В.В. Ильин
Статья в целом завершает общую тему по инженерному обустройству индивидуального сельского дома и участка. Предыдущие статьи — «Артезианская скважина на приусадебном участке» («Сделай сам», № 3, 1994), «Автономное водоснабжение и водяное отопление в сельском доме» (№ 3, 1995), «Канализационная сеть на приусадебном участке» (№ 3, 1996), «Электрификация сельского дома и участка» (№ 1, 1997), «Газификация сельского дома» (№ 3, 1997).
Природа возникновения атмосферного электричества такова: в зоне облаков в летнее время возникают мощные восходящие потоки с интенсивной конденсацией водяных паров в капли и образованием водяной пыли. В большинстве случаев нижняя часть грозового облака заряжается отрицательно, а поверхность земли — положительно. Так образуется гигантский конденсатор, обкладками которого служат грозовые облака и поверхность земли. При увеличении напряженности до критической величины образуется молния. Такая молния называется линейной. Линейная молния наиболее опасна при прямом ударе, который чаще всего направлен в более высокие предметы или в места с более высокой проводимостью: берега рек, места выхода ключей и т. д.
Наша страна простирается от берегов Балтийского моря до берегов Тихого океана и от берегов Ледовитого океана до берегов Черного моря. На этих пространствах располагаются семь климатических поясов: от Арктического пояса на севере до муссонного климата на Дальнем Востоке, в силу чего интенсивность грозовой деятельности различна.
Интенсивность грозовой деятельности характеризуется средним количеством грозовых часов в год. На карте, приведенной на рис. 1, нанесены области, грозовая деятельность в которых определена этим показателем. Ее изменения зависят от климатических факторов и рельефа. В северных областях (Мурманск, Новая Земля и др.) грозовая деятельность составляет не более 10 часов в год, а на Кавказе превышает 100 часов. Среднее число ударов в год на 1 км2 поверхности земли также зависит от интенсивности грозовой деятельности. В табл. 1 представлены средние числа ударов молнии в год на 1 км2 поверхности земли в зависимости от интенсивности грозовой деятельности в часах за год.
Рис. 1. Карта среднегодовой продолжительности гроз в часах на территории России и стран СНГ
Пример 1. Определить среднегодовую продолжительность гроз и среднее число ударов молнии в год на 1 км сельской застройки, расположенной в пригородах Орла.
Решение. По карте, представленной на рис. 1, находим г. Орел и по характеру штриховки определяем, что среднегодовая продолжительность гроз составляет от 60 до 80 часов. По табл. 1 среднегодовой продолжительности гроз от 60 до 80 часов соответствует среднее число ударов молнии, равное 9.
Используя значение среднего числа ударов молнии в год на 1 км2, можно определить вероятное число ударов в объект, не имеющий молниезащиты.
N = (S + 6∙Н)∙(L + 6∙Н)∙n∙10-6,
где:
N — вероятное число ударов молнии в год в объект, не имеющий молниезащиты;
n — среднее число ударов молнии в год на 1 км2 поверхности земли;
S — ширина-защищаемого здания, м;
L — длина защищаемого здания, м;
Н — наибольшая высота здания, м, включая антенны и трубы.
Пример 1а. Определить вероятное число ударов молнии в год в здание, длина которого L = 20 м, ширина S = 15 м, а высота Н = 12 м. Поселок находится в пригородах Орла. Необходимые данные использовать из предыдущего примера.
Решение. Из предыдущего примера используем число вероятных ударов молнии в год на 1 км2 поверхности земли n = 9.
N = (15 + 6∙12)∙(20 + 6∙12)∙9/1000000 = 0,072.
При прямом ударе молнии в здание или сооружение могут возникнуть пожары, взрывы, поражения людей. Аналогичные последствия происходят и от заноса высокого потенциала в здание, если удар молнии направлен в воздушные провода, металлические конструкции или коммуникации, соединяющие внутренние помещения здания с уличной стороной. Исходя из масштаба возможных разрушений и причиненного ущерба, вызванного попаданием молнии, здания и сооружения по устройству молниезащиты подразделяются на 3 категории. В первую категорию включены здания и сооружения, в которых имеются взрывоопасные зоны, относимые к классам В-I и B-II по правилам устройства электроустановок (ПУЭ-87). В них хранятся, или постоянно содержатся, или появляются во время производственного процесса смеси газов, паров или пыли горючих веществ с воздухом, способные взорваться от электрической искры.
Ко второй категории относят здания и сооружения, в которых имеются взрывоопасные зоны классов В-1a, В-1б и В-IIа со гласно ПУЭ-87. В таких сооружениях опасные смеси появляются лишь при авариях и неисправностях в технологическом процессе. К этой категории принадлежат открытые склады с легковоспламеняющимися жидкостями, сливно-наливные эстакады и др.
К третьей категории относят пожароопасные помещения классов П-I (например, склад минеральных масел), П-II (помещения, в которых выделяется горючая пыль, находящаяся во взвешенном состоянии), П-IIа (помещения, в которых содержатся волокнистые и твердые горючие вещества, без признаков П-II). П — означает пожароопасные помещения
Что касается жилых и общественных зданий, принятых в сельском строительстве, то к III категории относят общественные здания III, IV и V степени огнестойкости следующего назначения: детские сады и ясли, школы, школы-интернаты, спальные корпуса и столовые санаториев, пионерских лагерей, лечебные корпуса больниц, клубы, кинотеатры.
Здания III степени огнестойкости — это каменные здания с деревянными перекрытиями, защищенными штукатуркой, и деревянными чердачными перекрытиями, подвергнутыми огнезащитной обработке.
Здания IV степени огнестойкости — это деревянные здания, защищенные от огня штукатуркой. Чердачные перекрытия выполнены из древесины, подвергнутой огнезащитной обработке.
Здания V степени огнестойкости — это деревянные здания, к конструкциям которых не предъявляются требования по огнестойкости.
Жилая застройка сельских мест, находящаяся на правах личной собственности (хотя и не входит ни в одну из названных категорий), должна также быть отнесена к III категории.
Решение вопроса о молниезащите зависит от целого ряда местных условий. Молнии поражают в первую очередь высокие предметы и места с более высокой электрической проводимостью. Деревья, высота которых превышает высоту строения в два, два с половиной раза, оказывают экранирующее действие. Существенное значение имеет и электрическая проводимость грунтов, на которых возведено строение. Постройки, расположенные вблизи водоемов или выхода ключей, в большей степени подвержены прямым ударам молнии. Владельцу сельского дома, проживающему в районе с числом грозовых часов более 40, необходимо принять решение о сооружения молниезащиты.
Молниезащитные устройства можно устанавливать на крышах домов или на земле. Крыши в сельских домах, как правило, покрывают шифером или металлом. Значительно реже встречаются крыши, покрытые дранкой, тесом или соломой. Наиболее распространенными являются крыши, покрытые шифером. В последнем случае молниезащитное устройство целесообразно устанавливать на земле.
Металлическая крыша может быть использована как молниеприемник в сооружаемой молниезащите. Мы рассмотрим два варианта молниезащиты: одиночного стержневого как универсального и с использованием металлической крыши строения в качестве молниеприемника.
В состав построек на приусадебном участке, кроме жилого дома, входят гараж и сараи для хранения сена и кормов. В связи с развитием фермерских хозяйств объемы этих помещений возрастают и в дальнейшем будут возрастать, в силу чего необходимо определить, какой категории молниезащиты они требуют.
Правилами пожарной безопасности в Российской Федерации (ППБ-01-93) в гаражах для хранения транспортных средств воспрещается проводить ремонтные работы с использованием бензина, керосина, дизельного топлива и других растворителей для промывки деталей, а также окраску, сварку и любые работы, связанные с открытым огнем. В гаражах разрешается хранение 20 литров топлива и 5 литров масла.
Но специфика работы сельского труженика заключается в том, что половину года он работает в поле или на огороде, а половину года он ремонтирует технику или занимается строительством. Гараж с наступлением холодов и окончанием полевых работ превращается в ремонтную мастерскую, в которой производят не только разрешенные ремонтные работы, но все работы, которые необходимы. Гараж, как правило, приспосабливают для проведения ремонтных работ — в нем оборудуют смотровую яму, подвешивают таль, устанавливают компрессор и т. д. Запас топлива и масел хранится, как правило, под навесом в бочках у гаража или в гараже.
В период полевых работ техника работает в напряженном режиме, и ее поломки неизбежны. Ремонт техники производят в гараже. Этот период совпадает с периодом интенсивной грозовой деятельности, и гараж должен быть отнесен ко II категории по устройству молниезащиты, так как в гараже возможно образование взрывоопасной смеси в результате аварии или неисправности (например, случайно опрокинули таз, в котором промывались детали в бензине, и т д.).
Правилами устройства электроустановок (ПУЭ) складское помещение, в котором хранятся твердые и волокнистые горючие вещества, относится к классу П-На. К пожароопасным помещениям класса П-IIa необходимо и отнести сараи, в которых в течение летнего и осеннего периода сосредоточивается зимний запас кормов для скота (сена, комбикормов, ячменя и т. д.). Эти строения по устройству молниезащиты должны быть отнесены к III категории. На рис. 2 изображен единичный стержневой молниеотвод, состоящий из молниеприемника, молниеотвода и заземлителя. Эти элементы присущи любой конструкции молниеотвода.
Степень защищенности от прямых ударов молнии определяется размерами зоны защиты.
Так, зона защиты типа «А» обладает меньшими размерами, но обеспечивает степень надежности 99,5 %, в то время как зона «Б», обладая большими размерами, обеспечивает степень надежности только на 95 % Размеры зоны защиты, образуемые молниеотводами, определяются формулами:
Для расчета молниезащиты построек на приусадебном участке с помощью одиночного молниеотвода ниже приведена таблица основных его параметров, вычисленных по приведенным формулам.
Рис. 2. Единичный стержневой молниеотвод:
1 — молниеприемник; 2 — молниеотвод; 3 — заземлитель
Здания II категории, к которым относится и гараж, если в нем производятся ремонтные работы, не предусмотренные правилами пожарной безопасности, должны быть защищены от прямых ударов молнии и заноса высоких потенциалов по коммуникациям.
Имеется обобщенный показатель — среднее число ударов молнии в год (n) на 1 км2 поверхности земли, зависящий от интенсивности грозовой деятельности (табл. 1).
Используя значения п, можно определить вероятное число ударов молнии в год N в конкретное здание и сооружение, не имеющее молниезащиты. И в зависимости от величины N и огнестойкости строения произвести выбор типа молниезащиты.
Для строения III, IV и V степени огнестойкости при N > 2 — защита типа «А», а при N < 2 — типа «Б».
Пример 2. На рис. 3 представлена часть плана приусадебного участка, на котором нанесено два строения, одно из которых — жилой дом, совмещенный с хозяйственными службами (в постройках старого типа именуемый «двором»), где содержатся куры, скотина, а также хранятся сухие корма, сено и дрова — строение 1.
Рис. 3. Определение типа защитной зоны и параметров для графического расчета стержневого молниеотвода
Другим строением является жилой дом — строение 2. Дома деревянные V степени огнестойкости. Размеры домов и их взаимное расположение представлены на рис. 3. Застройка — Курская область.
Требуется определить место расположения и высоту одиночного стержневого молниеотвода, обеспечивающих защиту этих строений.
Решение. Строение 1 относится к III категории. Тип зоны защиты зависит от показателя N.
По карте рис. 1 определяем среднегодовую продолжительность гроз в Курской области, которая составляет от 80 до 100 час. По табл. 1 определяем среднее число ударов молнии в год на 1 км2 поверхности земли, которое равно 12. Расчетные данные по строению 1 следующие:
n = 12, S = 8 м, L = 11 м, Н = 7 м (Н, S и L взяты из рис. 3).
N = (8 + 6∙7)∙(11 + 6∙7)∙12/1000000 = 50∙52∙12/1000000 = 0,03.
Следовательно, принимается защитная зона типа «Б».
Для строения 2 такого расчета производить не требуется, так как в строении отсутствуют пожароопасные помещения.
Для строения 2, как для жилого дома, принимается защитная зона типа «Б». Выбираем место для возведения молниеотвода. Оно должно удовлетворять следующим требованиям: при минимальной высоте молниеотвода в зоне его защиты должно находиться максимальное число приусадебных построек, место расположения молниеотвода должно быть труднодоступным (например, защищено посадкой кустарников и находиться от строения не ближе 5 метров) В том случае если молниеотвод или какая-либо деталь молниеотвода (например, оттяжка) будет находиться ближе 5 метров от зданий III, IV и V степени огнестойкости, необходимо напротив нее на здании проложить токоотвод и присоединить его под землей к заземлителю.
Для выбора места возведения молниеотвода целесообразно вычертить в масштабе план участка (подобно рис. 3), на котором будут указаны размеры зданий, в том числе и их высота, с учетом выступающих над крышей дымовых труб и антенн.
Место возведения молниеотвода определяется методом проб. Для этого необходимо проработать не менее трех вариантов и выбрать из них лучший — имеющий минимальную высоту при максимальной защите приусадебных построек.
Для иллюстрации расчетов, связанных с выбором места возведения молниеотвода и определением его высоты, продолжим решение примера 2.
На рис. 3 показано расположение молниеотвода по отношению к строениям 1 и 2.
Наиболее высокой и наиболее удаленной от молниеотвода точкой строения 1 является точка А, принадлежащая антенне. Ее высота составляет Н = 7,0 м, при удалении от молниеотвода на L = 16,0 м. Наиболее высокой и наиболее удаленной от молниеотвода точкой строения 2, также принадлежащей антенне, является точка Б. Ее высота составляет Н = 10,6 м при удалении от молниеотвода на расстояние L = 12 м. Как было сказано выше, единичный молниествол образует зону защиты в виде конуса, за пределы которого части строения не должны выступать. По мере увеличения высоты молниеотвода размеры конуса увеличиваются и задача определения высоты молниеотвода — это подобрать такие размеры защитного конуса, при которых даже самые высокие и удаленные точки строения не выходили бы за его пределы.
Учитывая, что размеры молниеотвода будут получены путем графических построений, точность которых зависит от масштаба и качества чертежа, наиболее целесообразно его выполнять на миллиметровой бумаге (миллиметровке) в масштабе не менее 1 метр натуры в 1 сантиметре чертежа.
Чертеж необходимо начать с построения графика параметров молниеотводов в соответствии с табл. 2, для чего по горизонтальной оси в выбранном масштабе отложить значения R0, а по вертикальной — Н0.
Отложенные точки попарно соединить прямыми линиями, как это показано на рис. 4. В том же масштабе отложить координаты точек А и Б. Определить размеры R0 и Н0 конуса, за пределы которого точки А и Б не выходят. По величине Н0 (по табл.2) определить Н. Точки А и Б находятся внутри конуса, Н0 которого равно 18,4 м, что соответствует полной высоте молниеотвода по табл. 2 (Н = 20 м).
Рис. 4.. Графическое определение высоты единичного стержневого молниеотвода
В строениях с металлической крышей она же является и молниеприемником, поэтому соединена с заземлителем. Этот вид молниезащиты, как правило, рассчитан на защиту конкретного строения. Заземляющее устройство не зависит от формы и размеров молниеприемника, и при расчете первого в случае использования металлической крыши в качестве молниеприемника можно воспользоваться сведениями, приведенные выше (одиночный стержневой молниеотвод).
Прежде чем приступить к расчету заземляющего устройства с достаточно малым сопротивлением, необходимо ознакомиться со свойствами земли и условиями, при которых между электродами заземления и землей может образоваться электрическое соединение с малым переходным сопротивлением. Электрофизические свойства земли, в которых находится заземлитель, определяются ее удельным сопротивлением р. За удельное сопротивление земли принимается сопротивление земли между противоположными плоскостями куба с ребрами в 1 м.
Как было сказано, наша страна располагается в семи климатических поясах, температура и влажность в которых разнятся в широких пределах. Для проектирования жилых зданий территория России по физико-географическим признакам разделяется на четыре района. На рис. 5 представлена карта России (со странами СНГ), на которой обозначены границы этих районов. Однако свойства земли (грунта) со сменой времен года будут меняться даже в пределах одного района. При расчетах этот факт учитывается в сезонном коэффициенте Кс.
Рис. 5. Карта схематического районирования территории России и стран СНГ по физико-географическим признакам
Удельное сопротивление грунта измеряется при средней влажности и положительной температуре в Ом∙метрах или Ом∙сантиметрах (1 Ом∙метр = 100 Ом∙сантиметрам).
Сезонный коэффициент Кс всегда больше единицы и призван компенсировать сезонное увеличение удельного сопротивления грунта.
Удельные сопротивления грунтов р и значения сезонных коэффициентов Кс приведены в таблицах 3 и 4.
Приведенные в таблице 3 данные относятся к грунтам, влажность которых — 10–20 % к их весу. Но грунт не однороден. Верхняя часть грунта на глубину около метра более подвержена намоканию, высыханию и промораживанию, что значительно изменяет удельное сопротивление верхней части грунта. Слои грунта, лежащие ниже уровня промерзания, имеют более стабильные показатели по влажности и температуре. Заземлители могут быть выполнены в виде вертикальных электродов или электродов в виде горизонтальных полос. Для того чтобы расположить электроды в более влажных и непромерзающих слоях грунта, их заглубляют так, чтобы верхняя часть вертикальных электродов находилась на глубине 0,7–1,0 м, а горизонтальные — полностью находились на этой глубине.
Верхний пахотный слой земли на приусадебном участке — это одна из самых больших ценностей крестьянского двора. Слой чернозема наращивается трудом нескольких поколений и именно слой чернозема имеет решающее значение в получении урожая. Раскрытие и прокладка коммуникаций в крестьянском дворе, как правило, производится под дорогами, так как рытье канав связано с перемешиванием грунта, а следовательно, и потерей плодородного слоя. Заземлители молниеотводов, во избежание шагового поражения людей, должны располагаться в стороне от пешеходных дорожек, а следовательно на земле, которая может быть использована для выращивания различных культур, в силу чего разрытие должно быть минимальным. Этим требованиям удовлетворяет заземляющее устройство с вертикальными заземлителями.
Основной электрической характеристикой заземлителя является сопротивление растеканию тока. Предположим, что в земле находится электрод и через него происходит замыкание на землю (рис. 6).
Рис. 6. Растекание тока от единичного электрода заземлителя
Вокруг электрода образуется электрическое поле и зона повышенных потенциалов, которые по мере удаления от электрода уменьшаются и на расстоянии 20 м становятся близкими к 0. Это явление называется растеканием тока. В зоне растекания тока находиться опасно. Как показано на рис. 6, передние ноги лошади находятся ближе к заземлителю в зоне потенциала V2, а задние ноги — под потенциалом V1. Лошадь в данном случае является сопротивлением, к которому приложена разность потенциалов V2 — V1. В результате по лошади (через передние ноги, тело лошади и задние ноги) будет протекать ток, сила которого равна J = (V2 — V1)/R лошади, что может вызвать поражение электрическим током, называемое напряжением шага.
Зная величину удельного сопротивления грунта и длину электродов, можно, пользуясь приближенной формулой из таблицы 5, определить сопротивление растеканию одиночного электрода.
Искусственные заземлители, как правило, состоят из нескольких электродов, соединенных между собой проводниками. В том случае, если исключить их взаимное влияние друг на друга, расстояние между ними в заземлении должно быть не менее 25 м. Чем ближе находятся электроды один от другого, тем в большей степени сказывается их взаимное влияние. Для учета взаимного влияния электродов устанавливается коэффициент использования заземлителей η).
В таблице 6 приведены коэффициенты использования вертикальных электродов, размещенных в ряд.
* а — расстояние между электродами в м;
l — длина электрода в м.
Сопротивление заземлителей при растекании тока молнии называется импульсным, и его определяют по формуле
Rи = R∙аи,
где:
R — сопротивление заземлителей при низкой частоте и малых плотностях токов на поверхности — при токах промышленной частоты;
аи — импульсный коэффициент;
Rи — сопротивление заземлителей при растекании тока молнии — импульсное сопротивление.
Импульсное сопротивление непосредственному измерению не поддается, поэтому его оценивают косвенно по сопротивлению при промышленной частоте Rи и импульсному коэффициенту аи. Но импульсный коэффициент аи зависит от удельного сопротивления земли. Он тем меньше, чем больше удельное сопротивление грунта. Значение импульсного коэффициента аи в зависимости от удельного сопротивления грунта при вертикальных электродах представлено в таблице 7.
Связь между сопротивлениями при импульсе и промышленной (низкой) частоте представлена в таблице 8.
Пример 3. Необходимо определить величину сопротивления заземлителей на промышленной частоте для присоединения к нему импульсного заземлителя с сопротивлением 40 Ом ргр. = 500 Ом м.
Решение. Импульсному заземлителю величиной 40 Ом соответствует заземлитель, рассчитанный по переменному току, сопротивление которого равно 60 Ом. В качестве технических способов электрозащиты в сельском доме применяются зануление и молниезащита. В ряде случаев требуется повторное заземление нулевого провода. Его необходимо выполнять на концах воздушных линий или ответвлениях длиной более 200 м, а также на вводах в здания, установки которых подлежат заземлению. Сопротивление каждого из повторных заземлителей на линиях 380/220 В — 30 Ом.
От прямых ударов молнии здания и сооружения II категории защищают заземлителями с импульсным сопротивлением не более 10 Ом, а в грунтах с удельным сопротивлением 500 Ом∙м и выше — с сопротивлением не более 40 Ом.
От прямых ударов молнии здания и сооружения III категории защищают заземлителями с импульсным сопротивлением не более 20 Ом, а в грунтах с удельным сопротивлением 500 Ом∙м и выше допускается не более 40 Ом. Для защиты ферм крупного рогатого скота и конюшен сопротивление не должно превышать 10 Ом.
Заноса высокого потенциала в здания и сооружения II категории можно избежать при применении кабельного ввода или кабельной вставки длиной не менее 50 м, а внешние наземные металлические коммуникации на вводе необходимо присоединить к грозозащитному или повторному заземлению.
Защиту зданий III категории от заноса высоких потенциалов по линиям электросети можно осуществить с помощью мер, предусмотренных для зданий II категории или благодаря присоединению к защитному заземлению внешних металлических коммуникаций на вводе, включая штыри и крюки изоляторов (рис. 7).
Рис. 7. Заземление крюков изоляторов
Пример 4. Определить количество электродов заземлителя, изготовленных из стали диаметром 12 мм, длиной 5 м. В заземлителе электроды расположены в ряд с расстоянием 5 м и соединены между собой стальным прутком диаметром 12 мм.
Приусадебный участок расположен под Москвой. Грунт участка — песок с удельным сопротивлением 750 Ом∙м (ргр. = 750 Ом∙м.).
Решение. На участке расположены строения, относящиеся по классификации зданий и сооружений по устройству молниезащиты к зданиям III категории. Импульсное сопротивление заземлителя не должно превышать 20 Ом, а в грунтах с удельным сопротивлением 500 Ом∙м и выше — не более 40 Ом.
По таблице 8 методом интерполяции устанавливаем, что импульсному сопротивлению в 40 Ом при удельном сопротивлении грунта ргр. = 750 Ом м соответствует сопротивление заземления, равное 70 Ом (R = 70 Ом). Определим значение удельного сопротивления грунта с учетом сезонного коэффициента Кс (см. табл. 4). По карте схематического районирования страны (рис. 5) определяем, что земли Подмосковья относятся ко второму климатическому району, сезонный коэффициент которого для электродов длиной 6 м равен 1,25.
Ррас. = ргр.∙Кс = 1,25∙750 = 937 Ом∙м.
Пользуясь приближенной формулой, приведенной в табл. 5, определяем сопротивление одиночного электрода:
rэ ~= Ррас./l = 937/5 = 187,4 Ом,
где l — длина электрода.
При расположении электродов в один ряд с расстоянием между ними 5 м, отношение расстояния между электродами к длине электрода равно l (а/l = l). Предварительно определяем число электродов в заземлителе, равное 3, и по табл. 6 определяем коэффициент использования η), который принимаем равным 0,8. Это означает, что действительное сопротивление одного электрода в заземлителе из трех стержней вследствие их взаимного влияния будет равно:
rэ = r/η = 187,4/0.8 = 233,75 Ом,
а число электродов nэ:
nэ = 233,75/70 = 3,34 шт.
Устанавливаем, что заземляющее устройство состоит из трех электродов, связанных между собой металлическим прутком, диаметр которого 12 мм и длина 10 м, заглубленных в грунт на 0,7–1,0 м. С этого прутка также будет происходить растекание тока, что дает нам право уменьшить количество электродов с 3,34 до 3,0 штук.
Молниезащита сельской индивидуальной малоэтажной застройки в соответствии с широко распространенным опытом должна осуществляться при помощи молниеприемников на крышах домов или на высоких деревьях, высота которых в 2–2,5 раза выше домов застройки. Эти рекомендации исходят из того, что сооружение предлагаемых молниеотводов не потребует значительных материальных затрат, при этом забывая, что кровля стоит больших денег и требует бережного к ней отношения, а установка молниеприемников на деревьях на высоте 15–20 м не может быть рекомендована по соображениям техники безопасности.
Подавляющее большинство строений в сельской местности покрыты шифером, дранкой или соломой, не допускающими без опасности их повреждения установки молниезищитных устройств. И только строения, покрытые металлом, могут быть оборудованы такими молниеприемниками.
В качестве универсального молниезащитного устройства может быть предложен одиночный стержневой молниеотвод с заземляющим устройством, представленный на рис. 2.
Преимуществом одиночного стержневого молниеотвода является его универсальность, возможность путем выбора соответствующего места защитить значительные площади с несколькими строениями, а также долговечность, простота обслуживания и т. д.
Цель нашей статьи — не только ознакомить читателей с методикой расчета молниеотводов, но и предложить конструкцию, на основе которой можно спроектировать и построить молниеотвод меньшей высоты. Для изготовления молниеотвода могут быть использованы бывшие в употреблении трубы, швеллеры и уголки.
Изготовление молниеотвода доступно тем, кто способен выполнять простейшие слесарные работы: резку металла, в том числе и абразивным кругом, сверление, опиловку и т. п. Сварочные работы должны выполняться сварщиком или тем, кто имеет опыт сварочных работ. Подъем мачты рассчитан на то, что эта операция будет производиться без использования специальных машин силами 3–4 человек. Как следует из рис. 2, молниеприемник и молниеотвод должны крепиться на мачте, высота которой зависит от размеров зоны защиты молниеотвода.
На рис. 8 представлена конструкция молниеотводов, выполненная из металла, в силу чего она может быть использована и как молниеприемник и как молниеотвод.
Представленный молниеотвод состоит из узлов мачты и основания, соединенных между собой осью. На оси узел мачты, находящийся при изготовлении в горизонтальном положении, поворачивают и устанавливают в вертикальное положение. Такая конструкция позволяет избежать работ на высоте и дает возможность производить осмотр, окраску и ремонт мачты в более удобном горизонтальном (опущенном) положении.
Для предотвращения раскачивания мачты под действием ветров ее укрепляют с помощью трех растяжек.
Узел мачты представляет собой платформу, к которой приваривают мачту, состоящую из 5 труб (рис. 8, дет. 1–5), соединенных сваркой. Узел основания состоит из платформы, аналогичной платформе узла мачты, но сваренной в зеркальном отражении (то есть полки однозначных деталей должны быть обращены навстречу друг другу), как это показано на рис. 8.
Рис. 8. Конструкция металлического одиночного молниеотвода (номер, название, сортамент, размеры и количество заготовок).
Узел мачты:
1 — труба Ду20, L = 3,15 м, кол. 1 шт.; 2 — труба Ду25, L = 3,15 м, кол. 1 шт.; 3 — труба Ду32, L = 4,15 м, кол. 1 шт.; 4 — труба Ду40, L = 5,15 м, кол. 1 шт.; 5 — труба Ду50, L = 5,00 м, кол. 1 шт.; 6 и 16 — швеллер № 12, L = 600 мм, кол. 2 шт.; 7 и 17 — швеллер № 12, L = 240 мм, кол. 4 шт.; 8 — косынка, лист толщ. 4 мм, треуг. 800x200 мм, кол. 3 шт.; 9 — полупетля: уголок 50x50 мм, L = 170 мм, кол. 2 шт.; 10 — болты М12, кол. 6 шт.; 11 — прокладки, лист толщ. 1 мм, кол. 6 шт.; 12 — ось, круг (16 мм, L = 700 мм, кол. 1 шт.; 13 — угольник стопорящий, уголок 50x50, L = 220 мм, кол. 1 шт.; 14 — болты М12, кол. 2 шт.; 15 — прокладки, лист толщ. 1 мм, кол. 6 шт.
Неподвижный узел:
18 — кронштейн, уголок 50x50 мм, L = 180 мм, кол. 2 шт.; 19 — полупетля, уголок 50x50 мм, L = 180 мм, кол. 2 шт.; 20 — нога, труба Ду100, длина определяется расчетом, кол. 3 шт.; 21 — пластина, лист толщ. 4 мм, 250x250 мм, кол, 3 шт.; 22 — технологическая мачта, труба Ду50, L = 4500 мм, кол. 1 шт.; 23 — стремянка, круг Ф12, L = 210 мм, кол. 2 шт.; 24 — растяжка, кол. 3 шт.; 25 — труба Ду32, L = 120 мм, кол. 1 шт.; 26 — звенья цепи, кол. 3 шт.; 27 — пластина, кол. 1 шт.; 28 — упоры, кол. 3 шт.; 29 — фигурная шайба, кол. 3 шт.; 30 — швеллеры якоря (швеллер № 12, L=1500 мм, кол. 4 шт.; L = 600 мм, кол. 4 шт.)
К платформе с нижней стороны приваривают три ноги, к нижней части которых также приваривают пластины. Длина ног зависит от глубины промерзания почвы и вычисляется по формулам, приведенным на рис. 11. Угольник 13 служит для стопорения поднятой мачты. Стопорение производят с помощью двух болтов M12, стягивающих угольник 13 с дет. 18, принадлежащей узлу основания.
Для регулировки положения мачты в поднятом состоянии предусматриваются прокладки. Под каждой из полупетель 9 и под болтами угольника 13 устанавливают пакет прокладок толщиной 3 мм. Форма прокладок должна обеспечивать возможность их удаления без снятия полупетель 9 и угольника 13.
Примерная форма прокладок представлена на рис. 8, дет. 11 и 15
После изготовления деталей молниеотвода необходимо произвести сборку узла мачты и узла основания. Сборку узла мачты начинают со сборки самой мачты.
Последнее звено мачты (дет. 5) изготовлено из газоводопроводной трубы Ду50 (2") с внутренним диаметром 53 мм. В нее должна вставляться дет. 4 — труба Ду40 (11/2") с наружным диаметром 48 мм. Зазор между трубами составляет 5 мм или 2,5 мм на сторону. Для центрирования труб необходимо к концу трубы дет. 4 прихватить сваркой четыре предварительно подогнутые пластины толщиной 2,5 мм, длиной 150 мм, разведенные между собой на равные расстояния. После опиловки (если в этом возникнет потребность) вставить обработанный конец трубы 4 в трубу 5 на глубину 150 мм. На ровной достаточно твердой площадке (например, дорожке) уложить соединенные трубы дет. 4 и дет. 5 и с помощью подкладок выставить их в горизонт, после чего сделать первую прихватку Повернув трубы на 180°, вновь выставив их в горизонт, делаем вторую прихватку. Повторяем операцию, повернув сваренные трубы на 90°.
Производим проверку — трубы, повернутые под любым углом, должны сохранять параллельность. Убедившись, что сваренные трубы соосны, окончательно обвариваем стык. Через ранее просверленные в трубе дет. 5 четыре отверстия диаметром 10 мм, расположенные в 120 мм от свариваемого стыка, сварить дет. 4 и 5, как это показано на рис. 8. Отличительной особенностью соединения дет. 4 с дет. 3 является то, что наружный диаметр дет. 3, равный 42,3 мм, будет больше внутреннего диаметра трубы дет. 4 — 41 мм. Излишний металл с дет. 3 удаляют при помощи напильника. Соединение дет. 3 и 2 проводят аналогично соединениюдет. 4 и дет. 5, а соединение дет. 1 и 2 должно производиться без предварительной обработки. На этом сборку мачты заканчивают. Собранную мачту необходимо уложить на козлы с опорой на диаметры 2" и 11/2", как это показано на рис. 9–1.
Рис. 9. Этапы сборки молниеотвода
Следующим этапом работы является изготовление платформ узлов мачты и основания. Платформы сварены из деталей 6 и 7, 16 и 17. На верхнюю часть платформы узла мачты в дальнейшем приваривают мачту, в силу чего сваренные детали должны образовать правильную плоскость. Детали платформы целесообразно сваривать на плоском металлическом листе. Во избежание сварочных деформаций детали 6 и 7 должны быть предварительно прихвачены с обеих сторон, в случае необходимости отрихтованы и только после этого обварены.
Для сборки платформ узлов мачт и основания необходимо платформу узла основания установить на верстак, затем размешают прокладки толщиной 3–4 мм и далее — платформу узла мачты. Потом собираем на болтах детали, образующие узел поворота и стопорения платформ (рис. 8, дет. 9-15 и 18, 19). Проверяем возможность поворота и стопорения платформ узлов мачты и основания, после чего детали, закрепленные болтами на платформах, обвариваем. Для окончательной сборки к платформе узла основания приваривают ноги, к которым ранее были приварены пластины (рис. 8, дет. 20 и 21).
Для того чтобы мачта стояла строго вертикально, необходимо, чтобы верхняя плоскость платформы узла мачты, присоединенная к платформе узла основания и застопоренная болтами дет. 14, после установки и бетонирования должна быть в строго горизонтальном положении. Глубина котлована под установку узла основания зависит от глубины промерзания грунта. Формулы для определения глубины котлована представлены на рис. 11.
Рис. 11. Определение глубины котлована под фундамент и определение длины ног
Для установки узла основания необходимо выкопать котлован, глубина которого должна быть больше глубины промерзания.
Это необходимо для того, чтобы во время замерзания и оттаивания грунта пучение не могло изменить вертикального положения мачты. В том случае, если грунты не подвергаются пучению (например, в случае во доненасышенных песчаных грунтов), глубина ямы может быть уменьшена до 1000 мм. Дно ямы должно иметь диаметр не менее 700 мм. На дно ямы укладывают слой бетона толщиной 150 мм. По истечении двух суток устанавливают узел основания в сборе с платформой узла мачты, размещают с помощью подкладок под ноги верхнюю плоскость платформы узла мачты в горизонт и фиксируют раствором положение узла основания, оставив в таком положении еще на трое суток. По истечении этого срока проверяют положение верхней плоскости платформы подвижного узла. Если оно не изменилось, заливают второй слой бетона толщиной 150 мм.
Такая фундаментальная заделка ног необходима для того, чтобы предотвратить возможность «выталкивания» ног, которое возможно даже в песчаных грунтах, так как вес всей конструкции не превышает 160 кг. По истечении 7–8 дней часть конструкции узла основания, выступающая над бетонной заливкой, должна быть покрыта двумя слоями битумной мастики, и после ее высыхания яму заполняют грунтом с утрамбовкой и сооружением отмостки, как это показано на рис. 10—III.
Рис. 10. Подъем и закрепление молниеотвода
Приварка мачты к платформе является одной из наиболее ответственных операций, исправление которой практически невозможно.
К платформе (в месте приварки мачты) необходимо приварить муфту Ду-50. Приваренная муфта может обеспечить только положение мачты и ее удержание, но не обеспечивает ее перпендикулярность по отношению к платформе. Для обеспечения перпендикулярности необходимо, чтобы прямой уголок привариваемых косынок был проверен по слесарному угольнику и в случае необходимости доработан.
На мачту, уложенную на козлы, наворачивают платформу, мачту выставляют в горизонт, в угольнике освобождают место под приваренную муфту и закрепляют его на прихватках. Уровнем проверяют перпендикулярность платформы и мачты. Мачту с прихваченной платформой поворачивают на 180° и, убедившись, что перпендикулярность не нарушена, делают прихватку. Аналогичным образом устанавливают остальные косынки, после чего весь узел обваривают (рис. 9–1, 9–2, 9–3).
Для соединения на петле узлов мачты и основания необходимо узел мачты подвесить на гаражной лебедке, как это показано на рис. 9–4, совместить отверстия и вставить ось (рис. 8, дет. 12).
Для подъема мачты необходима дополнительная съемная монтажная мачта. В качестве монтажной мачты используется труба Ду-50 (рис. 8, дет. 22). Длина выступающей части мачты за габариты платформы равна 4 м. Монтажную мачту к платформе крепят двумя стремянками (рис. 8, дет. 23), изготовленными из круглой стали диаметром 10 мм.
Монтаж одиночного стержневого молниеотвода содержит следующие технологические операции: подвешивание растяжек, подъем мачты и фиксирование ее в вертикальном положении, закрепление растяжек на якорях, натяжение растяжек и присоединение токоподвода от заземлителя к узлу мачты.
Верхние концы растяжек (рис. 8, дет. 24) крепят к кольцу с крючками, состоящему из трубы Ду-32 (дет. 25) с приваренными к ней тремя звеньями цепи, у которых срезаны с одной стороны закругленные части (дет. 26). Для предотвращения разгиба приваренных звеньев, сверху накладывают пластину (дет. 27), положение которой фиксируют тремя упорами (дет. 28).
К нижним концам растяжек приваривают шпильки с резьбой M12. Длина нарезанной части шпилек равна 150–200 мм. Шпильки пропускают через отверстия в швеллерах якоря (дет. 30). Для предотвращения деформации шпилек под гайку подкладывают фигурные шайбы, изготовленные из трубы Ду-15 (дет. 29).
Якорь состоит из швеллера (дет. 30) любого номера, но желательно не менее № 10, и приваренной к нему поперечины того же профиля, длина которой 0,6–0,8 м. Для установки якоря необходимо отрыть котлован на глубину 0,5 м, забить швеллер, как это показано на рис. 8, после чего засыпать котлован грунтом с утрамбовкой последнего.
Вес растяжек при определении сил, действующих во время подъема, не учитывался ввиду его малой величины.
По окончании подъема и установки мачты в строго вертикальном положении, растяжки присоединяют к якорям и натягивают. Натяжение растяжек должно быть одновременным и равномерным, о чем можно судить по величине провиса каждой из них. В окончательном виде растяжки должны иметь небольшой, но одинаковый провис, что свидетельствует о равномерности натяга.
Подъем мачты производят с помощью лебедки, установленной в 15 м от молниеотвода и закрепленной на якоре, как это показано на рис. 10. Конструкция якоря с исполнительными размерами представлена на рис. 10-1. Учитывая, что якорь может быть использован в дальнейшем, например, при прокрашивании мачты, которое должно проводиться один раз в 3–5 лет, его сохраняют столько времени, сколько будет эксплуатироваться молниеотвод. Поэтому якорь нужно сооружать из металла, окрашивать битумной мастикой, что позволяет ему длительное время не терять прочности. Предлагаемая конструкция якоря этим требованиям отвечает.
Общая длина гибкой связи между лебедкой и мачтой составляет около 26 м, из которых во время подъема на барабан лебедки будет наматываться только 8 м троса. Из этого следует, что могут быть использованы строительные лебедки или ручные червячные детали, рассчитанные на высоту подъема 9 или 12 м. Из рис. 10 видно, что часть гибкой связи может быть выполнена не тросом, а звеном из проволоки, которое будет постоянно закреплено на мачте. При вертикальном положении мачты, нижнее кольцо звена будет находиться в двух метрах от земли, что облегчит отсоединение и присоединение троса.
Звено из проволоки представлено на рис. 10-V и 10-VI.
Можно использовать любой стальной трос, диаметр которого не менее 8 мм. Петли на тросе образуют с помощью зажимов, представленных на рис. 10-IV.
Количество зажимов при образовании петли должно быть не менее трех. Перед подъемом мачту устанавливают в наклонном положении, для чего необходимо на расстоянии 8 м от петли установить козел высотой в 1,75 м. В этом положении мачта будет находиться под углом 10° к горизонту.
Для определения правильности выбора параметров силовых элементов конструкции (троса, лебедки, оси, петель и др.) необходимо знать величины сил, действующих на эти элемента конструкции во время подъема мачты. С этой целью на рис. 10 представлено два положения мачты: в первоначальный момент подъема, когда мачта наклонена к горизонту под углом 10°, и в последующий, когда мачта поднята к горизонту под углом в 60°.
Сила натяжения троса Т будет распределяться на силу, действующую вдоль мачты М, и силу П, поднимающую мачту (направлена перпендикулярно к мачте).
Указанные силы, а также сила веса отдельных элементов конструкции, измеряются килограммами. Для определения этих сил произведем следующие вычисления.
Мачта состоит из пяти труб (рис. 8, дет. 1–5), каждая из которых имеет свой вес. Определим вес каждой детали мачты В таблице 9 в колонках 2, 3, 4 и 5 представлен подсчет веса каждой детали, входящей в мачту. Длина каждой детали мачты указана на рис. 8, а вес одного погонного метра взят из справочников.
Промышленность выпускает трубы с различной толщиной стенки, рассчитанной на работу под разным давлением: легкие, обыкновенные и усиленные. Наиболее распространенными являются обыкновенные, вес которых и использован в расчетах. Точкой приложения силы веса каждой из рассмотренных деталей является центр ее симметрии — середина детали, а направление силы — вертикально вниз.
Сумма моментов сил, приложенных в направлении по часовой стрелке, складывается из произведений силы веса деталей на расстояние (плечо) от точки приложения силы до оси вращения.
Пример 5. Деталь мачты 5 имеет длину 5 м. Вес одного метра трубы — 4,38 кг. Вес всей трубы равен 4,38 х 5 = 21,9 кг.
Точка приложения веса находится в середине трубы, то есть на расстоянии 2,5 м от оси вращения. Момент, образованный силой тяжести, равен 21,9 кг х 2,5 м = 54,75 кгм.
При подъеме мачты на 10° расстояние от оси вращения стало не 2,5, а 2,4 м и момент стал 21,9 кг х 2,4 м = 52,56 кгм. При подъеме мачты на 60° расстояние от оси вращения до центра тяжести стало 1,3 м и момент стал равен 21,9 кг х 1,3 м = 28,47 кгм. Моменты, образованные этой силой, направлены по часовой стрелке.
В колонках 6 и 7 таблицы 9 имеются подсчеты каждого из моментов, образуемых деталями мачты при ее наклоне на 10°, а в конце колонки 7 суммирован итог, равный 563,4 кгм.
В колонках 8 и 9 имеются аналогичные подсчеты каждого из моментов, образуемых деталями мачты при ее наклоне на 60°, а в конце колонки 9 суммирован итог, равный 288,07 кгм.
Подъем мачты производят, натягивая трос. Для того чтобы мачта пришла в движение (обозначим этим начало подъема), необходимо создать такое натяжение троса, чтобы момент, образуемый весом мачты, был меньше момента, создаваемого натяжением троса.
Определим силы П, Т и М в начале подъема, то есть при наклоне мачты на угол 10°.
Учитывая, что трос закреплен на расстоянии 10 м от оси вращения, сила, которая должна создать момент, равный 565,4 кгм, должна быть приложена в месте закрепления троса, направлена против движения часовой стрелки, перпендикулярно к мачте и равна П = 563,4 кгм: 10 м = 56,3 кг.
Зная силу П по величине и направлению, а силы Т и М по направлению, с помощью графических построений можно определить величины последних сил. Точность, с которой будут определены эти силы, зависит от масштаба построения (производить его лучше на миллиметровке).
Построение графика, подобно изображенному на рис. 9, целесообразно проводить в масштабе один метр в натуре — два сантиметра на чертеже, а построения для нахождения сил Т и М в масштабе 5 кг — один сантиметр на чертеже.
Для нахождения сил Т и М необходимо отложить в масштабе силу П и из конца этой силы провести линию, параллельную осевой линии мачты, до пересечения с линией направления троса А из точки пересечения восстановить перпендикуляр к осевой линии мачты. В полученном прямоугольнике необходимо измерить длину сил, направленных вдоль троса (Т) и вдоль мачты (М) и с учетом масштаба установить величины этих сил. В разбираемом примере сила натяжения троса Т равна 160 кг, а сила, действующая вдоль мачты М, равна 140 кг. Таким образом, сила, действующая натрое, лебедку и якорь, равна 160 кг, на ось и болты крепления петель — 140 кг. Но трос выдерживает более 1500 кг, лебедка — более 250 кг, якорь — 500 кг, а усилие среза одного болта М12 равно 1300 кг (то есть в конструкцию заложен значительный запас).
Аналогичным образом можно определить направление и величины этих сил при подъеме мачты на 60°, однако из анализа данных таблицы 9 следует, что наибольшее натяжение троса возникает в первоначальный момент, в силу чего такой расчет не требуется.
Перед окончанием подъема во избежание удара в момент соприкосновения платформ мачту необходимо удерживать за растяжки.
Подняв мачту и не ослабляя троса, закрепляют платформу с помощью болтов (рис. 8, дет. 14). Если мачта имеет небольшой наклон, положение ее можно исправить с помощью регулировки прокладками (рис. 8, дет. 11,15). Болты крепления при этом ослабляют, а прокладки только вынимают, после чего производят присоединение растяжек к якорям и их натяжение.
Токоотвод служит для соединения молниеприемника с заземлителями. Все соединения токоотвода должны быть сварными Частью токоотвода будет являться мачта с платформой. К ней приваривают токоотвод, идущий от заземлителей.
Для того чтобы приварка токоотвода к узлу мачты не разрушалась во время неоднократных подъемов и опусканий последней, рядом с местом приварки должно быть сделано двойное кольцо, как это показано на рис. 10-III. Диаметр токоотвода должен быть не менее 6 мм.
Заземлитель (в соответствии с ранее приведенным расчетом) должен состоять из трех электродов диаметром 12 мм, длиной 5 м, расположенных в заземляющем устройстве в ряд на расстоянии 5 м один от другого. Для сооружения заземляющего устройства необходимо откопать траншею глубиной около метра и длиной немного более 10 м. Для более легкого погружения в грунт концы электроводов отковывают на четыре грани, подобно сапожному шилу. А если необходимо пройти через твердые грунты (например, слой известняка), нужно приварить изношенное сверло несколько большего диаметра. Погружение электрода в грунт производят несильными ударами при постоянном проворачивании. После погружения конец электрода на длине 100 мм отгибают и к нему приваривают горизонтальный соединительный стержень.
Электроды также могут быть изготовлены в соответствии с рис. 12. Электроды этого типа вворачиваются в грунт с помощью забурника, приваренного к концу электрода. В процессе погружения происходит разрыхление грунта вокруг электрода, в силу чего контакт электрода с землею ухудшается.
Рис. 12. Стержневой электрод заземления:
1 — стержень; 2 — забурник
Отличительной особенностью сооружения молниезащитного устройства на металлической крыше является то, что она используется как молниеприемник. Все выступающие элементы строения, расположенные выше металлической крыши, должны иметь собственные молниеприемники, соединенные с токоотводом. Молниеприемник печной трубы представлен на рис. 13, телевизионная антенна, установленная на металлической мачте, должна иметь заземление (металлическую мачту присоединяют к токоотводу), а для предохранения радиоустройств следует устанавливать грозовые переключатели и искроразрядники. При приближении грозы следует прекратить прием и заземлить антенну.
Рис. 13. Токоприемник печной трубы:
1 — печная труба; 2 — крыша; 3 — токоприемник
Металлическая крыша строения должна быть соединена с заземляющим устройством с помощью токоотвода, который прокладывают по коньку крыши и крепят к ней через каждые 15 м. Крепление токоотвода к крыше дома представлено на рис. 14.
Рис. 14. Крепление токоотвода к металлической крыше:
1 — металлическая крыша; 2 и 3 — пластины крепления; 4 — болты
Спуски токоотводов с крыши должны располагаться в таких местах, чтобы к ним не могли прикасаться люди (например, вдали от крыльца, прикрытые кустарником и т. д.).
Заземлитель, перед присоединением его к системе молниезащиты, должен быть испытан.
Для измерения сопротивления заземляющих устройств выпускаются специальные приборы: МС-08 и М-416. При отсутствии их можно измерить сопротивление при помощи амперметра и вольтметра. Схема измерения представлена на рис. 15.
Рис. 15. Схема измерения сопротивления заземляющего устройства при помощи амперметра и вольтметра:
1 — понижающий трансформатор; 2 — вольтметр; 3 — амперметр; Rз — зонд, Rx — испытуемое заземляющее устройство, Rв — вспомогательное заземляющее устройство
Как следует из схемы, кроме испытуемого заземлительного устройства, обозначенного Rx, необходимо на расстоянии 40 м от него установить вспомогательный заземлитель Rв и на таком же расстоянии зонд Rз. Рекомендованные расстояния нужны для исключения взаимного влияния их полей растекания. В качестве зонда можно использовать небольшой штырь. Сопротивление заземлительного устройства определяется по формуле:
Rx = V/J,
где
V — напряжение, измеренное вольтметром; J — ток в цепи.
Точность измерения тем выше, чем больше сопротивление обмотки вольтметра в сравнении с сопротивлением зонда Rз, поэтому рекомендуется применять электростатический вольтметр.
В бригаде, ведущей сооружение молниеотвода, необходимо выделить старшего. Каждый должен быть осмотрителен и заботиться не только о своей безопасности, но и о безопасности окружающих.
При сооружении заземлителя глубина траншеи не должна превышать 1 м, и основным требованием является размещение изъятого грунта не ближе 0,5 м от бровки. При рытье котлована под установку узла основания глубиною 1,2–1,7 м, стенки котлована выполняют с откосами.
При сооружении стержневого молниеотвода работы на высоте не предусматриваются. При монтаже молниеприемников и токоотводов на металлической крыше рабочий должен быть обеспечен монтажным поясом. Нижние концы приставных лестниц для подъема на крышу должны иметь упоры в виде острых металлических шипов, а верхние крепят к конструкции строения. Лестницы устанавливают с наклоном не более 75° и не менее 50° к горизонту. При выполнении газосварочных или электросварочных работ лестницы оборудуют площадками с ограждением высотой 1 м. Работать механизированным инструментом с приставных лестниц воспрещается.
Запрещается находиться под поднимаемым или опускаемым грузом. Нельзя применять трос, если одна из его прядей оборвана или на длине шага свивки число оборванных проволочек более 5 % или трос вытянут и изношен и его минимальный диаметр составляет менее 90 % от первоначального.
Электрифицированный инструмент значительно облегчает работу, но применение его имеет ряд ограничений.
Во-первых, он должен относиться ко II классу зашиты, то есть иметь двойную изоляцию (отличительное ее обозначение на корпусе — квадрат в квадрате). Его можно использовать в помещении и на открытом воздухе, но только тогда, когда возможность перемещения и выхода работающего не ограничены. В противном случае условия работы могут быть признаны особо опасными, и электроинструмент должен работать на напряжении не более 42 В.
Электросварку при сооружении молниезащитных устройств можно производить электродами с диаметром, равным 3 мм.
В качестве источника сварочного тока должны употребляться только выпускаемые промышленностью сварочные аппараты.
Присоединение сварочного аппарата к сети осуществляют шланговым кабелем через отключающее устройство (например, рубильник). Расстояние между сварочным аппаратом и питающей сетью не должно превышать 10 м.
Учитывая, что, кроме зануления корпуса сварочного аппарата, должно быть заземление одного из зажимов вторичной цепи, молниезащиту целесообразно начинать с сооружения заземлителя.
ЛИТЕРАТУРА
1. Правила устройства электроустановок. Издание 6-е. М., Энергоатомиздат, 1987.
2. Найфельд М.Р. Заземление, защитные меры электробезопасности. Изд. 4-с. М., Энергия, 1971.
3. Найфельд М.Р. Заземление и другие защитные меры. Изд. 3-е. М., Энергия, 1975
4. Черкасов В.Н. Молниезащита сооружений в сельской местности. М., Россельхозиздат, 1975.
5. Правила устройства, монтажа, ремонта обслуживания молниезащитных средств. М., Центральный совет Всероссийского добровольного пожарного общества, 1986.