Один физик по имени Роберт Милликен
так невзлюбил объяснение фотоэффекта
Эйнштейна, что решил экспериментально
его опровергнуть. Десять лет опытов,
и в итоге он доказал, что Эйнштейн был прав.
И — ирония.
Наконец-то настал тот самый момент, когда мы переходим к материалу, от которого станет совсем ничего не понятно. А значит можно втирать читателю всякую дичь. Именно так выглядят все популярные книги по квантовой механике. Даже тот знаменитый мем про то, как нарисовать сову, отдыхает по сравнению с опусами «просто о квантмехе». Как это бывает: сначала авторы обещают, что понятно будет даже пятикласснику, а на следующей странице публикуют уравнение Шредингера без комментариев. Дорогие читатели, обещаем, что мы не нарушим традицию — будет круто и непонятно. Но с шутками, прибаутками и депрессивной гуманитарной иронией.
Начнем мы срыв покрывал издалека. Вернемся, так сказать, к свету. В предыдущих лекциях мы выяснили, что свет — это электромагнитное поле, квант которого называют фотоном. Вспомним, как человечество докатилось до такого заумного понимания этого очевидного явления. Как свет нашего Отца-Солнца («Мать-Род-Макошь») вдруг стал набором интегралов с названиями чужеземных ученых?
Все началось как всегда с Ньютона. Тот, как известно, не только ловил головой падающие яблоки, но и любил проводить опыты со светом. Солнечным, разумеется, а не электрическим. Он раздобыл кучу всяких призм, линз, стеклышек и пропускал через них лучи, приходя к интересным результатам. Ньютон обнаружил, что белый свет состоит из семи цветов, что разные цвета преломляются по-разному, и даже догадался, что луч сам по себе не окрашен, а это наши глаза воспринимают цвета по каким-то неизвестным причинам. Умный дядька, что тут скажешь, хотя искал в Библии секретный код алхимии.
Но, самое главное для нашего рассказа, дядюшка Исаак, сделал вывод о том, что свет — это летящие через пространство частицы. Сразу стало понятно, почему лучи прямые, почему они отражаются от зеркал, почему появляется тень и так далее.
Тогда же, в середине 17 века жил еще один мечтатель по имени Гюйгенс. Он решил покритиковать идеи Ньютона и заявил, что есть основания полагать, что свет на самом деле волна. Ну как бы, если свет представляет собой поток частиц, то тогда с какого перепугу, лучи разных цветов преломляются в призмах под разными углами? А что если тут торчат уши волновых эффектов? Ну и так далее. Увы, Ньютон был авторитетнее. К тому же Гюйгенс рассказывал всем, что на других планетах может быть жизнь. Над ним посмеивались и крутили пальцем у виска. Вопрос о волновой природе света завис, а свет двести лет считали потоком каких-то неведомых частиц, природу которых однажды надеялись открыть.
В начале 19 века один востоковед (ха-ха! гуманитарий!) по имени Томас Юнг баловался с оптическими приборами — в итоге он взял и провел эксперимент, который сейчас называют опытом Юнга, и каждый физик считает этот опыт священным.
Томас Юнг всего лишь проткнул две дырки в картоне и направил луч света на этот картон, а позади поставил еще одну пластину-экран. Если бы свет был потоком частиц, то мы бы увидели на заднем фоне две светлые полосы.
Но, к несчастью всего научного мира, на экране-пластине появилась череда темных и светлых полос. Это повсеместное явление называется интерференцией — наложение двух (и более волн) друг на друга: там, где гребни волн совпадают, амплитуда, то есть высота гребня волны, увеличивается. Кстати, именно благодаря интерференции мы наблюдаем радужные переливы на пятне масла или на мыльном пузыре.
Иначе говоря, Томас Юнг экспериментально доказал, что свет — это волны. Ученый мир долго не хотел верить Юнгу, и одно время того так закритиковали, что он даже отказался от своих идей волновой теории — да, наука не для слабаков. Но потихоньку научный мир приходил к тем же самым выводам, и в итоге ученые стали считать свет волной. Правда, волной чего именно? — странный вопрос, ответ на который лучше бы никто никогда не узнавал.
Надо сказать, волновая природа света не сильно повлияла на классическую физику. Ученые поохали, поудивлялись, переписали формулы и стали полагать, что скоро весь мир падет к их ногам под единой универсальной формулой всего.
Но вы уже догадались, что, как всегда, всё испортил Эйнштейн.
Беда подкралась с другой стороны — сначала ученые заморочились расчетом энергии тепловых волн и открыли кванты (об этом мы уже рассказывали в лекции «Что такое кванты»). А затем с помощью этих самых квантов Эйнштейн нанес удар по классической физике, объяснив явление фотоэффекта.
Напомним: фотоэффект (одним из следствий которого является получение фотографий на пленке) это выбивание светом электронов с поверхности некоторых материалов. Технически выбивание происходит так, словно свет это частица. Частичку света Эйнштейн назвал квантом света, а позже ей присвоили имя — фотон.
В 1920 году к антиволновой теории света добавился удивительный эффект Комптона: когда электрон зачем-то обстреливают фотонами, то фотон отскакивает от электрона с потерей энергии («стреляем» синим цветом, а отлетает уже красный), как биллиардный шар от другого. Комптон за это отхватил нобелевскую премию.
На этот раз физики поостереглись снова отказываться от волновой природы света — сколько можно менять мнение, а вместо этого крепко задумались. Наука встала перед ужасающей дилеммой: так все-таки свет — это волна или частица?
У света, как и у любой волны, есть частота — и это легко проверить. Мы видим разные цвета, потому что каждый цвет — просто разные частоты электромагнитной (световой) волны: красный — маленькая частота, фиолетовый — большая частота.
Но удивительно: длина волны видимого света в пять тысяч раз больше размера атома — как такая «штука» влезает в атом, когда атом поглощает эту волну? Хотя, если фотон — это частица, сопоставимая по размерам с атомом, то вопросов нет. И что получается: фотон одновременно и большой и маленький?
Фотоэффект и эффект Комптона однозначно доказывают, что свет — все-таки поток частиц: нельзя объяснить каким образом волна передает энергию локализованным в пространстве электронам. Если бы свет был волной, то некоторые электроны были бы выбиты позднее, чем другие, и явление фотоэффекта мы бы не наблюдали. Но в случае потока отдельно взятый фотон сталкивается с отдельно взятым электроном и при некоторых условиях выбивает его из атома.
В итоге было решено: свет — это одновременно и волна, и частица. Вернее, и ни то и ни другое, а новая неизвестная ранее форма существования материи. Все наблюдаемые нами явления это всего лишь проекции или тени от реального положения дел, в зависимости от того как смотреть на происходящее. Когда мы смотрим на тень от цилиндра, освещенного с одной стороны, то видим круг, а при освещении с другой стороны — прямоугольную фигуру. Так и с корпускулярно-волновым представлением света.
Но и тут все непросто. Нельзя говорить, что мы считаем свет либо волной, либо потоком частиц. Посмотрите в окно. Внезапно даже в чисто вымытом стекле мы видим свое, пусть нечеткое, но отражение. В чем подвох? Если свет — это волна, то объяснить отражение в окне просто — подобные эффекты мы видим на воде, когда волна отражается от препятствия. Но если свет — это поток частиц, то объяснить отражение так просто не получится. Все фотоны одинаковы, и поэтому преграда в виде оконного стекла должна одинаково на них воздействовать. Либо все они проходят сквозь стекло, либо все отражаются. В суровой реальности нашего мира часть фотонов пролетает через стекло, и мы видим соседний дом, но тут же наблюдаем свое отражение.
Единственное объяснение, которое приходит в голову: фотоны сами себе на уме. Нельзя со стопроцентной вероятностью предсказать, как поведет себя конкретный фотон — столкнется со стеклом как частица или как волна. Это основа квантовой физики — совершенно, абсолютно случайное поведение материи на микроуровне без какой-либо причины (а в своем мире больших величин мы по опыту знаем, что все имеет причину).
Похоже, что там, на фундаментальных уровнях мироздания, вселенной управляет идеальный генератор случайных чисел в отличие, скажем, от монетки, результат подбрасывания которой теоретически можно предсказать.
Гениальный Эйнштейн, открывший фотон, до конца жизни был уверен, что квантовая физика ошибается, и уверял всех, что «Бог не играет в кости», мол, должны быть причинно-следственные связи для выбора частицей своего состояния. Но современная наука все ответственнее подтверждает: таки играет. Хотя, конечно, можно пофилософствовать и предположить, что некий сверхразум наблюдает за каждым фотоном и решает, как ему сталкиваться со стеклом. Проверить эту гипотезу мы не можем, но есть одно косвенное доказательство, портящее идеалистическую картину. Дело в том, что в квантовых опытах фотон выбирает свою траекторию с вероятностью 50 %. Всегда. А это, как минимум, означает, что сверхразум не заинтересован в предопределенности событий и не склоняется ни в чью пользу. И тогда он опять неотличим от генератора случайных чисел.
Так или иначе, но как-то раз ученые собрались поставить жирную точку в споре «волна или частица» и решили воспроизвести опыт Юнга с учетом технологий XX века. К этому времени они научились пулять фотонами по одному (квантовые генераторы, известные среди населения под именем «лазеры»), и посему было задумано проверить, что будет на экране в случае, если выстрелить по двум щелям одной частицей: вот и станет понятно, наконец, чем же является материя при контролируемых условиях эксперимента.
Об этом эксперименте мы подробно расскажем в следующей главе, обещаем, что вы почти все поймете, а пока лишь скажем, что в результате опыта выяснилась ужасная вещь: одиночный фотон летит сразу через две щели и интерферирует сам с собой.
С точки зрения волны это логично: волна проходит через щели, и теперь две новые волны расходятся концентрическими кругами, накладываясь друг на друга.
Но с корпускулярной точки зрения получается, что фотон находится в двух местах одновременно, когда проходит через щели, а после прохождения смешивается сам с собой. Это вообще нормально, а?
Оказалось, что нормально. И вообще с точки зрения квантовой физики выпущенный фотон между стартом и финишем находится одновременно «везде и сразу». Такое нахождение частицы «сразу везде» физики называют суперпозицией — страшное слово, которое раньше было математическим баловством, а теперь стало физической реальностью.
Некий Э. Шредингер, известный противник квантовой физики, к этому времени нарыл где-то формулу, которая описывала волновые свойства материи. И немного над ней поколдовав, к своему же ужасу вывел так называемую волновую функцию. Эта функция показывала вероятность нахождения фотона в определенном месте. Заметьте, именно вероятность, а не точное местонахождение. И эта вероятность зависела от квадрата высоты гребня квантовой волны в заданном месте (если кому-то интересны детали).
Дела с дуализмом обстояли все интереснее и интереснее.
В 1924 году аристократ Луи де Бройль взял и заявил, что корпускулярно-волновые свойства света — это верхушка айсберга. А таким непонятным свойством обладают все элементарные частицы.
То есть частицей и волной одновременно являются не только кусочки электромагнитного поля (фотоны), но и вещественные частицы типа электронов, протонов и т. п. Вся материя вокруг нас на микроскопическом уровне является волнами (и частицами одновременно).
И спустя пару лет это даже подтвердили экспериментально — американцы гоняли электроны в электронно-лучевых трубках (которые известны нынешним старперам под названием «кинескоп») — так вот наблюдения, связанные с отражением электронов, подтвердили, что электрон — это тоже волна. Для простоты понимания можно сказать, что на пути электрона поставили пластинку с двумя щелями и лицезрели интерференцию электрона как она есть.
К настоящему времени в опытах обнаружено, что и атомы имеют волновые свойства, и даже некоторые специальные виды молекул (так называемые «фуллерены») совершают каминг-аут, проявляя волновые свойства.
Пытливый ум читателя, который еще не ошалел от нашего повествования, спросит: если материя — это волна, то почему, например, летящий мячик не размазан в пространстве в виде волны? Почему реактивный самолет никак не походит на волну, а очень похож на реактивный самолет?
Де Бройль, чертяка, и тут все объяснил: таки-да, летящий мячик или «боинг» это тоже волна, но есть специальная формула, в которой длина волны тела обратно пропорциональна его импульсу.
То есть, чем больше импульс тела, тем меньше его длина волны.
А что такое импульс? Из школьной физики мы смутно припоминаем, что импульс — масса, умноженная на скорость. Тогда длина волны зависит от массы и скорости объекта.
Длина волны мяча, летящего со скоростью 150 км/час, будет приблизительна равна 0,0000000000000000000000000000000001 метра. Все дело в том, что мы не в состоянии заметить, как мячик размазан по пространству в качестве волны. Для нас это твердая материя.
А тот же электрон — весьма легкая частица, и, летящий со скоростью 6000 км/сек, он будет иметь заметную длину волны в 0,0000000001 метра.
Кстати, сразу ответим на вопрос, почему ядро атома не настолько «волновое». Хоть оно и находится в центре атома, вокруг которого, ошалев, летает и в то же время размазывается по орбитали электрон, ядро имеет приличный импульс, связанный с массой протонов и нейтронов, а также высокочастотным колебанием (скорость) из-за происходящего внутри ядра обмена частицами сильного взаимодействия (читайте лекцию про материю) — то есть внутри ядра постоянная движуха и суета. Поэтому ядро больше походит на привычную нам твердую материю. Электрон же, по-видимому, является единственной частицей с подходящей массой, у которой ярко выражены волновые свойства, вот его все с восторгом и изучают. Всё понятно?
Вернемся к нашим частицам. Так что получается: электрон, «вращающийся» вокруг атома — это одновременно и частица и волна. То есть вращается-то частица, и в то же время электрон как волна представляет собой оболочку определенной формы вокруг ядра — как это вообще можно понять человеческим мозгом?
Выше мы уже подсчитали, что летающий электрон имеет довольно огромную (для микромира) длину волны и, чтобы разместиться вокруг ядра атома, такой волне нужно неприлично много места. Вот как раз именно этим и объясняются такие большие размеры атомов по сравнению с ядром. Длины волн электрона определяют размер атома. Пустое место между ядром и поверхностью атома заполнено «размещением» длины волны (и в то же время частицы) электрона. Просим нас простить за грубое и некорректное объяснение, на самом деле все гораздо сложнее, но наша цель — хотя бы позволить отгрызть кусочек гранита науки людям, которым это интересно.
Наконец, давайте еще раз поясним и напомним! Описываемая нами форма материи не является ни волной ни частицей. Она лишь имеет свойства, присущие волнам и частицам. Нельзя говорить, что электромагнитная волна или электронная волна подобны морским или звуковым волнам.
Привычные нам волны представляют собой распространение возмущений в пространстве заполненным каким-либо веществом.
Фотоны, электроны и прочие экземпляры микромира при движении в пространстве можно описать волновыми уравнениями, они по поведению лишь ПОХОЖИ на волну, но ни в коем случае волной не являются. Аналогично и с корпускулярной стороной материи: поведение частицы похоже на полет маленьких точечных шариков, но это ни разу не шарики.
Это нужно понять и принять, иначе все наши размышления будут в конечном счете приводить к поиску аналогов в макромире и тем самым пониманию квантовой физики придет конец, и начнется фричество или шарлатанская философия навроде квантовой магии и материальности мыслей.
Остальные ужасающие выводы и следствия из опыта Юнга мы рассмотрим позже в следующей части: неопределенность Гейзенберга, кошка Шредингера, принцип запрета Паули и квантовая запутанность ждут терпеливого и вдумчивого читателя, который еще не раз перечитает наши статьи и покопается в интернете в поисках дополнительной информации.
Всем спасибо за внимание. Приятной бессонницы или познавательных кошмаров!