Разумеется, конструктивные особенности ротора, имеющего специальные элементы, увеличивающие кавитацию, а также специальная траектория движения воды, и другие факторы, являются важными для получения максимума тепловой энергии при минимальном расходе электроэнергии привода, создающего вращение. Тем не менее, логика событий следующая: вращение рабочей массы жидкости (после разгона) затрат не требует (потери на трение не учитываем), давление создается в результате инерциальных свойств материи, а именно, градиента эфира, который нами воспринимается, как центробежная сила. Далее, давление обуславливает избыточную энергию, которая проявляется в виде избыточного тепла или скорости движения (кинетической энергии) рабочей массы жидкости.

Важный аспект: получив давление, за счет центробежной силы, надо обеспечить возможность рабочей массы двигаться с ускорением, то есть «преобразовать статику в динамику», потенциальную энергию в кинетическую. Дальнейшее развитие событий, например, использование кинетической энергии потока воды или воздуха, нам известно.

В качестве перспективного направления поиска решения задачи автономного энергоснабжения, приведу еще один пример аналогичной конструкции. На рис. 46 показано фото и схема эксперимента Харди.

Рис. 46. Схема эксперимента и фото колеса турбины генератора

Автор Джеймс Харди (James D. Hardy) получил патент США 2007/0018461 A1 от 25 января 2007 года. Конструкция примитивная, домашнего изготовления. О параметрах насоса: для эксперимента применялся насос высокого давления от компактной автомобильной мойки высокого давления, питание от сети 220VAC. Такие насосы создают струю воды с давлением около 100 атмосфер.

Производительность насоса около 350–600 литров воды в час. Мощность потребления примерно 1 киловатт в час. Расчет величины мощности, которую можно было бы получить от турбины, если полностью использовать кинетическую энергию такого потока воды (350 кг в час при давлении 100 атм), мы производить не будем. По экспериментальным данным, ее хватает для того, чтобы даже самодельная турбина, показанная на фото, и обычный электрогенератор работали в автономном режиме, обеспечивая электропитание насоса и нескольких ламп накаливания, выполняющих роль полезной нагрузки. По особенностям конструкции генератора Харди отметим, что его турбина с «ложками» вращается недостаточно быстро, чтобы обеспечить вращение электрогенератора с требуемыми 1500 оборотов в минуту. Поэтому на валу турбины установлен маховик большого диаметра для ременной передачи на вал генератора, который имеет меньший диаметр. Видеофильм данного эксперимента можно посмотреть в Интернет http://www.youtube.com/watch?v=qhwQt1tJYa8

Рассмотрим еще один проект с участием Юрия Семеновича Потапова, который был незавершен нами по ряду причин. Проект, который мы проводили в 2004–2005 годах, получил название «молекулярный двигатель», по предложению Потапова. Фото установки, которую мы построили и испытывали в нашей лаборатории, показано на рис. 47.

Рис. 47. Экспериментальная установка ООО «ЛНТФ», 2004 г.

Термин «молекулярный» относится к кинетической энергии молекул воздуха, которая определяет его температуру. Молекулы воздуха хаотически двигаются, векторная сумма их скоростей равна нулю, но мы можем преобразовать их энергию в полезную работу, хотя бы частично, при создании их направленного движения (ламинаризации потока). Ламинаризация обеспечивается конструктивно, за счет геометрических особенностей конструкции, и затрат энергии не требует. Отметим, что аналогичный подход использован в проекте по созданию специального наноматериала, который мы рассмотрим позже.

Юрий Семенович принимал участие в проектировании установки, затем работал совместно со специалистами завода имени Дегтярева, г. Ковров, по изготовлению основной части испытательного стенда установки УКС-37.

Заказчиком проекта была моя компания «Лаборатория Новых Технологий Фарадей», в то время работавшая в Санкт-Петербурге. Теоретически, предполагалось получать электроэнергию на выходе электрогенератора, вращаемого турбиной, через которую проходит воздушный поток, причем в количестве, достаточном для работы вентилятора и полезной нагрузки. Воздух подавался на турбину от центробежного вентилятора через воздуховод, в котором предполагалось создать особые условия для использования кинетической энергии молекул воздуха, и последующей передачи этой энергии турбине. Очевидно, что, аналогично ранее рассмотренным случаям, избыточная кинетическая энергия создается уже в самом вентиляторе за счет центробежных сил, сжимающих воздух. Дальнейшие способы увеличения мощности на выходе энергокомплекса, которые предстояло изучить, должны были обеспечить пассивные конструктивные элементы воздуховода, без затрат энергии первичного источника.

Предполагалось получать электроэнергию от процесса вращения с помощью стандартного электрогенератора типа ГС-250 номинальной мощностью 60 кВт. Преобразование давления потока в кинетическую энергию вращения обеспечивала турбина вертолетного газотурбинного двигателя типа ГТД-350, через стандартный редуктор. Изначально, подачу воздуха на вход турбины обеспечивал центробежный вентилятор типа ВПЗ, диаметр ротора которого был около 1 метра, потребление 7 кВт/ час, производят такие вентиляторы завод в г. Чудово. Позже мы его заменили другим центробежным вентилятором ВДС-5, завод «ЛИССАНТ», Санкт-Петербург. Предполагалось, что устройство УКС-37 должно было работать в автономном режиме, и вырабатывать не менее 37 кВт электроэнергии для полезной нагрузки.

Концепция Потапова была, несомненно, верной, но у нас возникли организационные и технические трудности с ее реализацией. Выполнение работы на заводе задерживалось. После того, как договорные сроки изготовления и испытаний установки закончились, специалисты завода не вышли на автономный режим работы установки. Представители завода договорились со мной о том, что они сдают не готовое изделие, способное работать в автономном режиме, а комплект для изготовления стенда и экспериментов, по цене 50 % от договорной цены. Полагая это неплохим компромиссом, я получил экспериментальный стенд для исследований, и начал его дорабатывать. Юрий Семенович некоторое время работал со специалистами завода имени Дегтярева по данному проекту, но затем непосредственного участия в работе не принимал. Дальнейшие исследования в лаборатории я проводил самостоятельно. Большую помощь в работе по данному проекту оказал Погоняйло Игорь Анатольевич, офицер запаса, специалист высшей квалификации в области силовых установок, применяемых на судах ВМФ.

Испытательный стенд был получен мной в комплекте с неисправным вентилятором. По этой причине, вентилятор был заменен на новый центробежный вентилятор ВДС-5, производительностью 800 кубометров воздуха в час, потребление электроэнергии примерно 5 кВт в час.

Исследования показали, что концепция использования центробежных машин в автономных энергокомплексах вполне работоспособная. Нам удавалось получить около 3 кВт полезной мощности в лампах накаливания, причем это не оказывало влияния на увеличение потребляемой мощности. Эта принципиальная схема преобразователя, который использует рабочую массу потока вещества (воды или воздуха), и имеет почти полную конструктивную развязку между первичным источником «возбуждения среды» и устройством приема и преобразования кинетической энергии потока.

Можно сказать, что имеется даже некоторая «положительная связь»: если тормозить турбину, включая электрическую нагрузку, или полностью закрывать воздуховод между турбиной и вентилятором крышкой, то мощность, потребляемая электроприводом вентилятора, значительно уменьшается (от уровня 6–7 кВт до 4–5 кВт). Главное, то, что кинетическая энергия потока воздуха в такой конструкции увеличивается за счет центробежных сил, в результате сжатия рабочего тела – воздуха. При этом, потребление электроэнергии вентилятора можно минимизировать различными методами, например установкой конденсаторных компенсаторов реактивной мощности привода и точной настройкой контура в резонанс. Сложный автоматически регулируемый компенсатор реактивной мощности, в данном случае не нужен, так как у вентилятора постоянная нагрузка. Необходим мощный силовой конденсатор, имеющий величину КВАР – «КилоВольтАмперРеактивные», соответствующую мощности вентилятора.

Мы также изучили некоторые аспекты оптимизации данной конструкции. На участке от выходного отверстия центробежного вентилятора до турбины, был установлен воздуховод диаметром 400 мм (по диаметру турбины) и длиной 1 метр. При создании в данном воздуховоде вращательного процесса движения воздушной массы, мощность в нагрузке электрогенератора увеличивалась на 5–7 % по сравнению с прямолинейным движением воздушной массы. Вращение потока воздуха обеспечивалось наклонными направляющими, устанавливаемыми внутри воздуховода на его стенки. Мощность потребления вентилятора контролировалась цифровым счетчиком электроэнергии. Это увеличение мощности на выходе электрогенератора происходило без увеличения мощности потребления вентилятором, лишь за счет конструктивных пассивных элементов, фактически, за счет изменения траектории воздушного потока.

Перспективы получения автономного режима были небольшими, кинетической энергии потока воздуха от вентилятора ВДС-5 не хватало на преодоление потерь (КПД турбины и генератора). При потреблении вентилятором 5 кВт электроэнергии, в нагрузке генератора мы уверенно получали до 3 кВт мощности, но дальнейшее увеличение нагрузки приводило к потере качества электроэнергии (снижение числа оборотов и падению напряжения на выходе генератора). Было принято решение увеличить объем и давление рабочей массы воздуха, и для этой цели приобретен компрессор типа АФ53, с рабочим давлением на порядок выше, чем у ВДС-5.

По причине отсутствия финансирования по данной теме, а также после возникновения технических проблем с редуктором турбины, проект был прекращен в 2005 году. Экспериментальный стенд был продан другой компании. О дальнейших исследованиях по данной теме мне известно то, что практически ценных результатов они не получили, несмотря на привлечение профессиональных специалистов по аэродинамике. За теоретическими консультациями ко мне они не обращались.

Мы уже отмечали, что именно упругие свойства рабочего тела позволяют накапливать потенциальную энергию при его сжатии в области действия центробежной силы, а затем, получать избыточную кинетическую энергию. Важно также и понимание второй стороны открытой физической системы: упругие свойства окружающей эфирной среды. Эфир рассматривается в предлагаемой концепции, именно, как упругая среда, Менделеев использовал такой подход к объяснению свойств материи:

«… вот как определяется эфир: жидкость невесомая, упругая , наполняющая пространство, проникающая во все тела и признаваемая физиками за причину света, тепла, электричества и проч. Можно сказать, что эфир подобен газу. Называя эфир газом, мы понимаем флюид в широком смысле, как эластичный флюид , не имеющий сцепления между своими частицами» (Книга Менделеева «Попытка химической концепции эфира», Санкт-Петербург, типолитография М.П. Фроловой, 1905 год.)

Итак, важную роль в понимании физики рассматриваемых процессов занимает концепции массы частиц материи, включающую связанный с ними эфир. Именно, связанный с частицами материи эфир, занимающий пространство между атомами, определяет инерциальные свойства частиц массы. Следовательно, ускорение и центробежная сила являются эффектами упругого взаимодействия тела с окружающей упругой эфирной средой .

С данной точки зрения, дополнительная энергия, в частности, избыточный крутящий момент ротора, который может быть получен в технически замкнутой физической системе, обусловлен преобразованием энергии среды, в частности, упругими деформациями эфирной среды, и соответствующими этим деформациям термодинамическими изменениями в ней (поглощением и выделением тепла). Это и есть изменения свойств пространства, которые мы обсуждали в главе о теории процесса преобразования форм энергии.

По зарубежным аналогам данного проекта, можно отметить компанию EF9 Energy Systems, которая также ставит вопрос преобразования тепловой энергии атмосферного воздуха в полезную работу. Их сайт содержит немного информации о проведенных исследованиях, но достаточно подробно описывает теорию процесса http://ef9energysystems.com/ Они полагают, что главную роль в данном преобразовании энергии играет «эффект Бернулли». Цели данной компании, в настоящее время, включают создание 50 кВт генератора для частных домов, а также генератора энергии для автотранспорта.

Рассмотрим еще один пример машины, производящей работу при наличии сил гравитации и центробежных сил. Это устройство Чаза Кэмбелла (Chas Cambell) из Австралии. На рис. 48 показано фотография его колеса, вырабатывающего 3 киловатта электроэнергии.

Рис. 48. Фото конструкции Чаза Кэмбелла. 3 кВт мощности. www.free-energy-info.com

В конструктивных решениях Кэмбелла, кроме обычного самовращающегося колеса со смещением центра тяжести, есть интересная концепция извлечения избыточной энергии при использовании маховика. Сечение «периферийного» маховика показано на рис. 48.

На фото рис. 49 показан экспериментальный стенд, для исследований по данной теме, в котором нет аккумуляторов. Мотор и генератор подключены к конденсаторным накопителям энергии. Связь через маховик, по мнению изобретателя, обеспечивает увеличение мощности. Обратите внимание на «окна» в маховике, в которых видны его внутренние элементы. Полагаю, что есть аналогии с конструкцией Кэмбелла и Амарасингама. На мой взгляд, объяснение данного эффекта, применяемого не только Кэмбеллом, но и другими авторами, заключается в том, что кинетическая энергия вращающейся массы вещества, имеет квадратичную зависимость от скорости, а значит и от радиуса. Увеличение скорости вращения в 3 раза, дает увеличение кинетической энергии в 9 раз.

Рис. 49. Мотор – генератор с маховиком

В рамках данной темы, можно напомнить о проектах Вячеслава Ивановича Богомолова. В 2003 году наша компания ООО «Фарадей» провела ряд экспериментов по реализации его идей, о которых мы подробно сообщали в журнале «Новая Энергетика».

Другой известный автор разработок в данной области: Линевич Э.И., в настоящее время активно работает с европейскими инвесторами, компания «Permotors GmbH». Описание его центробежного преобразователя мощности, содержит патентная заявка РФ «Способ работы силового привода вращения и электростанция для его осуществления» RU2008105388, от 12 февраля 2008 года.

На этом, будет разумно закончить рассмотрение идей по использованию гравитационного поля, а также центробежных машин, чтобы остались силы на изучение других принципов. Перейдем к примерам конструирования источников энергии, в которых используются электрические явления. Для начала, мне представляется важным напомнить события конца XIX века, чтобы потом иметь возможность делать аналогии с современными событиями и исследованиями в области альтернативной энергетики.

Загрузка...