая в себе или размазывая живого и мертвого кота (простите за выражение) в равных долях».
Кот помещен в ловушку квантовой неопределенности. После того как стальная камера заперта, функция ψ изменяется, объединяя в себе все возможности. Она не склоняется ни к какой из альтернатив: и живой, и мертвый кот существуют в вероятностном мире.
Длина волны квантового участника опыта — ядра радиоактивного атома, который может распасться или не распасться, — уносит кота в свой абстрактный мир. До того как мы совершим измерение (в нашем случае — откроем камеру и проверим, что происходит с котом), в суперпозиции сочетаются два варианта (см. рисунок). Кот одновременно мертв и жив. Эйнштейн поддержал Шрёдингера: «Функция ψ, в которой кот скорее жив, чем мертв, не может считаться аутентичным описанием состояния».
Многомировая интерпретация считается «самым оригинальным описанием реальности из когда-либо предложенных». Ее сформулировал в 1954 году американский физик Хью Эверетт. Позднее он развил эту тему в своей диссертации на соискание докторской степени в Принстоне. В этом представлении волновая функция никогда не коллапсирует, поскольку нет необходимости в выборе одного из пунктов списка. Все эти пункты существуют одновременно, каждый в своем мире. В одном мире кот жив, а в другом его отравила синильная кислота. При осуществлении каждого возможного выбора реальность меняется. Система с бесконечным количеством состояний влечет существование бесконечного количества миров в одной Вселенной, и в каждом из них существует наблюдатель и один из вариантов. Согласитесь, эта идея одновременно и захватывает, и пугает. Джон Уилер, американский физик-теоретик и один из приверженцев многомировой интерпретации, в конце концов отказался от нее ввиду повышенной «метафизической тяжеловесности». Летом 1952 года Шрёдингер провел семинар в Дублине, во время которого он произнес слова, казалось, предвосхитившие формулировку Эверетта:
«Часто теоретики квантовой механики ссылаются на вероятность того, что тот или иной вариант (...) существует среди множества альтернатив. Идея о том, что варианты не будут альтернативами, но будут выступать одновременно, кажется им бессмысленной, просто-напросто невозможной».
Шрёдингер не тратил время на то чтобы развить это положение, которое он, скорее всего, выдвинул для того, чтобы прощупать научную ситуацию. Собственно развитие этой мысли ставит новые вопросы, в частности с помощью каких опытов мы можем доказать существование — или отсутствие — лабиринта бесконечных вселенных, независимых от нашей?
Шрёдингер предложил этот эксперимент, чтобы выявить недостатки установившейся версии квантовой механики. Он имел четкую цель, но парадокс получил неожиданное разрешение. Микроскопическое не может быть отделено от макроскопического, как если бы они были разделены непроницаемым барьером. Эксперимент не противоречит квантовой суперпозиции; он просто вводит эту суперпозицию в нашу жизнь.
В лабораториях были реализованы десятки экспериментов, напоминающих о коте Шрёдингера (ни одно животное при этом не пострадало). В них участвовали серии все более сложных структур в состоянии суперпозиции. В 1999 году это были молекулы 60 атомов углерода; в следующем году — токи в сверхпроводниках, наконец в 2011 году — молекулы, состоящие из 430 атомов, большие, чем молекула инсулина.
В 2010 году созданный человеком механизм впервые ослушался классических законов, чтобы подчиниться квантовым: метроном волосяной толщины (таким образом, видимый) оказался способен колебаться одновременно с большей и меньшей частотой. Эксперимент проходил при температуре, близкой к абсолютному нулю. В 2009 году немецко-испанская группа ученых предложила провести опыт, максимально приближенный к пресловутому коту, используя вместо теплокровного животного вирус табачной мозаики. Конечно, в этом кто-то увидит ересь, но Шрёдингер оценил бы этот союз биологии и физики.
Когда я слышу про кота Шрёдингера, моя рука тянется за ружьем!
Английский физик Стивен Хокинг
Освоение макроскопических суперпозиций открывает путь к созданию квантовых компьютеров. Современные компьютеры работают с арифметикой нулей и единиц, а их квантовый эквивалент сможет работать с суперпозицией 0 и 1, то есть одновременно с двумя состояниями. Если традиционный компьютер выполняет операции последовательно, используя результаты предыдущих вычислений, выраженные в виде 0 или 1, то квантовое устройство сможет одновременно обрабатывать команды, соответствующие двум альтернативам.
Эта способность скачкообразно увеличивает вычислительные возможности.
РИС. 1
РИС. 2
Выход из лабиринта парадокса Шрёдингера и решение проблем квантовой интерпретации сегодня, кажется, можно найти исходя из принципа декогеренции, сформулированной в 1970 году немецким физиком Хайнцем-Дитером Це. Она говорит нам, что состояния суперпозиции допустимы, но также требуют крайней деликатности. Они легко могут быть разрушены при взаимодействии с окружающим миром — как карточный домик, стоящий напротив открытого окна. Излучение или поглощение фотона, столкновения частиц уничтожают спектры волновой функции и ускоряют ее необратимое изменение к внешне классическому состоянию. Поэтому основная странность квантового мира связана не с микромасштабами, а с тем, что для его манифестаций необходима крайняя степень уединенности. В обычной жизни мы не наблюдаем суперпозиции, потому что сама невозможность изолировать макроскопический объект разрушает их. Декогеренция, описанная на основе уравнения Шрёдингера, показывает, как классический мир внезапно проявляется из квантового через взаимодействие с окружающей средой. Так что не существует барьера между ньютоновским наблюдателем и пространством атома. Волновая функция объединяет нас всех.
Кот Шрёдингера, хоть он и заперт в стальной камере, ведет диалог с окружающим миром. Будучи теплокровным животным, он испускает инфракрасные лучи, молекулы воздуха сталкиваются с его усами, наша планета оказывает на него электромагнитное воздействие, масса кота притягивает Землю, а на него самого действует сила притяжения Земли...
Феномен декорегенции смогли обнаружить в лаборатории при работе с фуллеренами (рисунок 1) — сложными молекулами, основа которых, состоящая из 60 атомов углерода, напоминает футбольный мяч. Их состояние суперпозиции исчезает, как только они высвобождают часть тепловой энергии, излучая фотоны.
«Запутанность» — термин, который Шрёдингер использовал в статье от 1935 года «Текущая ситуация в квантовой механике», — сегодня имеет другую трактовку, чем при своем появлении. Шрёдингер считал запутанность не новой характеристикой квантовой механики, а элементом, который помогает ее понять с помощью привычного нам образа мыслей.
В самой простой версии запутанности две частицы А и В являются квантовыми близнецами и находятся в одинаковом состоянии до того, как разнестись друг от друга на произвольно большое расстояние таким образом, чтобы они не могли взаимодействовать (рисунок 2). Несмотря на удаленность друг от друга, обе частицы способны реагировать на измерение одной из них, демонстрируя прекрасную согласованность. Вначале наблюдаемое свойство не измерено ни для A, ни для В. После разнесения частиц в пространстве произведем измерение для A, результат которого, естественно, будет случайным. Запутанность предполагает, что это измерение сразу же станет справедливым и для В, хотя эта частица измерениям не подвергалась. Например, если мы определяем импульс A, то сразу же узнаем его и для В. После завершения измерения запутанность исчезает. Эйнштейн называл этот эффект «жутким дальнодействием», и он был для него одной из главных причин отклонения принятой интерпретации квантовой механики.
Хотя запутанность связывает частицы, скорость которых выше скорости света, скорость передачи информации между двумя исследователями подчиняется релятивистским ограничениям.
Если второй исследователь в это же время фиксирует положение В, то может сложиться впечатление, что принцип неопределенности Гейзенберга нарушается. Так, теперь наблюдателю известны и положение частицы В (благодаря прямому измерению), и ее импульс (благодаря измерению у частицы- близнеца A). Однако в действительности принцип неопределенности остается незыблем, поскольку он устанавливает, что две характеристики В — положение и импульс — не могут быть измерены в одно и то же время. Первый наблюдатель, измеряя импульс А, знает, каким будет этот импульс для В, но ничего не знает о положении В. И наоборот, когда второй наблюдатель фиксирует положение В, ему неизвестен результат измерения импульса А. Он узнает его лишь потом, когда коллега сообщит его ему Неопределенность выступает как функция ожидания информации. После измерений запутанность исчезает, и определить траекторию частиц становится невозможным (см. рисунок).
До измерения импульса А исследователь не знает, каким будет результат, поэтому он не сможет воспользоваться запутанностью, чтобы передать информацию быстрей скорости света. И даже если он мгновенно узнает импульс В, он сможет сообщить его второму исследователю только через условный коммуникационный канал, соблюдая лимит скорости с.
Еще один австрийский физик из Венского университета, Антон Цайлингер, на основании шрёдингеровской запутанности провел ряд крайне любопытных опытов в области квантовой информации. Он начал с трех запутанных фотонов, затем перешел к четырем. Со временем ученый установил рекордную пространственную разнесенность запутанных частиц, разместив их между островами Лас-Пальмас и Тенерифе (Канарские острова) на расстоянии 144 километра. Европейское космическое агентство приняло на рассмотрение его новый проект: еще более удалить запутанные частицы друг от друга, увеличивая дистанцию до 1500 километров. Цайлингер был одним из авторов вышеупомянутой идеи о тепловом нарушении суперпозиции для фуллеренов. Его исследования легли в основу технологии, связанной с использованием квантовых особенностей, в сфере информатики и криптографии. Также этот физик впервые осуществил квантовую телепортацию — метод, использующий запутанность, чтобы мгновенно передавать характеристики одной частицы другой. Принимая во внимание, что в атомной физике главное — сохранение свойств атома, а не его структуры, работа Цайлингера очень подстегивает воображение и сулит поистине фантастические перспективы.
Квантовые частицы вторгаются в наш уютный макромир не только под контролем ученых в лабораториях. Чем больше света проливается на квантовую теорию, тем больше вопросов она вызывает: Вселенная больше не соответствует классическим правилам, как мы считали раньше. Квантовое объяснение некоторых феноменов, таких привычных, как фотосинтез или чувствительность некоторых птиц к магнитному полю Земли, в конечном итоге может использоваться для проверки традиционных инструментов.
Из этого можно сделать вывод, что два главных противника интуитивного прочтения квантовой механики, Шрёдингер и Эйнштейн, очень помогли усовершенствованию теории. Ученые сконцентрировали внимание на самых уязвимых ее точках и с помощью парадоксов и мыслительных экспериментов помогли структурировать многие неясности. Их вклад определяется не только собственно открытиями, но и тем фактом, что даже встречая сопротивление коллег, они в интеллектуальной дискуссии достаточно глубоко прорабатывали свои идеи. Ученые направляли усилия на то, чтобы найти ответы на стоящие перед ними вопросы, но в результате существенно укрепили структуру, которую пытались подорвать.
Полемика о смысле волновой теории так широка, что размышления о ней далеки от своего завершения. Мы сознательно оставляли в стороне такой фактор, как влияние сознания на процесс измерения, хотя, возможно, для некоторых читателей эта сторона была бы крайне любопытной. Однако философские аспекты очень важны для некоторых физиков и не играют никакой роли для других. Ученые пытаются преодолеть разногласия, опираясь на экспериментальную почву, но в интерпретации квантовой механики важнейшую роль играет личный взгляд. Хотя мы в своей книге всеми силами стремились сохранять объективность.