Итак, анализ предшествующих экспериментов и теоретических предпосылок позволяет предположить, что гравитационные эффекты, наблюдаемые в экспериментах разных авторов, обусловлены изменениями плотности конденсата Бозе, которое создает возмущение эфирной среды в виде продольных волн. Однократное изменение происходит при однократном фазовом переходе из сверхпроводящего состояния в обычное, например, в эксперименте Шнурера. Поскольку, в этом случае, изменение фазы всего объема вещества диска из сверхпроводящей в обычную является постепенным и занимает некоторое время, то данный эффект достаточно слабый и детектируется в течении нескольких секунд. Эксперимент по созданию «гравитационного импульса», описанный Подклетновым и Моданезе в [47], является одним из методов создания мгновенного (быстрого) изменения фазы конденсата Бозе, причем, во всем объема ВТСП материала, что позволяет создавать короткий по времени, но мощный эффект импульсного характера. Разрушение сверхпроводника при воздействии на него высоковольтным импульсом не обязательно, так как достаточно вывести его из состояния сверхпроводимости, чтобы создать гравитационные импульс. Природой данного гравитационного импульса является продольная волна в эфирной среде.

Отметим, что существует более ранняя аналогия данного эксперимента, известная как «луч Мортона». Чарльз Мортон (Charles R. Morton) занимался подобными экспериментами в 1960-х годах [52]. На рис. 104 показана схема эксперимента Мортона. Разряд высоковольтного генератора Ван де Граафа, в данном эксперименте, производился направленно, через стеклянную трубку – изолятор, на металлическое кольцо, установленное на торце трубки. Величина напряжения, которое могли создавать такие генераторы еще в 1930-е годы, достигало 10 миллионов Вольт.

Рис. 104. Схема эксперимента Мортона

При использовании сверхпроводящего материала в эксперименте Подклетнова и Моданезе [47], вместо простого металла, который Мортон подвергал удару электрического разряда, мощность эффекта значительно увеличивается, благодаря когерентному поведению электронов в ВТСП материале. Тем не менее, как показал Чарльз Мортон, возмущение эфирной среды, возникающее при резких электрокинетических эффектах в простом металле, также способно создавать направленную волну плотности эфира.

Изучая предположение о волновой природе гравитационного поля в пространстве около поверхности нашей планеты, мы можем сформулировать задачу компенсации данного натурального колебательного процесса неким искусственным процессом. Максимальный эффект ожидается в случае создания внешнего поля с частотой, соответствующей натуральным флуктуациям плотности конденсата Бозе в ВТСП материале. В случае совпадения частот, мы можем ожидать полной компенсации натурального гравитационного поля.

Итак, можно сформулировать предположение о том, что вещество в состоянии конденсата Бозе (в сверхпроводниках) связано с эфиром в иной степени, чем обычное вещество. В связи с этим, фазовые переходы вещества из состояния сверхпроводимости в обычное состояние и обратно высвобождают или связывают некоторое количество эфира. Такие фазовые переходы, производимые с высокой частотой, могут быть способом генерации высокочастотных когерентных продольных волн плотности эфира. Поиск резонансных условий целесообразно вести в диапазоне частот 10 – 100 МГц, предсказанным авторами David Noever и Christopher Bremner в статье [43]. Полагая, что натуральное гравитационное поле планеты не является монохромным (одночастотным), а представляет собой спектр частот, требуется определить несколько главных резонансных частот, позволяющих получить максимально полную компенсацию гравитационного поля данной планеты.

Ряд экспериментов был организован в ООО «Лаборатория Новых Технологий Фарадей», Санкт-Петербург, в 2007 году. Высокотемпературный сверхпроводящий диск был приобретен у компании CAN [53], материал YBa2Cu3O7-x с добавками Y2BaCuO5. Критическая температура 90K. Диаметр диска 56 мм, высота 16 мм. Охлаждение производилось жидким азотом. Для детектирования изменения веса применялись цифровые весы HL-100, имеющие точность 0.01 г.

В стабильной части помещения лаборатории, где внешние вибрации были минимальны, были построены балансные весы с грузами на концах весом 50 г. Позже грузы были увеличены до 500 г каждый, и весы были сбалансированы так, чтобы на стороне оборудования HL-100 был перевес около 20 г. Грузы были изготовлены из пластика. Вращение ВТСП диска обеспечивалось электроприводом со скоростью до 3000 оборотов в минуту.

Отметим, что данная экспериментальная установка весьма примитивна, и не позволяет проводить длительные измерения вращающегося ВТСП материала в состоянии сверхпроводимости. В данной установке, ВТСП диск помещается в ротор, и затем охлаждается жидким азотом, при этом, после испарения азота, его можно привести во вращение, но сверхпроводящее состояние сохранялось не более 20–30 секунд. По этой причине многие тесты с вращением не могли дать надежные результаты.

В июне 2007 годы, были сделаны попытки повторить эксперимента Шнурера, но заметных эффектов на цифровых весах, для случая фазового перехода ВТСП материала диска из сверхпроводящего в обычное состояние, не обнаружено. Для уточнения результатов, были построены крутильные весы. Схема эксперимента показана на рис. 105.

Рис. 105 Эксперимент с крутильными весами

Крутильные весы были изготовлены из дерева, грузы – пластиковые. Кусочек стекла в центральной части горизонтального бруска отражает луч лазера на стену (расстояние 2 метра), что позволяет детектировать поворот крутильных весов с высокой чувствительностью. Нить подвеса выполнена из вольфрамовой проволоки диаметром 0.05 мм. Вся конструкция помещена под стеклянный колпак, для устранения влияния воздушных потоков.

Эксперимент по проверке эффекта Шнурера состоял в том, что предварительно охлажденный ВТСП диск помещается около крутильных весов. Через 30–40 секунд, когда происходит фазовый переход, наблюдается притяжение одного из грузов крутильных весов к ВТСП диску (крутильные весы поворачиваются). Через 3–5 минут, весы возвращаются (поворачиваются) в начальное состояние. Максимальный эффект наблюдается при размещении ВТСП диска плоскостью к крутильным весам. Эксперимент был повторен 4 раза. Количественные характеристики дать затруднительно, требуется усовершенствовать измерительное оборудование.

Интересно отметить, что начало силового воздействия на крутильные весы соответствует ожидаемому моменту фазового перехода ВТСП материала диска в несверхпроводящее состояние, но окончание силового воздействия растянуто во времени на несколько минут. Возможные ошибки в понимании эффекта могут быть связаны с наличием вокруг охлажденного ВТСП диска мощных тепловых (холодных) потоков, то есть с явлениями термогравитации. Стеклянный колпак устраняет только воздушные конвекционные потоки. Однако, он не препятствует термогравитационным силам. Чтобы проверить это предположение, были сделаны дополнительные эксперименты с несверхпроводящим материалом. Металлический диск, имеющий примерно такую же массу, как и ВТСП диск, был охлажден жидким азотом, и помещен рядом с крутильными весами. При этом эффект притяжения груза крутильных весов к холодному телу также был обнаружен, но в значительно меньшей степени, чем при использовании ВТСП материала. Интересно было бы организовать дальнейшие эксперименты в данном направлении.

Другой эксперимент был организован 23 июня 2007 года, для исследования гравимагнитных эффектов, возникающих при создании высоковольтного разряда на охлажденный ВТСП диск. Схема данного эксперимента показана на рис. 106. Импульс высокого напряжения (разряд) подавался на ВТСП диск, находящийся в охлажденном состоянии, сразу после того, как испарялся жидкий азот. Были обнаружены значительные изменения веса (до 0.3 грамм, что составляет 0,5 % веса груза). Отрицательный электрод был соединен через стол и корпус емкости с жидким азотом с ВТСП материалом.

Рис. 106. Схема эксперимента по влиянию электрического разряда на фазовое состояние охлажденного ВТСП материала

О количественных характеристиках обнаруженного эффекта сложно говорить корректно, так как в данной схеме эксперимента, проводимого без ВТСП материала, были отмечены некоторые изменения показаний весов, которые вызывал искровой разряд. Исключить влияние высоковольтного оборудования на цифровые весы полностью не удалось. Методика эксперимента требует доработки, хотя эффект изменения веса пробного тела при воздействии на ВТПС диск искрового разряда уверенно детектировался.

В июле 2007 года были проведены эксперименты с постоянным магнитом, установленным около вращающегося ВТСП диска. В данном эксперименте, мы пытались проверить возможность создания градиента плотности конденсата Бозе и генерации гравитационной волны при помощи силы Лоренца. Магнитное поле создавалось как в радиальном направлении, так и коаксиально, по отношению к вращающемуся ВТСП диску.

Скорость вращения ВТСП диска достигала 2000 оборотов в минуту. Использовался постоянный магнит силой порядка 1T, материал NdFeВ, цилиндр диаметром 25 мм и высотой 24 мм. Расстояние от магнита до край ВТСП диска составляло около 7 мм.

В экспериментах с коаксиальным расположением магнита были обнаружены небольшие изменения веса 0.02 г, что составляет около 0,04 % массы груза. Полагаю, что данное изменение веса пробного тела слишком мало, чтобы рассматриваться, как надежный результат.

Наиболее интересная часть данного цикла экспериментов относится к изучению влияния электромагнитного поля на вращающийся или неподвижный ВТСП диск. Синусоидальный сигнал подавался на транзисторный усилитель тока, нагрузкой которого служила катушка. Для разных частот использовались различные катушки: для низких частот 10Hz – 100Hz катушка имела 500 витков провода диаметром 1 мм, намотанного на U-образном сердечнике из трансформаторного железа. Для частот от 100Hz до 10KHz была использована другая катушка, намотанная на ферритовом сердечнике.

Положительный результат был обнаружен при вращении ВТСП диска в переменном магнитном поле частоты 1KHz. Впрочем, процентное изменение массы составило всего 0,04 %.

Эксперименты на частотах от 10KHz до 3MHz были организованы с использованием выходной катушки на каркасе без сердечника, помещенной выше ВТСП диска. Измерения, в данном случае, были нерезультативными, то есть не было обнаружено какое-либо подтверждение того, что взаимодействие электромагнитного поля с вращающимся или неподвижным ВТСП диском, на данных частотах, в данной конструкции может производить значительные гравитационные эффекты.

В более высокочастотном диапазоне, от 3MHz до 40MHz, электромагнитное поле создавалось усилителем мощности обычного регулируемого генератора ВЧ сигналов, выходная мощность в катушке достигала 30 Ватт. Высокочастотный генератор был установлен над ВТСП диском, погруженным в пары жидкого азота. Были обнаружены значительные изменения веса, достигающие 0.06 г., на частоте около 30MHz, для неподвижного ВТСП диска. Изменение веса составило около 0.01 %. Данный результат попадает в предсказанный диапазон частот 10 – 100 MHz и может рассматриваться, как основной результат цикла экспериментов по выявлению волновой природы гравитационного поля.

В другом варианте данного эксперимента, вращающийся ВТСП диск был помещен в высокочастотное поле 3MHz – 40MHz. Мы не получили ожидаемого эффекта. Возможно, что в этом случае, важные данные были потеряны по причине небольшой (20 секунд) длительности сверхпроводящей фазы вращающегося диска. Другая возможная причина получения отрицательного результата состоит в том, что в данной конструкции высокочастотное поле могло рассеиваться на металлических частях ротора и конструкции привода.

Итак, обнаруженные минимальные эффекты, в целом, не могут рассматриваться, как убедительные данные. Некоторые положительные результаты, например, в случае вращения охлажденного ВТСП диска в постоянном магнитном поле, ориентированном поперек плоскости вращения, могут быть обусловлены действием силы Лоренца, создающей локальный градиент плотности конденсата Бозе. Колебания данной плотности, происходящие при вращении ВТСП диска, могут генерировать гравитационную волну в осевом (вертикальном) направлении в области выше и ниже постоянного магнита.

Повторю, что основной задачей данного проекта была проверка резонансных условий на частотах 10-100MHz. Были обнаружены незначительные изменения веса тестового груза для полей с частотами около 1KHz и около 30MHz. Для получения более надежных данных, целесообразно увеличить мощность используемого в данном эксперименте электромагнитного поля.

Эксперимент с высоковольтным импульсом, который дал вполне надежные результаты, позволяет сделать вывод о том, что разрушение сверхпроводникового материала при создании гравитационного импульса не является обязательным условием генерирования продольной волны. Эффекты наблюдаются и без разрушения материала, так как конденсат Бозе когерентно смещается в пространстве под действием электрического импульса, создавая мощную продольную волну в эфирной среде.

Эти выводы согласуются с экспериментом Подклетнова [47], который является вариантом эксперимента Чарльза Мортона [52]. При таком варианте эксперимента не происходит разрушение «рабочего тела», возбуждающего волну плотности эфира. Следовательно, для практических целей, могут быть созданы высокочастотные генераторы когерентного гравитационного излучения, использующие данный эффект.

Одно из технических предложений по данной теме состоит в использовании множества маленьких элементов, изготовленных из ВТСП материала, вместо одного ВТСП диска. Данное направление конструирования позволит снизить напряжение разряда и повысить частоту импульсов в генераторе, работающему по принципу Мортона. Технология имеет большие перспективы, так как современные сверхпроводниковые материалы имеют невысокую себестоимость, и технологи работают над снижением критической температуры.

Приглашаю заинтересованных партеров для развития данного исследовательского проекта, поскольку рассматриваемый метод является эффективным инструментом для решения задач по очистке (дезактивации) радиоактивной местности, созданию гравитационного движителя импульсного действия, систем связи и вооружения нового типа, а также, для новых медицинских технологий.

Загрузка...