ТЫСЯЧА СОЛНЦ ПОД ЗЕМЛЕЙ



Очевидно, что обычные — химические — взрывчатые вещества имеют предел своих технических и экономических возможностей. Это стало ясно уже много лет назад. Но человеку всегда присуще стремление к невозможному, и чаще всего в этом стремлении он добивается своего. Так случилось и в истории взрыва. В результате полувековых усилий гениальнейших умов нашего времени невозможное создано: разве мог кто-нибудь представить себе, что мы в силах получить температуру десять миллионов градусов и давление миллиард атмосфер?

Наша книга посвящена химическим взрывчатым веществам, а не ядерным. Атомный взрыв имеет свои особенности, свои проблемы, свое прошлое и свое будущее. Рассказывать обо всем этом нужно в другом месте. Но при всем различии между обычными и ядерными взрывами между ними есть определенная связь, общность целей, сходство во многих внешних проявлениях (ударная волна, сейсмические эффекты и так далее). Использование обоих видов взрыва для созидательных целей— это выражение одной и той же идеи, воплощаемой разными средствами.

Первые атомные бомбы взорвались в августе 1945 года над Хиросимой и Нагасаки, погубив десятки тысяч мирных жителей. С тех пор ядерный взрыв стал символом преступного массового уничтожения людей. Летчик, сбросивший бомбу на японский город, сошел с ума, замученный укорами совести. К сожалению, не у всех совесть оказалась столь же чувствительной, и атомный шантаж на много лет стал одним из рычагов международной дипломатии американского империализма. Новым притязателям на мировое господство казалось, что, имей атомную бомбу и мощную бомбардировочную авиацию, они могут диктовать свою волю всем, и в первую очередь, конечно, Советскому Союзу.

Наша страна в ту тяжкую послевоенную пору была, занята восстановлением народного хозяйства. Однако, положение в мире вынуждало значительные силы и средства направить на то, чтобы развеять всяческие иллюзии о возможности разговаривать с нами языком атомных угроз. В короткий срок была ликвидирована монополия США на обладание атомной бомбой, созданы эффективные средства доставки ядерного оружия к цели.

Но еще в разгар «холодной войны», развязанной поборниками «войны горячей», Советское правительство первым торжественно заявило, что ядерные взрывы должны служить не войне, а миру. Предложение о мирном использовании атомного взрыва было сделано в выступлении главы советской делегации в ООН в ноябре 1949 года. Впоследствии в нашей стране была разработана «Программа промышленного применения подземных ядерных взрывов в народном хозяйстве», в соответствии с которой ныне ведутся теоретические и экспериментальные исследования, давшие уже многие плодотворные результаты.

Проложенная нашей страной дорога мирному атому привела к договору о подземных ядерных взрывах в мирных целях. Договор, открывший новую страницу в биографии мирного атома, был одновременно подписан в Москве и в Вашингтоне 28 мая 1976 года.

Неоценимая польза, которую могут принести ядерные заряды, обусловлена их исключительными достоинствами. По сравнению с обычными взрывчатыми веществами здесь все возведено в квадрат, в куб, в десятую степень. Энергию ядерного взрыва принято оценивать тротиловым эквивалентом — количеством тротила в тысячах или миллионах тонн (в килотоннах и мегатоннах), взрыв которого равноценен взрыву ядерного устройства. Для зарядов обычных взрывчатых веществ вес порядка тысячи тонн является предельным, уникальным, редким, а атомные бомбы мощностью в одну килотонну считаются самыми мелкими. Ядерные заряды средней силы имеют тротиловый эквивалент до тысячи килотонн, а предельная мощность испытанных ядерных устройств составляет сто мегатонн. При взрыве одного из «рядовых» ядерных зарядов (100 килотонн) выброс грунта составил более пяти миллионов кубометров — втрое больше, чем при уникальном взрыве в Медео!

Огромная энергия единичного заряда — не единственное преимущество ядерных веществ над химическими. Аппетиты промышленности и транспорта растут.

Для осуществления некоторых крупных проектов планируются серии взрывов с суммарной мощностью во много десятков мегатонн. Могут ли обычные взрывчатые вещества ответить на этот вызов, если их мировое производство составляет всего одну-две мегатонны в год? Ведь это количество равноценно одному-единственному ядерному заряду средней мощности. Вот почему расщепление атомного ядра дает человеку куда более обширные ресурсы энергии, чем химические взрывчатки, а следовательно, предоставляет и безгранично более широкие возможности.

Но разве нельзя производить взрывчатые вещества не миллионами, а сотнями миллионов тонн? В принципе можно, но этому мешают прозаические финансовые соображения: мы ужа говорили, что стоимость энергии в химических взрывчатых веществах очень высока, в ядерном заряде она ниже. Даже самые небольшие ядерные заряды экономичнее, чем тысячетонные громады тротила. Если же речь идет о крупных зарядах, то обычные взрывчатые вещества не выдерживают с ними никакой конкуренции: стоимость ядерного устройства мощностью 5 килотонн в десять раз, а мощностью 10 мегатонн — в десять тысяч раз ниже, чем стоимость соответствующего количества тротила. Считается, что в среднем современные ядерные заряды сокращают затраты на энергию взрыва по сравнению с тротилом в 3300 раз.

У ядерных взрывчатых устройств есть еще одно важнейшее достоинство — компактность. Мощный ядерный заряд можно без труда заложить в узкую скважину, а для размещения гигантских зарядов аммонита или тротила нужно долбить просторные штольни. На эту работу уходит немало времени и средств, а иногда выполнить ее совсем невозможно — если, например, взрыв хотят провести на многокилометровой глубине. Недешево обходится и перевозка массивных зарядов, особенно в тех труднодоступных районах, где нет удобных путей сообщения (а как раз в таких районах чаще всего и проводят крупные взрывы).

Для созидательных целей могут использоваться только подземные ядерные взрывы — взрыв в воздухе не несет ничего, кроме тотального уничтожения. У подземного взрыва есть две разновидности, принципиально отличающиеся друг от друга. Если заряд заложен неглубоко (на несколько десятков метров), то при его детонации грунт выбрасывается на поверхность и образуется внушительная воронка. Такие подземные взрывы наружного действия называют взрывами на выброс.

Но подземный взрыв можно провести и по-другому. Если заряд заглубить не на десятки, а на сотни метров, и даже на километры, то его мощи не хватит, чтобы пробить перекрывающую толщу горных пород. После взрыва на поверхности не будет заметно никаких существенных изменений — разве что кое-где немножко вспучится и вздыбится земля. Такие взрывы со скрытым, «замаскированным» действием называют камуфлетными (от французского камуфляж — маскировка). Вся сила камуфлетных взрывов уходит на дробление под землей горных пород и образование колоссальных пустот, которые можно использовать различным образом. Камуфлетные взрывы применяются иногда и в обычном взрывном деле.

Из двух разновидностей подземного ядерного взрыва самые заманчивые перспективы, разумеется, открывают взрывы на выброс. Они позволили бы решить самые разнообразные задачи в области горного и строительного дела — вскрытие месторождений, сооружение гаваней, возведение плотин, дамб, насыпей, прокладку каналов. Но взрывы наружного действия влекут за собой радиоактивное заражение атмосферы, и их применение пока невозможно хотя бы с юридической точки зрения, потому что они подпадают под действие известного Московского договора о запрещении ядерных взрывов в атмосфере, космическом пространстве и под водой. Пока не будут созданы специальные ядерные устройства и методы их взрыва, обеспечивающие полную безопасность населения, животного и растительного мира, промышленных и природных объектов от всех поражающих факторов ядерного взрыва, не приходится надеяться на промышленное использование взрывов наружного действия. Поэтому исследования в этой области ограничиваются пока изучением принципиальных возможностей.

А возможности колоссальны. Уже разработаны детальные проекты сооружения с помощью ядерных взрывов морских гаваней на Аляске и в Австралии, строительства каналов в Северной Америке, устройства проходов в горах для автомобильных и железных дорог в США. Одним из наиболее впечатляющих проектов применения ядерных взрывов на выброс является план строительства второго Панамского канала. По проекту для сооружения новой трассы длиной 73,5 километра потребуется 294 заряда мощностью от 100 килотонн до 10 мегатонн. По существу, это будет не канал, а пролив: он не будет иметь шлюзов, а ширина его — 300 метров— втрое превысит ширину существующего канала. Трасса находится на безопасном расстоянии от населенных пунктов.

Стоимость строительства этого грандиозного сооружения составила бы всего 620 миллионов долларов — почти в четыре раза меньше, чем реконструкция существующего канала обычными методами.

При самом экономичном варианте второго Панамского канала потребуются заряды общей мощностью 166,4 мегатонны. Если бы взрывы проводились обычными методами, то всей промышленности западного мира потребовалось бы 160 лет, чтобы произвести равноценное количество взрывчатых веществ. Чтобы разместить их под землей, понадобилось бы выработать штольни объемом 250 миллионов кубометров, на что ушли бы многие десятки лет интенсивной работы.

В 1963 году в США разработан проект «Кэрриол», предусматривающий прокладку автомобильной и железнодорожной дороги через гору Бристоль в штате Калифорния. Для осуществления проекта в скалах нужно прорубить траншею длиной более трех километров, глубиной до 110 и шириной до 400 метров. С этой работой справились бы 22 ядерных устройства общей мощностью 1730 килотонн. В подобных проектах и планах за рубежом нет недостатка.

Ряд промышленных проектов использования ядерных взрывов на выброс разработан в нашей стране. Из них самым значительным является намечаемая переброска вод северных рек в Волгу.

Чтобы восполнить растущую потребность Волги в воде и спасти Каспийское море от высыхания, планируется переброска на юг избыточных вод другой могучей реки — Печоры. Для этого через высокий Печоро-Колвинский водораздел нужно проложить канал длиной 112 километров. По расчетам, этот труд могли бы взять на себя 250 ядерных зарядов.

С помощью ядерных взрывов можно было бы создать искусственные озера в пустынных районах Советского Союза. Например, двум зарядам мощностью по 150 килотонн по силам создание водохранилища емкостью 30 миллионов кубических метров. Благотворная, роль, которую сможет сыграть такое пресное море в преображении пустыни, не нуждается в пояснении.

Повторяем еще раз — подземные взрывы наружного действия смогут найти практическое применение только тогда, когда будет исключена возможность радиоактивного заражения атмосферы. В этом направлении ученые и ведут сейчас свои исследования. Одним из самых простых путей снижения радиоактивности является такое заглубление зарядов, при котором совершается меньше полезной работы, но зато сводится к минимуму прорыв радиоактивных газов. Экспериментальные взрывы показали, что выброс в атмосферу составляет всего 4—10 процентов от выделившейся радиоактивности. Остальные радиоактивные продукты взрыва остаются захороненными под землей. Уже через несколько суток после детонации ядерного заряда можно начинать земляные работы на месте взрыва, не опасаясь радиоактивного поражения.

Действенный прием борьбы с радиоактивным облаком — выбор благоприятных погодных условий. При отсутствии ветра 90 процентов радиоактивных примесей, выброшенных в атмосферу, в течение нескольких часов оседает в районе взрыва, что исключает распространение радиоактивных осадков. Однако самым решительным средством борьбы с лучевой опасностью является разработка «чистых» зарядов, взрыв которых не дает радиоактивных продуктов. Принципиальная возможность создания таких зарядов существует. Появление их ожидается в ближайшем будущем. До тех же пор пока это не произошло, в промышленности будут применять только камуфлетные ядерные взрывы.

Поскольку камуфлетные взрывы не проявляют никакого видимого эффекта и не перемещают грунтов, о применении их для строительства каналов, плотин, гаваней и других наземных сооружений не может быть и речи. Поэтому и области их использования не столь широки, как у взрывов на выброс. Камуфлетные взрывы проводятся в полностью зажатой среде, оказывающем мощное сопротивление ударной волне. Поэтому их дробящее действие в пять-шесть раз меньше, чем у взрывов наружного действия: ведь горной породе некуда податься, отступить. Но у глубоко заложенных зарядом есть решающее преимущество — радиоактивные продукты взрыва не выходят на поверхность.

При подземном ядерном взрыве протекают довольна своеобразные явления. Выделение энергии происходит за непостижимо малый промежуток времени—-менее чем за одну миллионную долю секунды. И в этот краткий миг температура успевает подняться до многих миллионов градусов, а давление — до сотен миллионов атмосфер. «Ярче тысячи солнц» вспыхивает под землей ядерный взрыв, и горные породы, не выдержав его натиска, испаряются, плавятся, сжимаются, дробятся. Ядерный взрыв раздвигает гранитный массив с такой же легкостью, как мальчик надувает мыльный пузырь. В земной глуби образуется гигантская шарообразная пустота диаметром несколько десятков метров. Через несколько секунд (а иногда и часов) кровля искусственной пещеры обваливается, и образуется «труба обрушения» — огромный вертикальный цилиндрический канал, заполненный дробленой породой.

Возможность дробления с помощью ядерного взрыва фантастических количеств руды и горючих ископаемых привлекла прежде всего горняков. В США двадцать фирм объединили свои усилия, чтобы разработать метод подготовки горючих сланцев к переработке с помощью ядерных взрывов. Как известно, запасы органического вещества, накопленного в горючих сланцах, в десятки раз превышают ресурсы нефти. Переработка сланцев раньше была менее выгодна, чем добыча нефти, но в последнее время в условиях энергетического кризиса, потрясшего капиталистический мир, и непрерывного роста цен на нефть интерес к этому виду топлива оживился. Ведь только одно сланцевое месторождение Грин Ривер, расположенное на стыке штатов Колорадо, Юта и Вайоминг, содержит в три раза больше потенциального жидкого топлива, чем все разведанные месторождения нефти в мире, и в 39 раз больше, чем нефтяные запасы США. При потреблении нефти на уровне 1980 года месторождение Грин Ривер обеспечит топливом Соединенные Штаты в течение 368 лет. Если сланцы перерабатывать в газ, а не в смолу, то потенциальные запасы газа в этом месторождении составят 170 триллионов кубометров, что в 8 раз больше мировых запасов газа и в 21 раз — запасов США.

Одним из самых перспективных путей переработки сланца является его подземная перегонка — нагрев горячими газами до температуры разложения, при которой выделяется похожая на нефть смола. Сплошной сланцевый пласт непроницаем для газов, поэтому для успешного проведения подземной перегонки сланец нужно предварительно раздробить. Идеальным средством для этой цели служит ядерный взрыв. При детонации одного заряда мощностью 250 килотонн высота трубы обрушения составит 300 метров, а диаметр—120 метров. Количество раздробленного подготовленного для переработки сланца в такой подземной реторте составит 9—11 миллионов тонн! При промышленной разработке предполагается провести несколько серий по 20 взрывов в каждой, чтобы обеспечить новую отрасль промышленности сырьем на многие годы. Месторождение Грин Ривер особенно благоприятно для применения на нем ядерных взрывов, потому что оно расположено в пустынной местности, имеет значительную мощность пластов и не содержит водоносных горизонтов. Радиоактивность жидких продуктов будет, по мнению специалистов, ничтожна, твердые радиоактивные частицы останутся в подземной реторте, а радиоактивные газы (криптон-85 и тритий) можно будет удалить продувкой реторты воздухом. Безопасное расстояние завода от эпицентра взрыва при мощности заряда 250 килотонн составит не более десяти километров.

Подземная переработка перспективна не только для горючих сланцев, но и для угля и других полезных ископаемых. Человек давно уже снял сливки с поверхности и в поисках нужных материалов закапывается все дальше в глубь земли. А ведь чем глубже расположены земные богатства, тем труднее и дороже их добывать. Принято считать, что стоимость добычи пропорциональна четвертой степени глубины залегания. Другими словами, если одно месторождение расположено глубже другого в десять раз, то стоимость его разработки повышается в десять тысяч раз! Поэтому технология будущего — это не извлечение полезного ископаемого на поверхность, а подземная переработка. Химический реактор для переработки сырья не обязательно строить наверху, его можно сооружать и под землей, создавая ядерным взрывом зоны раздробленной массы. В такой подземный аппарат можно подавать через скважины нужные реагенты — воду, воздух, раствору кислот и щелочей — и отводить из него солевые растворы, горючие газы и так далее. Особенно привлекательной выглядит такая возможность для добычи цветных металлов. I

В США подготовлен проект разработки бедных руд Саффордского медного месторождения в штате Аризона. Как известно, залежи богатых медных руд встречаются не столь уж часто, а без этого красного металла на может развиваться современная промышленность. Если железные руды считаются приемлемыми для переработки при содержании в них железа не менее нескольких десятков процентов, то добычей медной руды не гнушаются, даже если она содержит всего 0,5—0,8 процента меди. Один из методов извлечения металла из столь бедных руд — гидрометаллургический. Он заключается в том, что руда выщелачивается — обрабатывается химическим реагентом, который переводит соединения меди в раствор. На Саффордском месторождении предполагается раздробить руду ядерным взрывом и проводить выщелачивание серной кислотой под землей. Подобные проекты разработаны и в Советском Союзе. Массовое принудительное обрушение руды можно применять и для подготовки разработки месторождений обычными методами.

Подземные ядерные взрывы могут найти широкое применение в нефтяном и газовом деле. Очень часто месторождения нефти расположены в плотных слабопроницаемых породах. Нефть и газ с трудом фильтруются через герметичные пласты, а большая часть топлива вообще не попадает на поверхность при добыче и навсегда остается в земных недрах. На некоторых месторождениях нефтяные вышки стоят друг от друга буквально в десятке метров, и все равно из пластов удается извлечь менее половины нефти. Количество нефти или газа, которое ежесуточно дает скважина (или, как говорят, дебит скважины), также сильно зависит от проницаемости пород. В некоторых случаях из-за малой проницаемости горных пород добывать газ вообще невозможно. Запасы топлива в таких «запертых» кладовых составляют сотни миллиардов кубометров.

Для увеличения дебита скважин и отдачи нефти советские ученые раздробили нефтеносные массивы с помощью экспериментальных ядерных взрывов. Эти взрывы особенно интересны в том отношении, что они проводились не где-нибудь на пустынном полигоне, а на реальном нефтепромысле, в густонаселенном промышленном районе. Было взорвано два заряда мощностью по 8 килотонн. Остальные скважины (а ближайшая из них находилась от центра взрыва на расстоянии всего 100 метров), оборудование, нефтепроводы, линии электропередач остались целы и невредимы. В городах и поселках жизнь продолжала течь своим руслом. В атмосферу не было выброшено ни единого кубического сантиметра радиоактивных загрязнений. А поток нефти из скважин возрос в полтора — два раза! «Встряхивание» залежи с той же целью успешно проведено и на газовом месторождении.

Проведенные экспериментальные взрывы, хоть и дали ощутимый промышленный эффект, являются только прелюдией к более мощным дробящим ударам. Уже намечена серия из трех взрывов по 40 килотонн, которые увеличат производительность одного из газовых месторождений с 0,25 до 3 миллионов в сутки. Выгоды такого десятикратного ускорения добычи газа неисчислимы.

При разведочном бурении иногда возникают аварийные неуправляемые нефтяные и газовые фонтаны, давление которых составляет сотни атмосфер и остановить которые очень трудно. Такой случай произошел недавно на одном из советских газовых месторождений. При бурении был неожиданно вскрыт газовый пласт, и газ, содержащий много сероводорода, под огромным давлением, превышающим 300 атмосфер, стал вырываться из скважины. Возник пожар. Пламя и окислы серы быстро разрушили оборудование. Ежесуточный выброс газа составлял фантастическую величину—12 миллионов кубометров. Этого количества вполне достаточно, чтобы обеспечить топливом крупный столичный город.

Были применены все известные способы перекрытия фонтана, и все они оказались безуспешными. После многих месяцев бесплодных попыток было решено прибегнуть к помощи ядерного взрыва. Рядом с фонтаном была пробурена полуторакилометровая скважина, и на расстоянии около 80 метров от аварийной газовой артерии был заложен ядерный заряд, равный по мощности тридцати тысячам тонн тротила. Уступив столь могучему натиску, горные породы переместились и намертво пережали фонтанирующую скважину.

Еще одна возможная область применения ядерных взрывов в газовой промышленности — создание крупных подземных газохранилищ. Большие современные города потребляют ежесуточно несколько миллионов (а то и несколько десятков миллионов) кубометров газа, и создание резервуаров даже для суточных запасов (не говоря уже о сезонных) топлива для столь крупных потребителей вырастает в сложнейшую техническую проблему, которую совершенно невозможно решить с помощью обычных металлических емкостей. Потребность мощной промышленной державы в газовых резервуарах составляет сотни миллиардов кубометров.

Выход может быть найден только в сооружении подземных хранилищ. Обычно для этой цели используют естественные подземные пустоты или истощенные газовые и нефтяные пласты. Однако природные хранилища имеют несчастливое обыкновение находиться как раз там, где не нужно,— вдали от крупных городов. Поэтому подземные хранилища приходится сооружать искусственно, располагая их в тех местах, где это диктуется экономической и технической целесообразностью. Неоценимую помощь тут могут оказать ядерные взрывы. Зарубежные фирмы ведут интенсивные исследования в этом направлении.

Ученые Института физики Земли Академии наук СССР решили создать с помощью ядерного взрыва подземные хранилища для газа и нефти в соляных куполах — пластах соли, имеющих толщину несколько сот метров. Соль — прекрасный материал для подземных емкостей. Она прочна, герметична, упруга. При взрыве в соляных пластах трубы обрушения не образуются, и пустоты сохраняют свою сферическую форму.

Сначала был проведен «маленький» пробный взрыв зарядом, равным по мощности 1100 тоннам тротила. Образовавшаяся полость имела рабочую емкость около 8 тысяч кубометров. Большие металлические резервуары такой вместимости — не редкость на современных заводах. Но после «пробы пера» на глубине 600 метров был взорван еще один заряд мощностью уже в 25 килотонн. При этом в соли образовалась пустая сфера диаметром 70 метров и объемом около 160 тысяч кубометров. Такие емкости уже вполне можно использовать для создания долговременных резервов нефти и газа. Расчеты показывают, что подземные хранилища, полученные с помощью ядерного взрыва, будут в шесть раз дешевле наземных резервуаров для сжиженного газа. Разработан проект трех взрывов мощностью по 40 килотонн. Они создадут объем подземных пустот около одного миллиона кубометров, что позволит хранить 70 миллионов кубометров сжатого газа.

Известно, что на больших глубинах горные породы имеют высокую температуру. Поэтому с помощью ядерных взрывов можно сооружать своеобразные «котельные». Для этого достаточно раздробить большое количество горячих пород и пробурить к такой естественной печи две скважины — одну для подачи, а другую для откачки воды. Вода, попадая, как в парной бане, на горячие камни, нагреется до высокой температуры, и ее можно будет использовать для отопления городов, расположенных в удаленных северных районах нашей страны.

Предложена и еще одна любопытная область применения подземных ядерных взрывов — устройство «могил» для захоронения радиоактивных отходов. В связи с возрастающим размахом строительства атомных электростанций эта проблема приобретает все большее значение.

Подведем итоги. Ядерные взрывы могут принести большую пользу, но, как легко было заметить, они не заменяют взрывов обычных. Ядерные заряды будут делать свою работу, взрывчатые вещества — свою. Давно уже изобретены могучие паровые молоты, но миллионы молотков по-прежнему стучат в руках у слесарей и плотников. Точно так же двухсоттонный самосвал не может и не призван вытеснить с улиц и дорог обыкновенные грузовики. И даже у мелкокалиберки есть свои преимущества перед тяжелой гаубицей, потому что из пушки, как известно, по воробьям не стреляют. Чрезмерная мощь ядерных зарядов — это не только их достоинство, но и недостаток. Каждый атомный взрыв представляет сейсмическую угрозу и требует тщательной дорогостоящей подготовки, иногда даже эвакуации близлежащих городов. На действующих шахтах применять ядерный взрыв невозможно, потому что он неизбежно разрушит рудник. Из-за невероятной силы зарядов трудно соблюсти точные контуры горных разработок; взрыв отбивает не только руду, но и лишнюю породу.. Кроме того, при таком взрыве смешиваются разные, сорта полезных ископаемых (например, горючие сланцы с разным содержанием органического вещества или руды с разным содержанием железа). При обычных же методах руду разного качества можно добывать и перерабатывать отдельно. Поэтому применение ядерного взрыва благоприятно не на всех месторождениях, а только на очень крупных, отличающихся большой мощностью и однородностью пласта и сочетанием других подходящих геологических условий. В небольших массивах ядерному взрыву тесно, как слону в посудной лавке. Ему сподручнее взламывать целые горы, чем ковыряться в мелких, хотя и богатых жилах.

Ядерный взрыв не позволяет пока регулировать степень дробления. Мы можем отбить одним ударом миллионы тонн руды, но не будем уверены, что получим массу с нужной крупностью кусков. Не исключено образование больших глыб, которые придется снова дробить дорогими и хлопотными вторичными взрывами.

Нельзя забывать и о радиоактивности. Даже если проводится камуфлетный взрыв, спрятанный под землей, все равно вполне вероятен прорыв радиоактивных продуктов через трещины. А если прорывы удастся полностью исключить, заражению могут подвергнуться пластовые воды или добываемые продукты. Из-за сейсмической и радиоактивной опасности применение ядерных взрывов предпочтительно в малонаселенных местностях— горах, пустынях, арктических районах. Таких мест на Земле еще очень много—пожалуй, они занимают большую часть ее площади,— но все же это обстоятельство накладывает на применение ядерных взрывов в мирных целях ощутимые ограничения.

* * *

Взрыв уже немало поработал на своему веку, но все сделанное им до сих пор — только начало. Человечеству предстоит осуществить грандиозные проекты по преображению природы — проложить новые каналы, перекрыть проливы, добыть миллиарды тонн полезных ископаемых, повернуть вспять реки, изменить направление океанских течений, проложить дороги через горные цепи, пробить туннели под морским дном, открыть доступ к земным глубинам. Решающую роль в этих работах будут играть взрывы. Мощность их будет непрерывно возрастать, для их расчета и управления ими будут привлекаться электронные вычислительные машины. Уже сейчас для вскрытия одного из угольных месторождений Якутии проектируется взрыв с небывалой мощностью заряда — 55 600 тонн!

Однако будущее взрывных работ определится не гигантскими супервзрывами, сколь много их ни произойдет, а широчайшим проникновением взрывной технологии во все сферы человеческой деятельности. Техника будущего все чаще будет нуждаться в экстремальных, предельных значениях физических параметров. А что может дать более высокие значения температуры, давления, светового потока, магнитного поля, чем взрыв, при котором «действия сил природы доводятся до своего высшего напряжения?» Поэтому будущие области применения взрыва неисчислимы. Тут и получение искусственных алмазов, и синтез новых видов-полимеров, и выращивание кристаллов, и гравирование рисунков по металлу, и новый способ превращения каучука в резину, и даже... стряхивание апельсинов и яблок при уборке урожая с фруктовых деревьев. Одним словом, взрывчатым веществам не угрожает безработица. Их перспективы в мирном будущем — а мы представляем себе будущее только таким — просто захватывают.

Кажется, совсем недавно мы начали рассказ о тысячелетней истории взрывчатых веществ, и вот он уже подходит к концу. Осталась последняя страница. Все ли удалось рассказать?

В индийской притче говорится, как муравей нашел однажды громадную сахарную гору. После долгих усилий он отколупнул от нее крошечный кусочек, с трудом взвалил его себе на спину и сказал: «Ладно, остальное заберу в следующий раз».

Не будем уподобляться самоуверенному муравью и не станем обольщаться. Из горы знаний о взрывчатых веществах мы смогли извлечь лишь крупинку, и ни в этот, ни в следующий раз не удастся рассказать и узнать о них все. Взрывчатые вещества дают нам нефть, металлы, уголь, удобрения, строительные материалы, без них не было бы тепла и света, силы и скорости. Они строят дороги, сооружают плотины, поят водой сады и поля, устремляют ввысь космические ракеты. Они делают свою работу «с огоньком», неутомимо и вдохновенно, они «идут в жизнь, чтобы ярче сгореть». Объем и разнообразие их свершений не поддаются учету, их удивительные свойства восхищают, их мощь поражает воображение.

Но взрывчатые вещества созданы людьми, они покорно повинуются им, и взрыв есть не что иное, как концентрированный сгусток человеческой воли. Поэтому, закрывая эту книгу, отдадим еще раз дань уважения тысячам великих и безвестных людей, чьи мужество, труд и талант подарили нам столь могущественное оружие в борьбе за лучшую жизнь.

Загрузка...