Глава 6 Материя. Частицы

Дело не в размере.

Атомное ядро еще мельче,

а страсти вокруг него еще больше.

(Академик П. Капица)

Мы продолжаем экстремальный ликбез для любознательных гуманитариев. Если заглянуть на непрофильные форумы в интернете, то очевидно, что российская наука готовится к серьезному прорыву в физике, так как чуть ли не каждый пользователь интернета этой страны способен рассуждать на тему квантовой гравитации и убедительно доказывать свою правоту. Поэтому мы просто обязаны восполнять у населения пробелы в научной картине мира.

Сегодня мы решили напомнить научному сообществу Всемирной Паутины о том, что современная наука знает о материи.



Начнем с того, что все знают или догадываются. Окружающий нас мир состоит из атомов. Это понятные повседневному опыту материальные объекты, иногда видимые даже в микроскоп (правда, электронный). Одно время считалось, что атомы — мельчайшие неделимые частицы. Причем, идею выдвинули аж древние греки, которые слишком много думали о возвышенном, но потом римляне, а следом и христиане, переключились на другие проблемы, и вопрос о составе материи стал не актуален: крестовые походы сами себя не организуют. И только в 1789 году один юрист по имени Антуан Лавуазье вернулся к крамольным мыслишкам об атомах, открыв дверь богомерзкой науке о веществе.

Мы знавали альтернативно образованных людей, которые уверяли, что атомов никто не видел, потому что они из тонких тел. Не верьте таким людям — сейчас все можно увидеть в Инстаграме. В интернетах легко находится, например, фотография атомов кремния, сделанная с помощью сверхвысоковакуумного сканирующего туннельного микроскопа.

В общем, мир был бы прост и замечателен, если бы атом был мельчайшей деталькой всего сущего. Ученые готовились объявить о завершении научных исследований и формулировке окончательной фундаментальной теории. Но всегда находится человек, который все портит: в 1897 году Томсон баловался с током и нечаянно открыл электрон. Стараясь сохранять спокойствие, он решил, что атом — это смесь отрицательно и положительно заряженных частиц (как булка с изюмом — любимый пример из учебников физики). Если подумать, это многое объясняло.

Но предположение Томсона долго не прожило, потому что в 1909 году Эрнесту Резерфорду вздумалось пострелять альфа-частицами по тяжелым атомам (а точнее по кусочку тоненькой золотой фольги) — видите, на что они тратят гранты?

Внезапно некоторые альфа-частицы не проходили сквозь фольгу, а иногда отскакивали от нее. Резерфорд обнаружил, что в центре атома есть что-то такое крупное и прочное, что отбивает альфа-частицы.

Да, для справки: альфа-частицы представляют собой два нейтрона и два протона (они же ядра атома гелия). Альфа-частицы возникают при радиоактивном распаде и являются наиболее безопасным видом радиоактивного излучения. Резерфорд сам их открыл чуть ранее, и игрался с ними, не очень понимая, что это такое.



Итак, научному миру открылась тревожная картина. Атом, по всей видимости, представляет собой ядро, вокруг которого по некоторым орбитам-траекториям летают электроны.

Давайте осознаем масштабы бедствия. Размер ядра атома таков, что если расстояния в атоме перенести на макрообъекты, то площадь атома в разрезе будет равна, скажем, площади стадиона, а ядро атома тоже увеличится — до размеров теннисного шарика в центре этого стадиона. Теперь представьте, сколько пустоты внутри атома и ужаснитесь — мы все состоим из ничего и чуточки материи. Поэтому, когда ваш начальник или ваш бывший партнер говорят, мол, «ты — пустое место» то это не очень-то и оскорбление. Хотя если они это постоянно говорят, то, может, дело не в физике атома… Эх… Так, о чем это мы?

Значит, что получается: масса ядра составляет более 99.9 % массы атома. То есть электроны почти ничего не весят. В человеке весом около 68 кг масса всех его триллионов электронов составит всего 14 граммов.

Как только ученые открыли все эти орбиты и ядра, прогрессивная общественность сразу решила, что атом похож на Вселенную с ее солнечными системами. Мол, ядро — это Солнце, а электроны — это планеты, которые вращаются вокруг «солнца». Один японец даже попытался рассчитать, как это должно было бы выглядеть по аналогии с кольцами Сатурна. Мир был так иллюзорно близок к счастью понимания фундаментальных законов. Всё казалось логичным и таким глубоко философским: малое в большом, большое в малом. Но нет: Природа тот еще толстый тролль и, кажется, неисчерпаемый в своих коварных шутках.

Во-первых, электроны в отличие от планет вращались вокруг ядра не из-за гравитационных сил (а вследствие другого вида взаимодействия — электромагнитного). Во-вторых, электроны почему-то не теряли энергию и не падали на ядро. В-третьих, как потом оказалось, электроны и не частицы вовсе, а неведомое квантовое не-пойми-что.

В общем, планетарная модель атома провалилась. Но до сих пор, спустя более чем сто лет, находятся отнюдь не домохозяйки, задающие осточертевший всем физикам вопрос, а что если атомы это маленькие вселенные? Если вы видите в статье, которая рассказывает о гармонии мироздания и материальности мысли, фразу, мол, атом — это копия или проекция солнечной системы, бегите оттуда! Ну или нагадьте в комментах, чтобы испортить настроение мракобесам.

Когда художники вот так рисуют атом, то они заблуждаются в размерах более чем полностью. И не только в размерах.



Теперь мы немного расскажем про электрон (о нем мы заделали отдельную крутую лекцию).

На сегодняшний день нам думается, что электрон — неделимая частица. Всё! — разломать его не на что! Поэтому электрон относят к так называемым лептонам. Это такой класс неделимых частиц, в него кроме электрона входят еще нейтрино и мюоны — последние вообще не стабильны, живут миллионные доли секунды и, бес его знает, зачем они вообще нужны этой Вселенной.

Электрон имеет отрицательный заряд, очень маленькую по сравнению с атомом массу, и, самое главное, количество электронов в атоме определяет химические свойства вещества. И да, он ответственен за существование электрического тока.

Как мы уже сказали, поначалу казалось логичным, что электроны в атоме летают по разным орбитам, удаленным от ядра на разные расстояния.

И все было бы прекрасно, если бы в начале XX века некоторые особо упорные физики, которым не нравилась пара несущественных проблем, связанных с классической картиной устройства атома, не решили докопаться до сущности этих проблем. И они дооткрывались до того, что все стало еще хуже. Собственно, так появилась квантовая физика.

Электрон «летает» строго по определенным траекториям (правильно сказать, по орбиталям — особым областям пространства вокруг ядра). И переходит с одной орбитали на другую при помощи телепортации. Электрон, переходя на другой уровень, теряет или поглощает квант энергии, на меньшее расстояние он переместиться не способен, так как квант — неделимый «кусочек» затраченной энергии. То есть, представьте, летает спутник вокруг нашей планеты на высоте 36 тысяч километров. Потом, бах, и он уже на высоте 38 тысяч километров без всякого видимого перемещения. Такого в нашем «большом» мире быть не может, а в мире квантовых явлений — запросто. Мы еще вернемся к этим интригующим явлениям.

Во-вторых, выяснилось, что электрон даже и не частица, а волна. И вообще он не летает вокруг ядра, а находится в каждой точке орбитали одновременно, если его специальным образом не ловить. В теории он скорее похож на облачко вокруг ядра атома с формой этой самой орбитали. И как только начинаешь опытным путем выяснять, где он находится, то он внезапно из волны превращается в частицу, типа, вот он я.



Если опять проводить грубую аналогию, то представьте, что враги запустили спутник-шпион, и вы никакими расчетами не можете обнаружить, над какой точкой планеты он сейчас летает. Вернее, вы считаете по классическим формулам, но они дают ошибочные координаты: в расчетных местах спутника почему-то нет. А какой-то сумасшедший гений показывает вам безумные формулы и говорит, что на самом деле спутник находится в каждой точке на орбите. Однако только по этим специальным формулам можно рассчитать места, где спутник окажется с наибольшей вероятностью (большего не просите), и пальнуть туда из пушки. Глупость какая-то, скажете вы. В нашем мире — да, а в квантовом — обычное дело.

Но мы увлеклись квантовыми парадоксами, речь о которых предстоит в будущих лекциях.

Кстати еще пару слов о лептонах: мюонах и нейтрино. Спорим, вы не слышали о том, до какого кощунства додумались ученые? Они научились создавать мюонные атомы и даже молекулы, благо Природа, кажется, это не запрещает. В мюонных атомах электроны замещены мюонами, которые тяжелее в 200 раз и «летают» ближе к ядру. И хоть такие атомы долго не живут, удается исследовать их химические свойства и на пару шагов приблизиться к апокалипсису.

Что касается нейтрино, то долгое время все думали, что оно не имеет массы и это было немного странно, но затем открыли нейтринные осцилляции — это когда частицы нейтрино во время своих путешествий превращаются из одного вида в другой — такое возможно только при наличии массы. Так что все в итоге встало на свои места. Нейтрино почти не взаимодействует с веществом, поэтому пролетает насквозь не только стены, но и планеты, и звезды — представьте себе, насколько трудно было его вообще обнаружить.

С одной разновидностью нейтрино в 2012 году произошла поучительная история. В известной лаборатории по итогам экспериментов вычислили, что скорость частиц превышает скорость света. Новость преждевременно прокатилась по мировым СМИ. А потом оказалось, что вилка была плохо вставлена в розетку. В общем, если вы обнаружили нарушение законов Ньютона, Эйнштейна или Бора, если вы видите привидение или как что-то мироточит, то не спешите с откровением, а обязательно проверьте розетку и другие объективные причины чуда.


Давайте оставим лептоны на время «в покое» и вернемся к материи. У нас еще ядро атома не разобрано.

Если присмотреться к ядру атома пристальнее, этим занимается у нас ядерная физика, то мы увидим, что ядро состоит из двух типов крошечных деталек. Протонов и нейтронов. Обе частицы довольно тяжелые, но нейтрон чуть-чуть тяжелее.

Протон имеет положительный заряд и вместе с отрицательным зарядом электрона делает атом электрически нейтральным. Если же электронов в атоме меньше, чем положено, или даже больше, то атом приобретает заряд, и его все называют ионом. Мы недавно купили в магазине по акции шампунь с натуральными ионами, которые укрепляют волосы и придают им металлический блеск — видите, как можно бессовестно вставлять в рекламу умные слова. Эх, и ведь за это им деньги платят.

Нейтрон не имеет заряда и вне ядра атома живет очень недолго, примерно, минут десять, а потом ломается: разваливается на протон, электрон и нейтрино. При этом ошибочно считать, что нейтрон состоит из этих частей. Он просто на них разваливается! Но, что важно, не нарушая законы сохранения энергии.

Путаницы добавляет факт, что количество протонов в ядре совсем не обязательно равно количеству нейтронов. Вот, например, из-за этого беспорядка у нас имеется несколько видов водорода. А из них получаются разные виды воды: обычная, тяжелая и сверхтяжелая.



Вообще, если хорошенечко разогнать протон и столкнуть его с другим протоном, то столкнувшиеся частицы разобьются на кучу разных частиц, которые живут, как правило, миллионные доли секунды, а то и меньше. Причем виды частиц, на которые развалится протон, зависят от энергии столкновения. А осколки в свою очередь через некоторое время еще на что-нибудь развалятся. Всяких разных частиц на сегодняшний день открыто более 350 штук. Названия у них одно непонятнее другого, например: мезоны, пионы, каоны, позитроны, мюоны, тау-лептоны, а также античастицы с таким же названием, но приставкой «анти» и т. д.

Античастицы имеют ту же массу, что и обычные частицы (и тот же спин — не спрашивайте пока, что это такое), но другие противоположные характеристики, вроде заряда или квантовых чисел).

Собственно, в этих ваших коллайдерах занимаются краш-тестами частиц. Разгоняют протоны и сталкивают, а потом смотрят следы, которые оставили осколки. По этим следам (длина пути, траектория следа, углы отклонения и т. п.) вычисляют массу частиц, их заряд и прочие данные. Хотим напомнить жуткую правду от конспирологов, что на самом деле в коллайдерах делают черную дыру, которая уничтожит Землю и освободит место для планеты Нибиру — наши остроумные комментарии к этому вы прочитаете в специальной главе про ускорители частиц.

Вот так выглядят следы частиц в специальных устройствах для их наблюдения:



Как мы уже сказали выше, тот факт, что протоны и нейтроны разваливаются на кусочки еще на значит, что они из них состоят.

Долго время считалось, что протоны и нейтроны — это цельные частицы. Но в 70-х годах ученые повторили опыт, чем-то похожий на опыт Резерфорда, но вместо атома были протоны, а вместо альфа-частиц были электроны. То есть стреляли электронами по протонам — чего только не придумают затейники, да?

И выяснилось, что рассеивание электронов на протонах и нейтронах немного не такое, как ожидалось. Это и ряд некоторых других трудно объяснимых явлений дало повод ученым заявить, что ядерные частицы состоят из чего-то еще.

Этому «чему-то еще» дали название «кварки». Поясню еще раз: никто этих кварков пока не видел (они, гады, совсем мелкие, с физически ненаблюдаемыми размерами) и никто этих кварков пока не щупал, но косвенные эксперименты, а самое главное, расчеты, показывают, что протоны и нейтроны состоят из кварков. Причем каждая частица состоит сразу из двух-трех кварков, которые взаимосвязаны между собой и соответственно существуют только группами. Кварк не может свободно гулять вне частицы — во всяком случае одинокий кварк в природе еще не встречался. Из кварков состоят и другие частицы материи (кроме лептонов). Всего ученые открыли или, можно сказать, навычисляли, шесть видов кварков, соотнесенные с тремя поколениями. Хитроумных названий этим кваркам придумать не смогли, поэтому кто-то прикололся и назвал кварки вот так:



Справедливости ради, странному кварку дали такую кличку потому, что частица, в которой его обнаружили, не распадалась «слишком долго». И это, видите ли, было странно.

Обратите внимание, что у кварков дробный заряд. Его также пришлось ввести, чтобы объяснить, как из кварков получается положительно заряженная частица протон или нейтральный нейтрон.

Так что, все составные частицы в нашем мире — это комбинации кварков. Можно спросить, но почему физики-теоретики, не видя этих кварков, считают их реальными фундаментальными частицами?

Во-первых, если предположить, что кварки существуют, то все множество частиц хорошо классифицируется и укладывается в так называемую Стандартную модель. А это научненько!

Во-вторых, на основе кварков можно предсказать, какие частицы еще не открыты. И действительно, ожидаемые частицы рано или поздно находятся, причем с ожидаемыми параметрами.

В-третьих, экспериментально удавалось вырвать кварк из протона, но получился, конечно же, не сам кварк, а некий очень интересный эффект, предсказанный теорией кварков и названный адронной струей: из кварков тут же образуются новые частицы и летят в ту же сторону, что и выбитые кварки.

Между прочим, физики предсказывали существование частиц, сколоченных аж из пяти кварков — так называемых пентакварков. Конец немного предсказуем: их действительно обнаружили в экспериментах на коллайдере. Пентакварк состоит из двух верхних кварков, одного нижнего кварка, и пары из очарованных кварка и антикварка. Что это за зверь такой, еще предстоит выяснить.

Причин считать кварки реальными гораздо больше, но они громоздки для нашего праздного объяснения, поэтому сделаем вид, что все нормально. Самым главным аргументом, которым всегда руководствуется наука, является то, что на сегодняшний день нечем объяснить строение материи как-то иначе. Конечно, есть гипотеза тонкого эфира, однако ее без галоперидола не разобрать — в этом мнении схожи и физики, и психиатры.

На картинке: схемы некоторых частиц, сложенных из кварков. Кварк с черточкой — это антикварк.



Пару слов об антиматерии.

С одной стороны, она менее загадочна, нежели ее представляют в своих нетленках фантасты и графоманы. Это те же самые частицы, но с противоположным зарядом (или противоположными другими характеристиками). Электрон — позитрон. Протон-антипротон. Кварк-антикварк. И так далее. При соединении материи и антиматерии — вещество аннигилирует, превращаясь в чистую энергию, то есть в фотоны, что в общем-то, можно было бы использовать как разрушительное оружие. Но антивещество чертовски трудно добывать, и совершенно точно не в промышленных масштабах.

Довольно забавен факт, что антиэлеткрон открыл Поль Дирак в 1927, когда рисовал формулы для электрона. Самая лучшая формула, описывающая электрон, содержала в себе его злого двойника. Дираку это не понравилось, в итоге он психанул и сказал, что умывает руки — вот расчеты, делайте с ними что хотите. И заметьте, что эти ученые могут открывать новые частицы без коллайдеров, с помощью карандаша и бумаги, без грантов и субсидий, которые, как известно каждому диванному профессионалу, тратятся на распил или несуществующие фонды!

Короче, через пять лет физики обнаружили антиэлектрон в реальном мире и назвали его позитроном.

С другой стороны, у антиматерии есть мерзкий секретик, от которого портится настроение у любого астрофизика или у каждого интересующегося мирозданием естествознателя. Это коварный вопрос: где антиматерия? То есть вот у нас в телескопы и микроскопы видна обычная материя везде и всюду во вселенной, а где же антивещество? Если оно аннигилировало, почему вселенная все еще существует и тогда опять вопрос, почему обычной материи больше? Это проблема, требующая очень серьезных объяснений. Может, кто-нибудь из наших читателей впечатлится прочитанным, подумает над прочитанным и догадается, как это все происходит, после чего пойдет и объяснит всем этим надмозгам из калтехов, стенфордов, МТИ и прочих логовищ бездуховности, в чем секрет асимметрии вещества. Удачи, товарищи!



Ну и наконец, предел физики материи.

Стандартная модель, которая рассказывает нам о мире частиц, все равно имеет множество темных мест, которые не объяснишь тем, что кварки и лептоны это окончательная форма материи, элементарнее и фундаментальнее которой ничего нет.

Поэтому физики с наиболее развитой фантазией пытаются предугадать еще более мелкие частички материи. Именно что предугадать и математически рассчитать их поведение. Микроскопы тут бессильны.

На сегодняшний день есть пара-тройка перспективных теорий, которые делят материю дальше. Самая известная из них — это теория струн (и ее развитие в теории суперструн и М-теории). Некоторые чудеса материи неплохо объясняются, если представить, что все, что нас окружает, на самом микроскопическом уровне представляет собой наборы одномерных струн, которые колеблются в девятимерном пространстве. И частота колебания такой струны (звук, по-нашему) и определяет свойства каждой фундаментальной частицы — кварка или лептона. Звучит, конечно, очень божественно и немного креационистски. Представьте великую вселенскую скрипку — она сыграла ноту «Ля», и в мире появились электроны, дёрнула «До» — сыпятся протоны, или, например, зазвенела «Си-бемоль» — и вселенная обогатилась нейтрино. Профессор Толкин, по-видимому, кое-что знал со своим Илуватаром и музыкой айнур, да-да.

Доказать наличие струн на сегодняшний день невозможно, да и теоретические расчеты настолько сложны (все-таки девятимерные пространства, включая время), что безумное количество математики осилит не каждый мегамозг. В теории суперструн количество измерений доведено до 11, а в М-теории предполагается, что колеблется не струна, а двухмерная пленочка (брана, как ее называют физики-теоретики). Струны изображают вот так:



На этом краткий экскурс в атомную материю у нас заканчивается. Можете бить нас за неточность изложения и обещать открыть глаза на правильную физику. Мы с интересом следим за дискуссией, которая не затихает на просторах сетевых площадок. Пишите в интернетах, и мы вас сами найдем!

Наверное, дотошные читатели заметили, что тема названа «Часть 1». Дело в том, что, разглядывая материю, мы рассмотрели только ту ее часть, которая, скажем так, вещественна. А есть еще одна форма материи, которую пощупать нельзя. Это то, что мы называем полем или энергией (да-да, те самые фотоны, гравитоны и бозоны Хиггса). Об этом мы расскажем во второй части.

Загрузка...