Процесс организации лаборатории кого угодно заставит содрогнуться, да еще в первый раз, да еще в незнакомой обстановке… А она оказалась незнакомой вдвойне. Начать с того, что все здесь было пронизано немецкой историей. Здание, где мне предстояло работать, университетский Институт зоологии, было построено и передано университету в дар фондом Рокфеллера во времена Великой депрессии в 1930–х годах. Американцы разбомбили здание во время войны, и фонд впоследствии восстановил его. Таким образом, институт сам по себе олицетворял непростые и многогранные отношения между Германией и Америкой, этакий маятник с размахом от войны до согласия. Институт располагался между железнодорожной станцией и комплексом зданий, возведенных Гитлером для штаба нацистской партии. Ходили слухи, что станцию и штаб соединял подземный тоннель. Не знаю, правда ли это, но в образе того тоннеля сошлись мои страхи о подспудном, затаившемся фашизме.
Следующей необычной стороной дела стала собственно специализация института — зоология. Я никогда не изучал зоологию и даже биологией не занимался на университетском уровне, только медициной, так как по шведским правилам можно поступить в медицинский институт прямо из школы. Пробелы в образовании вскрылись почти сразу по приезде, когда один профессор постарше спросил, не пожелаю ли я читать курс систематики насекомых в следующем семестре. Я только прилетел, еще не перестроился на европейское время, мысли мои занимали самые разные проблемы, поэтому я, особенно не задумавшись, выразил удивление, с чего вдруг институт зоологии занимается какими-то насекомыми, то есть не очень-то животными. В моем представлении животные — это которые с лапками, пушистые, желательно с большими ушами. Профессор воззрился на меня в замешательстве и быстро молча удалился. Мне было ужасно стыдно, что я свалял такого дурака в первую же неделю. С другой стороны, инцидент этот имел и положительный результат: больше никто ни разу не предложил мне читать энтомологию или систематику.
Пока обустраивался, я узнал, что попал на место предшественника, который неожиданно умер от отравления. Передо мной стояла непростая задача заслужить благосклонность его бывших коллег, многие из которых видели во мне неопытного эксцентричного иностранца, в некотором роде самозванца-захватчика. Однажды все эти скрытые кривотолки выплыли наружу в неприятном столкновении с заслуженным профессором Хансйохемом Аутрумом, научным руководителем покойного. Профессор Аутрум являлся влиятельной фигурой в немецкой зоологии; когда я приехал в Мюнхен, он все еще выпускал довольно известный биологический журнал Naturwissenschaften, и его кабинет размещался на одном этаже с моей лабораторией. В первые дни, сталкиваясь с ним на лестнице, я сердечно здоровался, но он просто не отвечал. После этого он во всеуслышание — а мне рассказал об этом мой лаборант — жаловался, что, мол, многие молодые немецкие ученые сидят без работы, а университетское начальство нанимает “всякую международную шушеру”. Ну я и решил с того момента не обращать на него внимания. Много лет спустя, уже после его смерти, я стал членом престижной немецкой организации, в коей состоял и он, и мне довелось читать его некролог. Автор некролога упомянул, что до 1945 года профессор Аутрум был членом не только нацистской партии, но и штурмовых отрядов СА и вдобавок преподавал национал-социалистическую идеологию в Берлинском университете. И хотя обычно мое стремление всем нравиться даже несколько чрезмерно, но в этом случае я задним числом обрадовался, что такой персонаж не пожелал стать моим другом.
К счастью, профессор Аутрум был такой один в институте. И еще радовало, что его круг в Германии уже изживал себя. Я не скрывал недостаток образования, и не только в области систематики, но и в зоологии и в делопроизводстве. Постепенно моя искренность и открытость сплотила вокруг всех, даже старых лаборантов, и все с воодушевлением принялись создавать нечто новое и замечательное. Чарли и Герберт, в свою очередь, помогали чем могли. Когда, устраивая лабораторию, мы исчерпали все фонды, университет выделил дополнительные деньги. Шаг за шагом мы собирали необходимое оборудование, и вот наконец все было установлено. И, что самое прекрасное, некоторые студенты выразили желание поработать у меня.
Свою текущую научную задачу я видел в том, чтобы выработать систематический подход и надежные методики секвенирования древней ДНК. Еще в Беркли я начал понимать, насколько серьезна проблема внесения инородной современной ДНК в материалы с ископаемой ДНК, особенно когда применяется ПЦР. С использованием новых секвенаторов и термоустойчивой ДНК-полимеразы процесс могли запустить всего несколько молекул ДНК или даже одна-единственная молекула. Если, к примеру, музейный экспонат растерял все свои собственные древние ДНК, зато приобрел за время хранения несколько фрагментов ДНК музейного куратора, то мы в результате вместо древнеегипетского жреца изучали бы музейного куратора. С вымершими животными в этом отношении было проще, меньше возможности перепутать нуклеотидные последовательности. На самом деле, именно работая с животными, я осознал, насколько серьезна проблема внесения инородной ДНК: иногда, умножая мтДНК из остатков древних животных, я получал человеческую нуклеотидную последовательность. В 1989 году, еще до отъезда в Мюнхен, я опубликовал статью в соавторстве с Аланом Уилсоном и Расселом Хигучи (тем, который начал работы с кваггой). Статья ввела в обиход “критерии аутентичности”, как мы их назвали, то есть ряд процедур, которые необходимо выполнить, чтобы подтвердить “древность” прочтенной ДНК[15]. Мы предложили параллельно с исследуемым материалом каждый раз проводить реакцию с “чистым экстрактом”, то есть использовать все те же реагенты, но без добавления ископаемого образца. Таким образом выявлялись фрагменты ДНК, случайно попавшие в сами реагенты. Кроме того, и процесс выделения ДНК, и ПЦР предлагалось провести несколько раз — требовалось, чтобы искомая цепочка ДНК появилась хотя бы дважды. И наконец, я пришел к окончательному заключению, что древние фрагменты ДНК вряд ли бывают длиннее 150 нуклеотидов. В общем, вывод из всего этого напрашивался неутешительный: все прошлые эксперименты, притязающие на выделение древних ДНК, особенно до изобретения ПЦР, были безнадежно наивными.
Да и мои собственные результаты, те найденные ДНК-последовательности мумий, опубликованные в 1985 году, задним числом выглядели подозрительно длинными: ведь ДНК всегда разбивается на короткие фрагменты. Как показали другие исследователи, я выделил гены антигенов, трансплантационных белков[16]. Я мог бы назвать две возможные причины их появления в составленной тогда цепочке (а мы как раз их и изучали в тот момент в лаборатории в Упсале): либо я пользовался реагентами, предназначенными для антигенов, либо фрагмент ДНК случайно попал в исследуемый материал. Учитывая длину полученной цепочки, я склоняюсь ко второму варианту. Я утешал себя мыслью, что вот таким образом я поучаствовал в научном прогрессе: методики устаревают, на их место приходят новые, лучшие. И я рад, что к этой части прогресса я буквально приложил собственные руки. К тому же с неожиданной стороны пришла помощь. В 1993 году Томас Линдаль опубликовал короткие комментарии в Nature, где предлагал критерии, схожие с опубликованными нами в 1989–м[17]. Соблюдать их он считал необходимым, если дело касалось древних ДНК[18]. Хорошо, что такой уважаемый ученый из другой области подтвердил наши выводы — я уже тогда обеспокоился тем, кто приходит в область исследований древней ДНК. Громкое освещение в прессе и общественное внимание привлекали ученых без достаточных знаний по биохимии и молекулярной биологии; они просто отправляли на ПЦР любые древние образцы, оказавшиеся под рукой. Мы в лаборатории называли такой подход “нелицензионной молекулярной биологией”.
Из всех возможных лабораторных проектов сам я склонялся к изучению истории человека методами молекулярной биологии. Это замечательно интересная область знаний, хотя и пестрящая домыслами и предубеждениями, взятыми напрокат из отживших идей. Мне хотелось привнести стройность в науку о человеческой истории и сделать это на основе изучения ДНК древних людей. Для этого можно было бы начать с очевидного: в качестве исходного материала взять сохранные останки человека бронзового века из торфяников Северной Германии и Дании. Но чем больше я про них читал, тем лучше понимал, что сохранились остатки благодаря высокой кислотности среды, дававшей дубильный эффект. Кислая среда ведет к потере нуклеотидов и разрывам нуклеотидных последовательностей, что, по понятным причинам, сохранению ДНК никак не способствует. Но, что еще хуже, сам факт, что человеческие ДНК находят при лабораторных исследованиях даже в остатках животных, показывает, насколько непросто работать с остатками человеческими.
Обдумав все это, мы начали с образцов вымерших животных, таких как сибирский мамонт. Мы запустили планомерные эксперименты с контролями. Например, мои студенты Олива Хандт и Матиас Хёсс проводили опыты с использованием праймеров, специфичных для человеческой мтДНК. Я пришел в смятение, когда они уверенно выделили человеческую ДНК не только из животных образцов, но и из контрольных вытяжек, вообще без добавок. Мы повторили эксперимент с новыми реагентами, “свежедоставленными” в лабораторию, но результат был тот же. И еще раз, и еще, и еще, месяц за месяцем — человеческая ДНК присутствовала везде и всюду. Меня охватило отчаяние. Чему верить? И как вообще доверять результатам, если только они полностью не совпадут с ожидаемыми (например, у сумчатого волка ДНК-последовательность соответствует сумчатым)? А если доверять только ожидаемым результатам, то зачем вообще работать в этой области? Мы же никогда не откроем ничего неожиданного, того, ради чего и существуют настоящая наука и настоящий эксперимент.
Каждый день я уходил домой разочарованный и измотанный постоянными провалами. Но постепенно я стал понимать, насколько легкомысленно относился к проблеме занесенных загрязнений. Очевидный логический вывод, следующий из чрезвычайной чувствительности ПЦР, мне в голову почему-то не пришел. И в Беркли, и в первые месяцы в Мюнхене мы экстрагировали ДНК из музейных образцов, работая на общих лабораторных столах, где в обращении было огромное число ДНК и человека, и разных других исследуемых организмов. Даже если мельчайшее количество современной ДНК попадет в раствор, содержащий экстракт ископаемой ДНК, современная ДНК возьмет верх над древним материалом. Такое запросто могло произойти, даже если мы всего лишь забыли поменять пластиковую насадку на пипетке.
Стало понятно, что нам придется полностью отделить — причем отделить физически — работы с древними ДНК от всех остальных лабораторных проектов. В особенности стоило обратить внимание на изоляцию ПЦР, при которой получались триллионы молекул. Нам нужна была лаборатория, которая занималась бы исключительно выделением и амплификацией древнего материала. На нашем этаже нашлась маленькая комнатка без окон, мы ее полностью вычистили и покрасили, затем задумались, как бы избавиться от тех ДНК, что неминуемо проникли в лабораторию с новыми столами и инструментами. Меры мы приняли самые жесткие. Абсолютно все в лаборатории было вымыто хлоркой, которая окисляет ДНК. К потолку приделали ультрафиолетовые лампы, их включали на ночь, так как ультрафиолет разрушает молекулы ДНК. Мы купили новые реагенты — и первая в мире “чистая” лаборатория для исследования древнего материала заработала (рис. 4.1). И все сразу поменялось. Наши контрольные растворы перестали выдавать ДНК, как им и полагалось. А из рабочих растворов, как и полагалось, определялась ДНК. Но мало-помалу, спустя несколько месяцев, в контроле опять стали появляться ДНК. Я рвал и метал. Ну что опять?! Мы выбросили все реагенты и закупили новые.
Рис. 4.1. Олива и Матиас в первой “чистой комнате” в лаборатории в Мюнхене. Фото: Мюнхенский университет
И опять ситуация исправилась, но ненадолго. Я прямо-таки с ума сходил на почве “чистоты в чистой комнате”, а еще мы установили изуверские правила работы в “чистой комнате”, и эти правила действуют и соблюдаются до сих пор. Во-первых, доступ в комнату был открыт только тем, кто непосредственно проводил эксперимент, в нашем случае только Матиасу и Оливе. Перед тем как войти, они облачались в специальные халаты, шапочки, бахилы, надевали перчатки и закрывали лицо щитком. Еще несколько тщетных экспериментов — и у нас добавилось новое правило: входить в комнату можно только утром непосредственно из дому. Если им приходилось пройти через помещения, где содержались продукты ПЦР, вход в “чистую комнату” на весь день им был закрыт. Все химикаты поступали прямо в “чистую комнату”, мы купили новое оборудование, которое тоже привезли прямо туда. Постепенно ситуация улучшалась. И все равно новые реагенты обязательно тестировались на присутствие человеческой ДНК, и не однажды целую партию отправляли обратно. Матиаса и Оливу оставалось только пожалеть: они-то рассчитывали позаниматься ДНК древних людей и вымерших животных, а вместо этого попали в кабалу утомительных процедур, по сто раз перепроверяли реагенты и волновались, как бы не занести лишней ДНК.
В конце концов наши усилия начали приносить плоды, и общее настроение поднялось. До сих пор мы исследовали мягкие ткани, кожные или мышечные. Но я вспомнил, как в Упсале успешно вытягивал ДНК из хрящей мумий, то есть из ткани, похожей на костную. Если бы удалось выделить ДНК из древних костей, а не из мягких тканей, то перед нами открылось бы множество новых возможностей, так как от древних людей остаются в основном кости. В 1991 году Эрика Хагельберг и Дж. Б. Клегг из Оксфордского университета опубликовали статью с описанием процесса выделения ДНК из костей древних людей и животных[19]. Поэтому, взяв наконец под контроль инородные загрязнения, Матиас занялся освоением технологий выделения ДНК из костей древних животных. В этом случае вероятность перепутать целевую ДНК с загрязнениями значительно уменьшалась: ведь с животными мы почти не работали. Один из таких методов, описанных в литературе, предлагал протокол для экстрагирования ДНК микроорганизмов. Основан он на том, что ДНК в условиях солевого раствора высокой концентрации связывается с кремниевыми микрочастицами — в данном случае с тончайшей стеклянной пылью. Затем кремниевые частицы тщательно отмываются, чтобы избавиться от всех нежелательных компонентов, которые могут вмешаться в ПЦР. И после этого молекулы ДНК отделяют от кремниевых частиц методом понижения концентрации соли. Конечно, процесс экстрагирования ДНК оказался весьма громоздким, но он работал и приносил результаты.
Мы с Матиасом опубликовали описание этого метода в 1993 году; в том эксперименте мы работали с костями плейстоценовой лошади и получили последовательность ее мтДНК. Так мы доказали, что можем надежно реконструировать ДНК из костей возрастом 25 тысяч лет. А это, между прочим, была первая полученная последовательность ДНК доледниковых времен[20]. Придуманный нами тогда протокол с небольшими модификациями используют до сих пор. Все предшествующие треволнения поместились в первое, вступительное предложение статьи: мы написали, что нашу молодую область знаний “омрачают проблемы”. Но и это постепенно менялось. На самом деле Матиас и Олива, сами того не сознавая, заложили фундамент для тех открытий, что нам предстояли в следующие несколько лет. В 1994 году Матиас выделил первую последовательность ДНК из сибирского мамонта: он работал с образцами четырех особей, возрастом от 9700 до 50 тысяч лет. Мы отправили результаты в Nature, где они и были опубликованы вместе с похожими результатами Эрики Хагельберг, получившей ДНК из костей двух мамонтов[21]. И, несмотря на скромную длину реконструированных фрагментов мтДНК, все же здесь просматривались серьезные перспективы, если нуклеотидов окажется побольше. К примеру, мы заметили множество различий между последовательностями ДНК у четырех особей мамонтов. Такая информация не только способна прояснить родственные связи между мамонтами и двумя существующими видами отряда — индийским и африканским слоном, — но и позволяет проследить историю мамонтов от позднего плейстоцена до самого их вымирания около 4000 лет назад. У древней ДНК появилось наконец что отпраздновать.
В то же время выяснилось, что новые технологии выделения древней ДНК приложимы в неожиданных областях биологии. В один прекрасный день у меня на пороге появился университетский зоолог Феликс Кнауэр и завел разговор о применении наших ДНК-методик к “охранной генетике”, то есть в той области знаний, где генетика служит сохранению редких и исчезающих видов. Феликсу предстояло исследовать последнюю сохранившуюся популяцию итальянских медведей, обитающих на южных альпийских склонах, но в качестве материала для исследования у него был только медвежий помет. Я предложил Феликсу и нескольким студентам попробовать наш метод “кремниевого” выделения в сочетании с ПЦР на этом специфическом материале. В результате мы сумели амплифицировать ДНК медведя и показали, что можно работать и с таким материалом. До этого, чтобы получить ДНК дикого животного, его приходилось убивать или усыплять и брать кровь у сонного, что рискованно и для животного, очевидно, неприятно. Теперь же можно изучать генетические связи итальянского медведя и его европейских сородичей без всяких сложностей. Из того же материала мы реконструировали генетическую составляющую растений, которые шли медведю в пищу, так что и о медвежьей диете кое-что смогли рассказать. Все эти результаты мы опубликовали в небольшой статье в Nature [22]. С тех пор выделение ДНК из помета стало повсеместной практикой в области генетики редких животных.
Пока мы корпели над методиками распознавания и устранения занесенных чужеродных ДНК, в Nature и в Science одна за другой появлялись эффектные работы — их авторы будто бы добивались грандиозных успехов, рядом с которыми бледнели наши вымученные фрагменты ДНК возрастом в какие-нибудь несчастные пару десятков тысяч лет. Мода на такие работы началась году в девяностом, я тогда еще работал в Беркли. Ученые из Калифорнийского университета в Ирвайне опубликовали ДНК-последовательность ископаемой Magnolia latahensis из миоценовых отложений в Айдахо; возраст отложений составлял 17 миллионов лет[23]. Прямо ошеломительное открытие, и казалось, что теперь мы можем изучать эволюцию в невиданных масштабах в миллионы лет — так, пожалуй, и до динозавров недолго добраться! Но я, по правде сказать, был настроен скептически. Еще в 1985 году, когда работал у Томаса Линдаля, я на собственном опыте убедился, что фрагменты ДНК могут сохраниться спустя тысячи лет, но о миллионах даже речи не идет. Мы с Аланом Уилсоном произвели на основе работ Линдаля некоторую экстраполяцию, в которой проверили длительность жизни ДНК в присутствии воды и при усредненных условиях: при температурах не самых низких и не самых высоких, если среда не слишком щелочная и не слишком кислая. По нашим подсчетам выходило, что по прошествии нескольких десятков тысяч лет — а при самых благоприятных условиях, положим, и сотен тысяч — распадутся последние молекулы. Но кто знает — возможно, те отложения в Айдахо создавались при каких-то уж совсем исключительных условиях. Перед тем как отправиться в Германию, я посетил эти местонахождения. Они были сложены темными глинами, раскопки производились бульдозером. Первые же снятые слои обнажили зеленые листья магнолии, которые мгновенно почернели, оказавшись на воздухе. Я собрал много этих листьев и привез с собой в Мюнхен. В своей новой лаборатории я попытался выделить их ДНК и получил множество длинных фрагментов. Но далее, прогнав их через ПЦР, мне не удалось амплифицировать ни одного фрагмента растительной ДНК. Поскольку у меня было подозрение, что все длинные фрагменты последовательности принадлежат бактериям, а не растениям, я провел реакцию с бактериальными праймерами — и немедленно получил положительный результат. Очевидно, в глине развивались бактерии. Единственное возможное объяснение: группа из Ирвайна, работающая с генами растений и не имеющая специальной “чистой комнаты” для исследования древних ДНК, амплифицировала какую-то занесенную ДНК и решила, что это ДНК магнолии. В 1991 году мы с Аланом опубликовали наши теоретические подсчеты в статье о стабильности ДНК[24], а в следующей статье описали мои неудачные попытки получить ДНК из ископаемых листьев из Айдахо[25]. За год до того Алан слег с тяжелой формой лейкемии, так что настроение было очень печальное. Несмотря на болезнь, он внес весомый вклад в обе статьи. Он умер в июле того же года в возрасте всего пятидесяти пяти лет.
Я наивно полагал, что наши работы, где прямо указано на невозможность сохранения ДНК в течение миллионов лет просто с химической точки зрения, прекратят поток изысканий супердревних ДНК. Как бы не так! Поток мало того что не прекратился — листья из Айдахо были только началом! Затем настало время супердревних ДНК из янтаря. Янтарь представляет собой смолу деревьев, образовавшуюся миллионы лет назад и застывшую в виде прозрачных золотистых кусков. Больше всего янтаря находят в карьерах Доминиканской Республики и по берегам Балтийского моря. Часто в янтаре оказываются заключены насекомые, листики, даже мелкие животные — древесные лягушки, например. Такие включения сохраняют для нас мельчайшие детали организмов, живших миллионы лет назад, и многие ученые надеялись, что, может быть, их ДНК сохранились тоже. Одна из первых работ на эту тему появилась в 1992 году в Science; группа из Американского музея естественной истории предлагала нашему вниманию последовательность ДНК, которую выделили из термита возрастом 30 миллионов лет. Термит застыл в куске доминиканского янтаря[26]. Далее последовала целая серия работ от лаборатории Рауля Кано из Политехнического университета штата Калифорния в Сан-Луис-Обиспо. Одна из них исследовала ДНК долгоносика возрастом 120–135 миллионов лет из ливанского янтаря[27]; еще одна предлагала ДНК листа из застывшей смолы доминиканского дерева возрастом 40 миллионов лет[28]. Кано после этого основал компанию, которая утверждает, что извлекла более тысячи двухсот организмов из янтаря и среди них даже девять штаммов живых дрожжей. Утверждения, конечно, диковинные, но, казалось, нельзя полностью исключать возможность сохранения ДНК в янтаре необыкновенно долго, так как организмы там защищены от влаги и кислорода, двух самых разрушительных для химии ДНК факторов. Тем не менее янтарь необязательно предохраняет ДНК от разрушительных свойств радиации; к тому же трудно объяснить, почему нам понадобились такие отчаянные усилия, чтобы амплифицировать следы ДНК из организмов в тысячи раз моложе.
Вопрос стал проясняться, когда в 1994 году к нам в лабораторию прибыл веселый калифорниец Хендрик Пойнар. Его отец, Джордж Пойнар, профессор в Беркли, являлся знатоком янтаря и всего, что в янтаре могло быть захоронено. Вместе с Кано Хендрик участвовал в публикациях нескольких “янтарных” последовательностей ДНК; его отец имел доступ к лучшему янтарю в мире. В Мюнхене Хендрик принялся за свои опыты в нашей “чистой комнате”, но безрезультатно. Он не мог воспроизвести то, что получил в Сан-Луис-Обиспо. Более того, если его контрольные вытяжки оказывались чистыми, то и из янтаря не удавалось выделить вообще никакой ДНК, независимо от того, проводил он опыты на растениях или насекомых. Сомнений у меня появлялось все больше и больше. И не только у меня. Томас Линдаль, который еще со времени моей стажировки у него в 1985 году живо интересовался палео-ДНК, опубликовал в Nature внушительный обзор о стабильности и распаде ДНК; часть этого обзора он посвятил древней ДНК[29]. Он указал — как и мы с Аланом ранее, — что с крайне малой вероятностью ДНК сохранится дольше нескольких сотен тысяч лет. Тем не менее вопрос о сохранности ДНК в янтаре он оставил открытым. Я же, со своей стороны, не надеялся уже и на янтарь.
Томас приспособил прекрасное слово для наидревнейших ДНК: допотопная ДНК. Нам оно так понравилось, что мы вовсю его использовали, и слово прочно вошло в наш обиход. В 1994 году произошло неминуемое. Скотт Вудворд из Университета Юты опубликовал последовательность ДНК, которую он с коллегами выделил из осколка кости в 80 миллионов лет. Кость эта, как они полагали, принадлежала какому-то динозавру[30]. Статья, естественно, появилась в одном из двух журналов, что меряются заголовками и зарабатывают часто незаслуженное уважение. В этот раз это был Science. Авторы определили множество разных мтДНК из костной ткани, некоторые из них оказались не похожими на ДНК птиц, рептилий или млекопитающих. Авторы предположили, что это специфическая для динозавров ДНК-последовательность. Для меня это прозвучало просто издевательски. У меня в лаборатории работал дотошный, даже несколько педантичный молодой специалист Ханс Цишлер. Возмущенный подобными выступлениями в нашей области, он решил объявить войну этой конкретной работе. Он провел систематизированный анализ опубликованных мтДНК-последовательностей из Юты и выяснил, что они принадлежат скорее млекопитающим или даже человеку, чем птицам или рептилиям.
И все же те цепочки казались не совсем человеческими. Чтобы понять, что же это все-таки было, придется несколько углубиться в природу мтДНК. Вспомним, что митохондриальный геном представляет собой кольцевые молекулы ДНК, состоящие из 16 500 нуклеотидов, и все это находится в митохондриях, органических образованиях, расположенных снаружи клеточного ядра почти во всех животных клетках. Эти образования, или органеллы, так же как и их геномы, получились из бактерий, которые почти 2 миллиарда лет назад проникли в первичную животную клетку; животная клетка в результате получила “бесплатный” источник энергии. Со временем подсевшая в клетку бактерия переместила большинство своих ДНК в ядро клетки-носителя, и они интегрировались в ту часть генома, которая размещается в хромосомах. Даже в современном зародышевом наборе клеток при формировании яйцеклетки и клеток спермы иногда происходит разрыв митохондрий, и фрагменты их ДНК оказываются в клеточном ядре. Тогда эффективные ремонтные механизмы распознают концы разорванных цепочек и присоединяют их к другим свободным концам ДНК, так как в ядерном геноме тоже часто случаются разрывы. Таким образом, время от времени фрагменты митохондриальной ДНК встраиваются в ядерный геном, остаются там и передаются по наследству, так и не приобретая функционального значения. У нас у всех в каждом клеточном ядре найдутся сотни, если не тысячи фрагментов мтДНК, переместившихся в геном на каком-то историческом этапе. Эти фрагменты имеют различную степень схожести с нашей реальной митохондриальной мтДНК, и хотя они напоминают предковые мтДНК-последовательности, в них накопилось огромное количество мутаций, не имеющих никаких функций, так сказать, генетический мусор, встроенный в ядерную ДНК. Ханс Цишлер как раз и занимался определением таких мтДНК-включений в ядерный геном. Мы полагали, что с той самой динозавровой ДНК произошла подобная история и группа из Юты выделила именно такой фрагмент. Учитывая наш опыт с инородными и внесенными человеческими ДНК, мы считали возможным, что в Юте нашли версию человеческой мтДНК, встроенную в ядро и получившую необычные мутации. Мы решили посмотреть, не найдется ли в человеческом ядерном геноме последовательностей, похожих на опубликованные исследователями из Юты. Сложность нашего плана заключалась в том, что любая обычная вытяжка ДНК из человеческой клетки содержит смесь из ядерной и митохондриальной ДНК; таким образом, сотни или даже тысячи копий настоящей мтДНК из митохондрий большинства клеток перемешаются с сегментами псевдо-мтДНК, той, что некогда переместилась из митохондрий в ядро. И тут нам на помощь приходит биология. Как я упомянул в главе 1, мы наследуем мтДНК только от матери, через ее яйцеклетку, от отца же мтДНК мы не получаем. Происходит это потому, что сперматозоид, проникающий в ядро, не содержит митохондрий. Следовательно, чтобы получить чистую ядерную ДНК, без сопровождающей митохондриальной, нам всего-то и нужно было раздобыть и изолировать сперматозоиды.
Я поговорил со своими парнями из лаборатории, они отнеслись к нашей проблеме с пониманием и энтузиазмом, мы все договорились, и в один прекрасный день Ханс получил требуемый материал. Из спермы он выделил ДНК и прогнал через ПЦР, использовав те же праймеры, что и группа из Юты. Как и ожидалось, он секвенировал множество цепочек мтДНК, полученной, соответственно, из ядерного генома. Эти фрагменты мы внимательнейшим образом сравнили с “динозавровыми” из Юты. И действительно, нашлись два фрагмента, практически идентичных опубликованным. Это означало, что вместо ДНК динозавра лаборатория в Юте секвенировала сегменты человеческой ядерной ДНК, а точнее мтДНК, переместившуюся в ядерный человеческий геном. Так как эти сегменты оказались в ядре очень давно, за это время они набрали достаточное количество мутаций, чтобы не напоминать человеческий митохондриальный геном, но все еще походить на геном млекопитающих, птиц и рептилий. В технических комментариях в Science [31] я не удержался и съехидничал, написав, что у меня есть три возможных объяснения, как в лаборатории, где полно наших собственных ДНК, получаются цепочки, подобные опубликованным в Юте. Во-первых, в лабораторию могло по чистой случайности занести ДНК динозавра, что, по моим предположениям, маловероятно. Во-вторых, динозавры могли как-нибудь скреститься с ранними млекопитающими этак 65 миллионов лет назад. Этот вариант мне тоже пришлось отвергнуть как не слишком вероятный. По третьему сценарию — самому естественному — человеческая ДНК была внесена во время эксперимента. Science опубликовал наши комментарии и комментарии двух других лабораторий, указывающие на несоответствия в сравнительном анализе последовательностей ДНК; эти несоответствия в результате привели группу из Юты к ложным выводам, будто их мтДНК являются предковым вариантом для птиц.
Комментарии комментариями, но, несмотря на игривый тон, горечь там тоже присутствовала: в области изучения палео-ДНК подобные работы появляются постоянно. Стремление к громким, пусть и сомнительным результатам портит исследования до сих пор. Как нередко повторяли мои студенты и аспиранты, с помощью методик ПЦР очень легко получить фантастические результаты, но очень трудно доказать, что они правильные, а уж если результаты опубликованы, еще больших трудов стоит объяснить, почему исследование ошибочно, где и как закралась ошибка, как в материал попала инородная ДНК. В том конкретном случае нам удалось все это продемонстрировать, но сколько пришлось затратить усилий! И знаний это не прибавило. По сей день, например, неясно, откуда взялась “янтарная” последовательность, опубликованная в Nature и Science. Я уверен, что, вложив некоторое количество труда и времени, можно было бы найти ее источник, но мы решили, что с нас достаточно. Как сказал один мой студент: “Хватит играть в полицейских от ПЦР”. Мы решили, что с этого момента игнорируем ошибочные с нашей точки зрения работы и сосредотачиваемся на собственных изысканиях. Мы считали, что должны сконцентрироваться на исследованиях ДНК возрастом в десятки тысяч лет, выработать методы их выделения, изучения и подтверждения корректности результатов и это будет лучшее, что мы можем сделать для нашей науки. Когда дело касается древней человеческой ДНК, именно подтверждение подлинности результата представляет наибольшую сложность, так как современная человеческая ДНК проникает абсолютно всюду. И хотя для меня это было болезненное решение, пришлось на время оставить изучение человека и направить усилия на древних животных. Пришлось вспомнить, что профессорствую я на кафедре зоологии. Так мы остановились на вопросах связи вымерших животных и их ныне живущих родственников.