В прошлом столетии геологи и биологи сделали два важных открытия.
В глубочайших слоях земной коры, которые отлагались в так называемую архейскую эру, геологи нашли окаменевших корненожек, отпечатки водорослей, ходы червей, буравивших первобытную почву, тонкие прослойки угля и известняков, образовавшихся из скорлупок морских моллюсков.
Архейская эра — древнейшая в геологической истории Земли. Находки геологов доказывают, что жизнь, в самых ее первоначальных формах, существовала на нашей планете примерно миллиард лет назад.
Биологи в результате своих исследований белковые веществ убедились, что носитель жизни — живой белок — необычайно чувствителен к колебаниям температуры. Даже небольшое повышение или понижение температуры замедляет или вовсе приостанавливает жизнедеятельность простейших организмов. Для развития жизни наиболее благоприятна температура в 18–20°.
Сопоставив эти два открытия, ученые пришли к заключению, что на Земле всегда было умеренно тепло. И жизнь на Земле могла зародиться только при наиболее благоприятной температуре. А это означает, что даже в далекую от нас архейскую эру Солнце согревало и освещало Землю так же, как и сейчас. Паек солнечных лучей в основном не изменился.
Солнце на протяжении последнего миллиарда лет светит и греет, не подавая заметных признаков охлаждения.
Странное и трудно объяснимое явление: Солнце как будто горит, не сгорая, греет, не остывая.
Астрономы попробовали подсчитать, сколько теплоты излучает Солнце.
С помощью приборов-актинометров ученые много раз измеряли количество тепла, которое несут солнечные лучи. Эти измерения неоднократно проверяли, уточняли и установили, что на каждый квадратный сантиметр поверхности, выставленной на границе земной атмосферы перпендикулярно к солнечным лучам, падает 1,94 малых калорий в минуту.
Зная это число, можно высчитать, сколько теплоты излучает Солнце во все стороны. Для этого надо мысленно описать вокруг Солнца сферу радиусом, равным расстоянию от Солнца до Земли, определить ее поверхность в квадратных сантиметрах и полученное число помножить на 1,94.
Так и сделали.
Поверхность сферы, описанной радиусом в 149 674·108 см, равна 281,5·1025 см.
Количество теплоты, излучаемой Солнцем в одну минуту, составляет 546,11·022 килокалорий. Число получилось ошеломляющее! По расходу тепла Солнце можно сравнить с гигантской печью, в которой ежеминутно сжигают по тысяче цистерн, наполненных нефтью и равных по вместимости Черному морю. Таков ежеминутный расход энергии Солнца.
Откуда берется эта энергия и где ее источник? Что позволяет Солнцу излучать свет и тепло в течение миллиардов лет, почти не остывая?
Когда гипотеза Лапласа была общепризнанной, ученые думали, что Солнце заимствовало свою теплоту от первобытной туманности и постепенно остывает, как и всякое нагретое тело.
Были заново повторены опыты Бюффона с расплавленным металлом и с раскаленными шарами, ученые наблюдали, как они остывают, измеряли потерю теплоты, подсчитывали, проверяли и в итоге всех своих исследований получили смехотворно малое число. Солнце, сгустившись из раскаленной туманности, остыло бы, как чугунная чушка, через каких-либо 20–30 миллионов лет.
Значит, Солнце греет не старым запасом тепла, оно имеет какой-то источник энергии, что-то подогревает его изнутри.
Ученые предположили, что в недрах Солнца, как в топке котла, сгорает какое-нибудь топливо.
Против такого предположения решительно выступили химики. Температура светоносной поверхности Солнца достигает 6000°. Ни одна химическая реакция не дает такой температуры. При 6000° почти никакие химические реакции невозможны. Они безусловно не могут служить источником солнечной энергии.
Этот вывод подтверждается несложным расчетом. Если бы первобытное Солнце состояло из одной нефти, то оно «сгорело» бы дотла за 7600 лет. Угольное солнце сожгло бы себя еще быстрей — за 5000 лет.
Против таких мизерных сроков восставали геологи и биологи — жизнь на Земле не может быть старше Солнца.
Тогда было высказано новое предположение: Солнце подогревают падающие метеориты. Пуля, ударившись о броню, расплавляется; молоток, которым забивают толстый гвоздь, заметно нагревается; метеориты, врезавшись в земную атмосферу, раскаляются. При торможении или полной остановке движущегося тела, его кинетическая энергия преобразуется в теплоту. Падая на Солнце, метеориты безусловно его подогревают.
Беспощадный карандаш математика взялся за проверку и этого предположения. Подсчитали. Результаты получились самые неутешительные. Чтобы поддержать температуру Солнца на одном уровне, на него должно обрушиваться четыре миллиона миллиардов тонн метеоритов в сутки!
Если бы в пределах солнечной системы имелся такой запас метеоритов, то они падали бы не только на Солнце, но и на Землю. Они разогрели бы нашу планету добела. Метеоритов падает на Землю не так уж много. Их запас в окружающем Солнце пространстве невелик, да и размеры метеоритов ничтожны. Большинство метеоритов, падающих на Землю, не больше булавочной головки.
Безусловно, к Солнцу устремляется огромное количество метеоритов, но они никогда не достигают его. Жар солнечных лучей превращает их в пар, а световое давление отбрасывает их прочь раньше, чем они успеют долететь до поверхности Солнца. Крупных же метеоритов в пространстве мало.
Не метеориты, — что-то другое отапливает Солнце.
Один ученый высказал новую догадку: сжимаясь и уплотняясь, Солнце разогревается, и благодаря сжатию его температура остается неизменной.
Предположение правдоподобное. Чтобы поддерживать свою температуру на одном уровне, Солнце должно ежегодно уменьшаться в диаметре всего лишь на 150 метров. Диаметр Солнца равен 1 391 000 километров. Даже тысячелетнее сокращение поперечника Солнца не может быть замечено астрономами. Величина этого сокращения слишком ничтожна.
Гипотезу сжатия подвергли математической проверке.
В прежние века сжатие Солнца, очевидно, протекало быстрее, тогда его плотность была ниже.
Как показали расчеты, 25 миллионов лет назад диаметр Солнца был бы больше диаметра земной орбиты. Где же тогда находилась Земля, Венера и Меркурий? Под раскаленной поверхностью Солнца? Как же могла тогда развиваться жизнь?
И эту догадку пришлось отвергнуть. Возможно, что и сжатие Солнца играет некоторую роль, но не главную, не основную.
Солнечная энергия казалась ученым фантастическим неразменным рублем. Солнце расходует свою энергию, но запасы его почему-то не истощаются.
Каждый раз, когда пытливая человеческая мысль оказывалась в затруднительном положении, когда не сразу удавалось вырвать у природы ее тайну, возникали лженаучные, спекулятивные гипотезы.
Например, один «ученый» доказывал, что Солнце, подобно сказочной змее, питавшейся собственным хвостом, который у нее отрастал по мере того, как она его съедала.
Солнце, по гипотезе этого «ученого», тоже, не нуждается в «пище». Оно якобы окружено облаком, состоящим из углерода, водорода и кислорода. Вращаясь вокруг оси, Солнце, как вентилятор, втягивает своими полярными областями горючие вещества. Оно накачивает их в свои недра, а там углерод и водород вступают в химическое соединение с кислородом. Выделяется теплота, а продукты горения — углекислоту и водяные пары — Солнце выбрасывает прочь через свои экваториальные области.
Оказавшись вне Солнца, продукты горения попадают под воздействие солнечных лучей и разлагаются на составные части, снова способные гореть.
Солнце тут же втягивает эти горючие газы внутрь себя, сжигает их, а остатки выбрасывает обратно в газовое облако, где они разлагаются и опять могут служить топливом.
Газовое облако питает Солнце. Солнце пополняет облако. Одно и то же топливо сгорает бесчисленное множество раз подряд, поэтому запас горючих веществ никогда не иссякает и температура Солнца не изменяется. Энергия Солнца таким образом рождается из ничего.
Вздорная выдумка противоречила ломоносовскому закону сохранения материи и движения. Автор этой нелепой гипотезы пытался внушить людям, что для бога, якобы создавшего Солнце, нет ничего невозможного и законы природы, действительные на Земле, не обязательны для Солнца.
Порочная гипотеза продержалась в науке несколько лет. Развитию знаний о Солнце она не способствовала, да и способствовать не могла, так как ничего общего с подлинной наукой не имела. Она только заставила ученых потрудиться, чтобы опровергнуть ее.
Допустим, что вблизи Солнца действительно существует облако из углерода, водорода и кислорода. Вообразим, что Солнце, вращаясь, в самом деле втягивает горючие вещества, а затем выбрасывает продукты горения.
Но ведь, чтобы прогонять сквозь себя потоки газов, Солнце, как и вентилятор, должно расходовать энергию своего вращения. И если бы все происходило так, как выдумал автор этой гипотезы, то Солнце перестало бы вращаться на 166-й год своего существования.
Несостоятельность этой идеалистической гипотезы была разоблачена.
Но секрет солнечной кочегарки оставался попрежнему тайной за семью печатями.
В течение нескольких недель конца 1898 года малоизвестные французские ученые Мария Склодовская-Кюри и ее муж Пьер Кюри стали знаменитыми людьми. Известие об их открытии взбудоражило весь мир. Ученые с нетерпением ожидали новых сообщений и подробностей. Газетные статьи об открытии супругов Кюри были полны вздора и вымысла. Люди, далекие от науки, вообще ничего понять не могли. Ученые, прекрасно знавшие физику, тоже ничего не понимали. Открытие Кюри переворачивало все прежние привычные представления о веществе.
Было известно, что еще в 1895 году французский физик А. Беккерель заметил существование нового вида лучей. Эти лучи исходили из урановой руды и свободно проникали сквозь бумагу, картон и тонкие металлические предметы. Под их воздействием фотопластинка, завернутая в черную бумагу и упакованная в коробку, чернела так, как будто на нее падал яркий свет.
Мария Склодовская-Кюри стала исследовать урановую руду. Она обратила внимание на странное явление: металл уран испускал таинственных лучей меньше, чем урановая руда, из которой он был добыт.
Склодовская решила, что в урановой руде, кроме урана, скрывается еще какое-то неизвестное и тоже лучистое вещество.
Марии Склодовской удалось извлечь из урановой руды два новых вещества. Одно из них было названо полонием в честь родины Склодовской — Польши, а другое — радием, что значит лучистый (радиус — луч).
В те же годы Мария Склодовская установила, что ранее известный элемент — торий, так же как и уран, обладает лучистыми свойствами. Один ученый открыл существование пятого ураноподобного вещества — актиния.
В нижних рядах таблицы Менделеева собралось семейство лучистых веществ: полоний, радий, актиний, торий и уран. Все они получили название радиоактивных элементов, то есть способных к излучению.
Наибольшей радиоактивностью обладает радий. Он так же, как и уран, но гораздо сильнее его засвечивает плотно укупоренные фотопластинки. В его присутствии листочки электроскопа теряют свой заряд и спадаются; драгоценные камни, сернистый цинк, платиново-синеродистый барий и некоторые другие вещества начинают светиться.
Все это было необычно, странно, необъяснимо. Ученые еще никогда не видали ничего подобного. Это были вещества, рождающие излучение.
Когда радиевой соли было добыто в достаточном количестве, то есть несколько миллиграммов, Пьер Кюри заметил, что пробирка с хлористым радием всегда теплее окружающей среды. Радий выделял теплоту!
Пьер Кюри взял калориметр и в середину большого куска льда положил ампулу с хлористым радием.
Через час ученый измерил, сколько льда растопила теплота, выделенная радием.
Эти измерения, многократно повторенные Пьером Кюри и другими учеными, показали, что один грамм радия выделяет в час 140 малых калорий.
Радий — вещество, из которого непрерывно сочится энергия — теплота.
Но это еще не так поразило ученых. Самое странное ожидало их впереди. Несколько месяцев спустя Пьер Кюри повторил свой опыт с куском льда и оказалось: грамм радия попрежнему выделяет в час по 140 калорий. Радий не «устает». Исследуемый радий хранился в лаборатории почти полтора года! Он излучает, он греет уже 12 тысяч часов! За это время радий выделил 1680 килокалорий! А сколько же теплоты он израсходовал, когда находился не в ампуле, а в руде?
Энергия непрестанно струится из радия, и нет сколько-нибудь явственных признаков оскудения ее запасов. Нельзя также заметить убыли радия — вес ампулы, как казалось тогда Кюри, не уменьшается.
«Закон сохранения материи и энергии недействителен! Энергия может рождаться из ничего», — поспешили объявить некоторые физики. — «Законы движения нарушены», — утверждали другие. — «Происходит всеобщее крушение принципов», — писал один из представителей идеалистического лагеря.
Реакционные ученые готовились торжествовать победу. «Уничтожение» основных законов природы позволяло им объяснять мир действием божественных сил. Всякое знание обессмысливалось.
Однако дальнейшие исследования супругов Кюри и других физиков быстро опровергли все торопливые выводы.
Атомы радиоактивных элементов не вечны. Они постепенно распадаются и превращаются в атомы других, более легких, химических элементов. Уран становится радием. Радий, претерпевая 16 превращений, переходит в конце концов в свинец и гелий.
Из одного грамма урана по прошествии достаточно большого промежутка времени получится 0,8653 грамма свинца и 0,1345 грамма гелия. Недостающие до единицы 0,0002 грамма составляют ту массу, которая была израсходована на излучение.
Грамм урана за всю свою «жизнь» выделяет около 4,24·109 калорий энергии.
Радиоактивные атомы неустойчивы. Часть их массы преобразуется в излучение, а в «остатке» получается радий и гелий. Энергия, следовательно, не рождается из ничего. В излучение преобразуется вещество.
Это открытие послужило блестящим доказательством того, что излучение тоже материально.
До открытия радиоактивности ученые представляли себе мир, состоящим из двух чуждых и непохожих друг на друга элементов — материи и энергии. Они считали их противоположными, как добро и зло, как покой и движение.
Исследование распада атомов отвергло это ошибочное суждение. Никаких двух сущностей нет. Свет и булыжник, электрическая искра и стакан чаю хотя и очень непохожи друг на друга, но они служат только различными формами проявления движущейся материи. И ничего, кроме движущейся материи, в природе нет.
Подлинной науке пришлось выдержать жестокий бой с реакционным направлением в физике. Некоторые ученые пытались доказывать, что в результате радиоактивного распада материя якобы превращается в энергию, излучается и бесследно рассеивается — исчезает. «Материи нет, — утверждали эти ученые — существуют только сгустки энергии».
Против мутного потока реакционных гипотез, хлынувших в науку в 1908 году, выступил Владимир Ильич Ленин. В своей гениальной работе «Материализм и эмпириокритицизм» он разоблачил попытки идеалистов, стремившихся извратить подлинную науку.
Передовые ученые не поддались теориям реакционной философии, продолжали исследовать строение атомов радиоактивных веществ и постепенно проникали в суть явлений, происходящих при их распаде.
Было установлено, что с течением времени излучение радиоактивных элементов ослабевает, так как уменьшается количество их атомов. Распад атомов происходит очень медленно, поэтому-то Кюри и не могли заметить уменьшения веса ампул. Срок наблюдения был слишком мал. Атомы разрушаются, подчиняясь строгому закону: половина всего наличия атомов радиоактивного вещества распадается в течение определенного срока.
Например, половина всех атомов тория распадается за 18 миллиардов лет. Уран распадается наполовину через 4,4 миллиарда лет. Время полураспада атомов протактиния равно 32 тысячелетиям.
Радий распадается сравнительно быстро. Половина всех атомов радия исчезнет за 1590 лет. В следующие 1590 лет распадется половина остатка. Когда пройдет еще 1590 лет, от радия останется только 1/8 первоначального количества. Через 15 900 лет радия сохранится только 1/1024 доля современного количества.
Если бы запас радия непрерывно не пополнялся ураном, — он давно бы исчез из минералов земной коры.
Распад радиоактивных веществ сопровождается выделением энергии. Грамм радия выделяет в час 140 калорий. Грамм тория—0,000018 калории.
Уж не тут ли кроется тайна солнечной кочегарки! Может быть, недра Солнца богаты радиоактивными элементами. Распадаясь, они подогревают Солнце. А сроки распада таковы, что радиоактивные элементы безусловно могут снабжать Солнце энергией в течение миллиардов лет.
Эту догадку стали проверять. Вычисления давали как будто благоприятный результат. В самом деле, допустим, что всего лишь 0,378 % всей массы Солнца состоит из смеси урана и радия. Урана 75·1023 тонн и радия 23·417 тонн. Этого, сравнительно с общей массой Солнца, ничтожного количества радия и урана вполне достаточно, чтобы обеспечить выработку энергии в 546,1·1022 килокалорий в минуту. Причем главным поставщиком энергии будет именно радий. Уран же служит для того, чтобы непрерывно пополнять убыль радия и поддерживать его количество неизменным. При этом условии Солнце начнет ослаблять свое излучение только когда минет 4,4 миллиарда лет.
Фотография кошелька, сделанная лучами радия.
Если предположить, что источником солнечной энергии служит распад тория, то значит на Солнце тория должно быть 0,95 % всей его массы, и Солнце уменьшит излучение вдвое через 18 миллиардов лег.
Такие расчеты казались бы убедительными, если бы не одно существенное возражение. Еще в прошлом столетии было установлено, что каждый газ или пар в раскаленном состоянии испускает лучи строго определенного цвета. Это важное открытие послужило основой спектрального анализа, то есть позволило по составу света определить, какие химические элементы находятся на Солнце и на звездах.
Солнечный свет пропускают через трехгранный стеклянный клинышек — призму, луч в призме преломляется и разворачивается веером цветных лучей. На экране спектроскопа получается радужная полоска — спектр.
По присутствию в спектре тех или иных линий судят, какие химические элементы находятся на Солнце и звездах. Натрий докладывает о себе в спектре двумя линиями в желтой части спектра. Водород представляется оранжево-красной, голубой и фиолетовой линиями, гелий — желтой; железо дает 3800 линий в разных частях спектра.
По густоте этих линий, темнеющих на ярком радужном фоне солнечного спектра, ученые определяют количество тех или иных элементов.
Схема спектроскопа и спектры. На верхней полоске изображена часть спектра Солнца, на нижних — спектры натрия, гелия и водорода. Каждой светлой линии в спектре элемента соответствует одна из темных линий солнечного спектра.
С помощью этого могущественного разведчика далеких миров астрономы весьма уверенно установили состав газов, образующих солнечную атмосферу. Больше всего там водорода. Этот газ составляет 81,76 % объема солнечной атмосферы. Гелия 18,17 %, кислорода 0,03 %, магния 0,02 %, азота 0,01 %, и на долю всех остальных химических элементов приходится только одна сотая процента.
Нельзя думать, что тяжелые элементы скрываются в недрах Солнца и не показываются на поверхность. На Солнце непрестанно бушуют огненные вихри, взлетают гигантские фонтаны раскаленных паров, мощные взрывы и извержения выбрасывают на поверхность пары многих металлов.
В 1950 году на Солнце было обнаружено 66 химических элементов, среди них тяжелые металлы, такие, как золото, свинец, платина, осмий, но урана и радия там до сих пор не замечено.
Если допустить, что на Солнце распад урана и радия уже успел завершиться — они уже полностью исчезли, то должен был бы остаться их потомок — свинец. Но свинца на Солнце обнаружили очень мало. Значит распад радиоактивных элементов тоже не является источником солнечной энергии. И это наиболее правдоподобное предположение оказалось несостоятельным, наблюдения его не подтвердили.
Правда, в последние годы на Солнце обнаружили присутствие тория. Но его там чрезвычайно мало. Мало и других радиоактивных элементов — калия, самария и рубидия. Они несомненно подогревают Солнце, но только частично.
Главным поставщиком солнечной энергии служит что-то иное.
Ученые продолжали свои поиски.
Превращение урана, актиноурана и тория протекает по-разному, но заканчивается одинаково — образованием свинца. Этот последней отпрыск трех семейств радиоактивных элементов устойчив и дальше не распадается. По своим химическим свойствам все три разновидности свинца — урановый, актиниевый и ториевый — друг от друга не отличаются. Но все же они не одинаковы, а разнятся атомным весом. Урановый свинец имеет атомный вес — 206, актиниевый — 207 и ториевый — 208. Это их «фамильная» особенность.
Поэтому, обнаружив в какой-либо горной породе присутствие свинца, по его атомному весу можно определить из какого семейства он произошел.
И вот эта-то особенность свинца привела ученых к важному открытию.
Физики изучают распад радиоактивных элементов уже свыше полувека. Доказано, что ни высокая температура, ни большое давление и никакие другие условия, возможные на Земле, не могут ускорить или замедлить распад радиоактивных элементов.
В земных условиях атомы радиоактивных элементов распадаются с одинаковой скоростью. И скорость радиоактивного распада известна.
В 1902 году П. Кюри посоветовал геологам взять кусок какой-либо горной породы, содержащей уран, тщательно исследовать его химический состав и определить, сколько в нем сохранилось урана и сколько накопилось свинца.
Очевидно, когда-то, очень давно, в этой породе совсем не было уранового свинца.
Но прошел миллиард лет, и от каждого грамма урана осталось 0,863 грамма, и одновременно образовалось 0,116 грамма свинца.
Затем минул еще миллиард лет. Урана уцелело 0,747 грамма, а свинца накопилось 0,204 грамма.
В конце третьего миллиарда лет урана сохранилось 0,646 грамма, а свинца стало 0,306 грамма. (Недостающие 0,048 грамма составляют массу той порции гелия, которая выделилась при радиоактивном распаде, и массу, израсходованную ураном на излучение).
С каждым миллиардом лет урана на Земле становится все меньше и меньше, а количество уранового свинца соответственно увеличивается.
Следовательно, радиоактивные элементы, указывал П. Кюри, могут послужить превосходными геологическими часами. Они равномерно отсчитывают время в течение многих миллиардов лет. Надо только правильно истолковать их показания.
Ученые незамедлили воспользоваться замечательными часами природы.
Из всех горных пород, какие только найдены до сих пор учеными, самыми древними являются некоторые породы, например, канадские граниты. Чтобы накопилось то количество уранового свинца, какое обнаружено в этих минералах, должно было пройти около 1850 миллионов лет.
Тогда — почти два миллиарда лет назад — через какую-то расщелину в земной коре из глубины на поверхность вытекла расплавленная магма.
На Земле, в отдельных местах, и сейчас существуют очаги огненно-жидкой магмы. Над такими очагами образуются огнедышащие горы-вулканы или даже лавовые озера, в которых бурлят и пузырятся расплавленные минералы.
Пока горные породы находятся в огненно-жидком состоянии, они непрерывно перемешиваются. Из них выделяются пары и газы. Они не оставляют лаву в покое, и, следовательно, свинец, образующийся из урана, неминуемо разлучается со своим «родителем».
Но как только изверженная лава начнет окаменевать, свинец уже не может покидать места своего рождения. Он остается рядом с ураном. В охлажденной изверженной породе начинается накопление свинца.
Так руды, содержащие уран, становятся геологическими часами.
1850 миллионов лет — это не возраст Земли и даже не возраст земной коры. Это только возраст древних гранитов, и он указывает геологам на то, что земная кора не может быть моложе 1850 миллионов лет.
Ученые продолжали свои исследования и стали определять возраст Земли не только по урану, но и по актиноурану и торию; сопоставляли количество актиниевого свинца с урановым и ториевым; совершенствовали приемы определения малых количеств свинца и гелия.
Так к концу 1948 года геологи и астрономы пришли почти к единогласному решению, что наш земной шар возник примерно три с половиной или четыре миллиарда лет тому назад.
Возраст Земли, который установили геофизики, совпал с возрастом Луны, который определили астрономы.
Важный, многозначительный вывод.
Два различных исследования привели к одному и тому же результату. Это подтверждает его безусловную правильность.
В первые десятилетия нашего века физики одержали несколько крупных побед. Они научились в своих лабораториях создавать искусственные радиоактивные элементы, раскалывать атомы, один элемент превращать в другой и освобождать энергию, скрытую в недрах атомов.
Эти успехи убедили всех здравомыслящих ученых, что свет, излучение является только одной из форм проявления движущейся материи. Свет, теплота, так же как и всякий иной вид материи, обладают совершенно определенной массой. Так же как различные виды энергии могут переходить друг в друга, так и вещество может преобразоваться в излучение, а излучение — в вещество.
В недрах Солнца, где царит жара в несколько миллионов градусов, а давление достигает миллиардов атмосфер, происходит выделение энергии, скрытой в ядрах атомов.
Вещество в солнечных недрах преобразуется в свет, теплоту, в излучение. Какое или какие именно вещества служат на Солнце атомным «топливом» — еще окончательно неизвестно. Но энергия Солнца — атомная энергия.
Тогда ученые поняли, что можно «взвесить» солнечный свет, то есть определить сколько вещества тратится на Солнце для поддержания его излучения.
Солнце расходует ежеминутно 546,1·1022 килокалорий.
Каждая калория составляет 4,67·1011 грамма массы. Следовательно, Солнце теряет в минуту в виде излучения 254,8 миллиона тонн своего вещества. Но это расход одной минуты. В сутках 1440 минут. Значит каждый раз, когда восходит Солнце, мы видим его уменьшившимся на 367 миллиардов тонн.
Чудовищно огромное число.
Солнце тратит на излучение ежесекундно количество вещества, равное пяти самым большим египетским пирамидам.
Вещества, которое составляет Уральский хребет, хватило бы Солнцу на несколько недель. Однако такой расход вещества только кажется нам огромным. Он велик по нашим земным масштабам.
Зачерпнув из Ладожского озера кружку воды, не следует думать, что озеро от этого обмелеет. Не «худеет» и Солнце, теряя в сутки по 367 миллиардов тонн.
За время существования Земли, то есть за 3,5 миллиарда лет, Солнце истратило на излучение всего лишь одну четырехтысячную долю своей массы.
Столь незначительная убыль не могла изменить температуру и светимость Солнца.
Академик Г. А. Шайн доказал, что звезды вращаются и скорость их вращения можно измерить. При этом Г. А. Шайн установил, что все горячие белые и голубоватые звезды вращаются гораздо быстрее Солнца.
Каждая точка на солнечном экваторе пробегает в секунду всего лишь около двух километров, а на одном из наших соседей — звезде Альтаир из созвездия Орла — экваториальная скорость достигает 200 километров в секунду. Альтаир вращается в 100 раз быстрее Солнца. Есть еще более горячие голубоватые звезды — они вращаются так, что каждая точка на их экваторе пробегает до 400 километров в секунду!
Невольно напрашивается вывод, что наше Солнце, когда оно было моложе, тоже вращалось очень быстро.
Иначе говоря, распределение момента количества движения между планетами и Солнцем тоже было иное.
Ленинградский астроном профессор В. А. Крат нашел причину, почему горячие звезды вращаются быстрей Солнца. Они массивнее к, может быть, немного моложе Солнца. С возрастом они теряют массу и приобретают важную медлительность.
В. А. Крат доказал, что у Солнца и у солнцеподобных звезд, кроме излучения света, есть еще одна статья расхода: они выбрасывают в пространство частицы своего вещества — отдельные атомы и осколки атомов, условно называемые корпускулами. Выброс частичек в пространство стал называться корпускулярным излучением.
Частицы, извергнутые Солнцем, разлетаются во все стороны. Потоки корпускулярного излучения нередко достигают Земли, и мы видим их действие: над полюсами полыхают полярные сияния, нарушается нормальная работа компасов и других магнитных приборов, прерывается на время радиосвязь.
Как велика потеря Солнца на корпускулярное излучение в точности неизвестно. Она, повидимому, невелика — не больше того, что уносит излучение света. Но в прошлом она могла быть очень чувствительна для Солнца. Чем горячей звезда, тем больше она расходует вещества на разные виды излучения.
В прошлом, когда Солнце было массивной и очень яркой молодой звездой, этот выброс частичек имел характер грандиозного истечения газа из звезды.
Член-корреспондент Академии наук СССР В. А. Амбарцумян, профессор Б. А. Воронцов-Вельяминов определили, что есть звезды, которые за один месяц теряют вещества больше, чем современное Солнце за 10 миллионов лет.
Свет и корпускулярное излучение уносят с собой часть массы звезд. Вместе с утраченной массой уходит и момент количества движения. Звезды замедляют свое вращение.
Ведь и потоки света и корпускулярное излучение вырываются из наружных слоев Солнца и звезд, а наружные слои вращаются гораздо быстрее внутренних. Они несут больший момент количества движения. Поэтому даже небольшая потеря массы из внешних слоев Солнца сильно сказывается на скорости его вращения.
Нет ничего удивительного, что планеты сохранили свой момент количества движения; они не светятся, не излучают, не теряют вещество, их запас количества движения остается неприкосновенным. Солнце же растрачивает его, и соотношение изменяется в пользу планет.
Это исследование В. А. Крата опровергло одно из самых серьезных возражений против гипотезы Лапласа. Он объяснил странное распределение момента количества движения между Солнцем и планетами. Но спасти гипотезу это уже не могло.
Что же все-таки питает Солнце? Там несомненно происходят превращения одних химических элементов в другие. Но какие именно? Распад тяжелых элементов — урана, радия, тория — мало вероятен. Их на Солнце мало. Незаметно и признаков такого распада.
Ученые, стремившиеся проникнуть в тайну солнечной кочегарки, сделали противоположное предположение. Атомы на Солнце не распадаются, а, наоборот, создаются. В недрах Солнца, где царит температура в миллионы градусов и давление в миллиарды атмосфер, происходит «упаковка» атомов, там из легких веществ образуются более тяжелые элементы. При таких превращениях в некоторых случаях выделяется большое количество энергии.
В своих лабораториях физики выполняют много подобных превращений.
Еще в 1919 году удалось «столкнуть лбами» атом азота с ядром атома гелия, и в результате получился атом кислорода и ядро атома водорода. Из алюминия таким же путем был приготовлен кремний, из бериллия — углерод.
За 20 лет напряженной работы физиков всех стран к 1939 году, было найдено 600 различных реакций между ядрами атомов. Сейчас таких реакций известно гораздо больше. Возникла новая отрасль науки — ядерная физика, которая изучает превращения элементов.
Физики научились не только переделывать атомы, существующие в готовом виде, но и создавать новые. К 1951 году в лабораториях получили десять новых химических элементов, которых до этого не было среди минералов земной коры.
При ядерных реакциях выделяется энергии в тысячи и сотни тысяч раз больше, чем при обычных химических реакциях. Например, при превращении одного грамма алюминия в кремний выделяется энергии в 700 тысяч раз больше, чем при сгорании одного грамма угля.
И ученые пришли к согласному решению, что в недрах Солнца происходит слияние атомов — из нескольких легких атомов образуется один, но более тяжелый атом. Оставалось проверить это предположение и найти — какие именно химические элементы участвуют в этих превращениях.
Если в каком-либо помещении окажется много мешков с мукой, то можно подумать, что там либо мельница, либо пекарня, то есть на этом предприятии или муку мелют, или из нее пекут хлеб.
Примерно в таком же положении оказались астрономы, когда с помощью спектроскопа заглянули на Солнце. Там обнаружено поразительно много водорода и гелия. В атмосфере Солнца почти 82 % объема занимает водород, а остальные 18 % — гелий. На долю остальных элементов приходятся сотые доли процента.
Возможно, что недра Солнца более богаты тяжелыми элементами, но все же водород и гелий на Солнце преобладают. Тоже самое наблюдается и на звездах. Эти газы, видимо, самые главные строительные материалы в мире звезд.
И очень может быть, что один из этих газов является «топливом», а другой «золой» или «дымом».
Опыты, поставленные в лабораториях, показали, что атомы водорода могут сливаться друг с другом и образовывать атомы гелия. При этом выделяется 162 миллиона килокалорий на каждый грамм израсходованного водорода или в 20 миллионов раз больше, чем дает грамм горящего угля.
По предположению ученых, в недрах Солнца царит жара в 20 миллионов градусов. При такой температуре атомы движутся с громадными скоростями. Они постоянно и с большой силой сталкиваются друг с другом. Соударения не проходят для атомов бесследно. Их ядра сливаются и образуются новые атомы.
Так, например, в бешеной сутолоке атомов солнечных газов может происходить такая реакция: атом углерода сталкивается с ядром атома водорода, которое называется протоном. Ядра столкнувшихся атомов сливаются в одно целое, и образуется атом нового вещества — радиоактивного азота.
Радиоактивный азот неустойчив. Он, как и все другие радиоактивные элементы, распадается. Развалившийся атом радиоактивного азота превращается в атом тяжелой разновидности углерода.
Этот новорожденный атом углерода при очередном столкновении с протоном поглощает его и становится атомом обычного азота.
Атом азота, в свою очередь встретившись с протоном, сливается с ним и превращается в атом радиоактивного кислорода.
В том, что все атомы сталкиваются обязательно с протонами, ничего необычного нет: водородных ядер в Солнце больше всего. При встрече с ядром атома гелия никаких превращений не происходит — у гелия очень прочные ядра. Они не вступают в реакции и при столкновениях с другими атомами отскакивают, как мячики; жертвой всех столкновений становятся преимущественно протоны.
Радиоактивный кислород, получившийся при последнем превращении, неустойчив. С течением некоторого времени он распадается и становится атомом разновидности азота — тяжелого азота.
В результате очередного столкновения с протоном — четвертого по счету — протон проникает в ядро тяжелого азота, и оно распадается на две неравные части — на атом гелия и на атом углерода.
Вся эта цепь превращений атомов, по расчетам физиков, длится пять миллионов лет. В результате же «гибнет» четыре протона, из которых постепенно складывается ядро атома гелия, а атом углерода из всех этих переделок выходит невредимым. При первом же столкновении с протоном он начинает новую цепь превращений.
Каждое слияние ядер, распад неустойчивых радиоактивных атомов, все их преобразования сопровождаются выделением энергии. И эта энергия подогревает Солнце, поддерживая его жар и светимость.
Такова последняя гипотеза, объясняющая почему светит и греет Солнце.
Гипотеза преобразования водорода в гелий при содействии посредника-углерода разработана американским физиком Бете. Она проверена несколькими лабораторными опытами. Некоторые астрономы принимают ее как истинную, но большинство считает гипотезу Бете только временной, рабочей гипотезой.
Когда строится дом, его обносят лесами. Постройка заканчивается, и леса снимают. Они больше не нужны. Рабочие гипотезы в науке — те же леса. Они дают временную опору исследованиям.
Осторожность ученых объясняется тем, что науке в этой области еще многое неясно, многое неизвестно. Никто пока не может сказать — возобновляются ли каким-либо образом запасы водорода на звездах или в межзвездном пространстве. Нет также никаких сведений и о дальнейшей судьбе гелия. Сомнительно, что он не способен якобы ни к каким ядерным реакциям. Ведь не случайно же и на Земле, и в метеоритах, и на Солнце преобладают элементы с атомным весом кратным четырем: углерод, атомный вес которого — 12, кислород — 16, кальций — 20, магний — 24, кремний — 28, железо — 56 и так далее. Ядра атомов этих элементов явно сложены из гелиевых ядер, так как атомный вес гелия — 4.
Навряд ли, в ядерных реакциях участвуют только 8 «избранных» элементов: водород, гелий, литий, бериллий, бор, углерод, азот и кислород, а остальные 90 присутствуют в недрах звезд только в качестве безразличных свидетелей.
Непонятно почему на некоторых звездах, непохожих на Солнце, кроме водорода и гелия наблюдается избыток других элементов. Есть, например, звезды, накопившие в своем составе много азота, есть также звезды богатые углеродом. Известно несколько звезд с обильным содержанием титана. Найдены «железные», «циркониевые», «стронциевые» звезды.
Наконец, наблюдения, которые непрерывно ведутся за солнечной деятельностью, показывают, что энергия в недрах Солнца вырабатывается не спокойным, равномерным процессом, а отдельными вспышками или взрывами, причина которых пока еще не раскрыта.
По всей вероятности в недрах Солнца и звезд происходит не одна ядерная реакция, а самые разнообразные. В них участвуют не только восемь наиболее легких элементов, а все химические элементы, какие только существуют в природе. Одни из них создаются, другие — распадаются; одни при своих реакциях выделяют энергию, другие — участвуют в реакциях, которые протекают с поглощением энергии.
В зависимости от условий в каких формировалась звезда, то есть от того, как быстро она накапливала массу в период своего роста, и от того, какое количество вещества ей удалось собрать, одна из разнообразных ядерных реакций становится преобладающей и поставляет наибольшее количество энергии, остальные реакции занимают второстепенное положение. На Солнце и солнцеподобных звездах, возможно, такой главенствующей реакцией является образование гелия из водорода.
Некоторые американские и западноевропейские астрономы стараются на основании гипотезы Бете сделать желательные для них выводы.
По мысли Бете, в недрах Солнца и большинства звезд водород гибнет безвозвратно. Он превращается в инертный, «ленивый» газ — гелий, который уже не способен к дальнейшим превращениям. На Солнце, таким образом, ежесекундно исчезает 564 миллиона тонн водорода и взамен образуется 560 миллионов тонн гелия.
Солнце очень велико, но оно не бесконечно. Через двадцать миллиардов лет, запас водорода на Солнце уменьшится более чем вдвое. Рано или поздно, но водороду на Солнце придет конец.
Тоже самое происходит и на звездах. И они подогреваются водородом. Всюду якобы исчезает водород и образуется гелий. Когда прогорают дрова, костер тухнет. Когда иссякнут запасы водорода, в звездном мире наступит «топливный голод». Звезды, задушенные избытком гелия, одна за другой начнут угасать, наша Галактика превратится в кладбище потухших светил. При тусклом красноватом свете догорающих звезд в пространстве, как темные призраки, будут носиться холодные шары мертвых солнц. Так американские ученые толкуют о неизбежности «водородного истощения» Вселенной, о неминуемости конца света.
В этой гипотезе снова оживает старая реакционная «теория» немецкого физика Клаузиуса о «тепловой смерти» Вселенной.
Клаузиус рассуждал так: все виды энергии могут преобразовываться в теплоту: свет, падая на какое-либо тело, нагревает его; электрический ток, протекая по проводнику, тоже превращается в теплоту, механическое движение всегда сопровождается выделением тепла. Теплота — непременный участник всех переходов из одного вида энергии в другой.
Но когда надо преобразовать теплоту в какой-либо иной вид энергии, возникает непреодолимое затруднение — в свет, в электричество, в механическое движение теплота целиком не переходит. Некоторая ее часть неизбежно теряется без всякой пользы. Рассеяние составляет как бы неотъемлемое свойство теплоты. Она всегда стремится от нагретого тела к более холодному.
Это положение совершенно справедливо для паровых машин, всякого рода двигателей, печей. Но Клаузиус распространил его на Солнце, звезды, на всю Вселенную.
Звезды светят, потому что они раскалены. Свою теплоту они расходуют на излучение. Потоки света устремляются в холод и мрак космического пространства. Звезды остывают, их запас энергии истощается, теплота бесследно рассеивается. В конце концов температура во всей Вселенной выравняется. Звезды погаснут. Наступит «тепловая смерть» Вселенной, конец света, мир погибнет.
Все, что имеет конец, имеет и начало. Следовательно, — утверждал Клаузиус, — было время, когда некая сверхъестественная сила создала неравенство температур, зажгла Солнце и звезды — завела пружину мировых часов. Часы пошли и будут идти до тех пор, пока не придут в равновесие, и тогда только чудо может вывести их из этого состояния и снова пустить в ход.
«Теория» Клаузиуса была придумана для того, чтобы доказать бытие бога, внушить людям, что мир создан богом и предсказанный библией конец света неизбежен. «Теория» Клаузиуса — одна из наиболее ядовитых и реакционных произведений буржуазной науки.
Фридрих Энгельс в «Диалектике природы» писал по поводу «теории» Клаузиуса:
«Вопрос о том, что делается с потерянной как будто бы теплотой, поставлен, так сказать, в чистом виде лишь с 1867 г. (Клаузиус). Неудивительно, что он еще не решен; возможно, что пройдет еще немало времени, пока мы своими скромными средствами добьемся решения его. Но он будет решен; это так же достоверно, как и то, что в природе не происходит никаких чудес и что первоначальная теплота туманности не была получена ею чудесным образом из внемировых сфер».[12]
Предвидение Энгельса полностью оправдалось. Действительно, прошло немало времени, пока ученью нашли выход из тупика. Доказано, что свет и вообще всякое излучение материальны. Вещество в результате ядерных реакций преобразуется в излучение. Излучение в определенных условиях превращается в частицы вещества. И ничто не пропадает.
Под ударами науки «теория тепловой смерти» Вселенной рухнула. Теперь на смену ей выдвигают гипотезу «водородного истощения», разработанную американскими физиками одновременно и попутно с изобретением и изготовлением человеконенавистнического оружия — атомной бомбы.
Американские астрономы уже «нашли» несколько десятков звезд, якобы лишившихся водорода и умирающих на наших глазах. В популярных книжках по астрономии уже нарисованы красочные картины последних звезд. Звезда, исчерпав последние крохи водорода, ярко вспыхивает. Вспышка умирающей звезды в последний раз озаряет мир своими лучами.
Это «открытие» приводит к мысли о сотворении мира. Бог будто бы создал Солнце и звезды, снабдил их водородом и дал им способность упаковываться в гелий. Бог сказал: «да будет свет» — и водородные шары-звезды вспыхнули, как фонари на улице, когда их включает диспетчер электротока.
Так под научными расчетами ядерных реакций скрывается старая обветшалая сказка о сотворении мира и конце света.
Повторяя слова Фридриха Энгельса, можно сказать, что мы еще не знаем, как и где возобновляются запасы водорода и других видов атомного топлива, не знаем, куда исчезает гелий. Пройдет немало времени прежде чем ученые добьются решения этих вопросов. Но они будут решены. Это так же достоверно, как и то, что в природе не бывает чудес.
И Солнце и видимые нами звезды не вечны, но на смену погибшим возникают новые солнца, новые звезды. Вселенная вечна. И никакое «водородное истощение» или «гелиевое удушье» не может погубить Вселенную.
И в этом вопросе, как и во всех остальных, единственно правильный ответ дает диалектический материализм: «…круговорот, в котором каждая конечная форма существования материи — безразлично, Солнце или туманность, отдельное животное или животный вид, химическое соединение или разложение — одинаково преходяща и в котором ничто не вечно, кроме вечно изменяющейся, вечно движущейся материи и законов ее движения и изменения. Но как бы часто и как бы безжалостно ни совершался во времени и в пространстве этот круговорот; сколько бы миллионов солнц и земель ни возникало и ни погибало…
…у нас есть уверенность, что материя во всех своих превращениях остается вечно одной и той же, что ни один из ее атрибутов[13] никогда не может быть утрачен».[14]
Все, что нам пока еще неизвестно, в конце концов настойчивым трудом ученых будет раскрыто и объяснено. Подлинная, передовая советская наука выбьет из рук религии оружие, которое ей предложили американские физики.
Разрабатывая и совершенствуя гипотезу Бете, ученые решили, что Солнце и другие звезды не всегда поддерживали свою температуру истреблением водорода, звезды меняли свое «топливо».
По мысли этих ученых звезды возникают в виде огромных газовых шаров, подобных инфракрасному сверхгиганту — эпсилону Возничего. Температура в центре будущей звезды не может быть высокой, и никаких ядерных реакций там не происходит.
Под влиянием тяготения газовый шар медленно сжимается. Вещество будущей звезды уплотняется, а с уплотнением вещества температура возрастает.
Когда недра звезды разогреются до 400 тысяч градусов, начинается первая простейшая ядерная реакция. Тяжелая разновидность водорода, так называемый дейтерий, вступает в соединение с обычным водородом. Атом дейтерия сливается с протоном, и получается атом легкой разновидности гелия.
Несколько десятков тысяч лет звезда поддерживает свою температуру за счет дейтерия, но в конце концов его запас истощается. Звезда, лишившись притока энергии из ее недр, съеживается, как мячик, из которого выпустили воздух.
Уменьшение объема звезды, ее уплотнение влечет за собой повышение температуры. Звезда разогревается. Когда температура ее недр достигает двух миллионов градусов, становится возможной другая ядерная реакция. Звезда начинает «сжигать» литий.
Ядра атомов лития, сталкиваясь с протонами, поглощают их, и возникают атомы гелия.
За счет лития звезда светит еще несколько тысячелетий. Его запасы иссякают. Звезда снова съеживается, а это приводит к еще большему разогреву недр звезды. Температура достигает 9 миллионов градусов.
Очередной жертвой звездной кочегарки становятся атомы бериллия и бора. Атомы бериллия и бора, встречаясь с протонами, сливаются с ними и преобразуются опять-таки в атомы гелия.
На бериллиевом питании звезда существует еще несколько миллионов лет. Запасы топлива исчерпываются. Звезда сжимается, а температура недр на этот раз повышается до 20 миллионов градусов. Начинается главная ядерная реакция. Атомы водорода при содействии углерода упаковываются по четыре и превращаются в атомы гелия.
На водородном «топливе» звезда существует несколько миллиардов лет. По расчетам московского астронома А. Г. Масевич, Солнце в течение десяти миллиардов лет будет светить, почти не уменьшая свою яркость.
Если признать эту гипотезу, то звезда на первых ступенях своего развития несколько раз меняет «топливо», и после периодов сравнительного покоя звезда быстро сжимается и ее недра разогреваются.
Идея смены атомного топлива и скачкообразного, стадийного развития молодых звезд вошла составной частью в космогоническую гипотезу, которую разрабатывал академик В. Г. Фесенков.
В основу своей гипотезы В. Г. Фесенков положил мысль, что образование планет является неизбежным следствием развития самого Солнца без участия посторонних помощников, вроде проходившей мимо звезды или какого-либо другого небесного тела.
В. Г. Фесенков считает, что Солнце значительно старше Земли, что Солнце вращалось раньше гораздо быстрей, чем сейчас, и планеты образовались во время смены атомного топлива.
Происходило это так. Солнце прожило большую часть своей молодости. Оно уже израсходовало все запасы дейтерия, лития, бериллия и бора. Лишенное притока теплоты из недр, Солнце быстро сжалось, его объем резко уменьшился, а скорость вращения столь же резко возросла.
Каждая точка на экваторе Солнца пробегала тогда в секунду свыше 400 километров. При такой бешеной скорости Солнце потеряло устойчивость, оно утратило форму шара и стало грушевидным телом.
Грушевидное тело не может долго сохранять свою форму. Оно должно либо разорваться, либо вернуться к прежней шарообразной форме. Солнце разорвалось.
Выступ солнечного вещества был отброшен центробежной силой за предел Роша, и из него образовались планеты.
Солнце, избавившись от излишней массы и от избытка момента количества движения, стало вращаться медленнее. Корпускулярное излучение и свет унесли большую часть момента количества движения, и это затормозило вращение Солнца.
Из расчетов В. Г. Фесенкова следует, что первоначально наша планетная система была очень маленькой, она имела всего лишь несколько миллионов километров в поперечнике, и вся помещалась внутри орбиты Меркурия. Со временем планетные орбиты расширились, и планеты разошлись на современные расстояния.
Эта гипотеза встретила многочисленные возражения и к настоящему времени до конца не разработана.