От мифов о погоде к спутниковой метеорологии

С момента появления человек вынужден был бороться за свое существование и защищать себя от таких сил природы, как наводнения, раскаленные потоки вулканической лавы или разрушительные бури. Несколько столетий тому назад представления человека о воздушном океане были весьма несовершенны. Было лишь установлено, что воздух не имеет вкуса и запаха и его невозможно ни видеть, ни осязать. Лишь с того времени, когда для изучения атмосферы начали применять точные приборы, воздух, этот загадочный невидимка, стал предметом серьезных геофизических исследований. Определение понятия «атмосфера» вырабатывалось тысячелетиями, но и теперь сведения о размерах воздушного океана и о движениях в нем не являются достаточно полными. Вспомним хотя бы о запусках искусственных спутников Земли, которые дали нам некоторое представление о недавно еще совершенно неизвестных явлениях в атмосфере.

Сейчас можно понять исследователей прошедших столетий. Они не знали, что воздух — это вещество, поддающееся точным физическим измерениям. Около 2000 лет тому назад Аристотель в трехтомном труде по метеорологии дал правильное объяснение многих явлений, протекающих в атмосфере. Однако он еще не мог себе представить, что ветер является результатом движения воздуха, и страстно опровергал подобные утверждения некоторых своих сограждан.

500 лет тому назад никто не подозревал, что такие «небесные» явления, как дневной свет и облака, связаны с существованием воздушной оболочки, окружающей земной шар.[2]

В средние века воздух считался чем-то неосязаемым и его отождествляли с пустотой. Явления погоды считались результатом взаимодействия Земли с другими планетами. Поэтому понятно значение исследований Коперника, Галилея, Бруно и Кеплера, которые доказывали ошибочность господствовавшего в то время космогонического представления, согласно которому Земля якобы находится в центре Вселенной. Несмотря на то, что эта картина была заимствована у древних греков, с изобретением телескопа она не могла сохраниться. Теперь каждый мог убедиться в том, что планеты вращаются не вокруг Земли, а вокруг Солнца.

Рационалистическое мировоззрение и пытливый ум исследователей рассеивали мистический туман средневековых представлений. Новые открытия, связанные с природой космических явлений, помогали физике, химии, медицине и метеорологии одерживать победы над вздорными и суеверными представлениями средневековья. Во всех областях знания прежние догматические утверждения подвергались суровой проверке опытом, практикой. Правда, каждый исследователь в это время был предоставлен самому себе, а некоторые ученые подвергались насмешкам или вообще изгонялись из общества. Однако торговых людей и мореплавателей уже привлекают результаты физических опытов, вероятно, не столько из интереса к развитию чистой науки — математики, астрономии и т. п., сколько в расчете на то, что эти опыты со временем помогут созданию новых машин и приборов, очень полезных в практической деятельности. Ко времени Тридцатилетней войны в метеорологии уже были заложены необходимые основы для объективного научного исследования. Бургомистр города Магдебурга Отто фон Герике и итальянец Эванджелиста Торричелли независимо друг от друга убедительно доказали, что воздух имеет вес. Воздух был впервые взвешен, когда удалось создать вакуум. Это открытие было существенным, так как до сих пор философы утверждали, что пустого пространства быть не может — «природа боится пустоты». С помощью барометра Герике нашел вес воздуха, и тем самым бывший невидимка превратился в реальное физическое тело, которое можно было измерить.

Началось выяснение природы атмосферного давления. По инициативе Паскаля француз Перье проделал в 1648 г. свой знаменитый опыт с барометром. Он измерил давление у подножия и на вершине горы Пюи-де-Дом, имеющей высоту 1465 м, и подтвердил предположение Паскаля о том, что с увеличением высоты атмосферное давление уменьшается. Сразу же возник вопрос о высоте верхней границы воздушного океана. Ответить на этот вопрос в то время было еще невозможно, ибо не существовало ни воздушных шаров, ни искусственных спутников Земли, с помощью которых теперь изучаются верхние слои земной атмосферы. Поэтому представления разных ученых о высоте атмосферы мало согласовались между собой. Например, Кеплер, открывший законы движения планет, считал, что «атмосфера не может иметь столь большую высоту, чтобы покрывать все известные горные вершины. Горы Атлас, Олимп и горы Азорских островов возвышаются над верхней границей атмосферы». По мнению Кеплера, эта граница лежала на высоте не более 3000 м.

Лишь сравнительно немногие ученые были убеждены в правильности новых, т. е. физических, путей исследования атмосферы. Книги в то время писали на латинском языке, которого народ не знал. Этим отчасти можно объяснить, что широкие массы по-прежнему суеверно придерживались различных примет о погоде или доверяли вздорным книгам погоды, столетним календарям погоды и т. п.

Развивавшееся капиталистическое общество все более порывало с устаревшими представлениями, которые тормозили дальнейший его прогресс. Парусные корабли уже достигали вод Антарктики, да и сведения о климате других районов земного шара тоже приобретали все более важное значение. Стало невозможным ограничиться утверждениями древних греков, которые на основании чисто астрономических данных выделили на Земле три климатических пояса — тропический, умеренный и полярный, отделявшиеся друг от друга тропиками и полярными кругами. Исследование климата приобрело характер общественной задачи. В XVIII в. почти все государства организовали на своих территориях сеть метеорологических станций, на которых проводились не только визуальные наблюдения за элементами погоды, но и инструментальные измерения атмосферного давления и температуры воздуха. Так, например, Гёте, занимавший пост государственного министра, организовал в 1823 г. в Тюрингии большое число наблюдательных станций.[3]

Выдающийся ученый и путешественник Александр Гумбольдт построил первые в мире карты изотерм. На таких картах пункты с одинаковой температурой воздуха соединяются плавными линиями, называемыми изотермами. Проведение изолиний в то время было весьма затруднительным, так как сеть станций была очень редкой. Но это был первый шаг к познанию климатических особенностей на большой территории. На картах изотерм стало видно, как велики климатические различия между северным и южным полушариями и как сильно влияет распределение моря и суши на пространственное изменение температуры воздуха.

Еще одно крупное открытие помогло дальнейшему изучению воздушной оболочки Земли. В 1771 г. английский химик Дж. Пристли и шведский ученый Шееле независимо друг от друга обнаружили, что воздух на одну четверть состоит из газа, принимающего участие во всех процессах горения. Они назвали его огненным газом. Современное же его название — кислород — было введено в науку французским химиком Лавуазье. Однако в то время метеорология мало занималась химическими исследованиями атмосферы.

В XVIII в. не имелось возможности для изучения погоды, т. е. непрерывных изменений состояния воздушного океана. Для этого необходимо было получать результаты одновременных метеорологических наблюдений с достаточно обширной территории и не позднее чем через несколько часов. Такая возможность появилась лишь в середине XIX в., когда физики Гаусс и Вебер изобрели телеграфную связь[4]. С развитием телеграфа возник и новый раздел метеорологии — синоптическая метеорология. Термин «синоптический метод» означает метод одновременного обзора обширной территории. До введения этого метода погода для некоторого пункта прогнозировалась на основании наблюдений за ходом метеорологических явлений только в этом пункте. Подобным методом прогнозирования является, например, и народная примета: «Ясный закат — к хорошей погоде». Погода на следующий день определялась по виду вечернего неба. С появлением телеграфа метеоролог смог «видеть» распределение погодных явлений в пространстве и предсказывать, например, бури и грозы, которые в данном пункте в момент прогнозирования еще ни в чем не проявлялись.

Значительно изменились методы предсказания погоды лишь с 1851 г. На Всемирной выставке в Лондоне по телеграфу ежедневно получали сведения с 22 метеорологических станций и строили синоптические карты погоды. Так впервые оказалось возможным предсказывать движение воздушных масс на обширной территории.

Первые официальные службы погоды были созданы несколькими годами позднее. Поводом для этого послужило следующее событие. Во время Крымской войны, в 1854 г., англичане и французы, осаждая русский порт Севастополь, надеялись захватить город после обстрела. Однако внезапно началась буря, во время которой, между прочим, затонул французский военный корабль «Генрих IV». Французское военное министерство запросило директора парижской астрономической обсерватории Леверье, можно ли было заблаговременно предсказать приближение этой бури. Леверье проделал большую и кропотливую работу. Он сопоставил показания барометров в том месте, где произошла катастрофа, и в окружающих районах и пришел к заключению, что траектория бури могла быть предсказана заранее. Это открытие привело к зарождению службы погоды в Европе.

Дове, возглавлявший в то время германскую метеорологию, отвергал возможность предсказания погоды. Поэтому в Берлинском бюро погоды первые сводки погоды появились лишь в 1883 г. Конгресс США также медлил с организацией службы погоды, пока во время урагана в 1869 г. не погибло в районе Великих озер 2000 кораблей. Уже через год после катастрофы в США начала работать служба погоды.

Когда метеорологи поняли, что погода формируется не у земной поверхности, а в более высоких слоях атмосферы, началось интенсивное изучение всей толщи воздушного океана. В конце XIX и в начале XX в. началась организация высокогорных метеорологических обсерваторий. (Старейшая высокогорная обсерватория на горе Зоннблик уже через несколько лет будет располагать 100-летним рядом наблюдений.) Однако было установлено, что значения метеорологических элементов, измеренных на отдельных горных станциях, не характеризуют действительного состояния свободной атмосферы на той же высоте над равнинной местностью. Горный массив существенно искажает поле ветра и температуры, присущее свободной атмосфере.

На развитие метеорологии XX в. оказали влияние два выдающихся события: открытие стратосферы Р. Ассманом и Тейсеран де Бором в 1900 г. и организация сети аэрологических (радиозондовых) станций, начавшаяся с 1934 г.[5] Радиозонд представляет собой метеорологический прибор, поднимаемый на шаре на значительную высоту — часто до средней части стратосферы. Во время подъема радиозонд измеряет атмосферное давление, температуру и влажность воздуха. Три датчика, воспринимающие значения этих метеоэлементов, включены в цепь небольшого коротковолнового передатчика, который при подъеме излучает определенные радиосигналы. Если, например, температура воздуха изменяется с высотой, то меняется и характер радиосигналов. Регистратор, находящийся на земле, фиксирует сигналы, посылаемые радиозондом, и уже во время его подъема можно получать данные о физическом состоянии атмосферы.

Метеорологи еще 35 лет тому назад строили только приземные карты погоды, нанося на них значения метеорологических элементов в виде чисел или условных значков. А когда в результате международного сотрудничества в области радио- и телеграфной связи стали общедоступными также и данные измерений в высоких слоях атмосферы, повсеместно начали строить не только приземные, но и высотные карты погоды. В настоящее время наличие таких карт стало непременным условием хорошего прогноза погоды.

В период с 1934 по 1938 г. наряду с развитием сети аэрологических станций увеличивалось число наземных: метеорологических станций в тропических широтах и полярных районах.

В настоящее время на поверхности земного шара имеется около 11 000 метеорологических станций. Они располагаются на суше, на кораблях погоды и на дрейфующих льдинах. Кроме того, особые радиометстанции автоматически или по особому сигналу — запросу — передают в эфир сведения из труднодоступных районов. К современным средствам исследования атмосферы относятся также метеорологические ракеты. В СССР, США и Канаде ракеты дают службе погоды ценные сведения о физическом состоянии средней стратосферы.

Для составления прогнозов погоды все шире используются искусственные спутники Земли. Так, например, «Тайрос-II» с высоты примерно 1000 км обнаружил атмосферный вихрь над Индийским океаном. Телевизионные изображения этого вихря, переданные на Землю, позволили своевременно предупредить прибрежные станции о его приближении. Кораблями погоды этот вихрь не был обнаружен.

Постепенно становилась все более очевидной необходимость разработки единой международной программы метеорологических исследований на всей планете. Примером всемирного сотрудничества явилось проведение Международного полярного года в 1882–1883 и в 1932–1933 гг. Было решено, что такое мероприятие будет проводиться через каждые 50 лет. Однако позднее ученые договорились о том, чтобы уже через 25 лет после Второго международного полярного года начать новые и невиданные по размаху одновременные международные научные исследования планеты. Период проведения совместных исследований получил название Международного геофизического года (МГГ). Этот период продолжался с 1 июля 1957 г. по 31 декабря 1958 г.

В период Международного геофизического года, продолженного еще на один год и названного годом Международного геофизического сотрудничества (МГС), расширились представления в области метеорологии и была значительно развита прежняя классическая схема состояния и строения атмосферы. В частности, стало известно, что атмосфера — нечто большее, чем простая смесь кислорода, азота, инертных газов и водяного пара. В ней, кроме того, в изобилии встречаются различные атомы и атомные ядра, которые постоянно вторгаются в атмосферу из космоса, взаимодействуют с ней и либо достигают земной поверхности, либо снова возвращаются в космическое пространство. Если несколько десятилетий тому назад атмосферу считали резко отграниченной от космоса, то результаты ракетных измерений заставляют рассматривать ее скорее в качестве сложного связующего звена между твердой поверхностью земного шара и космическим пространством. Еще неизвестно, как далеко простирается атмосфера в космос. Однако бесспорно, что воздушная оболочка Земли проникает и в область солнечной материи, причем обе они непрерывно взаимодействуют между собой. Доказательством взаимодействия являются, например, тесная связь между солнечной активностью и полярными сияниями, колебания земного магнитного поля, имеющие характер магнитных возмущений и бурь, различные изменения в ионосфере и другие явления, происходящие в воздушном океане. Новейшие измерения вблизи верхней границы атмосферы показали, что, кроме солнечной радиации, в земную атмосферу проникает жесткое рентгеновское излучение и корпускулярный поток. Советские геофизики установили большую роль потоков энергии в атмосферных процессах. Благодаря успехам Советского-Союза в области исследований с помощью спутников скоро осуществится давняя мечта геофизиков и метеорологов о создании аппарата, непрерывно вращающегося вблизи верхней границы атмосферы и измеряющего энергетический баланс, а также баланс вещества. Не исключено, что и прогноз погоды будет строиться на совершенно новых основах.

Мы видим, таким образом, как одни научные открытия последовательно вытекают из других. Имевшиеся ранее данные об атмосфере помогли созданию искусственных спутников Земли и даже искусственных планет солнечной системы. Спутники же в свою очередь открывают для метеорологии новые возможности исследований, которые позволят получить новые сведения об атмосфере.

Загрузка...