Глава 6 ПАРИЖ. СОРБОННА

Три математика

Коллеги по академии или по университету нередко видят Шарля Эрмита в обществе трех молодых математиков. Невзирая на свой преклонный возраст, маститый академик с поистине молодым задором предается жаркому спору, предмет которого порой уводит собеседников далеко от сугубо математических вопросов.

— …В математике все мы скорее слуги, чем господа.

Не раз уже слышали молодые математики эту сакраментальную фразу от прославленного мэтра. Знакомо им и ее толкование, которое он со вкусом развивает перед своей немноголюдной аудиторией.

— Даже когда истина нам еще неясна, она все равно предсуществует нашей мысли и неукоснительно предписывает ей дорогу, по которой мы должны следовать под угрозой заблудиться. Иначе какое еще вы можете дать толкование той необъяснимой интуиции, что руководит нами в математическом творчестве?

В ответ на чье-то возражение Эрмит со всей убежденностью отстаивает воображаемый им мир математических объектов, подобный миру платоновских идей.

— Нет, почему же, и числа и функции так же реальны, как и другие окружающие нас предметы. Разве вы, математики, не чувствуете, что они действительно существуют вне нас и независимо от нас, а мы только находим их в окружающем мире! В этом отношении математик ничем не отличается от физика, химика или зоолога.

Одним из трех заинтересованных слушателей Эрмита был его бывший ученик по Политехнической школе Анри Пуанкаре, ныне молодой преподаватель Сорбонны.

На первых порах обязанности Пуанкаре на Факультете наук сводились лишь к проведению практических занятий. Он должен был помогать студентам в усвоении лекционного материала, разрабатывать для них домашние задания и проверять их готовность, то есть выполнять всю ту работу, которую по обыкновению возлагали на репетиторов. Немного позднее ему поручили читать курс математического анализа.

Почти одновременно с ним в столице обосновывается Альфред Рамбо, занявший должность профессора истории Парижского университета. Но Пуанкаре нечасто видится с бывшим лицейским преподавателем. Свое свободное время он делит между домашним очагом и наиболее близкими друзьями — Аппелем и Пикаром, которые в том же 1881 году вернулись в Париж после нескольких лет, проведенных в провинции. Все трое проделали традиционный путь в науку, который прошли до них многие известные французские математики, начиная с самого Огюстена Коши.

Отправным пунктом для большинства из них служило одно из двух ведущих учебных заведений страны: Политехническая школа или Нормальная школа. Лишь очень немногие из знаменитых французских математиков XIX века, буквально единицы, вышли из стен Сорбонны. Получив специальное образование, будущие знаменитости посвящали некоторый период своей жизни практической инженерной деятельности, как, например, О. Коши и К. Жордан, или преподаванию в провинциальных университетах, как Ш. Брио и Ж. Буке. Пуанкаре пришлось пройти и через то и через другое. Не избежал этой участи и Поль Аппель. Окончив Нормальную школу и защитив докторскую диссертацию, он некоторое время преподавал механику на Факультете наук в Дижоне. Их новый товарищ Эмиль Пикар, окончивший Нормальную школу двумя годами позже Аппеля, читал математический анализ в университете Тулузы[15].

Путь из провинции в столицу лежал через успех и признание в ученых кругах. У всех троих уже были несомненные заслуги перед отечественной наукой. В то время как Пуанкаре в упорном и поистине рыцарском соперничестве с немецкими математиками завоевывал фуксовы функции, Аппель сформулировал и доказал весьма важную теорему из теории дифференциальных уравнений высших порядков. В серии заметок и статей за 1880–1881 годы он применяет ее для решения общей проблемы преобразования линейных дифференциальных уравнений, связав этот вопрос с инвариантами, введенными для этих уравнений Лаггером в 1879 году. Инвариантно-групповой подход становится самым модным в математике, и Аппель не остался в стороне от этих наиболее современных и плодотворных методов. Двадцатидвухлетний Пикар прославился благодаря открытию двух замечательных теорем, заинтересовавших многих математиков не только во Франции, но и за рубежом. Используя введенное Эрмитом понятие модулярной функции, он смог с помощью этих теорем описать поведение функции в окрестности существенно особой точки. Завоеванный Пикаром и Аппелем авторитет позволяет им вести курсы в Нормальной школе среди других именитых преподавателей.

Неразлучную троицу заботливо опекает Шарль Эрмит, профессор Нормальной школы и Парижского университета, член Академии наук, после смерти Коши ставший общепризнанным главою французских математиков. Благодаря своему личному обаянию, благодаря своей оживленной переписке со многими известными математиками Эрмит, по словам Ф. Клейна, «был в течение многих десятилетий одним из важнейших центров всего математического мира». Клейн ставит ему в заслугу стремление «поднять математику выше того одностороннего национализма, который постепенно стал охватывать молодое французское поколение». (К сожалению, не только французское, но и немецкое, следовало бы поправить Клейна.) Сплотив вокруг себя группу наиболее талантливых молодых математиков, Эрмит старается связать их тесными дружескими и творческими узами с зарубежными коллегами. И надо отметить, что немало в этом преуспел.

Мудрый и доброжелательный ученый весьма дорожит сложившимся вокруг него благополучным миром научного и человеческого общения, приятных мысленных контактов. Он очень остро ощущает незащищенность этого мира перед неуправляемыми социальными стихиями. Нередко молодые коллеги слышат в его словах откровенное беспокойство перед возможной войной или революцией. По мере сил они стараются развеять его опасения. Для подобной тревоги нет абсолютно никаких причин! На последних парламентских выборах республиканцы одержали полную победу. Правда, сформированное Гамбеттой правительство, от которого ждали так многого и которое называли «великим министерством», не продержалось и трех месяцев. Но республика сейчас прочнее, чем когда бы то ни было раньше. Вместе с отставкой генерала Мак-Магона с поста президента исчезла последняя угроза реставрации. Расшитый золотом мундир с галунами и позументами сменило нарочито скромное партикулярное платье без единого знака отличия. Новый президент Жюль Греви, немногословный, умеренный и холодный, демонстрирует намеренно безличный метод правления, желая, видимо, как можно резче оттенить контраст с декоративной пышностью и мишурой мак-магоновского двора, кишевшего неисчислимой свитой адъютантов и церемониймейстеров.

Весьма энергичный и уверенный в себе, Эмиль Пикар пришелся по душе Аппелю и Пуанкаре. Их дружба крепнет с каждым днем. Сообща они участвуют в одном начинании Гастона Дарбу, возглавлявшего в это время кафедру высшей геометрии в Сорбонне. Еще в 1870 году Дарбу основал специальный журнал «Бюллетень математических наук и астрономии», призванный в какой-то степени решить весьма остро стоявшую тогда проблему ознакомления французских математиков с исследованиями и достижениями зарубежных коллег. Но для бесперебойного функционирования журнала необходим был контингент сотрудников, знающих языки и хорошо разбирающихся в математике, которые могли бы не просто переводить статьи, а даже рецензировать и комментировать их. Прибывшие в Париж молодые математики сразу же оказались среди самых деятельных участников в подготовке выпусков этого издания.

Общие научные интересы и даже совместное творчество еще теснее сплачивают математическое трио. Подхватив и продолжив исследования Пуанкаре по фуксовым функциям, Пикар вводит в математику аналогичные функции, но уже не одного, а двух переменных, назвав их гиперфуксовыми. В соавторстве с Пуанкаре он доказывает знаменитую теорему Римана об однородных функциях. Пуанкаре же в своих работах по определителям бесконечного порядка словно бы начинает диалог с Аппелем, ведущим изыскания в том же направлении.

Визит к Ковалевской

— На этот раз мы к вам с добрыми вестями, — прямо с порога заявляет Эрмит, останавливаясь в дверях и пропуская вперед Пикара, Аппеля и Пуанкаре.

Ковалевская встретила их заинтересованным, чуть смущенным взглядом. Сколько раз ей приходилось слышать об этих молодых французских математиках! Совсем недавно познакомившись с ними, она еще не успела утолить острое чувство любопытства, хотя это был уже не первый их визит. Гости, стараясь скрыть свое стеснение, толпились в небольшой комнате, которую явно не мешало бы привести в порядок, до того она была заполнена небрежно разбросанными вещами — книгами, исписанными листами бумаги, принадлежностями для рукоделия, детскими игрушками. Только Эрмит чувствовал себя непринужденно и уверенно, источая на всех свою любезность и покровительство.

— Не далее как вчера мы приняли вас в здешнее математическое общество, — продолжает он. — Теперь готовьтесь к докладу на ближайшем заседании. Что вы имеете доложить?

Застенчиво поблагодарив, Ковалевская на минуту задумалась. Глаза ее сразу посерьезнели.

— По следам Ляме я принялась за математическую теорию распространения света в кристаллах. Считаю его выводы не вполне удовлетворительными. Могу доложить часть уже проделанной работы.

— Что ж, это будет интересно, — решает Эрмит. — Окончательные результаты можно будет потом опубликовать в «Докладах» нашей академии. Ну а второе известие касается вашего глубокоуважаемого учителя и наставника. Сегодня утром я получил записку от господина Фрейсине,[16] в которой он сообщает, что президент республики подписал приказ о присвоении господину Вейерштрассу звания кавалера ордена Почетного легиона. Хочу, чтобы вы первая сообщили эту новость вашему знаменитому другу.

Шарль Эрмит неоднократно уже высказывал в присутствии Ковалевской свое неизменное уважение к выдающемуся немецкому математику. И хотя оба ученых играли одинаково ведущую роль в отечественных математических школах, он любил повторять в кругу своих молодых друзей: «Наш общий учитель — это господин Вейерштрасс».

Перед глазами Ковалевской всплывают строчки из недавно полученного ею письма Вейерштрасса: «О твоем знакомстве с Эрмитом я уже узнал от него самого. Он написал мне с большим восторгом об этом и перечислил все вопросы, которых вы коснулись в вашей первой беседе. Тебе, вероятно, теперь также придется войти в сношения с другими математиками, из которых тебя наиболее заинтересуют младшие: Аппель, Пикар, Пуанкаре. Пуанкаре, по моему мнению, наиболее способный из всех к математическим рассуждениям. Только бы он не рассеял свой исключительный талант и дал созреть своим исследованиям. Теоремы об алгебраических уравнениях с двумя переменными и линейных дифференциальных уравнениях с алгебраическими коэффициентами, которые он дал в „Comptes rendus“, действительно производят впечатление. Они открывают анализу новые пути, которые приведут к неожиданным результатам». И вот все трое под предводительством шестидесятилетнего Эрмита удостоили визитом ее неказистые меблированные комнаты на Гранд рю.

— В последнем письме господин Вейерштрасс жалуется на ноги, — отвечает Ковалевская на обращенный к ней вопрос о том, как обстоят дела на Линкштрассе, 33.[17] — Пишет, что порой вынужден читать лекции сидя, а кто-нибудь из студентов выписывает на доске формулы. Врачи находят у него расширение вен, но вся беда в том, что господин Вейерштрасс не признает никакого лечебного средства, кроме чая из ромашки.

— А отказаться на время от лекций он, конечно, не хочет, — скорее констатирует, чем спрашивает Эрмит.

— Нет, ни в коем случае, хотя и без того нагрузка у него немалая: подготовка к изданию трудов Якоби и Штейнера, различные факультетские, сенатские и академические заседания. Сетует, что на математические исследования у него не остается уже ни времени, ни сил.

— Это очень досадно. Мы все ждем, когда он опубликует свою теорему о приведении абелевых интегралов к эллиптическим, на которую вы ссылаетесь в своем мемуаре, — с легким оттенком разочарования произносит Пикар.

— Боюсь, что к этому господин Вейерштрасс приступит не скоро. Ведь он уже изложил эту теорему в письмах некоторым коллегам.

— Нам бы очень хотелось с ней ознакомиться. — В голосе Пикара звучит свойственная ему настойчивость. — Дело в том, что она в некотором отношении является обобщением моей теоремы, поскольку сформулирована для интегралов произвольного рода.

— С другой стороны, в теореме Пикара приведение продвинуто несколько дальше, — подхватывает Пуанкаре. — Я пытался самостоятельно доказать теорему Вейерштрасса. Было бы интересно сравнить мой метод с его собственным. Оба варианта доказательства я почерпнул из арифметики. — И, прочтя недоумение на лице Ковалевской, поспешил добавить: — Не удивляйтесь, ведь вся проблема, по существу, является чисто арифметической.

— Интересно, можно ли сформулировать еще более общее утверждение, заключающее в себе сразу обе теоремы, то есть взять общность теоремы Вейерштрасса, но продвинуть приведение так далеко, как это сделано у Пикара?

Отвечая на вопрос Аппеля, адресованный сразу всем присутствующим, Пикар с надеждой взглянул на Пуанкаре:

— По-моему, Анри уже имеет какие-то соображения на этот счет.[18]

Но Пуанкаре не любил обсуждать еще нечетко представляемые им самим идеи и догадки и поэтому смущенно промолчал.

— Господин Вейерштрасс, в свою очередь, пытается обобщить теорему господина Пуанкаре о представлении в параметрической форме переменных, удовлетворяющих алгебраическим уравнениям.

Обращаясь непосредственно к Пуанкаре, Ковалевская воспользовалась случаем, чтобы внимательно вглядеться в этого необычайно одаренного, по мнению ее учителя, математика. Он стоял, заложив руки за спину, задумчиво хмурясь и помаргивая глазами. Невысокий, сутуловатый, с несколько крупной для своего телосложения головой. Чувствовалось, что в отличие от друзей он так и не смог преодолеть свою застенчивость. Она уже знала, насколько обманчива эта почти безмятежная рассеянность мысли, запечатленная на его лице. В своих исследованиях по фуксовым функциям Пуанкаре обнаружил поразительную живость и быстроту ума, оставив у немецких ученых чувство некоторой растерянности перед столь стремительным интеллектуальным натиском. До чего же тесен математический мир, если двум-трем выделяющимся из общей массы ученым не удается порой разминуться в своих творческих исканиях! Ковалевская вспомнила, как в своей докторской диссертации 1874 года она невольно предвосхитила многие из результатов Г. Дарбу по теории дифференциальных уравнений с частными производными. Вейерштрасс по этому поводу написал даже специальное письмо Эрмиту.

— А чем сейчас занимается господин Дарбу? — поинтересовалась она.

— У него новое увлечение, — с лукавой улыбкой произносит Эрмит. — Он учит преподавать математику молодых девиц из женской Нормальной школы.

Не без удивления Ковалевская узнает, что после того, как в конце 1880 года Палата депутатов приняла закон о среднем светском женском образовании, во Франции была открыта Нормальная школа для девушек. Дарбу пригласили читать там курс математики.

— Вам обязательно нужно побывать в этой школе, — советует Эрмит. — Мы постараемся в ближайшее же время это организовать. Ваш пример должен вдохновить воспитанниц.

— Недавно я посетил эту школу в составе комиссии, — говорит Аппель, — и должен признаться, что поражен успехами и тягой к знаниям у большинства девушек, от которых никто не ожидал такой одаренности в математических науках.

— К сожалению, многих из них впоследствии ожидает горькое разочарование, — вступает Пикар. — Нелегко у нас женщине найти место преподавателя. Несколько вакансий педагогов в провинциальных женских лицеях — вот и все, на что можно сейчас рассчитывать. Нам еще предстоит бороться за общественное мнение.

— Грубая рассудочность, по Мольеру, движет нашим общественным мнением, — сердится Эрмит. — На днях я наблюдал в театре, как публика аплодисментами приветствовала одну пьесу, в которой проповедуется, что человек живет пищей, а не красивыми речами.

Замечание Пикара обратило мысли Ковалевской к ее собственной нелегкой судьбе. Получив диплом доктора наук в прославленном Геттингенском университете, она так и не смогла занять должность преподавателя на родине. По-видимому, не суждено сбыться и ее надеждам, связанным с зарубежными учебными центрами.

— У нас в России министр сказал одному профессору, ходатайствовавшему за меня, что я и моя дочь успеем состариться, прежде чем женщин будут допускать в университет, — невесело обронила Ковалевская.

— Во Франции дела обстоят немногим лучше, — скептически замечает Пикар. — Достаточно почитать в газетах, что пишет «Общество женских прав»: «Несмотря на благодеяния, оказанные нашей революцией 1789 года, два рода существ остались порабощенными — пролетарий и женщина».

— Но в тех же газетах можно найти пророчества о том, что, как только женщинам дадут избирательные права, в Палату депутатов сразу же попадут все знаменитые тенора и первые любовники с драматической сцены, — вносит Аппель веселые нотки в чересчур уж сумрачный, по его мнению, разговор.

— Не знаю, как тенора, но клерикалы попадут невременно, — неторопливо, словно размышляя вслух, говорит Пуанкаре, и глаза его оживляются ироническим блеском. — Вся масса женского провинциального населения Франции смолоду воспитывается священниками или монахинями и полностью разделяет политические убеждения своих духовников, убежденных врагов республики. Нужно сначала дать женщинам светское образование, чтобы вырвать их из-под власти клерикалов, а уж после этого предоставлять им избирательные права.

— А что обещает вам господин Миттаг-Леффлер?

Голос Эрмита, задавшего Ковалевской этот вопрос, звучит мягко, почти успокаивающе.

— С тех пор как мы с ним встретились в начале 1880 года в Петербурге на шестом съезде естествоиспытателей, положение существенно изменилось. С моим преподаванием в Гельсингфорсском университете так ничего и не вышло, тем более что он сам оттуда уехал. Теперь Миттаг-Леффлер надеется привлечь меня к чтению лекций в Стокгольме, где сейчас находится он сам. По-видимому, эти проекты будут иметь такую же судьбу, как и большинство прекрасных проектов на земле. Господин Вейерштрасс считает невозможным, чтобы Стокгольмский университет принял женщину в число своих профессоров, и боится, что Миттаг-Леффлер повредит самому себе, настаивая на этом нововведении. Кстати, последний сообщил мне, что уже в 1879 году имел все результаты по теории линейных дифференциальных уравнений, но так и не успел их напечатать. Господин Пикар опередил его.

— Да, господин Миттаг-Леффлер весьма талантливый математик, — задумчиво произносит Эрмит. — Жаль, что ему приходится так много времени уделять организационной и общественной работе. В его исследованиях чувствуется школа Вейерштрасса: добротные математические методы. Не то что у нашего общего знакомого господина Жордана. На днях он упрекнул меня в том, что я не прочитал его последний мемуар, представленный Академии наук. Я ему ответил, что готов подать в отставку, если мне вменят в обязанность читать его труды.

Эрмит рассмеялся, явно довольный собой.

— Вы не считаете его работы стоящими внимания? — удивилась Ковалевская, не знавшая о глубокой антипатии Эрмита, яркого представителя классической математики первой половины XIX века, к исключительно современным, а порой попросту новаторским методам Камилла Жордана.

— Я ничего не могу считать! — воскликнул Эрмит. — Мемуары Жордана настолько абстрактны и заумны, что вызывают у меня только уныние и раздражительность, стоит мне добраться хотя бы до середины первой страницы.

Приверженность Эрмита к вполне определенному кругу математических методов и к вполне определенной направленности математических исследований не раз отмечалась его современниками. Французский математик Ж. Адамар рассказывает, что Эрмит испытывал своего рода ненависть к геометрическим исследованиям и однажды упрекнул его в том, что он опубликовал мемуар по геометрии. Эрмит был ярым противником новых математических объектов — функций, не имеющих ни в одной точке производных. В его устоявшемся мире математических концепций никак не укладывались эти «патологические» кривые, ни в одной точке которых нельзя провести касательную линию. В письме к своему другу, нидерландскому математику Стильтьесу, он писал: «Я с отвращением отвергаю это достойное сожаления болото функций без производных». Видимо, под его влиянием Пуанкаре тоже встал на позиции полного неприятия столь необычных, экзотических кривых, лишенных каких бы то ни было черт наглядности и представимости. На самом же деле понятие об этих странных функциях оказалось весьма плодотворным и привело к возникновению нового направления в математике.

Визиты французских математиков к Софье Ковалевской продолжались в течение всего периода ее пребывания в Париже. В одном из своих писем этого времени Ковалевская, сообщая о своем знакомстве с Эрмитом, Пикаром и Пуанкаре, добавляет: «Эти два последние, по моему мнению, самые талантливые из нового поколения математиков во всей Европе». Но ей самой не пришлось совершить ответный визит ни на улицу Сорбонны, где жила семья Эрмита, ни на улицу Мишле, где обитали Пикары, ни на улицу Гей-Люссака к Пуанкаре. Для парижского света она представлялась весьма двусмысленным и подозрительным лицом: женщина-математик, которая к тому же не живет со своим мужем, что в высшей степени недопустимо с точки зрения буржуазно-католической морали, и в довершение всего зараженная нигилизмом. В атмосфере взволнованных газетных сообщений о террористической деятельности русских революционеров,[19] когда возбужденному, сбитому с толку обывателю всюду мерещились анархисты, близкое знакомство Ковалевской с радикалами и социалистами всех стран производило шокирующее впечатление. Слухи о ее общении с кружками революционеров[20] достигли даже Стокгольма, где жил шведский математик Миттаг-Леффлер, принимавший большое участие в ее судьбе. «Не ведите себя так, чтобы в вас заподозрили нигилистку! — взывает он к ней. — Все это коснется и меня, но я все исправлю!» Неудивительно, что такая репутация закрывала Ковалевской доступ в парижские салоны и гостиные. О негативном отношении к себе со стороны французского светского общества она сама пишет Миттаг-Леффлеру: «Что я в этом отношении не преувеличиваю, вижу я совершенно ясно по здешним математикам, с которыми я за последнее время познакомилась. Они усердно посещают меня, осыпают меня любезностями и комплиментами, но никто из них не познакомил меня со своей женой, и когда я шутя обратила на это внимание одной знакомой дамы из этого круга, она, смеясь, ответила мне: „Госпожа Эрмит никогда бы не приняла в своей гостиной молодую женщину, которая одна, без своего мужа, проживает в меблированных комнатах“». Часто бывая у Ковалевской, парижские математики не смешивали свои научные симпатии с условностями света.

Несостоявшийся заговор

Пожалуй, впервые Анри увидел такое собрание знаменитостей из математического мира Франции. Помимо хозяина, Жозефа Бертрана, здесь были Жан Буке, Камилл Жордан, Эдмон-Никола Лагерр и Жорж Альфан. Восседая за пышно сервированным столом между Аппелем и Пикаром, он тщетно пытался угадать причину присутствия среди них Жана-Альберта Готье-Виллара, которому они были весьма любезно представлены. То, что Жозефу Бертрану, как непременному секретарю Академии наук, приходится иметь дело со знаменитым издательством Готье-Виллар, по его мнению, еще не являлось достаточным основанием для того, чтобы пригласить издателя в столь узкий круг математиков. И, конечно же, отсутствовал Шарль Эрмит. Ни для кого уже не было секретом, что между семействами Эрмитов и Бертранов сложились весьма натянутые отношения. А ведь оба крупнейших математика Франции — Эрмит и Бертран — состояли в родстве: они были женаты на родных сестрах. Между французскими математиками из ближайшего окружения Пуанкаре сложились весьма своеобразные родственные связи: Аппель был женат на племяннице Жозефа Бертрана, а Пикар был зятем Шарля Эрмита. Оба чувствовали себя неловко во время таких междусемейных неурядиц.

Ни политика, ни спорт не интересовали Пуанкаре, поэтому он с безразлично-рассеянным видом внимал общему разговору о том, что нынешние скачки на «Большой приз Парижа» привлекли огромную массу туристов, переполнивших все гостиницы, и что упорные дожди, обратившие лоншанское скаковое поле в жидкое месиво, испортили многим удовольствие. Затем вспомнили о недавних беспорядках в Латинском квартале. Началось все с того, что среди студентов было организовано общество, поставившее своей целью борьбу с безнравственностью на улицах. Застигнутых врасплох развратников студенты принуждали к охлаждающему купанию в бассейнах Люксембургского сада. Но полиции не понравилось столь активное нравственное усердие молодежи, и она обрушилась на ревнителей морали с жестокими репрессиями. Произошли дикие, всех возмутившие сцены избиения студентов, толки о которых еще долго будоражили общественное мнение.

— Так мы реализуем на деле реформу образования, — сердится Пикар. — Радикальный метод, ничего не скажешь.

— А может быть, это реванш за иезуитов?[21] — в тон ему вопрошает Аппель.

— Школьные реформы пока что половинчаты и компромиссны, — отзывается Альфан, — но они должны принести свои плоды. Путь к сильной Франции лежит только через светскую школу. Эта ходячая фраза о том, что в войне победил немецкий учитель, а не только немецкий штык, имеет под собой глубокие основания. Мы расплачиваемся за долгие годы засилья клерикалов в образовании…

Отношения республики с церковью стали острейшей общественно-политической проблемой еще с тех пор, как Гамбетта провозгласил: «Клерикализм — вот враг!» Поэтому новая тема разговора не оставила равнодушным никого из присутствующих.

— А я и не знал, что математики умеют говорить на совершенно нематематические темы, — с нарочитой грубоватостью проговорил Готье-Виллар, вызвав ответную улыбку на лице Бертрана.

— Вы правы, — проговорил он, видимо восприняв слова гостя как скрытый сигнал к действию, — я думаю, что назрела минута обсудить наш небольшой проект.

«Вот оно, — подумал Пуанкаре, — сейчас станет ясно и для чего здесь Готье-Виллар, и для чего здесь мы».

— Я позволил себе пригласить многоуважаемого издателя, мнение которого для нас будет весьма ценным в деловом отношении на этой предварительной стадии обсуждения… — начал Жозеф Бертран, оглядывая поочередно сразу посерьезневших своих коллег.

Давно уже Бертран вынашивал идею основать математическое издание, которое бы заняло место «Журнала чистой и прикладной математики». Журнал этот, редактором которого после Лиувилля стал Аме-Анри Резаль, тихо и неуклонно угасал. Возродить его к жизни можно было, по мнению Бертрана, только под новой вывеской и с новой редакцией. Он очень рассчитывал на энтузиазм трех молодых математиков, творивших буквально чудеса и повышавших авторитет французской математической школы в международных кругах. Это обстоятельство, плюс к тому их широкие интернациональные связи должны были придать журналу привлекательность в глазах большинства математиков Европы. Ведь нацелен был предполагаемый журнал против издававшегося в Стокгольме с 1882 года «Акта математика», быстро завоевавшего популярность в научных кругах Европы.

Основатель шведского журнала, молодой и энергичный ректор Стокгольмского университета Гест Миттаг-Леффлер был еще придворным и дипломатом. Посещая то Париж, то Берлин, то столицы других государств, он использовал свои дипломатические связи для распространения и популяризации журнала. Эрмит и Вейерштрасс, как близкие друзья Миттаг-Леффлера, всячески поддерживали его начинание, добиваясь через близкие к правительству круги подписки на «Акта математика» в своих странах. Эрмит пытался даже организовать подписку на этот журнал для библиотек лицеев Франции, более многочисленных, чем университетские библиотеки.

Благодаря энергичным усилиям Миттаг-Леффлера выпуски «Акта математика» вскоре стали появляться почти повсюду, где можно было встретить представителей математических наук, в то время как аналогичный немецкий журнал «Математические анналы», основанный еще в 1868 году, был известен и принят далеко не везде. Желая сразу же поставить репутацию своего издания на должную высоту, Миттаг-Леффлер добился согласия немецкого ученого Г. Кантора на перевод его основополагающих работ по теории множеств на французский язык с последующей публикацией их в «Акта». Из числа молодых французских математиков он организовал группу переводчиков, в которую вошел и Пуанкаре. Переводы, после того как их прочитал и исправил сам Кантор, были опубликованы в 1883 году. Но Пуанкаре еще до этого выступил на страницах журнала со своими оригинальными работами. Уже в первом выпуске «Акта математика» появились две его статьи по фуксовым группам и фуксовым функциям. С этого момента началось его многолетнее успешное сотрудничество в шведском математическом журнале.

Во время неоднократных посещений Миттаг-Леффлером Парижа между ним и Пуанкаре завязалось близкое знакомство, которое, невзирая на разделявшее их расстояние, вскоре переросло в настоящее содружество. Миттаг-Леффлер сразу же угадал в скромном, внешне ничем не примечательном молодом человеке исключительного по одаренности математика. Его влекли к себе такие яркие, необычные натуры. Познакомившись в свое время с Ковалевской, он всячески старался помочь ей в той нелегкой борьбе за право на преподавание, которую она вынуждена была вести на родине и за границей. Именно благодаря его настойчивой инициативе русскую женщину-математика пригласили в 1883 году читать лекции в Стокгольмском университете, весьма молодом учебном заведении Швеции, основанном на частные пожертвования в 1880 году. В отличие от старейшего университета в Упсале — консервативного центра ортодоксальной науки и старых традиций — в новом университете к слушанию лекций допускались и женщины. Новшество, весьма необычное для высших учебных заведений Европы того времени. Тем не менее ректору Миттаг-Леффлеру пришлось употребить все свое влияние и авторитет, чтобы склонить определенные круги к согласию допустить женщину в состав преподавателей университета.

Собственное математическое творчество у Миттаг-Леффлера отходит на задний план, уступая место активной организационной деятельности и стремлению воздействовать на других с целью побудить их к плодотворному созиданию. Не раз его влияние благотворно сказывалось на научных трудах и Ковалевской и Пуанкаре. Благодаря его энергии и широким международным связям «Акта математика» становится со временем международным изданием, получая субсидии не только от шведского короля, но и от других государств, в том числе от Франции, Германии, Дании и Финляндии. В последнем десятилетии XIX века это был уже один из ведущих математических журналов по своему научному значению. В нем публиковались труды крупнейших европейских ученых и затрагивались самые жгучие и злободневные вопросы современной математики. Когда в 1939 году Шведская академия наук присудила Э. Пикару совместно с Д. Гильбертом первую премию Миттаг-Леффлера, на большом банкете в Париже французский математик получил из рук посланника Шведской академии полный комплект журнала «Акта математика» — 72 тома, переплетенных в кожаные красные переплеты. Вспомнил ли тогда Пикар, бывший уже на склоне своих лет, об этом званом обеде у Бертрана?

В первые годы существования журнал нуждался в серьезной поддержке, особенно за рубежом. Вместе с Эрмитом трое молодых математиков всеми силами содействовали начинанию Миттаг-Леффлера у себя на родине. А сейчас они молча выслушивают мнение Бертрана и других о том, каким должен быть новый французский журнал, без всякого сомнения подрывающий основу для распространения «Акта» во Франции. Молчание и сдержанность стали их самым действенным оружием. Бертран уже несколько раз испытующе поглядывал в их сторону, но все его безмолвные призывы к активному участию в обсуждении словно упирались в безответную, непробиваемую стену. Жордан, которому предложили руководство будущим журналом, явно колеблется, не в силах отрешиться от сомнений.

— Что касается издательства, то тут у нас проблем не будет, я в этом уверен, — говорит Бертран, как бы включая Готье-Виллара в общий разговор.

— Вы можете судить об этом по «Comptes rendus», — отзывается издатель. — Номера выходят в свет весьма аккуратно и уже через 7—10 дней вручаются подписчикам.

Неожиданное возражение последовало со стороны Жордана. В качестве образца функционирования журнала он выдвигает «Акта математика»:

— …В среднем выходят два тома в год, но это только в среднем. Выпуски сдаются в печать не в заранее определенные сроки, а только после того, как накопится материал, назреют новые вопросы и появятся их решения. Вот как должен издаваться такого рода журнал в отличие от других периодических изданий! — убежденно заканчивает он.

По лицу Готье-Виллара было видно, что это предложение пришлось ему не по вкусу.

— Но это же совершенно не коммерческое предприятие, — снисходительно объясняет он. — Не думаю, что кто-нибудь возьмется финансировать такое издание.

После ряда взаимных возражений, когда переговоры окончательно зашли в тупик, Готье-Виллар весело воскликнул: «Хорошие дети родятся только от любимой жены!» — и попросил дать ему время подумать. Но Пуанкаре, да, видимо, и всем остальным стало ясно, что думать он будет очень и очень долго. Эрмит с нескрываемым удовольствием сообщил Ковалевской в Стокгольм о том, как на первом же этапе сорвался задуманный против «Акта математика» заговор.

Жордану все-таки пришлось через некоторое время возглавить французский математический журнал. Только это был «Журнал чистой и прикладной математики», тот самый, на страницах которого была опубликована в 1881 году работа Пуанкаре, открывающая новое направление не только в его исследованиях, но и в исследовании дифференциальных уравнений вообще.

Рождение нового метода

«Пуанкаре начинает как Коши», — одобрительно заметил как-то один из ведущих профессоров Сорбонны. Он имел в виду широкое разнообразие работ молодого математика, опубликовавшего статьи по фуксовым функциям, по теории обыкновенных дифференциальных уравнений, по теории дифференциальных уравнений с частными производными, по алгебре, по теории чисел и по многим другим разделам математики. Но некоторые его работы невозможно было отнести к какому-либо разделу этой науки, так как раздела такого не существовало. Он только еще рождался в заметках и мемуарах Пуанкаре.

Занимаясь поисками новых (фуксовых) функций, с помощью которых можно было бы представить решение линейного дифференциального уравнения, Пуанкаре уже осознавал ограниченные возможности такого представления. Полученная формула решения позволит для любого момента времени рассчитать положение и скорость тела, движение которого описывается дифференциальным уравнением. Ну а если этого недостаточно? Если знание числовых характеристик движения в отдельных точках не удовлетворяет исследователя и ему нужно объять мысленным взором сразу весь путь, проходимый телом? Именно такая потребность возникает во многих прикладных, практически важных задачах. Например, зная положение и скорость кометы только в отдельные моменты времени, не всегда можно ответить на вопрос: вернется ли она в будущем, и если вернется, то когда именно? Для этого нужно представить себе ее движение в целом, иметь сведения о том, замкнут ее путь или же начало и конец его теряются в глубинах вселенной. В этом случае чисто качественная информация о характере движения гораздо важнее отдельных количественных показателей.

Если решение дифференциального уравнения выражается достаточно простой формулой, то немного потребуется усилий для того, чтобы воспроизвести по этой формуле воображаемую кривую, описываемую движущимся телом, или хотя бы осознать характерные особенности его движения. Но когда сталкиваешься со сложными трансцендентными функциями, да еще решение представляется замысловатой комбинацией этих функций, совсем не так легко представить себе, каков же проходимый телом путь. Получается парадоксальная ситуация: хоть уравнение проинтегрировано и решение записано в виде формулы, исследователь ничего не может сказать о движении в целом. Такие формулы хороши только для расчетных работ. Мало того, далеко не для всех дифференциальных уравнений удается найти формульную запись решения. Так не попытаться ли извлечь все качественные сведения о движении прямо из самого дифференциального уравнения, минуя непроходимые порой трудности интегрирования?

До этого никому и в голову не приходила столь дерзкая мысль. У Пуанкаре она возникла, по-видимому, как необычный аспект идеи, высказанной в свое время Брио и Буке: судить о свойствах решения дифференциального уравнения непосредственно по самому уравнению. Он уже использовал этот подход во время поисков фуксовых функций, определив таким образом, что неизвестные функции Должны быть периодическими функциями особого рода. Теперь требовалось нечто иное: не решая дифференциального уравнения, только по его внешнему виду выяснить геометрию определяемого им пути движения, чтобы можно было предсказать его форму, найти выпуклость кривой в течение всего периода движения, установить область пространства, внутри которого движение происходит, распознать, периодично движение или нет. Что-то вроде графологии, которой так увлекался муж Алины, философ Эмиль Бутру, с той лишь существенной разницей, что в почерке черты характера человека проявляются случайным образом, в то время как в дифференциальном уравнении сконцентрирована вся первичная информация о движении тела. Этот искусный обходной маневр — вместо сложной, а то и просто невыполнимой операции интегрирования заполучить сразу общий вид кривой, представляющей решение дифференциального уравнения, — показывает, как совершенно по-новому умел Пуанкаре видеть классические задачи математики и механики, к каким весьма нетрадиционным проблемам умел он их сводить.

Математики уже знали, что поведение кривой, определяемой дифференциальным уравнением, будет различным в зависимости от того, рассматривается ли она в своей обычной, ничем не примечательной точке или в какой-то особой точке, в которой возможны некоторые аномалии. Через обычные точки кривая проходит плавно и монотонно, словно рельсовый путь. Особая точка уподобляется узловой станции, стрелке или тупику. Чтобы ознакомиться с железнодорожным маршрутом, достаточно простого перечисления встречающихся на пути следования станций и отходящих от основной магистрали веток. Точно так же, чтобы представить себе всю кривую в целом, нужно знать, как расположены ее особые точки и что происходит в этих точках с кривой. Тогда легко проследить весь непрерывный путь от одной особой точки к другой. Изучить кривую по определяющему ее дифференциальному уравнению означало прежде всего научиться извлекать из этого уравнения всю информацию об особых точках. С решения именно этой задачи и начал свои исследования Пуанкаре.

Еще в докторской диссертации и в одной из статей 1880 года он уделяет внимание особым точкам. Но только сейчас, в Париже, Пуанкаре по-настоящему глубоко исследует этот вопрос в серии работ, озаглавленных: «О кривых, определяемых дифференциальными уравнениями». Первый и второй мемуары вышли в декабре 1881 года и в августе 1882 года. В этих работах были заложены идеи и методы, составившие содержание нового раздела математики. Название ему дал сам Пуанкаре: качественные методы теории дифференциальных уравнений. До него этот кардинально новый подход никем даже не затрагивался.

Проанализировав множество особых точек различного рода, он приходит к заключению, что все они сводятся к четырем основным видам: седло, фокус, центр и узел. Это была первая классификация и первые названия, которые сохранились до наших дней. Различаются эти особые точки тем, как ведут себя кривые в их ближайшей окрестности. В точке, которая получила название «седло», две кривые, имеющие вид сломанных под углом прямых, соприкасаются как раз вершинами углов. Остальные кривые через эту точку не проходят, а, словно струи воды, плавно загибаются в углах, ограниченных прямыми линиями, как стенками. Зато в «узле» сходятся сразу все кривые, попадающие в его окрестность. На «фокус» кривая наматывается подобно спирали или же, наоборот, раскручивающейся спиралью выбегает из этой точки. От «центра» кривые расходятся изолированными замкнутыми кольцами, как круги на воде. «Я изучил затем распределение этих особых точек в плоскости, — пишет Пуанкаре о следующем этапе своей работы. — Я показал при этом, что они всегда существуют (на конечном или бесконечном расстоянии) и что всегда выполняется простое соотношение между числом седел, фокусов и центров…» Всевозможные варианты поведения кривых, представляющих решения дифференциальных уравнений, могли теперь быть проиграны без особых затруднений: либо кривые замкнутыми линиями охватывают центр, либо они неограниченными спиралями навиваются на фокус, либо бесконечно удаляющаяся в одну сторону кривая упирается другим своим концом в узел, либо же кривая, исходящая из узла или фокуса, заканчивается в другом узле или фокусе. Была еще одна возможность, для описания которой Пуанкаре пришлось ввести новое понятие — предельный цикл.

Так была названа им особая замкнутая кривая, представляющая одно из решений дифференциального уравнения. Все другие кривые, определяемые этим уравнением, проходя вблизи предельного цикла, наматываются на него либо изнутри, либо снаружи. Неограниченно приближаясь к нему, они тем не менее никогда его не пересекают и даже не соприкасаются с этой недосягаемой для них кривой. Новое понятие оказалось не менее важным, чем понятие особой точки. Если известен предельный цикл, можно быть твердо уверенным, что кривая навсегда останется либо внутри его, либо вне, поскольку перейти эту границу она не может, как бы близко к ней ни подходила, ото значит, что можно указать пределы перемещения тела — либо верхние, либо нижние. Доказав, что число предельных циклов всегда конечно, не считая некоторых исключительных случаев, Пуанкаре разработал способы их обнаружения и дал общий метод для определения их количества.

Перед математиками открылись новые, совершенно необычные возможности. Все богатство решений некоторых видов дифференциальных уравнений становилось наглядным и легкообозримым, словно своеобразный топографический план, на котором вместо возвышенностей и котловин обозначены узлы и фокусы, а вместо линий уровня нанесены предельные циклы. Даже не зная решения дифференциального уравнения, можно было теперь делать выводы о характере движения. Геометрия решения шла впереди его аналитического, формульного представления. Впереди или рядом, потому что оба метода исследования — аналитический и качественный — не подменяли, а дополняли друг друга. Своим открытием фуксовых функций Пуанкаре уже отдал дань старому, аналитическому методу исследования дифференциальных уравнений, обогатив и расширив его возможности. Теперь им был создан еще один метод — качественный, которому предстояло большое будущее.

Вслед за первыми двумя мемуарами, в которых развивалась качественная теория дифференциальных уравнений первого порядка, последовали два других — в 1885 и в 1886 годах, где Пуанкаре рассматривает уже более сложные дифференциальные уравнения второго порядка. В последующие десятилетия математики не раз дополняли и обобщали его результаты, начиная с работ норвежского ученого Бендиксона, который в 1901 году использовал в качественных исследованиях методы теории множеств. Но ничего существенно нового из основных принципов и идей добавлено не было, настолько полной и всеобъемлющей была качественная теория в трудах Пуанкаре. Исключение составила теория центров, изложенная в третьем мемуаре. Она была во многом перекрыта исследованиями русского математика А. М. Ляпунова, который благодаря своим фундаментальным работам по теории устойчивости считается наряду с Пуанкаре создателем качественной теории дифференциальных уравнений.

Загрузка...