Рассмотрим подробно способы получения автономного режима в конструкциях с асинхронными моторами. Сземы и фото взяты из книги Партика Кили, Practical Guide to Free-Energy Devices которая содержит 2500 страниц на сайте www.free-energy-info.com в открытом доступе Широкое развитие в среде энтузиастов альтернативной энергетики получила схема резонансного мотор-генератора с названием «РотоВертер», которая собрана их двух трехфазных электродвигателей. По заявлениям авторов, система производит примерно в 10 раз больше мощности, чем потребляет. Эта система была воспроизведена несколькими независимыми исследователями. Детали схемы показаны на рис. 101.

Рис. 101. Схема мотор-генератора. Подробнее на сайте www.free-energy-info.com

Устройство на выходе представляет собой генератор переменного тока, который приводится в действие трехфазным электродвигателем мощностью от 3 л.с. до 7.5 л.с. Оба этих устройства могут быть стандартными «асинхронными электродвигателями с короткозамкнутым ротором». Привод запускается в действие не обычным образом, а с помощью резонанса. Поэтому входное напряжение для данного двигателя должно всегда меньше его номинального эксплуатационного напряжения, 110 Вольт на каждую фазу, вместо 220 Вольт. Прирост напряжения даст резонанс. Виртуальная третья фаза создается, за счет использования конденсатора, который создает 90 градусный сдвиг фаз между прикладываемым напряжением и током.

Цель состоит в том, чтобы подобрать нужный конденсатор для обмоток электродвигателя, и получить резонансный режим. Конденсатор запуска подключается, используя кнопочный выключатель, чтобы довести двигатель до скорости, на которой выключатель размыкается, позволяя двигателю работать с конденсатором намного меньшей емкости. Хотя работающий конденсатор показан на схеме, как постоянное значение, сначала конденсатор должен быть отрегулирован во время работы двигателя, чтобы получить резонансный режим. Для этого обычно строится конденсаторный настроечный блок, рис. 102, где каждый конденсатор снабжен собственным выключателем, для того, чтобы различные комбинации дали широкий диапазон различных суммарных значений емкости конденсатора. С этими шестью конденсаторами, показанными выше, может быть быстро подобрано любое значение емкости от 0.5 микрофарад до 31.5 микрофарад, чтобы найти резонанс. Конденсаторы должны быть мощными с масляной изоляцией. Мощность велика, поэтому настройка проходит не без определенной степени опасности.

Рис. 102. Настроечный блок конденсаторов. www.free-energy-info.com

Этот метод может дать эффект автономного режима генерирования энергии, но это опасно в случае точной настройки, быстрого роста напряжения и мощности, вплоть до того, что обмотка двигателя выйдет из строя.

Перейдем к практическим деталям сборки этой системы. Двигатель (переменного тока), который, по мнению американских авторов проекта, считается лучшим для этого устройства, является «Baldor EM3770T» 7.5 л.с. Тип двигателя 07H002X790, напряжение включения 230Вольт или 460Bольт, для выбора рабочего напряжения в конструкции есть шесть независимых обмоток. Их можно соединить попарно последовательно, или парами параллельно.

Ток в обмотках 19 А или 9.5 А, в зависимости от соединения обмоток. Частота вращения 1770 оборотов в минуту, коэффициент мощности 81. Мотор-привод, включаемый на низкое входное напряжение, имеет обмотки, соединенные по две параллельно. Это дает большое омическое сопротивление и возможность выдерживать резонансное повышение напряжения до 460 Вольт, хотя от первичного источника подается всего 110 Вольт с частотой 50Гц.

Рис. 103. Пара мотор и генератор (альтернатор). www.free-energy-info.com

Генератор имеет обмотки, соединенные параллельно, что дает возможность уменьшить активное сопротивление и обеспечить большую силу тока на выходе. Первичный привод может стартовать от DC/AC инвертора, работающего от батареи 12VDC. Система нуждается в настройке, которая заключается в поиске лучшего стартового конденсатора, который используется в течение нескольких секунд при запуске, и точно подобранного для постоянной работы резонансного конденсатора.

Авторы конструкции РОТОВЕРТЕР заявляют: «Это устройство использует вход 110 Вольт, малой мощности, а производит электрический выход более высокой мощности, который может использоваться для того, чтобы снабжать энергией больших по мощности потребителей. Выходная мощность намного больше чем входная. Это и есть свободная энергия, какое бы название Вы бы не употребили».

Авторы не показывали, как они замыкали цепь первичного возбуждения и цепь генерирования мощности, поэтому их устройство можно назвать «усилителем мощности», но не автономным генератором электроэнергии. Преимущество, которое необходимо подчеркнуть, состоит в том, что в проекте РОТОВЕРТЕР очень немного нужно конструировать, так как используются готовые двигатели. Кроме того, не требуется знание электроники, что делает этот проект одним из самых легких по сборке устройств свободной энергии, доступных в настоящее время. Один небольшой недостаток заключается в том, что настройка резонансного режима зависит от величины нагрузки, так как у большинства потребителей существуют различные уровни потребляемой мощности в различное время.

Итак, параллельный резонанс можно применить для уменьшения тока потребления, а последовательный резонанс позволяет во много раз увеличить напряжение в колебательном контуре. Рассмотрим некоторые примеры высоковольтных и других резонансных конструкций.

Имя Римилия Федоровича Авраменко известно всем, кто читал знаменитый журнал «Изобретатель и Рационализатор» в 1994 году и помнит статью о «бластере» Авраменко, который мог произвести мощный луч плазмы, или шаровые молнии, при питании от обычной батарейки. Для такого «генератора плазмы», говоря словами автора, необходимо «определенное сочетание ионизации и движения среды. Тогда образуется канал, своего рода проводник, по которому начинает перетекать энергия».

Исследования Авраменко также показали, что электрической составляющей, о которой пишут в учебниках, в радиоволнах нет, а ток в антенне приемника возбуждают «какие-то совсем другие волны». Возможно, это и есть явления, связанные с продольными волнами в эфире, рассмотренными нами ранее.

«Уже сегодня можно приступить к проектированию электростанций нового типа, абсолютно безвредных для окружающей среды. Постепенно заменим ими тепловые, водяные и атомные станции, и по сути, подключимся к энергетическим запасам Вселенной – неисчерпаемым и экологически чистым», так писал Академик Российской Академии Естественных Наук Римилий Федорович Авраменко – ученый, посвятивший свою жизнь проблеме обороноспособности нашей страны, отдавший много сил фундаментальной физике. Его работы открывают новые пути для решения задач альтернативной энергетики. В 2001 году он написал книгу «Будущее открывается квантовым ключом».

Известный разработчик в области резонансных генераторов энергии – Андрей Анатольевич Мельниченко. Первые статьи о нем появились в 1996 году, в журнале «Техника Молодежи». Он описал случай на даче, когда ему пришлось включать в сеть 110 Вольт инструмент, предназначенный для работы от 220 Вольт. Мельниченко подключил конденсатор, повышая напряжение с помощью резонанса, получил мощность в нагрузке и, в дальнейшем, стал активно развивать данное направление экспериментальных работ. В одной из его патентных заявок от 22 апреля 1996 года, поставлена задача создать «Резонансный трансформатор с усилением выходной мощности». Мельниченко так описывает свое изобретение: «Резонансный трансформатор имеет в первичной цепи настроенные в резонанс при резонансной частоте индуктивность и емкость (резонанс токов или напряжений). при резонансе полная мощность на катушке трансформатора в первичной цепи в Q раз (добротность) превышает полную мощность, подведенную к первичной цепи».

Позже он развивал другие схемы, в том числе, использующие сложение электромагнитных волн разных источников в одной области пространства, где помещается приемная катушка. Мельниченко показал, что энергия волн не складывается, а умножается. Аналогичный метод мы рассмотрим позже, при анализе конструкции Хаббарда, рис. 179.

В 2010–2011 мы обсуждали с ним успешные испытания его генераторов, организованные в Московском Техническом Университете. На данном этапе, получена эффективность на уровне 150–200 %, позволяющая проектировать «усовершенствованные» источники бесперебойного питания с аккумулятором, которые не требуют подзарядки от сети. Одна из схем Мельниченко приведена на рис. 104.

Рис. 104. Одна из схем генератора Мельниченко

Суть данного эффекта в том, что если положить рядом с «открытым электромагнитом» (сердечник которого не замкнут, например, стержень или брусок феррита) другой «открытый электромагнит», то в обмотке второго электромагнита наводится электродвижущая сила, и возможно извлечение некоторой мощности.

Требуется подстройка частоты или регулировка сердечника катушки. В общем, это обычная резонансная взаимоиндукция. Однако, потокосцепление в данном случае слабое, поэтому влияние поля индуцированного тока второго электромагнита на первичный источник незначительное. Первичный источник создает меняющееся поле, а вторичный источник преобразует колебания энергии поля. Можно сказать, что второй электромагнит более похож на детекторный контур или «резонансный приемник колебаний эфира», чем на вторичный контур трансформатора.

В таком случае, есть возможность получать в «приемнике» большее количество энергии, чем тратит передатчик на «возбуждение эфира».

Отметим, что в области переменного магнитного поля первичного источника можно расположить несколько таких «приемных устройств». Исследовательскую работу по данной теме, целесообразно проводить с применением более высоких частот, хотя с увеличением частоты растут потери и усложняется схемотехника.

Поскольку мы рассматриваем резонансные эффекты, то отметим также магнитно-резонансный усилитель Нормана Вутена (MRA, Norman Wootеn), рис. 105. Это устройство маломощное (милливатты), но показывает эффективность 8 к 1, как заявляет автор. Оно состоит из маломощного высоковольтного генератора сигнала синусоидальной формы, примерно 20–40 КГц, к которому последовательно подключается пьезоэлектрический вибратор и первичная катушка 1:1 трансформатора (примерно 150 витков), намотанном на сердечнике из бариевого постоянного магнита.

Рис. 105. Магнито-резонансный усилитель Нормана Вутена

Пьезоэлектрический вибратор, использующий титанат бария, может играть роль конденсатора в резонансной цепи, но его главная роль состоит в создании механических вибраций. В этой схеме мы можем найти признаки эффекта Баркгаузена. При вибрациях сердечника, особенно магнитотвердых материалов, можно наблюдать скачкообразное изменение намагниченности. Впервые аналогичный эффект наблюдался Баркгаузеном (Н. G. Barkhansen), 1919 г.

Отдельное направление исследований, относящееся к резонансам, называется «параметрические резонансы». Классический подход к этой теме детально проработал в 1950-е годы Академик Николай Дмитриевич Папалекси в колебательных контурах (конденсатор и катушка индуктивности), не имеющих источника питания. Это, фактически, один из немногих официальных открытых проектов по свободной энергии.

Параметрический резонанс – это явление возникновения и увеличение амплитуды электрических колебаний в результате изменения параметра элемента физической системы, в котором запасается энергия, происходящего с частотой, вдвое больше собственной резонансной частоты системы. В электрическом колебательном контуре, есть два элемента, в которых запасается энергия и параметры которых можно изменять: емкость и индуктивность.

Рассмотрим пример с индуктивным параметрическим резонансом. Почему электроны начинают двигаться в проводах катушки, если меняется ее индуктивность? При изменении индуктивности катушки путем периодического введения сердечника, который не является магнитом, его движение не создает явление электромагнитной индукции, в данном случае. При этом движении, изменяются условия для запасаемой энергии, то есть величина индуктивности. Аналогично, при емкостном резонансе, механический приводом или другим методом, периодически меняется величина электрической емкости конденсатора, то есть емкости накопителя энергии.

Механическая аналогия данного процесса – периодическое изменение объема некоторой емкости для воды или воздуха. Вывод простой и очень важный: изменение объема емкости накопителя энергии уже приводит в движение среду, в которой всегда есть энергия. Затраты энергии на изменения «объема накопителя», в установившемся резонансном режиме, могут быть намного меньше, чем энергия, получаемая из преобразования этих колебаний среды.

Задача состоит, как писал Папалекси, в «возбуждении электрических колебаний в колебательных системах, в которых отсутствует какой-либо специальный источник тока, путем периодического изменения параметров, производимых механически. Способ этот позволяет, по-видимому, осуществлять новый тип генератора переменного тока, обладающего рядом довольно любопытных сторон. В случае параметрического возбуждения, пока система остается линейной, мы принципиально не имеем пределов для нарастания колебаний. Здесь, помимо новой возможности трансформировать механическую энергию в колебательную электрическую, намечается новый способ получения высоких напряжений». (Н.Д. Папалекси, Собрание трудов, 1948 год).

На начальном этапе проекта, в экспериментах Папалекси, было получены результаты на уровне 600–700 ватт в лампах нагрузки, при затратах мощности на создание вращения 2 кВт. Однако, надо понимать, что затраты на вращение – это конструктивный вопрос, в этих машинах нет торможения ротора при снятии мощности в цепи нагрузки.

На рис. 106 показана схема параметрического генератора с периодически изменяемой индуктивностью. На оси показан ротор, который входит в зазор катушек. При этом возникает периодическое изменение индуктивности и ток в катушках.

Рис. 106. Схема создания индуктивного параметрического резонанса

При емкостном способе возбуждения, все происходит аналогично, но мотор вращает пластины конденсатора, изменяя его емкость. При соответствующей частоте, в катушке, соединенной с данным конденсатором, появляются периодические колебания тока.

Существует и такой способ возбуждения параметрического резонанса, как внешние электрические колебания, показанный на рис. 107. Частота внешних колебаний тока должна быть вдвое выше частоты собственных колебаний контура. Из опыта работы Академика Папалекси, отмечено, что наиболее интересные перспективы открываются для емкостных параметрических резонаторов. Вращение ротора, периодически меняющего диэлектрическую проницаемость между пластинами конденсатора, создает условия параметрического резонанса. В той части цикла вращения, когда диэлектрик находится между пластинами, емкость конденсатора максимальная. Без диэлектрика – емкость минимальная.

Рис. 107. Возбуждение параметрического резонанса внешним током

Для повышения мощности и уменьшения потерь, Папалекси создавал вращение в вакууме, помещая всю конструкцию в герметичный корпус. На рис. 108 показана схема и статор емкостного параметрического резонатора.

Рис. 108. Схема и статор емкостного параметрического резонатора

Современные технологии позволяют изменять величину электрической емкости конденсатора не только механически, но и путем приложения к нему «управляющей разницы потенциалов». В этом смысле, мы получим устройство, в котором изменения потенциального электрического поля, создавая изменение электрической емкости, при выполнении условий параметрического резонанса (удвоенная частота), позволяют обеспечить электродвижущую силу, ток проводимости и мощность в полезной нагрузке. Можно сказать, «работает переменное потенциальное поле».

Академик Папалекси высказался оптимистично, но осторожно про эффективность таких преобразователей энергии: «К.П.Д. может быть сделан очень высоким на повышенных частотах. так как мощность пропорциональна частоте. Весьма выгодной стороной емкостного генератора является возможность осуществления весьма, можно сказать, почти предельно высоких к.п.д. (свыше 99 %)».

Проще было бы сказать так: «Эффективность систем с параметрическим резонансом может быть более 100 %», но это было невозможно в то время!

Современные разработки в данной области малоизвестны. Возможно, что проекты в данном направлении были остановлены по некоторым причинам. Перейдем к следующей главе, где рассмотрим различные устройства из области использования энергии постоянных магнитов.

Загрузка...