*7. КАК РАБОТАТЬ?*

Сказка

В одном университете когда-то жила-была девица и очень ей хотелось научиться готовить, да не какую-нибудь там яичницу, суп из пакета или баранью отбивную, а готовить так, чтобы проявить оригинальность, воображение и все такое прочее,- словом, так, как некогда готовил великий французский кулинар Саварен.

Но, увы, как она ни старалась, ничегошеньки-то у нее не получалось.

"Плачем делу не поможешь,- решила девица,- надо действовать с умом. Начну готовить по книге". И она одолела все поваренные книги, какие только возможно.

Но готовить так и не научилась...

Отбило ли это у нее охоту? Нет! Чем дальше, тем больше она любила стряпню.

"Ведь я же умница, отличница,- говорила она себе,- неужели я не одолею это искусство?"

И она накупила самых лучших и точнейших весов, термометров и таймеров и осталась очень довольна собой. "В конце концов,- рассуждала она,- в кулинарии, как и везде, все подчиняется законам логики, химии и физики, а уж в этом-то я разбираюсь получше какого-нибудь Саварена!"

Но, увы, все точнейшие приборы требовали столько времени на обдумывание и отмеривание, что до самой готовки руки не доходили.

Вконец отчаявшись, бедная девица забросила кулинарию и вышла замуж. Когда у нее появился первенец, она ужасно удивилась: "Неужели это я создала такое сложное и замечательное существо, не пользуясь при этом ни умными книгами, ни хитрыми приборами?.."

Мораль этой истории не в том, чтобы забросить ваши книги и приборы, а чтобы осознать их ограниченность. Иногда в чем-то они помогают нам, но творческий процесс слишком сложен, чтобы его можно было разложить на составляющие и направлять по собственному усмотрению. Если каждый шаг своей работы подвергать постоянному интеллектуальному и инструментальному контролю, понадобится целая вечность. Человеческая жизнь для этого явно коротка. Наверное, поэтому совершенство и непогрешимость в творчестве возможны только при условии бессмертия.

Общие соображения

Последующие страницы будут посвящены тем аспектам научной работы, которые наиболее тесно связаны с процессом исследования: методам лабораторной работы и способам координации знаний. При этом я отнюдь не ставлю себе целью создать полное руководство по этим вопросам. Я просто хочу изложить сугубо неформальные, личные соображения относительно научной методологии, основанные на опыте использования методик, которые разработали мои коллеги и я. Не буду касаться сложной лабораторной техники, процедур математического представления данных и их эпистемологической[44] интерпретации вовсе не потому, что я сомневаюсь в их достоинствах, а из-за недостатка у меня соответствующего опыта. Кроме того, я совершенно убежден, что даже в наше время многие фундаментальные открытия могут быть сделаны методом простого наблюдения явлений Природы, которое меньше подвержено ошибкам измерения и интерпретации.

Разумеется, все желательные для наблюдения изменяющиеся условия создаются по мере возможности экспериментально, но даже и это не обязательно. Экспериментальные исследования в их теперешнем виде - сравнительно новое явление в науке. Они практически не были известны до эпохи Возрождения, но за сравнительно короткий период человек значительно преуспел в проникновении в тайны Природы, извлекая пользу их тех бесчисленных экспериментов, которые она постоянно производит без всякого нашего вмешательства. Так мы познали начала астрономии, основы описательной биологии, и именно на такого типа непреднамеренный, случайный эксперимент ориентируется врач, когда наблюдает внезапное заболевание, признаки старения или неожиданное выздоровление. Когда совершается открытие (см. гл. 8), бессознательный интуитивный процесс предшествует управляемой сознанием логике; в научном исследовании наблюдение самопроизвольных явлений обычно имеет место еще до планирования, эксперимента. О наблюдениях мы уже говорили (с. 102), теперь давайте обратимся к практических аспектам экспериментирования.

Естественный размер научного подразделения.

Научная работа - это в высшей степени личностная деятельность, поэтому лаборатория должна отражать личность ее руководителя. По поводу ее организации можно сформулировать лишь небольшое число общих правил. Во вся ком случае, идеальный вариант - это иметь не максимально возможное количество сотрудников, аппаратуры и помещений, а ровно столько, сколько действительно необходимо. Такие требования могут быть очень скромными, если, скажем, речь идет о гистохимике, который предпочитает сам выполнять всю техническую работу. В этом случае он может ограничиться одним лабораторным помещением и уборщицей. В то же время ученый широкого профиля, которому вдобавок нравится преподавательская работа, может рассчитывать на руководство громадным институтом.

Нездоровая тяга к приобретательству и неоправданная уверенность в том, что успех работы пропорционален имеющимся материальным средствам, заставляют часть ученых тратить немало сил и времени на увеличение бюджета, штатов и площади своего подразделения. Такого рода деятельность неизбежно приводит их к чистому администрированию. И наоборот, застенчивость и скованность не позволяют другой части ученых отстаивать даже то, что насущно необходимо для их работы, и потому их потенциальные творческие способности так и остаются до конца не раскрытыми.

Для любого подразделения существует "естественный размер", определяемый наклонностями и способностями его руководителя. В наилучшем варианте ученому следует иметь максимально возможную по его способностям лабораторию, где он будет осуществлять научное, а не административное руководство. Как только отдел разрастается до такой степени, что руководители подотделов станут независимыми в научном отношении, должность руководителя отдела становится номинальной и отдел должен разделиться на независимые части. Но и в этом случае может быть полезным сохранить общую администрацию, которая занималась бы материальным снабжением всех групп. В то же время нет ни необходимости, ни оправдания для подчинения научной деятельности всех сотрудников одному руководителю.

Планирование работы.

Создавая новый учебный или научно-исследовательский институт, мы порой недооцениваем важность человеческого фактора в их будущей организации, не говоря уже о том, что мыслить категориями бюджета, зданий и оборудования гораздо легче. Последние, однако, не могут служить своему прямому назначению, если не будут полностью приспособлены к нуждам тех, кто станет их использовать. Самым основным и решающим, хотя и самым трудноуловимым фактором при создании любого института является его идея в том виде, в каком она отражается в умах осуществляющих ее людей. Такая идея, если она хороша, как магнит притягивает материальные ресурсы, а исполненная воодушевления группа известных ученых достаточно легко привлекает умелых помощников и способных студентов, даже располагая самым скромным помещением. И в то же время сколько "храмов науки" представляют собой не более чем туристскую достопримечательность, интеллектуальная пустота которой остается вечным памятником некомпетентности ее основателей. Точно так же как сам человек, его разум и его тело развиваются в соответствии с кодом, записанным в двух крошечных клетках, так и сложнейшая организация научного учреждения базируется на одной основной идее, плане, проекте.

Большая часть нашей насчитывающей столетие библиотеки, например, погибла в прошлом году от пожара, однако действительно утраченной оказалась лишь небольшая ее часть. Поскольку система организации библиотеки еще сохранилась в памяти ее сотрудников, а научная ценность - в памяти читателей, моей первостепенной задачей после пожара было спасти именно ее идею. К моему большому удовлетворению, в фонд библиотеки достаточно скоро поступили многочисленные дары в виде денег. книг, журналов и оттисков. Но никакая материальная помощь не смогла бы обеспечить это восстановление книжного фонда без тех людей, в памяти которых все необходимые сведения по организации дела благополучно пережили трагедию.

Проект, а точнее, идея проекта - вот что действительно имеет значение. И хотя сами по себе они бессильны, все материальные и духовные ценности зависят от них. Вот почему в науке, как и в любом другом виде деятельности, необходимо уделять особое внимание методологии, планированию и организации работы.

Специализация.

При рассмотрении проблем методологии желательно в первую очередь определить степень специализации. В разделе "Простота и сложность" мы говорили о том, что ученый постоянно сталкивается с извечной проблемой соотношения между широтой исследований и их глубиной: чем выше степень специализации, тем уже круг вопросов, подлежащих изучению. В 1957 г., обращаясь к Американскому физиологическому обществу, его тогдашний президент Алан Бертон сказал: "Физиолог-интегратор, который обозревает как целое, так и связи между его различными частями и который может использовать знания о биологических механизмах, должен интегрировать информацию, собранную биофизиком и биохимиком, дабы придать законченный характер изучению собственно биологической организации..." Нам нужны ученые широкого профиля, ученые-интеграторы, способные обозревать горизонты науки, выявлять взаимосвязи и намечать широкие перспективы ее развития. Но нам нужны и специалисты, которые даже ценой утраты общей перспективы могут овладеть методами проникновения в суть отдельных проблем.

Соотношение между широтой и глубиной знаний должно устанавливаться в соответствии с индивидуальными способностями и наклонностями человека. Каждое промежуточное значение этого спектра знаний, как правило, имеет свои основания, избегать следует лишь крайностей. Сверхспециализация ведет к потере отдачи: настойчивые разработки методик ведут к увеличению их числа, увлечение философией науки порождает дальнейшие философствования, а статистические исследования рискуют погрязнуть в трясине статистики. Оправданием подобной бесплодности науки служит типичный довод всех неудачников - уж следующее-то поколение непременно извлечет пользу из всего того, что мы сделали для его блага. Принеся таким образом себя в жертву потомкам, мы с легкостью перекладываем всю ответственность на них, забывая о том, что способы мышления и деятельности плодотворно развиваются лишь при условии их постоянной проверки и совершенствования в зависимости от условий применения. Чистый теоретик, так же как и чистый практик, редко вносят в науку поистине ценный вклад.

При выборе конкретных методов и области исследования не будем забывать ту простую истину, что перспектива видна только на расстоянии; отдельные детали могут оказаться тривиальными аспектами целостной картины. Невозможно установить, например, что представляет собой собака, если изучать каждую ее часть даже под электронным микроскопом. Что касается меня, то я бы предпочел узнать все возможное о собаке, играя с ней в минуты досуга. Но, как говорится, о вкусах не спорят, просто к ним надо приспосабливать наши методы исследований.

В процессе медленной и кропотливой работы можно детально воспроизвести предмет, а можно изобразить его одной изящной линией. Классическое искусство, подобно фотографии, настаивало па принципе детального изображения, в то время как современное искусство стремится, абстрагируясь от деталей, оперировать символами, подчеркивая таким образом самое существенное в предмете. Оба этих принципа представлены в науке. "Современная мода", несомненно, отдает предпочтение проникновению в глубь предмета, наращивая степень точности используемых инструментов. Этот метод чрезвычайно эффективен, но в безудержной погоне за деталями можно потерять из виду целое. Для чего, к примеру, изучать сложнейшие физико-химические свойства стула, если мы хотим удобно сидеть на нем? Для нас имеет значение только его макроструктура. То же касается и науки. Наше чрезмерное увлечение сложными техническими методами подчас мешает овладению самыми простыми приемами, необходимыми для поверхностного осмотра внешней стороны явлений.

Однажды гость нашего института - известный биохимик, специалист по сложным ферментативным реакциям, участвующим в выработке кортикоидов надпочечниками,- горько сетовал на то, что в его лаборатории нет человека, который смог бы удалить надпочечники у крысы. Более того, в ходе беседы выяснилось, что сам он не имеет ни малейшего представления о том, как сделать внутривенную инъекцию! На следующий день нашим гостем был прославленный морфолог, один из величайших авторитетов по гистологии паратиреоидов. Он выразил желание увидеть специалиста, который сумел бы определить содержание кальция в крови. Казалось бы, что может быть проще, чем овладеть этими элементарными методами, доступными любому лаборанту, но факт остается фактом - этого не происходит. Более того, с возрастом у человека вырабатываются специальные "тормоза", препятствующие даже слабым попыткам овладеть простейшими манипуляциями, выходящими за рамки привычной методики.

Существует острейшая потребность во врачах-теоретиках широкого профиля, которые владели бы по крайней мере основами разнообразных методов исследований (гистологии, биохимии, хирургии, конструирования инструментария, документацией, статистикой), преодолев тем самым боязнь неизвестного. А этим неизвестным может быть что угодно, в том числе простой гистологический или биохимический анализ, элементарное хирургическое вмешательство или изготовление простейшего инструмента.

Еще пример. Что делать ученому, владеющему только своим родным языком, если ему нужно прочесть важную публикацию на другом языке? По-видимому, ему остается только пожать плечами или усмехнуться (хотя чему тут смеяться, плакать надо, однако он скорее всего будет смеяться). А поскольку раздобыть хороший перевод узкоспециального текста трудно, он попросту обойдется без него. Излишне говорить, что ученый, обладающий даже самым поверхностным знанием иностранных языков, не испытывает чувства страха и пусть со словарем, но переведет позарез нужную публикацию. Человек же, научившийся более или менее сносно управляться с двумя-тремя языками, без особого труда освоит еще один, поскольку его не ставит в тупик сама мысль об оперировании незнакомыми ему словами.

Лабораторные методы

ОБЩИЕ СООБРАЖЕНИЯ

Технология - это приложение научных знаний к практике, иначе говоря, это прикладная наука. Она обеспечивает также практическую реализацию всего, что связано с выработкой новых фундаментальных научных знаний.

Выбор подопытных животных.

Одна из основных проблем экспериментальной медицины - выбор вида животных, на которых будут проводиться исследования. В лабораториях наиболее широко используются, особенно для массовых экспериментов, такие мелкие грызуны, как мыши, крысы и морские свинки, поскольку они сравнительно недороги и их легко содержать. Кроме того, их могут поставлять в больших количествах, и они представляют собой разнообразные инбредные или даже генетически чистые линии.

Некоторые виды животных чрезвычайно удобны для проведения с ними определенных экспериментов. Например, на кроликах особенно легко изучать явления атеросклероза, поскольку они чрезвычайно подвержены этому заболеванию. Лошади благодаря своему большому объему крови используются для массового производства иммунных сывороток. Крысы обладают необычайной сопротивляемостью к инфекциям. Если в бактериологической работе это недостаток, то в экспериментальной хирургии это преимущество, поскольку отпадает необходимость в абсолютной стерильности. Морские свинки чрезвычайно подвержены заболеванию цингой, в то время как -крысы, вырабатывающие собственный витамин С, не заболевают ею даже при безвитаминных диетах. Высокая организация мозга обезьян делает их наилучшим объектом для экспериментов по изучению центральной нервной системы.

Некоторые виды животных обладают удобными анатомическими особенностями. Мой учитель Бидль с успехом продемонстрировал жизненную необходимость коры надпочечников, использовав для этого некоторые виды рыб, у которых этот орган совершенно отделен от мозгового вещества и может быть выборочно удален без повреждения последнего.

Итак, мы видим, насколько выбор подопытных животных зависит от характера экспериментов, которые мы хотим осуществить. Ни один вид животных не является универсальным, но есть некоторые общие правила, определяющие выбор. При обнаружении какого-либо биологического свойства у одного вида животных необходимо проверить его наличие у нескольких других видов, дабы убедиться, что это наблюдение может быть обобщено. Кроме того, другие виды животных могут оказаться более удобными для опытов. Затем следует проверить, какое влияние на результат эксперимента оказывают такие факторы, как пол, возраст, беременность, лактация или зимняя спячка животного.

Неестественные условия эксперимента.

Когда Э. Ру[45] впервые задумал показать, что бациллы дифтерии в состоянии вырабатывать яд, он ввел умеренное количество свободной от микробов дифтерийной бульонной культуры кроликам и морским свинкам, но ни одно из животных не проявило ни малейших признаков заражения. Отчаявшись, он ввел маленькой морской свинке 35 мл этой культуры. На этот раз явные симптомы дифтерии были налицо и животное погибло, но эксперимент был расценен как бессмысленный, поскольку 35 мл культуры соответствуют примерно 10 % веса тела морской свинки. И все же именно этот в высшей степени "неестественный" эксперимент обеспечил такую концентрацию дифтерийного яда, что, как сказал Де Крюи, "одной унции (28,3 г) этого очищенного вещества достаточно для того, чтобы убить 600 000 морских свинок либо 75 000 крупных собак!" [7].

В науке нередки случаи, когда первоначальный эксперимент, который задал направление исследованиям, представляется слишком искусственным, чтобы иметь какое-либо реальное значение. Насколько это возможно, эксперименты должны проводиться в условиях, близких к тем. которые имеют место в реальной жизни или по крайней мере во время болезни. Но это далеко не всегда возможно и необходимо, особенно на начальной стадии исследования, когда еще ведутся поиски оптимальных условий работы. К сожалению, неестественные условия эксперимента являются постоянным объектом для нападок скептиков, в результате чего множество многообещающих исследований было погублено в зародыше. Даже самые калечащие животного операции вполне естественны в сравнении с работой на изолированных органах или тканях, когда не просто удалена та или иная часть организма животного, но вообще исследуется лишь один изолированный орган. И тем не менее подобная работа in vitro ("на уровне пробирки") внесла фундаментальный вклад в науку.

Лично я являюсь ярым сторонником экспериментирования в наиболее естественных условиях. Если только это возможно, я предпочитаю изучать целостное физиологическое явление (воспаление, адаптационный синдром, кальцифилаксию) или модели заболевания, нежели их отдельные составляющие (изменения в отдельных структурных или химических элементах) . Но никакое исследование не должно объявляться лишенным ценности только на том основании, что оно выполнялось в "неестественных" условиях. Да и вообще, что такое неестественные условия? Полное удаление поджелудочной железы, казалось бы, весьма "неестественный" способ вызывания диабета, и все же он оказался настолько близким к спонтанно возникающей болезни, что обеспечил открытие инсулина. Для того чтобы доказать, что минералокортикоиды могут обусловливать сердечно-сосудистые и почечные расстройства, нам пришлось давать их в огромных лозах. Дело в том, что до того, как нам стали известны "обусловливающие факторы", не существовало иного способа обнаружить болезнетворное действие этих гормонов; фактически мы даже не смогли бы разработать схему такого эксперимента, который привел бы нас к открытию самих "обусловливающих факторов".

МЕТОДЫ НАБЛЮДЕНИЯ

Простое наблюдение - это самый удивительный и доступный из всех биологических методов, и от него зависит большинство других. Разумеется, просто держать глаза открытыми бывает порой недостаточно. Надо учиться тому, как смотреть, на что смотреть и каким образом помещать изучаемый объект в рамки нашего поля зрения. Нам необходимо обрести способность созерцать естественное явление с полной объективностью и предельным вниманием, не поддаваясь предубеждениям и не отвлекаясь. И все-таки никак не обойтись без известной доли предубеждения или, назовем его иначе, подсознательного управления вниманием со стороны опыта. Только с его помощью можно пробиться сквозь туман несущественного.

Мы уже говорили, что великое преимущество наблюдения состоит в том, что оно в отличие от химических или физических методов воздействия выявляет в объекте его бесчисленные свойства и взаимосвязи. Наблюдение дает целостный и естественный образ, а не набор точек. Чем проще метод наблюдения и чем менее мы полагаемся на средства увеличения и выделения отдельных деталей, тем шире поле исследования и тем более естественным образом оно сохраняется неповрежденным.

Наиболее прямой путь в исследовании состоит в том, чтобы изучать естественное явление, не поврежденное в процессе подготовки и не искаженное инструментами наблюдения. Самые первые и, стало быть, основополагающие наблюдения были сделаны в период, когда люди созерцали звезды, растения, животных, минералы, подмечая их видимые свойства и поведение. Со временем эта простая связь между наблюдателем и наблюдаемым предметом претерпела ряд изменений благодаря возникновению методов, позволяющих помещать отдельные элементы в самый фокус нашего зрения. Появились инструментальные наблюдения с помощью телескопа или микроскопа, в том числе с помощью препарирования.

Эксперименты стали предусматривать искусственное создание условий, при которых Природе как бы задается вопрос о ее реакции на любое изменение. Сегодня в своих научных изысканиях мы все более зависим от инструментальных наблюдений и экспериментирования. Мы почти забыли простое наблюдение - старейший метод, к которому чаще всего прибегали натуралисты в прошлом, начиная с самого появления на нашей планете человека. Я по-прежнему не могу согласиться с точкой зрения моих современников, утверждающих, что в настоящее время уже исчерпаны все возможности, которые открывает применение простых инструментов и простых экспериментов. Совсем наоборот. Мой собственный опыт работы в лаборатории приводит меня к убеждению: мы коснулись лишь поверхностного слоя того, что можно обнаружить с помощью простейших средств и простейших экспериментов, если, конечно, этими средствами умело пользоваться, а эксперименты правильно проводить.

Сегодня многие биологи пользуются сложнейшей аппаратурой вроде электронного микроскопа, аппарата для электрофореза или ультрацентрифуги. Но мало кто умеет применять к самым обычным подопытным животным те освященные временем методы клинического наблюдения, которые каждый практикующий врач использует при обследовании пациентов. Так получилось, что многие наши молодые медики-экспериментаторы не имеют элементарных представлений о приемах правильного физического обследования малых грызунов. Хочу в этой связи дать несколько советов.

Всем ли биологам известно, что при наличии небольшого опыта совсем нетрудно определить посредством пальпации размер и форму селезенки, почек и надпочечников у маленькой крысы.

Животное не скажет "а-а-а", когда мы захотим обследовать слизистую оболочку его рта. Но оно откроет рот и высунет язык, если в нужном месте надавить ему на челюсть.

Шерстяной покров животного почти неизбежно скрывает повреждения его кожи, но лишь в считанном числе лабораторий регулярно пользуются электрическими машинками для стрижки.

Лабораторные крысы - добродушные создания, но они кусаются, когда им больно или когда они напуганы. Крысам не нравится, например, когда их "осторожно" берут пальцами вокруг туловища, но они ничего не имеют против, если их для осмотра поднимают за сильный хвост. После некоторых видов операций крысы могут причинять себе повреждения, кусая свои раны, и никакие перевязки не в состоянии это предотвратить. В таком случае лучше всего подрезать им резцы - такая операция практически не травмирует грызунов, поскольку их зубы. в отличие от человеческих, быстро восстанавливаются.

Повышенная сокращаемость разгибательных мышц может быть обнаружена "тычковым тестом": резкий тычок указательным пальцем в поясничную область животного вызывает у него длительные сокращения задних конечностей.

Небольшое расстройство чувства равновесия (из-за повреждения внутреннего уха) может и не быть очевидным. Но если крысу взять за хвост, то этот дефект проявит себя в резких круговых движениях животного; если такую крысу поместить в воду, то она не сможет плавать в отличие от здоровой крысы.

Желудок молодых крыс и мышей можно сделать доступным наблюдению, если давать им обычное молоко, белизна которого просвечивает сквозь тонкую брюшную стенку. На этом белом фоне становятся заметными даже печень и селезенка.

При обследовании большинства лабораторных животных, включая мелких грызунов, можно использовать в определенных пределах даже аускультацию и перкуссию (прослушивание и выстукивание), а сетчатка их глаз может быть исследована, как и у человека, с помощью офтальмоскопа.

О приемах простого физического обследования лабораторных животных можно было бы написать целую и, несомненно, полезную книгу. Но пока никто такой книги не написал, чему я не перестаю удивляться. Она могла бы оказать гораздо большую помощь, чем очередной трактат о сложнейшем методе исследования, нужный лишь очень узкому кругу специалистов.

То же самое должно быть сказано и о простых морфологических методах. Обычная стереоскопическая бинокулярная лупа, которая надевается на нос наподобие очков, позволяет выполнять аутопсию (вскрытие) самого небольшого лабораторного млекопитающего почти с такой же легкостью, как собаки или человека. Без такой лупы в наших экспериментах по кальцифилаксии мы никогда не смогли бы обнаружить отложение белых солей кальция в каротидном тельце (орган размером с острие булавки) или вдоль почти незаметных брюшных ответвлений блуждающего нерва.

Надпочечник крысы представляет собой очень маленький, мягкий, пористый орган, и я никогда не видел, чтобы кто-нибудь при аутопсии исследовал его кору. А ведь это легко сделать, разрезав железу пополам с помощью острого бритвенного лезвия, после чего даже незначительные структурные изменения внутри нее (например, небольшие отложения кальция) становятся видны с помощью лупы или даже невооруженным глазом.

Некоторые структуры очень трудно выявить искусственными методами, зато их несложно естественным образом "подготовить" к исследованию, если со знанием дела разыскать эти структуры в организме. Определенные гистологические исследования тучных клеток лучше всего выполнять на тонких слоях соединительной ткани, в которых кровеносные сосуды (окруженные тучными клетками) не перерезаны, как это обычно имеет место на гистологических срезах. Любое прикосновение к тучным клеткам приводит к их разрушению. Чтобы избежать этих осложнений, ученые придумали самые разнообразные хитроумные конструкции вроде пластинок и вышивальных пялец, на которые натягивается соединительная ткань. Но тем не менее в процессе работы многие тучные клетки разрушаются, не говоря уже о том, что иметь дело с такими прихотливыми препаратами весьма утомительно. Нам бы не удалось преодолеть все эти трудности, не родись у нас идея, что в плоской черепной коробке крысы Природа уже расположила надкостницу (это мембрана из соединительной ткани, близко прилегающая к поверхности кости) нужным образом. Эту тонкую мембрану можно зафиксировать для гистологического исследования, даже не прикасаясь к ней.

Всеми этими предельно простыми методами может легко овладеть даже десятилетний ребенок. И тем не менее в настоящее время они не находят широкого применения. Предпочтение отдается сложной методологии только на том основании, что она повсеместно используется.

ФАРМАКОЛОГИЧЕСКИЕ МЕТОДЫ

Фармакология изучает воздействие лекарств на организм. Здесь мы будем использовать термин "лекарство" в самом широком смысле слова и рассматривать биологическое действие всех химических соединений (физиологических, токсикологических и диетологических воздействий). В любом случае фармакология не имеет собственной методологии, заимствуя ее из других дисциплин. Например, биологический тест - наиболее широко используемая фармакологическая методика - предназначен для определения силы воздействия какого-либо вещества (витамина, гормона, искусственного препарата) в сравнении с эффективностью стандартного препарата. Но компоненты, из которых состоит биологическое тестирование, представляют собой просто сочетание химических, хирургических, морфологических, физиологических или диетологических методов. Скажем, при анализе концентрации гормона в ткани сначала это вещество извлекается химическим путем, затем оно вводится животным, у которых хирургически удалена железа, вырабатывающая этот гормон, и, наконец, устанавливается наличие у животных гистологических изменений, характерных для данного конкретного гормона.

Некоторые лекарственные воздействия должны изучаться только на изолированных тканях, т. е. в пробирке. Но и здесь желательно максимальное приближение к естественным условиям. Очевидно, реакция иссеченной части ткани - например, мышцы - в пробирке будет иной, нежели в естественном состоянии, где на нее постоянно влияют нервные и гуморальные импульсы, приходящие из других частей тела. Следует также помнить, что эффективность терапевтических средств лучше всего проявляется на тестируемых объектах, наиболее точно имитирующих те заболевания, для лечения которых предназначены эти лекарства. Для испытания антибиотика его просто добавляют к культуре бактерии. Простота этого теста делает его удобным для первичного скрининга. Но окончательное доказательство практической ценности препарата зависит от способности антибиотика бороться с инфекцией в подопытном животном или, еще лучше, в человеке. Просто удивительно, сколь часто специалисты не учитывают такого рода элементарных соображений. Что касается меня, то я лишь в редких случаях находил целесообразным отклоняться от максимально простого способа разработки фармакологических методик. Чем более сложными и косвенными становятся наши методы, тем более узкой оказывается область их применения, а вероятность ошибки увеличивается. Обозревая результаты, полученные с помощью чрезвычайно сложных искусственных методов, я не могу отделаться от ощущения, что многие из них в скором времени будут отвергнуты из-за ошибок в их реализации или интерпретации. Даже самые простые методики изобилуют "подводными камнями", которые специалисты не в силах преодолеть и которые они используют только о качестве первых ступеней разработки комплексных методик, что требует больших временных затрат. Чтобы объяснить причину моей в какой-то степени уникальной сдержанности в этом отношении, приведу один случай, свидетелем которого я стал всего несколько недель назад в нашей лаборатории.

У нас принято повторять каждый эксперимент, но делать это должны разные люди и на разных этажах института. Это правило было соблюдено и в ходе недавнего эксперимента, в котором крысам вводились токсичные дозы паратиреоидного экстракта, чтобы вызвать у них кальцификацию мягких тканей. В эксперименте, выполнявшемся на седьмом этаже, та доза экстракта, которая была введена животным, наилучшим образом привела к искомому эффекту - большинство крыс погибли от обширной кальцификации органов.

А вот у лаборантки с восьмого этажа результаты получились отрицательными. Мы повторили эксперимент трижды и каждый раз получали одно и то же: на седьмом этаже происходит кальцификация, а на восьмом - нет. Для объяснения этого "территориального различия" предлагались самые невероятные теории, но ни одна из них не могла быть признана верной. Поскольку была, скорее всего, допущена какая-то техническая ошибка, я распорядился повторить эксперимент в присутствии обеих лаборанток - и с седьмого, и с восьмого этажей,- с тем чтобы дать им возможность проверить друг друга. Мое указание сочли бесполезным (или оскорбительным), потому что на обоих этажах работа выполнялась высококомпетентными людьми-и предусматривала обычные подкожные инъекции, которые могут прекрасно выполнять даже самые неопытные лаборанты.

Я не хотел настаивать и позволил себя уговорить пойти на компромисс: при выполнении инъекций рядом с лаборантками будут присутствовать врачи, ответственные за постановку работы на соответствующем этаже. Никаких отличий в методике проведения эксперимента отмечено не было, а результаты оставались такими же.

На этот раз я настоял на повторении эксперимента в присутствии обеих лаборанток и причина расхождения сразу же стала очевидной. Лаборантка с восьмого этажа выполняла подкожную инъекцию чрезвычайно тщательно: она вводила экстракт гормона в обширную подкожную зону и затем массировала это место, чтобы препарат распределился равномерно и ни единая капля его не вытекала наружу через точку инъекции. Но такая процедура очевидным образом вела к столь быстрому всасыванию гормона на большой поверхности, что большая его часть исчезала или разрушалась еще до того, как оказывала устойчивое влияние на кальциевый обмен. В то же время на седьмом этаже лаборантка не прибегала ни к каким мерам предосторожности. Она вводила всю дозу в одну точку, на этом месте образовывался пузырек, который рассасывался очень медленно и потому оказывал более устойчивое воздействие.

Хорошо известно, что медленное всасывание увеличивает активность большинства гормонов; по этой причине нередко даже добавляются специальные вещества, замедляющие процесс всасывания. После этого случая мы стали всегда вводить паратиреоидный гормон таким образом, чтобы образовывался четко очерченный подкожный пузырек. Излишне говорить, что теперь результаты на обоих этажах совпадают независимо от того, кто выполняет работу.

Чтобы избежать таких элементарных ошибок, не требуется большой проницательности. Но факт остается фактом: хотя паратиреоидный гормон был открыт уже сорок лет назад и применялся для самых изощренных биохимических и биофизических исследований, никто не обращал внимания, насколько резко различаются результаты в зависимости от способа выполнения подкожной инъекции. При таких обстоятельствах невольно приходишь к выводу, что лучше всего пользоваться теми методиками, каждый шаг осуществления которых ты можешь лично проверить на каждом этапе.

Наконец, несколько слов по поводу нынешней моды использовать сложные технические приспособления для выполнения простейших процедур, требующих элементарного навыка. Знаменательно, что на протяжении последних нескольких лет я ознакомился с шестью научными публикациями, описывающими различные - и в ряде случаев весьма сложные - виды аппаратуры для осуществления весьма несложной процедуры кормления крыс через введенную в желудок трубку. Между тем секрет весьма прост: нужно окунуть трубку в масло и, стараясь не напугать животное, вводить трубку таким образом, чтобы его голова не запрокидывалась. Такая манипуляция займет всего несколько секунд, то есть ровно столько же времени, сколько нужно для того, чтобы достать из ящика любое из рекомендованных приспособлений.

Естественные явления и модели заболеваний

Я буду использовать термин "естественные" для обозначения ряда явлений, происходящих в природных условиях и одновременно склонных производить на нас впечатление единственной в своем роде формы реакции. К этой группе явлений принадлежат, к примеру, беременность, зимняя спячка, различные типы воспалений, анафилаксия, анафилактоидные реакции, стрессовый синдром и кальцифилаксия. В отличие от них сокращение мышцы, увеличение одной какой-либо клетки или изменение содержания в крови какого-то одного химического вещества являются примерами более элементарных компонентов жизненных реакций.

Разумеется, мы нуждаемся как в способах изучения естественного явления в целом, так и в способах определения его составных элементов, иначе говоря, нам нужны исследования как "вширь", так и "вглубь". Эти две группы методик в равной степени оправданы. И потому нет оснований обвинять в поверхностности тех, кого интересуют естественные явления в целом, или в ограниченности тех, кто исследует детали. Нельзя ведь изучать иммунные реакции на молекулярном уровне, если еще не открыто само явление иммунитета. И все же только проникновение в глубь этого явления открывает перед нами возможность действительно, приблизиться к полному его пониманию. "Глубинные" исследования распространены значительно шире, поскольку их можно планировать, в то время как открытие нового явления целиком строится на интуиции.

Одним из наиболее важных методов фундаментального медицинского исследования является экспериментальная модель заболевания. Помимо того что она относится к сложным естественным явлениям в нашем понимании смысла этого термина, она вдобавок имитирует спонтанно возникающую болезнь. Следовательно, эти модели являются идеальными объектами для проверки действия лекарств и для анализа механизмов возникновения заболеваний.

Экспериментальная медицина в целом развивается от чисто статического описания биологических структур (макроскопическая и микроскопическая анатомия, химический состав, физические характеристики) к изучению более сложных естественных явлений (воспаление, перерождение, рост или атрофия тканей и экспериментальные болезни). Более чем очевидно, что болезнь следует изучать на максимально полных моделях, хотя, разумеется ни одна модель не идентична оригиналу. Далеко не все факты, полученные на модели, остаются истинными, когда соответствующим заболеванием страдает человек, но в то же время модель имитирует самые существенные характеристики спонтанно возникающей болезни. Модель потому и есть модель, что она отличается от оригинала. Даже один и тот же возбудитель вызывает разные поражения у животных и у человека. Дефицит витамина С, недостаток инсулина или заражение туберкулезными бациллами по-разному проявляются у человека, крысы или морской свинки. Но из всех этих моделей заболевания извлекается информация, необходимая для лечения.

Насколько я помню, все экспериментальные модели заболеваний, разработанные мной и моими коллегами, подвергались критике за их несовершенство. А разве бывают совершенные модели? Нужно ли доказывать, что пересаженная опухоль - не то же самое, что раковая опухоль человека, что артрит, инфаркт миокарда, нарушение кровообращения, почечное или кожное заболевание, тем или иным способом вызванное у животного, не являются точной копией соответствующих спонтанно возникающих заболеваний человека? Но тем не менее я утверждаю, что такие модели составляют самую основу экспериментальной медицины.

Существуют постепенные переходы от того, что мы назвали "естественными явлениями", к тому, что вводится в качестве "модели заболевания". Последняя обычно представляет собой сложное сочетание первых. Самое худшее, в чем можно упрекнуть "модель заболевания",- это что она просто имитирует естественное явление, не являясь точной копией заболевания. Поэтому основная цель такого рода исследований - максимально приблизиться к спонтанной болезни. В этом смысле даже такие естественные явления, как анафилаксия или воспаление, демонстрируют подобное приближение в большей степени, чем изменения изолированных морфологических или химических элементов в организме.

Разработка экспериментов

Для начала нам следует вспомнить, что заранее обдуманным планом можно руководствоваться лишь при развитии какой-либо идеи. Подлинное открытие - это бессознательно направляемый интуитивный процесс. Как писал А. Шильд, "если результаты исследований можно заранее предсказать, то изучаемая проблема, судя по всему, ничтожна, а точнее, она почти не существует" [17]. Квалифицированная разработка какой-либо научной проблемы может вызвать возглас вроде: "Неплохо сделано, не правда ли?" Но, столкнувшись с подлинным открытием, мы вряд ли отреагируем на него подобным образом. Скорее всего мы воскликнем: "Да как это вас угораздило, как это вам в голову пришло?" Открытие ранее неизвестного явления ценится куда выше, чем развитие уже известного, поскольку тех, кто в состоянии обнаружить нечто совершенно новое, куда меньше, чем тех, кто способен использовать и развивать найденное за счет дополнительных изысканий вглубь.

Как только сделано новое открытие, сразу находятся толпы советчиков, которым прекрасно известно, как именно следует его применять. Однако в свое время никто не посоветовал Флемингу заняться открытием пенициллина, а Колумбу - поисками Америки.

И все же методы разработки экспериментов имеют самое существенное значение, поскольку лишь считанное число открытий находит применение в своем изначальном виде. Большинство из них вскоре забываются, если только их составные элементы не были подвергнуты тщательному анализу в соответствии с хорошо продуманным планом.

Разработка эксперимента включает стратегию (общее направление, которому мы хотим следовать) и тактику (выполнение совершенно четко сформулированного плана исследования). Стратегия связана преимущественно с выбором такого предмета исследования, который мы считаем заслуживающим нашего внимания; выше этот вопрос подробно рассматривался с различных точек зрения. Поэтому здесь мы уделим основное внимание тактике, т. е. выполнению поддающейся планированию исследовательской темы.

Вопросы, которые будут обсуждаться на последующих страницах, так же как и последующий большой раздел "Методы координации знаний", представляют, непосредственный интерес лишь для ученых и для тех, кто собирается ими стать. Тем не менее они весьма удобны для иллюстрации научного подхода к различным вопросам.

"РАЗДЕЛЯЙ И ВЛАСТВУЙ"

"Divide et regnes" --этот сформулированный Макиавелли политический принцип находит прекрасное применение и в тактике научного исследования, хотя чаще мы пользуемся лозунгом "Меняй каждый раз что-нибудь одно". Вне зависимости от того, что является предметом исследования, должен наличествовать только один переменный фактор, только одно различие между контрольной и экспериментальной группами. Даже в самом сложном эксперименте каждая подопытная группа должна сравниваться со своим "двойником", от которого она отличается лишь в одном-единственном отношении, так же как в каждом простом уравнении может быть только одно неизвестное. Для этого необходимо тщательно проанализировать все наблюдения и определить основные составляющие их элементы. Неорганизованная и не структурированная надлежащим образом информация приводит лишь к путанице. Все наши материалы - и наблюдения, и их интерпретация - должны быть сначала подразделены на маленькие блоки, которыми можно оперировать по отдельности.

Правда, на начальных этапах иногда имеет смысл подвергнуть проверке целое, а потом уже заниматься частями. Например, перед экспериментальным воспроизведением заболевания посредством чистой бактериальной культуры можно попытаться воспроизвести передачу его с помощью зараженной ткани. Прежде чем выполнить биологические тесты с отдельными гормональными фракциями, взятыми из какой-либо железы, быть может, имеет смысл испытать всю необработанную массу железы и посмотреть, не обладает ли она активностью, заслуживающей более детального изучения. Если у цельного необработанного материала обнаруживается такая активность, то для идентификации его следует разделить на составные части.

ПРИНЦИП АНАЛОГИИ

Разработка экспериментов существенно зависит от нахождения аналогий между вновь наблюдаемыми фактами и предыдущим опытом. Процесс планирования экспериментов обычно включает четыре этапа.

1. Мы наблюдаем факт или формулируем идею. Мы замечаем, например, что если крысе вводить яичный белок, то это влечет за собой анафилактоидную реакцию, сопровождаемую внезапным опуханием губ.

2. Мы спрашиваем себя: "Не напоминает ли это что-нибудь?" - и стараемся припомнить какую-либо известную нам реакцию животного или человека, имеющую нечто общее с анафилоктоидной реакцией, с тем чтобы связать последнюю с предыдущим опытом. Нам приходит в голову, что анафилактоидная реакция, с одной стороны, напоминает некоторые виды внезапного опухания лица, встречающиеся человека (отек Квинке, крапивница), а с другой стороны, такое опухание имеет нечто общее с анафилаксией. Такое сопоставление нового с чем-то уже известным из прошлого опыта помогает выявить как сходство, так и различие между реакциями. Мы отмечаем, что опухание лица у человека в отличие от анафилактоидного опухания у крысы не вызывается инъекциями яичного белка и что анафилаксия (опять-таки в отличие от анафилактоидной реакции) требует предварительной сенсибилизации к вызывающему ее веществу.

3. Мы приходим к выводу, согласно которому все, что нам известно, может оказаться справедливым и в данном случае. Далее если известно, что имеются вещества, которые либо вызывают, либо предотвращают анафилаксию, то следует проверить, будут ли они действовать так же и в случае анафилактоидной реакции.

4. Мы подозреваем, что полученная информация может найти более широкое применение и в других случаях. В частности, анафилактоидная реакция вполне может быть использована в качестве экспериментальной модели заболевания. Поэтому имеется определенный шанс, что выявленные на модели сведения о возникновении или предотвращении этого заболевания найдут применение в ее клинических аналогах, обладающих такими же характеристиками.

ЭКСПЕРИМЕНТ В "ПРОБИРКЕ"

Мы уже упоминали о тех преимуществах, которые можно ожидать, если предварительно попробовать провести каждый эксперимент в пробирке. Мы понимаем данный термин не только в буквальном, как, например, в химии, но и в фигуральном смысле - ведь, как правило, нецелесообразно сразу начинать широкомасштабный эксперимент на животных или пациентах, не изучив сначала вопрос о практической применимости разработанной нами процедуры на небольших выборках. Пренебрежение этим правилом (а оно бывает порождено чрезмерными энтузиазмом или уверенностью в себе) уже не раз приводило к таким потерям времени, материальных средств, а иногда и к смертельным случаям, что никогда не будет лишним напомнить о нем еще раз.

Один из вариантов этого правила применяется в экспериментах "обзорного", по словам Бевериджа типа: подлежащий изучению раствор изготовляется в широкой гамме концентраций (например, в ста различных вариантах), и каждая концентрация испытывается на малом числе животных (скажем, на двух). После такой грубой проверки берется небольшое количество вариантов концентрации (например, пять), близких к вероятному окончательному значению, и они испытываются на большой выборке животных. Таким образом, можно прийти к точному результату, использовав в эксперименте минимальное число животных.

Но прежде чем приступать к эксперименту в "пробирке", следует тщательно построить его в уме, С тем чтобы оценить его потенциальную ценность. Перед тем как начинать какой-либо эксперимент, задайте себе два вопроса.

1. Действительно ли план этого эксперимента представляется осуществимым с точки зрения накопленного опыта?

2. Если даже предположить, что эксперимент пройдет точно в соответствии с планом, даст ли он убедительный ответ на предыдущий вопрос?

ДИАГРАММЫ ХОДА РАБОТЫ

Экспериментальное исследование, вдохновляемое осознанием аналогий между явлениями, развивается далее довольно стандартным образом, и это можно изобразить в виде диаграмм хода работы. Исходной точкой этих диаграмм, как правило, является идея или наблюдение какого-то факта, которые затем анализируются путем разбиения на составные части, поддающиеся распознанию. Нередко обнаруживается, что законы, справедливые для целого, справедливы и в отношении его частей (дедукция). Наконец, мы доходим до синтеза, т. е. до построения обобщений или, иначе говоря, мы констатируем, что приобретенные нами знания об отдельных явлениях справедливы и в отношении целого класса явлений (индукция). Таким образом мы приходим к познанию общих законов, с помощью которых предсказываем непредвиденные взаимосвязи.

Методы координации знаний

КАТАЛОГИЗАЦИЯ НАУЧНЫХ ДАННЫХ

Одной из самых важных и неотложных задач современной медицины является создание каталога накопленных ею знаний. Если количество медицинских публикаций будет расти в такой же пропорции, как сегодня, то быть в курсе современных достижений даже в ограниченной области исследования вскоре станет невозможным. Между тем полноценное использование открытий и разработка новых экспериментов в соответствии с законами логики должны опираться на знание всех доступных фактов. Настало время, когда сложившуюся ситуацию следует воспринимать как серьезнейшую научную проблему нашего столетия, в противном случае, по словам Ванневара Буша[46], "...наука может увязнуть в своем собственном продукте, наподобие колонии бактерий, погрязшей в своих выделениях".

Я впервые столкнулся с этой проблемой в бытность свою студентом-медиком, когда осознал, что невозможно вести приличный конспект лекции и одновременно слушать ее. Единственный способ, который помог мне справиться с этой задачей,- это замена сложных научных терминов или длинных описаний процедур простыми и наглядными символами. В течение последующих тридцати лет этот набор символов развился в специальную систему стенографии по медицине, которая оказала мне неоценимую помощь во время научных конгрессов и при аннотировании литературы по стрессу, кальцифилаксии и эндокринологии (основные области исследований нашего института), а также при последующей обработке литературы техническим персоналом, не имеющим медицинской подготовки. Именно эта система легла в основу детального предметного каталога на 500 000 оттисков и книг, составляющих нашу библиотеку. Я убежден, что разработанная нами система каталогизации медицинской литературы может быть с успехом использована с соответствующими модификациями и в других областях знания.

Практически каждый врач, так же как и каждый ученый, ведет в том или ином виде личный каталог, в котором он фиксирует интересующие его публикации. В большинстве случаев вся такая библиография состоит из кратких резюме, напечатанных на карточках, оттисков (приблизительно разбитых по основным темам) и авторского каталога. Что касается последнего, то он почти всегда достаточно удовлетворителен, а вот разбиение по темам обычно производится не особенно четко, так что для нахождения нужной статьи владельцу приходится полагаться в основном на свою памятъ. В таких личных каталогах, как правило, отсутствует набор зафиксированных правил, а система классификации имеет тенденцию изменяться в соответствии с интересами владельца. Лишь очень немногие из виденных мною частных каталогов признавались владельцами - даже самыми невзыскательными - отвечающими их требованиям.

Для создания действительно удовлетворительной системы каталогизации, полностью адаптированной к потребностям всех разделов медицины, необходимы совместные творческие усилия множества оригинально мыслящих специалистов. Библиограф, систематизирующий публикации в своей области знания для дальнейшего планирования экспериментов; физиолог, в экспериментах с животными доказывающий, что некое вещество оказывает на организм желаемый эффект; химик, искусственно синтезирующий это вещество, и, наконец, ученый-клиницист, разрабатывающий способы применения этого вещества для лечения больных,- все эти люди занимаются исследовательской работой, в равной степени оригинальной и полезной для медицины, хотя их методы совершенно различны.

Поверхностная каталогизация медицинской литературы по основным темам или по заглавиям представляется совершенно неприемлемой. Что же касается более детальной каталогизации, то для нее нужно создать элементарный международный код. Основная проблема не в том, какие технические средства мы хотим применять для обеспечения доступа к информации (обычные каталожные карточки, перфокарты или ЭВМ), а в том, какая система кодификации, какой "язык" наиболее приемлемы для этих целей.

СИСТЕМАТИЗАЦИЯ НАУЧНЫХ ДАННЫХ

В предыдущем параграфе мы уже видели, что даже простая каталогизация научных данных является сложной задачей, требующей высокой специализации. Но самым трудным этапом процесса координации знаний является систематизация научных данных, которые на первый взгляд представляются абсолютно не связанными друг с другом. В следующей главе (с. 254) мы обсудим огромную важность классификации как первого шага при построении структуры новой области знания. Здесь же ограничимся рассмотрением чисто технических аспектов этой проблемы.

Что вы станете делать, к примеру, если наблюдаете десять новых фактов, которые с большей или меньшей очевидностью выглядят связанными друг с другом? Хотя это может показаться невероятным, но мы подчас не вполне осознаем, из каких именно "фактов" состоит наше наблюдение, или, более точно, в каких терминах его можно описать. Похоже, я сталкиваюсь с этой проблемой на протяжении всей своей жизни, и проще всего пояснить ее на одном-двух примерах, которые попортили мне особенно много крови.

Концепция стресса

Для начала рассмотрим составные элементы концепции стресса. В разное время и разными учеными были сделаны в числе прочих следующие наблюдения:

1) удаление у крыс гипофиза вызывает деградацию коры надпочечников;

2) у людей, получивших сильные ожоги кожи, как правило, развивается язва желудка и двенадцатиперстной кишки;

3) у детей при заражении их дифтерией тимус (лимфатический орган, расположенный в грудной клетке, функция которого тогда была неизвестна) сморщивается;

4) животные и люди, у которых разрушены гипофиз или надпочечники, становятся необычайно чувствительными к холоду и - что довольно странно - к жаре;

5) и вот, наконец, я обнаруживаю, что у крыс интоксикация неочищенным тканевым экстрактом приводит к увеличению коры надпочечников и одновременно вызывает атрофию зобной железы и возникновение язвы желудка.

Все эти наблюдения легко могут быть описаны простыми словами - и только что я это сделал. Но такое описание нельзя считать приемлемым, ибо оно не намечает ни связи между этими фактами, ни направления дальнейших исследований. Эти и многие другие явным образом не связанные между собой факты становятся понятными и нужными только после того, как они подверглись систематизации посредством объединяющей их концепции

А теперь систематизируем вышеприведенную информацию с помощью следующих формулировок: 1) инфекция, холод, жара и многие другие факторы, вызывающие потребность в адаптации, действуют в качестве неспецифических стрессоров; 2) вызывая стресс, все эти факторы обусловливают выделение гипофизом адренокортикотропного гормона (АКТГ), который, в свою очередь, стимулирует выделение корой надпочечников соединений, подобных кортизону; 3) эти кортикоиды увеличивают неспецифическую сопротивляемость организма, но в то же время вызывают уменьшение тимуса и создают предрасположенность к язве желудка.

Разумеется, утверждение, согласно которому заражение дифтерией вызывает уменьшение тимуса, нельзя признать ложным, однако его неполнота вводит в заблуждение. Но оно не является "абсолютно истинным" в описанном выше смысле (с. 128). Точно так же не является ложным утверждение, что нажатие кнопки "вызов лифта" обусловливает прибытие лифта на ваш этаж, но из него вы ничего не сможете узнать о принципе действия данного механизма, если только вам не удастся систематизировать составные элементы вашего наблюдения в совершенно различных терминах (электричество, земное притяжение и т. д.). По словам Бриджменаа, вам нужно надлежащим образом выраженное и полное "операциональное определение" данного механизма [4].

Фармакология стероидных гормонов

Уже давно известно, что для соединений с одной и той же основной химической структурой, "стероидным ядром", характерны действия, которые имитируют поведение коры надпочечников и мужских или женских половых желез. Однако наши исследования показали, что одни стероиды стимулируют деятельность почек, а другие могут даже вызвать их анестезию. Казалось бы, стероид может оказывать и то и другое действие, причем и сам по себе, и в любом сочетании. Кроме того, создается впечатление, что между этими воздействиями и теми сравнительно незначительными изменениями в стероидном ядре, которые их вызывали, нет взаимосвязи. Но систематическое изучение этого вопроса внесло некоторый порядок в создавшийся хаос. Теперь мы знаем, что одни химические структуры совместимы с определенным фармакологическим свойством, а другие - несовместимы. Мы узнали также кое-что о правилах, которым подчиняются взаимодействия между тем или иным фармакологическим эффектом одной и той же молекулы гормона. Выявленные закономерности известны теперь как "фармакохимические" и "фармакофармакологические" отношения. Они выражают соответственно влияние химической структуры на фармакологическую активность и одной фармакологической активности данного соединения на другую.

Загрузка...