Глава седьмая МОБИЛИЗАЦИЯ ФАКТОВ


Температура земных недр

Геологи спускали термометры в глубочайшие буровые скважины, обследовали шахты и рудники, собирали сведения у горных инженеров, строивших туннели и другие подземные сооружения. Таким образом, еще в прошлом столетии установили, что по мере углубления в Землю температура неуклонно повышается — чем глубже, тем жарче. Есть на Земле места, где температура с глубиной возрастает быстрей, есть места — где медленнее, но в среднем на каждые 100 метров температура подымается на 2,5–3 градуса.

Это, казалось бы, совершенно естественное и понятное явление приводило к неестественным и непонятным выводам. Какова же должна быть жара на глубине 6378 километров, то есть в центре Земли? Самый простой арифметический подсчет показывает, что уже на 2500 километре ниже поверхности Земли температура достигает 6000°. Но ведь это же температура солнечной поверхности! При такой жаре ни одно вещество не может оставаться ни в твердом, ни в жидком состоянии. Неужели же мы живем на бомбе, начиненной раскаленными газами и ежеминутно готовой взорваться.

Это казалось невероятным. Но в науке тогда господствовала гипотеза Лапласа. Ученые думали, что Земля произошла из клубка раскаленных газов; при своем рождении она светилась, как маленькая звездочка; с течением веков постепенно остыла, покрылась твердой корой, но внутри сохранила прежний жар.

Поэтому большинство ученых считало, что вещество в земных недрах, если не газообразно, то, во всяком случае, огненно-жидкое. И в доказательство они указывали на вулканы, которые извергают лаву с температурой до 1400°.

Это мнение было общепризнанным.

По мере углубления в Землю температура повышается.

Сигналы далеких землетрясений

18 апреля 1889 года прибор, предназначенный для наблюдения приливов в земной коре, воспринял какие-то отрывистые и непонятные сигналы. Таинственная сигнализация длилась более полутора часов. Научные сотрудники, обслуживавшие прибор, недоумевали.

Загадка вскоре разъяснилась. Телеграф принес известие о сильном землетрясении, которое произошло в Японии. Колебания земной коры, возникшие в Тихом океане, достигли Европы, преодолев более 9000 километров, и тут их воспринял чувствительный прибор.

Академик Б. Б. Голицын оценил громадное значение этого случайного наблюдения. Он сконструировал прибор, предназначенный для записи колебаний, вызванных землетрясением. Прибор Голицына получил название сейсмограф — «записывающий толчки».

С помощью своих сейсмографов Голицын изучал, как распространяются колебания, вызванные землетрясением. Оказалось, что сейсмограф, расположенный в районе подземной катастрофы, записывает толчков меньше, чем сейсмографы, установленные в нескольких тысячах километров от очага землетрясения. Если ближний воспримет один толчок, то дальние отметят два, три и даже четыре толчка.

Два типа сейсмографов и образцы сейсмограмм. На нижней кривой — запись землетрясения 16 ноября 1927 года, происшедшего в группе Алеутских островов.


Исследования Голицына показали — эти дополнительные «добавочные» и более слабые толчки — не что иное, как «подземное эхо» — отражение колебаний от глубинных слоев Земли.

В конце ноября 1906 года в подвале Пулковской обсерватории устроили сейсмическую станцию. В течение первых же сорока дней наблюдений было зарегистрировано 14 землетрясений. При этом выяснилось огромное превосходство сейсмографов Голицына над всеми другими приборами этого типа, которые были построены в других странах. В настоящее время все сейсмические станции мира снабжаются усовершенствованными сейсмографами Голицына.

Уже в 1906 году было установлено, что отраженные колебания — эхо далеких землетрясений — приходят с глубины в 106 и в 492 километра. Очевидно на этих глубинах расположены границы слоев, где плотность горных пород резко меняется.

Следовательно, Земля имеет слоистое строение, и плотность Земли возрастает с глубиной не равномерно, а ступенями — скачками, от слоя к слою.

Земной шар имеет внутри сложное, слоистое строение.


Сейсмограф позволяет вскрывать внутреннее строение земного шара, находить границы слоев, определять плотность пород в недосягаемой глубине.

«Землетрясение подобно лучу света, ярко вспыхивающему на мгновение, чтобы осветить недоступные нам глубины земного шара», — писал академик Голицын.

Чтобы не ждать, когда землетрясение поможет заглянуть вглубь, ученые стали делать искусственные землетрясения — взрывать крупные заряды динамита или аммонала и с помощью сейсмографов, заранее расставленных на разных расстояниях от места взрыва, улавливать подземное эхо.

Таким путем было установлено, что в Земле можно различить четыре основных слоя: первый слой — это земная кора, очень сложного и тоже слоистого строения, толщиной, примерно, в 492 километра. Плотность горных пород, составляющих наружную оболочку Земли, равна 2,6.

Второй слой — промежуточный — простирается на глубину до 1200 километров. Его плотность постепенно возрастает до 5. Третий слой — оболочка ядра — имеет в толщину 1700 километров, и его плотность, равная 5, почти не изменяется вплоть до ядра.

Ядро нашей планеты имеет форму шара радиусом в 3478 километров, или, иначе говоря, граница ядра лежит на глубине в 2900 километров от поверхности Земли. Именно на этом расстоянии плотность резко, скачком возрастает с 5 до 9,6. И многие признаки говорят, что вещество в ядре твердое, но оно находится не в кристаллическом, а в стекловидном состоянии. Вещества же, подобные стеклу или смоле, то есть твердые, но не кристаллические, называются в науке твердыми жидкостями.

Колебания, порожденные землетрясением, проходя сквозь ядро земного шара, отклоняются от своего пути и тем самым указывают размеры этого ядра.


Одновременно с исследованиями сейсмологов ученые вулканологи установили, что очаги расплавленной магмы, над которыми образуются огнедышащие горы, расположены на сравнительно небольшой глубине в 30–60 километров. И они действительно представляют собой отдельные очаги, то есть нечто вроде котлов с лавой, не связанных друг с другом. Случается, что вулканы, расположенные вплотную друг к другу, действуют совершенно независимо один от другого.

Видимо, вулканические извержения — явления местные, происходящие в верхнем слое земной коры. В центре Земли никакой расплавленной магмы нет.

Кроме геофизиков, исследованиями недоступных глубин земного шара занимались и астрономы.

Они наблюдали ежегодные перемещения северного полюса по поверхности Земли.

Полюс не остается всегда в одной точке, он движется, описывая вокруг среднего своего положения небольшие неправильной формы петли.

Это движение полюсов еще в XVIII веке предвидел петербургский академик и величайший математик своего времени Леонард Эйлер. Он указал, что имей Земля твердость большую, чем у алмаза, полюса на ней должны были бы перемещаться с периодом в 304 суток. Если же период передвижения полюса окажется больше 304 суток, то твердость Земли будет соответственно меньше.

Движение полюса по земной поверхности за 6 лет — с 1912 года по 1918 год.


Для стального шара, величиной с нашу планету, период перемещения полюсов должен составить, примерно, 450 суток.

В те годы замечательное предвидение Эйлера проверить не было возможности: астрономические приборы еще не достигли нужного совершенства. Только в начале XX века выяснилось, что полюс завершает каждую свою петлю в течение 433 суток. Следовательно, Земля по твердости уступает алмазу, но превышает сталь!

В 1913 году ученые нашли третье доказательство необычайной твердости Земли. Была измерена высота приливной волны, подымающейся в твердой земной коре.

Если бы Земля была внутри жидкой, то высота приливной волны на суше достигала 75 сантиметров. А этого нет. Приливная волна на суше не превышает 25 сантиметров. Земля, следовательно, тверда и, как показывают расчеты, сделанные после измерения высоты «сухопутных» приливов, твердость Земли превышает твердость стали.

Гипотезу об огненно-жидком ядре Земли беспощадной критике подверг замечательный русский астроном Ф. А. Бредихин. Он указал, что исследования геофизиков и астрономов приводят к одному результату — Земля внутри тверда.

В последние годы было замечено, что некоторые землетрясения происходят на очень большой глубине, — примерно в восьмистах километрах ниже уровня моря. Это также доказывает, что в глубине Земля тверда — ведь в пластичной, текучей массе никакие напряжения и сотрясения возникать не могут.

Основываясь на всех этих фактах, академик В. И. Вернадский писал: «Все представления о некогда существовавшем огненно-жидком или расплавленном состоянии планеты, бывшем или ныне существующем, внесены в науку в связи с чуждым ей по существу теологическим,[15] философским и космогоническим представлениями о мире, не поддерживаемыми известными сейчас научными фактами».

Гипотеза огненно-жидкого состояния земных недр была оставлена.

Таким образом, одна половина загадки земных недр разрешилась, а вторая осталась. Какова же температура в глубине? Высокой она быть не может, потому что Земля тверда, как сталь. И низкой она не может быть, так как уже на глубине в 30–60 километров располагаются большие лавовые очаги, питающие вулканы. Температура лавы составляет 1100–1150°, а иногда даже 1400°.

Чтобы объяснить это противоречие, оставалось предположить единственное: самый жаркий пояс в глубине Земли лежит недалеко от поверхности.

Температура возрастает только до определенной глубины. Затем начинается зона более или менее равномерной температуры, и эта зона простирается вплоть до центра Земли.

Повидимому это так и есть, но почему — никто объяснить не мог.

Радиоактивное «топливо»

В прошлом столетии ученые обнаружили еще одно странное противоречие.

Физики, повторявшие опыт Бюффона, убедились, что этот ученый ошибся. Землю нельзя уподобить металлическому шару. Когда Земля покрылась твердой корой, ее охлаждение замедлилось, ведь земная кора — плохой проводник тепла. Но даже с учетом плохой теплопроводности коры охлаждение Земли могло длиться только сорок миллионов лет.

Земля, мы знаем, гораздо старше, и тем не менее она до сих пор не остыла. Очевидно, в ее недрах есть какой-то источник тепла, есть «печка», которая подогревает нашу планету изнутри. Что за «печка», никто не мог догадаться.

Было только подсчитано, что каждый квадратный метр поверхности Земли отдает за год 540 калорий. Это не очень много. Но ведь должен же где-то быть источник этого тепла!

Загадки земного тепла разрешились с открытием радиоактивности. Среди горных пород земной коры имеются минералы, которые содержат уран, торий, актиний, радий, протактиний, калий. Эти элементы, распадаясь, выделяют теплоту и подогревают земные недра.

Ученые попробовали подсчитать, велики ли на Земле запасы этого своеобразного топлива.

Залежи руд радиоактивных металлов имеются во многих районах земного шара. Кроме того, частицы урана, радия, тория в небольших количествах рассеяны почти повсеместно. Есть они в почве, в гранитах и базальтах, в океанской воде.

Основным поставщиком тепла является радий. В среднем на каждую тонну породы приходится несколько ничтожно маленьких пылинок радия, общим весом в одну миллионную долю грамма. Но ведь земной шар весит 6·1021 тонн. Сколько же в нем радия?

В результате подсчета запасов радиоактивных элементов получилось нечто непонятное.

Если радиоактивные элементы распределены равномерно по всей массе земного шара и содержатся в таком же количестве, в каком их находят в земной коре, то непонятно, почему земной шар до сих пор не расплавился.

Словом, по этим расчетам выходило, что радиоактивные элементы должны давать больше тепла, чем они дают его на самом деле. Получилась явная несуразица. Для объяснения замеченного противоречия оставалось допустить только одно: радиоактивные элементы распределены в Земле неравномерно — в глубине их меньше, чем в наружных слоях.

Для проверки этого предположения ученые обратились к вулканам. Они исследовали химический состав лав. И оказалось, — если лава подымается из глубоких очагов, — она несет ничтожное количество радиоактивных элементов, если же лава поступает из верхних слоев земной коры, то радиоактивных элементов в ней содержится гораздо больше.

Следовательно, глубочайшие недра Земли бедны ураном, торием и актинием. Подавляющая масса радиоактивных элементов скопилась недалеко от поверхности, примерно, на глубине 15–20 километров. Почему это так — неизвестно, но факт неоспоримый: радиоактивная «печка» находится не в центре Земли, а в земной коре. Земной шар подогревает наружная оболочка.

Итак, в распоряжении ученых оказались два важных факта: Земля внутри тверда и не очень горяча.

Земля не была звездой

У геологов и астрономов закралось подозрение, что центральное ядро нашей планеты всегда было твердым, что Земля зародилась, как твердое тело, и никогда не проходила стадию огненно-жидкого или газообразного клубка. Земля никогда не была звездой.

Эта новая мысль с трудом пробивала себе дорогу. На протяжении двух столетий люди верили, что Земля — дочь Солнца. Так учили в школе, так утверждали почти все космогонические гипотезы. И вдруг это привычное суждение оказалось сомнительным. Последние научные открытия лишили его опоры.

Сторонники старых гипотез не сдавались. Они подыскивали новые доказательства в свою пользу.

Но что же можно привести в защиту «дочерних прав» Земли и «отцовских» — Солнца?

Внутренний жар Земли? Его нет. Источник земной теплоты находится не в ядре планеты, а в ее коре. То тепло, каким обладает Земля, дает ей распад радиоактивных элементов и другие химические и физические процессы, происходящие во внешних оболочках земного шара.

Земля остывает? Да! От нескольких тысяч вулканов, которые когда-то действовали, теперь осталось только 318 действующих, да 112 курящихся. Потух Казбек, успокоился Эльбрус, и сотни других огнедышащих гор не подают никаких признаков подземной деятельности.

Бесспорно, Земля остывает, но не потому, что иссякают запасы тепла, сохранившиеся в Земле от ее рождения. Атомы радиоактивных элементов распадаются, количество их уменьшается. В нашей «печке прогорают дрова». Через 4,5 миллиарда лет урана и радия в земной коре станет вдвое меньше. Утихнут и другие процессы, рождающие теплоту. И тогда, возможно, потухнут последние вулканы на Земле.

Доводы, основанные на примерах вулканической деятельности, не убедительны, ими не исчерпывается арсенал доказательств, как будто бы говорящих в пользу старой гипотезы.

Сторонники огненно-жидкого состояния новорожденной Земли нашли еще один факт, которым они собирались доказать свою правому.

Химический состав Солнца и Земли почти одинаков, — говорили они, — небольшая разница заключается только в том, что на Солнце много легких газов — водорода и гелия, а на Земле их очень мало. Но именно это различие свидетельствует о высокой температуре нашей планеты на первом этапе ее существования.

В прошлом вулканическая деятельность на Земле была энергичнее.


Приверженцы «солнечного» происхождения Земли доказывали свою мысль о высокой температуре планет в далеком прошлом так: Земля и все остальные планеты, отделяясь от Солнца, получили «в приданое» большое количество водорода и гелия и всех других газов. И Земля и Венера достаточно массивны, и их тяготение настолько велико, что они могли сохранить легкие газы в своих атмосферах. Марс мог бы иметь гораздо больше водяных паров, а Меркурий и Луна по своей массе тоже способны удерживать небольшие воздушные оболочки, состоящие из сравнительно тяжелых и медлительных молекул кислорода, азота, углекислого газа и атомов аргона.

Однако, на Земле крайне мало легких газов — водорода и гелия, в атмосфере Венеры нет никаких признаков водяных паров. Марс, как мы знаем, очень беден водой и кислородом, а на Меркурии и на Луне газовые оболочки ничтожно малы.

Все это потому, что Земля, Венера, Марс, Меркурий и Луна были в далеком прошлом маленькими звездочками.

Под действием высокой температуры Земля потеряла большую часть легких газов, Венера и Марс лишились их почти полностью, а Меркурий и Луна растеряли вообще все газы.

Зато планеты-великаны — Юпитер, Сатурн, Уран и Нептун настолько массивны, что даже в раскаленном состоянии удержали возле себя мощные атмосферы, состоящие преимущественно из водорода и водородных соединений — газов метана и аммиака.

Отсутствие газовой оболочки на маленьких планетах — Меркурии и Луне, крайняя бедность водородом Земли, Венеры и Марса, обилие водорода на больших планетах доказывает, что планеты были прежде сильно раскалены и состав их атмосфер будто бы изменился под влиянием высокой температуры.

Перед учеными встала задача проверить эти доказательства сторонников солнечного происхождения Земли и проследить судьбу водорода и гелия в атмосфере нашей планеты.

Похищение атомов гелия

Общая масса воздушной оболочки земного шара равняется 5,3·1015 тонн, то есть атмосфера составляет только одну миллионную долю массы Земли. Для такой планеты, как наша, эта атмосфера немного маловата. Земля по своей силе тяготения может удерживать больше воздуха.

Атмосфера непрерывно питается притоком газов из недр. Много газов выбрасывают вулканы, грязевые сопки и гейзеры. Газы подымаются со дна морей, озер и болот. Растения снабжают атмосферу кислородом. Много газов дают природные месторождения. Эти месторождения широко используются в народном хозяйстве Советского Союза. В 1951 году в СССР было добыто почти 9 кубических километров природного газа.

Крупным поставщиком газов являются промышленность и транспорт. Любой металлургический завод по количеству выбрасываемых в атмосферу газов не уступит среднему вулкану.

Приток газов в атмосферу велик, но она почему-то до сих пор не увеличивается.

В одном из древнейших напластований земной коры геологи нашли любопытную окаменелость — кусок песчаника со следами дождевых капель.

Видимо, в этой местности 70 миллионов лет назад собирался дождь. Упали первые капли, они выбили в мелком песке характерные луночки-углубления, но ветер пронес тучу стороной, луночки, оставленные дождевыми каплями, подсохли, их затянуло пылью, сверху отложились наносные породы. Грунтовые воды пропитали песок минеральными веществами, он окаменел и пролежал в земных недрах до 1950 года, когда этот кусок песчаника откопали.

Геологи и геофизики измерили глубину и ширину луночек, сравнили их с теми луночками, какие получаются в таком же песке в наши дни, и убедились, что за 70 миллионов лет плотность нашей атмосферы существенным образом не изменилась, так как капли доисторического дождя по своим размерам ничем не отличаются от современных дождевых капель. Значит Земля всегда имела такую же атмосферу, как и сейчас.

Объяснить неполный объем воздушной оболочки горячим состоянием Земли не удается. За три-четыре миллиарда лет из недр планеты могло выделиться газов гораздо больше, чем нужно для пополнения атмосферы.

Не все поддается объяснению и в составе газов нашего воздуха. Воздух содержит 75,51 % азота, 23,01 % кислорода, 1,28 % аргона, 0,04 % углекислого газа, 0,0012 % неона, 0,0003 % криптона, а гелия только 0,00007 %. Кроме того в ничтожнейших количествах к воздуху примешаны ксенон, радон, аммиак, окиси азота, водород, пары ртути и йода. Странным кажется необычайная бедность атмосферы гелием.

Радиоактивные элементы: уран, радий, торий, актиний, присутствующие в земной коре, распадаясь, выделяют гелий. Каждый атом урана порождает 8 атомов гелия, а атом тория дает 7 атомов гелия. Гелий непрерывно поступает в атмосферу, он просачивается сквозь почву, выделяется при вулканических извержениях; казалось бы, гелий должен непрерывно накапливаться в атмосфере. Как показывают расчеты, в воздухе должно содержаться гелия раз в 12 больше, чем его имеется сейчас. Но он не накапливается, а куда-то исчезает, повидимому, гелий уходит из атмосферы в межпланетное пространство.

Чтобы покинуть земной шар и вылететь в межпланетное пространство, космическому кораблю или отдельному атому надо развить скорость не меньше, чем в 11 200 метров в секунду. Это так называемая «скорость ускользания». На высоте в 1000 километров скорость ускользания меньше, чем у поверхности Земли, там она составляет 8300 метров в секунду.

Атомы гелия при температуре в 15° движутся со скоростью в 1235 метров в секунду. Но это их средняя скорость. Отдельные атомы могут двигаться раз в 5 быстрее, то есть их скорость достигает 6200 метров в секунду. Но это все же меньше скорости ускользания. Значит атомы гелия сами по себе покидать Землю не могут. Их что-то похищает или им что-то помогает улетучиваться в межпланетное пространство.

На границе земной атмосферы

Уже много лет подряд геофизики и метеорологи посылают разведчиков в верхние слои атмосферы. Для этой цели служат небольшие воздушные шары. Они подымают в заоблачную высь самопишущие приборы-автоматы или маленькие радиосигнальные станции, изобретенные советским метеорологом П. А. Молчановым. С помощью воздушных шаров ученые исследовали атмосферу до высоты в 40 километров. Выше эти шары подыматься не могут. Для разведки более высоких слоев применены ракеты. Они залетают почти на границу земной атмосферы.

О температуре воздуха на большой высоте приборы-разведчики принесли неожиданные сведения. Раньше думали, что чем дальше от поверхности, тем воздух холоднее. Оказалось не так: похолодание прекращается на высоте в 30–35 километров, затем начинается потепление. В 40 километрах над уровнем моря ультрафиолетовое излучение Солнца нагревает воздух до +30°, а на высоте в 50 километров — уже до +60°!

В еще более высоких и разреженных слоях температура воздуха, то есть, иначе говоря, скорость движения газовых молекул, еще выше. Там она уже превышает скорость ускользания. Молекулы и атомы газов, подгоняемые солнечными лучами, покидают Землю и пускаются в самостоятельное космическое путешествие.

Именно поэтому атмосфера Земли не так велика, как этого можно было бы ожидать. Высокая температура внешних слоев атмосферы не позволяет ей разрастаться сверх определенного предела. Вместе с частицами азота и кислорода и быстрее их улетучиваются легкие и подвижные атомы гелия. Вырвавшись из недр, они подымаются в заоблачную высь и навсегда расстаются с Землей.

Точно так же улетучивается и водород — его молекулы еще легче, еще подвижнее, чем атомы гелия.

Следовательно, нет нужды объяснять почти полное отсутствие водорода и гелия раскаленным состоянием Земли в далеком прошлом. Легкие газы — водород, гелий, азот, кислород, неон — и в наши дни уходят с «холодной» планеты.

Ученые, которые пытаются доказать, что планеты получили свои атмосферы «в приданое» от Солнца и что с тех пор, как Земля остыла, ее атмосфера не менялась, глубоко ошибаются. Они находятся во власти остатков того средневекового мировоззрения, которое господствовало в науке в XVIII веке.

Крах последнего довода

Самым главным доказательством происхождения Земли из вещества Солнца служило сходство химического состава обоих небесных тел.

Ученые проверили, действительно ли он одинаков.

Бесспорно, на Солнце нет особых солнечных веществ, а на Земле — земных. Вещество одинаково, но количество отдельных химических элементов различно. Академик В. Г. Фесенков первым указал, что сравнение химического состава Солнца и Земли дает космогонистам еще одну путеводную нить в далекое прошлое. Например, на Солнце больше всего водорода и гелия, а на Земле из газов больше всего кислорода и хлора.

На Солнце тоже есть кислород, там его примерно вдвое больше, чем азота, а в Земле кислорода в 10 тысяч раз больше, чем азота.

Это удивительное расхождение нельзя объяснить тем, что Земля почему-либо не смогла захватить от Солнца полную норму азота. Точно так же нельзя предположить, что азот якобы был на Земле, но улетучился. Азот по атомному весу почти одинаков с кислородом, покидать Землю они могут только вместе. Следовательно, азота на нашей планете всегда было мало, и свой запас она приобрела не от Солнца.

И вот еще, что важно — такие «земные» газы, как кислород и хлор, химически очень активны, они легко вступают в соединения с металлами и образуют твердые вещества. Вся земная кора в основном состоит из окислов, то есть соединений кислорода с металлами: кремнезем — окись кремния, глинозем — окись алюминия. В глубоких слоях Земли много окислов магния и железа. Точно так же почти весь хлор на Земле связан с металлом натрием и образует мощные залежи поваренной соли.

Земля изобилует теми газами, какие могут входить в состав твердых тел, и бедна летучими газами, которые не способны образовывать твердые соединения. На Земле мало водорода, главное соединение которого — вода, мало азота, который неохотно вступает в химические соединения, почти совсем нет «ленивых» газов — гелия и неона, которые вообще не вступают в химические соединения.

Эта своеобразная и характерная особенность химического состава вещества Земли может быть объяснена только тем, что наша планета образовалась из твердых частиц, а не из газов. Именно поэтому она обладает преимущественно теми газами, какие могут входить в состав твердых частиц.

Даже то небольшое количество водорода, каким располагает Земля, могло быть принесено на нашу планету твердыми, металлическими частицами. Многие металлы, особенно такие, как платина и палладий, способны впитывать в себя водород более жадно, чем губка — воду. Например, кусочек палладия, погруженный в банку с водородом, заметно увеличивается в объеме, набухает, становится хрупким и растрескивается. Один кубический сантиметр палладия может вобрать в себя до 900 кубических сантиметров газа. Платина же впитывает водорода меньше — примерно сто объемов.

Удивительное сходство

Химический состав земной коры можно сравнивать не только с Солнцем. В распоряжении ученых есть образцы космического вещества — метеориты. Они более доступны для изучения, чем солнечные вещества. Кусок метеорита можно растолочь в ступке и исследовать по всем правилам лабораторной практики.

Начало химическому анализу метеоритов положил русский ученый И. Мухин. Еще в 1819 году в Петербурге он определил химический состав «палласова железа» — метеорита, привезенного академиком П. С. Палласом из Красноярского края.

Такие исследования делали многие ученые. Были испытаны тысячи образцов. И у всех ученых получились примерно одинаковые результаты.

Вот табличка, составленная академиком А. Е. Ферсманом. Для сравнения приведены также данные о химическом составе Земли.


Сходство химического состава Земли и метеоритов само бросается в глаза. Состав почти одинаков.

Геохимики первыми обратили внимание на любопытнейшую особенность химического состава Земли. Наша планета в основном сложена из четных элементов, то есть из элементов, у которых число Менделеева делится на два, а атомный вес — на четыре.

И химический состав метеоритов отличается тем же самым.

Почему это так, чем можно объяснить изобилие четных элементов, — пока еще неизвестно, это записано в памятную книжку науки как вопрос, над которым должны трудиться будущие поколения ученых.

Замеченный же факт убедительно доказывает родство Земли и метеоритов.

И это родство может быть объяснено только тремя явлениями: первое — метеориты произошли от планеты, похожей по химическому составу на Землю; второе — Земля и метеориты образовались из одного, и того же вещества; третье — Земля образовалась из метеоритов.

Каждый метеорит, яркой искоркой пролетая по небу, прибавляет крупинку к нашей Земле. Земной шар растет, он растет на наших глазах, собирая космический материал и тем увеличивая свою массу.

Не могут ли «падающие звезды» раскрыть нам тайну происхождения Земли.

Быть может Земля не дочь Солнца, а потомок пылинок?

Это заманчивое предположение казалось правдоподобным. И оно заслуживало проверки.

Подвиги трудолюбивых звездочетов

Еще в прошлом столетии добровольные труженики науки, астрономы-любители начали подсчитывать «падающие звезды». Ясной ночью любитель выносил кресло в сад или на балкон, усаживался поудобнее и, опершись затылком на какую-либо подставку, чтобы не утомляться, следил за выбранным им участком неба. Наблюдатель терпеливо подсчитывал, сколько метеоритов блеснет внутри четырехугольника Пегаса, или в ковше Большой Медведицы, или в каком-нибудь другом созвездии.

Побуждаемые любознательностью, добровольцы считали искорки метеоритов и оценивали их блеск, сравнивая его с блеском звезд. Так они подсчитывали метеоры и по вечерам и в предутренние часы, весной и осенью, летом и зимой. Проходили годы. Число наблюдений росло, а вместе с тем росло и значение подсчетов.

Правда, странное занятие «звездочетов» вызывало сначала усмешку у некоторых специалистов-астрономов. Считать «падающие звезды» казалось столь же бессмысленным делом, как и считать ворон. Но «звездочеты», случалось, делали небольшие, но все же существенные открытия. Это привлекало внимание и вызывало уважение к их кропотливому труду.

Так, например, выяснилось, что в предутренние часы метеоров появляется больше, чем в вечерние.

На утреннюю сторону земного шара падают метеориты, летящие навстречу Земле, а на вечернюю — летящие вдогонку. Догоняющих метеоритов меньше, и летят они медленнее, нежели встречные.


Это явление незамедлительно получило объяснение. Земной шар движется по своей орбите вокруг Солнца, и, очевидно, «лобовая» сторона земного шара должна встречать метеоров больше, чем «тыльная». А «лобовой» стороной Земли является как раз ее утренняя сторона. И поэтому под утро падает метеоров больше, чем в начале ночи.

Второе наблюдение показало, что многие метеоры вылетают стайками из определенных участков неба, а другие — по большей части самые мелкие, самые слабые — движутся совершенно беспорядочно. Они прочерчивают свои светящиеся следы-ниточки в произвольных направлениях, появляются в любых созвездиях и явно не подчиняются какому-либо закону.

Подсчетами метеоров стали заниматься специалисты. Ими было установлено, что часть метеоров движется в межпланетном пространстве стаями, образуя метеорные потоки, которые обращаются вокруг Солнца. Земля пересекает эти потоки в определенное время года, и тогда наблюдается прекраснейшее явление природы: «звездный дождь». Сотни, тысячи золотых искр бороздят черное небо в недосягаемой высоте. Яркие, как звезды, метеоры снопами вылетают из одного какого-либо созвездия. Тонкие стрелки светящихся следов лучами расходятся во все стороны. Небо искрится и сверкает. Одни светлые ниточки тихо гаснут, другие оканчиваются ослепительной яркой капелькой, которая иногда рассыпается мелкими брызгами. Бесшумная звездная метелица иногда длится несколько часов.

Самый первый звездный дождь, о котором сохранилась запись в древних китайских летописях, наблюдался 3720 лет назад. Много звездных дождей отметили и русские летописцы.

Наиболее яркий и обильный звездный дождь произошел 12 ноября 1833 года. Сверкающий ливень длился около шести часов. На нескольких наблюдательных станциях подсчитывали падения метеоров. Их число доходило до 200 тысяч в час.

«Звездный дождь» 12 ноября 1833 года (по рисунку того времени).


Самый многочисленный и регулярный поток встречается Земле ежегодно 12 августа. Это метеоры вылетают из созвездия Персея. Некоторые астрономы называют персеиды «великим метеорным потоком». Его ширина— 110 миллионов километров, и он содержит, примерно, 500 миллиардов тонн вещества, раздробленного на крупинки поменьше булавочной головки — в среднем по 25 миллиграммов каждая.

Кроме персеид, известно еще несколько метеорных потоков: Леониды, которые вылетают из созвездия Льва и появляются ежегодно 16 ноября. Раньше они выпадали особенно сильно раз в 33 года. Сейчас ядро этого потока отодвинулось от Земли, и ноябрьские звездные дожди прекратились.

В апреле, около 21 числа, Земля встречается с лиридами; примерно 4 мая, а затем 28 июля на Землю падают метеоры из созвездия Водолея — аквариды и так далее.

Кроме метеорных потоков, наблюдается много падающих звезд-одиночек.

Эти метеоры, повидимому, отбились от общей стаи или даже никогда ни к каким стаям не принадлежали. Такие одиночные метеоры получили название спорадических.

Когда для наблюдения метеоров применили телескоп, было сделано еще одно важное открытие. Оказалось, что невооруженным глазом видны лишь наиболее яркие метеоры. Большинство же этих небесных камешков настолько мало, что их падение удается наблюдать исключительно с помощью телескопа. Эти метеоры-малютки равны по размерам маленьким песчинкам или крупным пылинкам.

Таких телескопических метеоров Земля встречает очень много, за сутки их выпадает несколько десятков миллиардов штук; на Землю из межпланетного пространства непрерывно, днем и ночью, сыплется дождь мельчайших песчинок. Благодаря нашей атмосфере, задерживающей их полет, песчинки не достигают поверхности Земли — испаряются и не причиняют нам никакого вреда.

Изучение потока космического материала, поступающего на Землю, составляет одну из увлекательных и важных задач науки. Ведь метеоры — это единственные кусочки «чужого» — неземного вещества, которое удается исследовать в лабораториях, это посланцы, несущие нам рассказ о рождении и гибели других миров, рассказ, который пока еще не расшифрован наукой до конца.

Совершенно закономерно, что в Советском Союзе, стране самой передовой науки, исследованию метеоров и метеоритов придают исключительно большое значение. Именно у нас возникла и сложилась особая отрасль астрономии — метеоритика. Ее основы еще в XVIII веке были заложены академиком П. С. Палласом и членом-корреспондентом Академии наук Э. Ф. Хладным. Они доказали, что метеориты — это частицы других миров, прилетевшие на нашу Землю из холодного мрака космического пространства.

Когда зародилось подозрение, что метеориты могли сыграть важную роль в образовании земной коры и в формировании всего земного шара, интерес к ним необычайно возрос. По инициативе академика В. И. Вернадского был создан особый комитет, который объединил ученых, занятых исследованиями метеоритов.

Кажется, будто метеоры потока вылетают из одной точки небосвода. Но это только следствие перспективы. В действительности они летят все в одном направлении.


Основные наблюдения метеоров сосредоточены в южных обсерваториях СССР, где летние ночи темны и погода редко бывает пасмурной. Для изучения метеоритов привлекли современную технику; батареи фотографических аппаратов с автоматическими затворами — так называемые патрульные камеры — неусыпно следят за небом. Расставленные на значительном удалении друг от друга, фотоаппараты нацелены на определенные участки неба. Поэтому один и тот же метеор фотографируют несколько аппаратов. Это позволяет определять высоту, на которой появился метеор. Остроумные приспособления с вращающимися зеркалами или фотоаппараты с мигающими затворами помогают измерять скорость движения метеоров. Спектроскопы определяют их химический состав.

Один из подлинных энтузиастов науки — профессор И. С. Астапович со своими сотрудниками свыше тысячи ночей отдали наблюдениям и подсчетам метеоров. И. С. Астапович приспособил радиоприемник для того, чтобы не только видеть метеоры, но и слышать их полет. Метеориты, пролетая в атмосфере, излучают электромагнитные колебания.

В 1946 году московский астроном Б. Ю. Левин впервые в мире применил для изучения метеоров электромагнитные колебания. Это позволило наблюдать и регистрировать падение метеоров не только ночью, но и днем и в пасмурную погоду.

Профессор А. Г. Калашников изобрел особый электромагнитный прибор для учета метеоров; огромная катушка этого прибора имеет в поперечнике около ста метров. Прибор А. Г. Калашникова отмечает появление каждого даже очень маленького метеора, влетевшего в нашу атмосферу.

Достаточно крупные и, особенно, медленно летящие метеоры не сгорают полностью в атмосфере, а достигают земной поверхности и их удается находить вскоре после падения. Маленькие метеориты падают на Землю медленно. Известен случай, когда метеорит попал в корыто женщины, стиравшей белье. Метеориты иногда находят на льду озер, на снегу.

Большие метеориты сохраняют часть своей космической скорости и могут причинить большие разрушения.

Величайший из метеоритов упал 30 июня 1908 года. Этот метеорит, прозванный Тунгусским, появился, примерно, над Байкалом, летел с юго-востока на северо-запад и упал в Енисейской тайге недалеко от поселка Вановара.

Если бы встреча земного шара с Тунгусским метеоритом произошла, примерно, на 5 часов раньше, пострадал бы город Выборг или северные пригороды Петербурга.

Измерение высоты метеора наблюдателями из двух удаленных друг от друга пунктов.


Падение Тунгусского метеорита и его взрыв при ударе о поверхность Земли вызвали сильное землетрясение. На 500–600 километров вокруг шатались дома, раскачивались подвешенные предметы, дребезжали и лопались стекла в окнах, валились с ног лошади. Все сейсмические станции Европы, Азии и даже Америки отметили это необычайное землетрясение.

На тысячу километров от места взрыва был слышен грохот и глухой гул, а столб дыма поднялся на двадцать километров.

Километров на сорок вокруг места падения таежный лес был повален и обожжен. Деревья, как скошенные, легли рядами, вершинами в сторону, противоположную взрыву.

Академия наук СССР снаряжала в тайгу четыре экспедиции, которыми руководил Л. А. Кулик. Ученые обследовали место падения. Они нашли несколько щепоток раздробленных горных пород с примесью никелистого метеорного железа. Никаких иных остатков метеорита подобрать не удалось.

Дело в том, что падение «Тунгусского дива» произошло в дореволюционные годы. Исследование места катастрофы началось только в советское время — через 19 лет после падения, а упал метеорит в болотистое место. Его остатки рассеялись, смешались с илом, утонули, окислились и погибли для науки.

По подсчетам профессора И. С. Астаповича этот метеорит весил около 50 тысяч тонн и, как предполагают некоторые ученые, он был ядром небольшой кометы.

Второй по величине крупнейший метеорит упал тоже в нашей стране 12 февраля 1947 года. Розыски этого метеорита были предприняты немедленно после падения.

Этот метеорит взорвался в воздухе и рассыпался на тысячи осколков. В отрогах Сихотэ-алиньского хребта экспедиция под руководством академика В. Г. Фесенкова собрала, примерно, 37 тонн метеорного вещества.

В музеях Советского Союза хранится несколько тысяч метеоритов общим весом около сорока тонн.

Серебристые облава и космическая пыль

Летней ночью 1885 года московский астроном В. К. Цераский заметил на северной стороне небосвода жемчужно-серебристые, светящиеся облака. Шел одиннадцатый час ночи, Солнце давно уж село, обычные облака на фоне неба казались темными, а эти облака светились.

Два года спустя В. К. Цераский совместно с А. А. Белопольским измерил высоту, на которой виднеются серебристые облака. Оказалось, что они плавают в 82 километрах от поверхности Земли. Уже это указывает на особенную природу серебристых облаков. Обычные облака выше одиннадцати километров от земной поверхности не наблюдаются.

Сначала ученые думали, что серебристые облака состоят из пыли, которую забрасывают в верхние слои атмосферы вулканические извержения, и эта пыль светится в лучах Солнца, но такое предположение не оправдалось. Появление серебристых облаков не зависит от огнедышащих гор.

Зато в ночь после падения Тунгусского метеорита наблюдались очень яркие и большие серебристые облака, покрывавшие почти все небо. Академик В. Г. Фесенков, работавший тогда в Ташкенте, несколько ночей не мог приступить к астрономические наблюдениям — мешал свет серебристых облаков.

Астроном-любитель В. П. России, живший в городе Наровчата, ровно в полночь на 1 июня 1908 года сумел сделать снимок улицы самым обыкновенным фотоаппаратом: тогда было светло, как днем. В. П. России нарочно сфотографировал церковь, так как по расположению церкви можно определить страны света. На снимке видно — южная сторона церкви в тени, а северная освещена, и весь снимок выглядит так, как будто он снят днем, но при свете, падающем с севера.

Фотография, сделанная ровно в полночь при свете серебристых облаков.


Необычайно светлые ночи наблюдались по всей Европе в течение нескольких суток. По ночам было настолько светло, что люди свободно читали мелкий газетный шрифт. Несомненно, что серебристые облака были принесены на Землю Тунгусским метеоритом.

Как предполагают ученые, серебристые облака образованы мелкой космической пылью, которая, постепенно оседая, начинает светиться на высоте 82 километров над Землей.

Серебристые облака.


Космическую пыль на Землю поставляют некоторые метеорные потоки. Одно из скоплений пылевого вещества, например, сопутствует метеорному потоку персеид, с которым Земля встречается в августе.

Профессор Н. Н. Калитин заметил, что ежегодно с 12 августа атмосфера утрачивает обычную прозрачность; до 20 августа помутнение возрастает, затем пыль начинает рассеиваться и оседать.

Крупное облако космической пыли опустилось на Землю 3 мая 1892 года. Оно прошло над северной Германией, Данией, Финляндией и Скандинавским полуостровом, охватив территорию в 660 тысяч квадратных километров. Масса осевшей пыли определена, примерно, в 500 тысяч тонн.

Многолетние работы советских ученых позволили подсчитать, сколько приблизительно метеоритного вещества прибывает на Землю. Астрономы учли, сколько выпадает мельчайших метеорных частиц, сгорающих в верхних слоях атмосферы, учли и те метеориты, какие достигают поверхности Земли, прибавили к общей сумме космическую пыль, оседающую на Землю, подсчитали и прибыль массы от метеоритов-гигантов, таких как Аризонский, Тунгусский и Сихотэ-алиньский.

Этими подсчетами установлено, что в сутки выпадает около 6–6,5 тонн «неземного» вещества. Может быть в действительности метеоритного материала окажется немного больше, может быть и чуть меньше, но в среднем число 6, 5 тонн в сутки вероятно очень близко к истине. Следовательно, масса земного шара увеличивается ежегодно на 2500 тонн.

Результат обескураживающий!

Если Земля существует три с половиной миллиарда лет и если метеорное вещество и раньше выпадало в таком же количестве, как и сейчас, то за время существования Земли на каждый квадратный сантиметр ее поверхности выпало всего лишь около двух граммов — одна чайная ложка пыли.

Метеориты даже за 3,5 миллиарда лет могли только «попудрить» земной шар, а ни в формировании земной коры, ни в образовании самой Земли метеориты какой-либо роли играть не могли. Их для этого слишком мало.

Но может быть раньше метеоритов в окрестностях Солнца было больше? Может быть в прошлом они падали чаще и прирост массы земного шара определялся миллионами тонн. Такое предположение казалось правдоподобным, его подтверждали многочисленные наблюдения и исследования ученых, начатые свыше ста лет назад первым директором Пулковской обсерватории В. Я. Струве.

Недостача слабых звезд

В 1839 году в только что отстроенной Пулковской обсерватории установили величайший для того времени 15-дюймовый телескоп. Знаменитый русский астроном и основатель Пулковской обсерватории Василий Яковлевич Струве с помощью нового телескопа продолжал исследования звездного мира, начатые им еще в Дерптской обсерватории.

После нескольких лет работы В. Я. Струве пришел к твердому убеждению, что он видит не все звезды, какие мог бы показать ему новый телескоп. По всем признакам свет слабых и очень далеких звезд почему-то не долетает до Земли.

Еще в XVIII веке ученые, подсчитывая звезды, заметили, что слабых звезд на небе оказывается меньше, чем можно было ожидать. По расчетам астрономов выходило, что звезд восьмой величины должно быть, примерно, вчетверо больше, чем звезд седьмой величины; звезд девятой величины — вчетверо больше, чем звезд восьмой величины, и так далее.

В действительности же получилась иная картина. Звезд седьмой величины насчитывается 14 300, а звезд восьмой величины вместо 51 200 — только 41000. Звезд девятой величины вместо 164 000–117 000. Наблюдения противоречат вычислениям. Слабых звезд явно недостает.

Каждый раз, заметив в окружающем нас мире что-либо новое, астрономы стараются понять, что перед ними — истинное явление или же нечто кажущееся. Так и тут. Может быть это только кажется, что слабых звезд мало, может быть их на самом деле больше, но они почему-либо невидимы.

Мнения астрономов разделились. Большинство утверждало, что вычисления ошибочны, слабых звезд и в действительности столько, сколько их видно.

Меньшинство полагало более благоразумным подождать, понаблюдать — с течением времени станет ясно, в чем тут дело.

Только очень немногие ученые — два-три человека — считали недостачу слабых звезд кажущимся явлением.

В 1847 году Струве опубликовал свой многолетний труд «Этюды звездной астрономии». В этом капитальном произведении В. Я. Струве весьма решительно доказывал, что нехватка слабых звезд — явление кажущееся, на самом деле звезд больше, чем мы видим.

Западноевропейские ученые встретили открытие русского астронома с явным неодобрением. Они называли доводы В. Я. Струве неубедительными и мало обоснованными. Свои возражения критики сопровождали ироническими замечаниями и всячески высказывали свое недовольство. Это и понятно. Струве был слишком авторитетным ученым, к словам директора «астрономической столицы мира» волей-неволей приходилось прислушиваться. Но соглашаться с мнением В. Я. Струве западноевропейские ученые не хотела.

Спор о числе слабых звезд только на первый взгляд казался чем-то второстепенным. Он скрывал в своей основе глубокие противоречия двух мировоззрений.

Ученые-идеалисты, стремившиеся угодить церковным требованиям, яростно доказывали, что чем дальше от Солнца, тем звезды размещены в пространстве все реже и реже. Никакой нехватки слабых звезд нет. Звезды действительно столпились вокруг Солнца. Они якобы окружают его, как самое главное светило во всей Вселенной. Солнце занимает это почетное место, потому что ему, как творению бога, полагается сиять в центре Мира.

Доводы Струве опровергали этот библейский вымысел. Струве изгонял Солнце из центра Вселенной. Он низводил его в положение обычной рядовой звезды. Подобные мысли были совершенно неприемлемы для религиозно настроенных ученых.

Еще больше их возмущало объяснение Струве, почему звезд видно меньше, чем их есть в действительности.

Струве указывал, что межзвездное пространство не пусто. Оно заполнено чрезвычайно разреженной материей: мелкой пылью и частицами газов. Эта космическая пыль затуманивает свет далеких звезд, ослабляет его, а самые тусклые звезды становятся вовсе невидимыми. И из-за этого возникает противоречие между наблюдениями и расчетами астрономов. Но это противоречие кажущееся — «виновата» космическая пыль.

Западноевропейские астрономы негодовали. Мысль о засоренности космического пространства казалась им чудовищной и безбожной. По Струве получалось, что бог, создавая Землю, Солнце и звезды, оставил на небе какой-то сор.

Противодействие, которое встретили идеи Струве, сделало свое дело. Работа Струве была временно забыта. Предубеждение, внушенное религиозными представлениями о Вселенной, помешало развитию астрономии, задержало его более чем на полвека.

В конце прошлого столетия астрономы стали замечать, что в спектрах далеких звезд имеются линии, которые не могут принадлежать звездам. Они явно захвачены световым лучом во время его путешествия в космическом пространстве. И чем дальше находится исследуемая звезда, тем резче выделяются эти линии.

В 1910 году известный русский астроном Г. А. Тихов доказал, что межзвездная пыль действительно существует. Однако буржуазным ученым и этого было мало. Космическую пыль «открывали» по меньшей мере раз пять или шесть.

Окончательно признали ее существование только в 1930 году. Помогли этому земные вулканы. В начале нашего столетия произошло несколько извержений: в 1902 году на острове Мартинике проснулся вулкан Лысая Гора, в 1906 году было извержение Везувия, а в 1914 году — Сакурашимо.

Вулканы выбросили в верхние слои атмосферы огромное количество вулканического пепла. При страшном извержении Лысой Горы тучи пепла взметнулись на четыре тысячи метров над землей. Пепел поднялся в заоблачную высь, и воздушные течения разнесли его почти по всей Земле.

Извержение вулкана Лысая Гора на острове Мартинике 8 мая 1902 года.


К великой досаде астрономов частицы вулканического пепла плавали в атмосфере несколько лет и сильно мешали наблюдениям: свет звезд казался красноватым. Влияние пыли на свет звезд поневоле пришлось изучить как можно основательнее. И это помогло при исследованиях звезд.

Примерно, в двадцатых годах нашего века астрономы научились почти безошибочно и несколькими способами определять температуру звезд. При этом выяснилось, что прежние сведения о температуре звезд не вполне точны. Раньше считали, что все белые звезды горячи, а красноватые — холодны.

В 1930 году было замечено, что на некоторых участках неба звездочки, по всем признакам раскаленные до 10–12 тысяч градусов, кажутся почему-то красноватыми. Такие звезды должны быть ярко-белыми, но ни в коем случае не красными.

Эти звезды безусловно белые, но пока их свет летит до Земли, то по пути фиолетовые, синие, голубые и зеленые лучи частично теряются, остаются только красные, оранжевые и желтые лучи; свет начинает казаться красноватым. Как показали наблюдения, сделанные после вулканических извержений, виновником такого изменения света звезд может быть мельчайшая пыль. Пылинки поглощают и рассеивают преимущественно голубые и зеленые лучи. Желтые, оранжевые и красные лучи они пропускают сравнительно свободно. Поэтому свет, проходя сквозь слой пыли, теряет фиолетовые, голубые и зеленые лучи, и от этого краснеет.

Однако в тридцатых годах сильных вулканических извержений не наблюдалось. Атмосфера была чиста. Откуда же могла взяться пыль, заставившая звезды покраснеть? Она явно была не земного происхождения, так как красноватыми выглядели не все звезды, а только некоторые на отдельных участках неба.

Более подробные исследования показали, что покраснение света звезд вызвано не земной, а космической пылью. В межзвездном пространстве клубятся легкие, тонкие, прозрачные пылевые облака.

Таким образом гениальное предвидение В. Я. Струве полностью подтвердилось. Спор, длившийся почти девяносто лет, закончился победой русской науки. Межзвездное пространство действительно не пусто и не вполне прозрачно.

Западноевропейские ученые долгое время думали, что космическая пыль распределена в пространстве равномерно. Это тоже было ошибкой. Крупнейший советский астроном В. А. Амбарцумян вместе со своим учеником Ш. Г. Горделадзе доказали, что основная масса космической пыли и газов собрана в отдельные облака — туманности.

Облака космической пыли находятся на разных расстояниях от Земли. Одни из таких туманностей далеки и о их существовании можно судить только по легкому покраснению света звезд, расположенных позади туманности; другие — близки и видны сравнительно хорошо. Они отчетливо вырисовываются на фоне Млечного Пути.

Ближайшие к Земле облака темного пылеватого вещества были давно замечены людьми. Моряки и китобои, плававшие в южном полушарии, еще в XVII веке приметили одно такое облако и дали ему меткое прозвище: «Угольный мешок». В этом месте среди Млечного Пути на небольшом участке звезд почти не видно — они словно прихлопнуты черным мешком.

Есть такие же «угольные мешки» и на небе северного полушария. Они темнеют среди звезд Млечного Пути в созвездиям Лебедя, Стрельца и Змееносца.

Туманность «Волокнистая».


Долгое время эти темные провалы среди звезд считались пустотами — «дырами в небе», ученые думали, что сквозь них, как через окошки, чернеет даль мирового пространства.

Покраснение света звездочек, виднеющихся в таких «небесных окошках» помогло разоблачить ошибку. Это вовсе не «окошки», а темные, полупрозрачные массы пыли, заслоняющие от нас свет звезд.

В. А. Амбарцумян и Ш. Г. Горделадзе, исследовавшие природу распыленного межзвездного вещества, доказали, что между светлыми бесформенными туманностями, которые с давних пор были известны ученым, и темными туманностями никакой существенной разницы нет. Просто одни освещены ближайшими яркими звездами, а другие не имеют поблизости звезд-осветителей и поэтому темны.

Темная туманность, видимая на фоне звезд Млечного Пути.


Итак, в распоряжении ученых оказался чрезвычайно важный факт: в пространстве, кроме звезд и различных светлых туманностей, есть еще темные облака космической пыли. И вообще межзвездное пространство не пусто.

Но это открытие, сделанное в начале нашего века, было только одной из тропинок, которая повела ученых к исследованию глубин Вселенной. Примерно в те же годы астрономы одержали другую важную победу: они сумели измерить Млечный Путь.

Маяки Вселенной

Еще в конце XVI века астрономы заметили, что некоторые звезды время от времени меркнут, а потом снова разгораются.

Как это ни странно, диковинное явление тогда не привлекло внимания ученых. И даже полтораста лет спустя не нашлось наблюдателя, который заинтересовался бы переменными звездами. Об их существовании знали, называли эти звезды «непостоянными», но не изучали. Их считали чем-то вроде небесных уродцев, какими-то случайными и противоестественными светилами, которые недостойны наблюдения и исследования.

Удивляться этому не приходится. В ту эпоху наука только начинала освобождаться от религиозного гнета. Мысль ученых еще была скована средневековым мировоззрением.

Один из крупнейших астрономов XVI века — Тихо Браге — писал: «По всем философским воззрениям следует, что в воздушных пространствах небесного мира ничто не меняется, что небеса и небесные тела не растут и не уменьшаются, что они не подвергаются никаким изменениям ни по числу, ни по виду, ни по блеску… все звезды сохраняют неизменно свое количество, положение, порядок движения и внешний вид».

Вот эти-то «философские воззрения», подобно темным и кривым очкам, делали астрономов как бы полуслепыми, мешали видеть то, что происходит на небе. Ученые даже представить не могли — как это звезды могут изменяться, притухать и разгораться. Заметив на небе какую-то перемену, они чурались ее, не решаясь начать систематические наблюдения; не имея настоящею научного мировоззрения, они смотрели на небо, но многого не видели.

Изучение переменных звезд началось с конца XVIII века, когда чешский крестьянин, астроном-самоучка Палич и глухонемой английский юноша Гудрайк заметили несколько переменных звезд и стали за ними следить.

Оказалось, что некоторые переменные звезды с изумительной аккуратностью изменяют свою яркость. Одна из них — звезда «Злой Гость» — Алголь из созвездия Персея двое с половиной суток светит, как самая обычная звезда, потом она начинает гаснуть. Угасание длится 4,5 часа. В следующие 4,5 часа Алголь восстанавливает прежний блеск и опять светит 60 часов как ни в чем не бывало.

Другая переменная звезда, помеченная на карте созвездия Цефея греческой буквой дельта, изменяем свою яркость непрерывно. 35 часов она постепенно разгорается, а следующие 94 часа — также плавно угасает. Сбавив светимость до предела, дельта Цефея, не задерживаясь ни на секунду, начинает разгораться. Переменных звезд, подобных Алголю, нашлось на небе очень много — свыше восьмисот. Они все называются алголями.

Звезд, похожих на дельту Цефея, еще больше — несколько тысяч. Они носят общее название — цефеиды.

Разгадка алголей была найдена сравнительно легко. Все алголи — затменные звезды. Они имеют темных или слабосветящихся спутников. Обращаясь вокруг главной звезды, спутник по временам заслоняет ее — становится между нами и звездой. Происходит затмение, и звезда сбавляет свой блеск.

Цефеиды совершенно не похожи на алголей. Цефеиды изменяют свою яркость непрерывно и своеобразно — они меркнут вдвое и втрое медленнее, чем разгораются. Присутствием темного спутника объяснить такую особенность цефеид не удается. Спутник не может так резко замедлять и ускорять движение по орбите. Он не может надвигаться на диск звезды медленнее, чем сходить с него. Не затмение, что-то иное заставляет цефеид «зажмуриваться».

Исследования крупнейшего русского астрофизика А. А. Белопольского показали, что когда цефеида увеличивает блеск, она действительно разгорается — ее температура нарастает и изменяется характер спектра.

Другой русский ученый Н. А. Умов высказал предположение, что цефеиды это — пульсирующие звезды. Разгораясь, они увеличиваются в объеме, словно раздуваются, а потом, когда «приступ лихорадки» пройдет, они съеживаются, их поверхность опадает и светимость уменьшается.

Последующие исследования полностью подтвердили гипотезу Н. А. Умова.

Все цефеиды оказались очень крупными звездами. Они по объему в несколько тысяч раз больше нашего Солнца. Вещество на этих звездах непрерывно колышется— их объем то увеличивается, то уменьшается, цефеиды как бы «дышат».

Особенно замечательно то, что пульсации цефеид подчинены законам маятника. Как длинный маятник качается медленнее короткого, так и большая, массивная, яркая цефеида пульсирует медленнее, чем менее крупная. Десятисуточная цефеида больше и ярче семисуточной. Цефеида с периодом в 5 суток больше и ярче трехсуточной и так далее. Зная период цефеиды, можно определить ее размеры и светимость.

Это замечательное открытие превратило цефеиды в своеобразные маяки Вселенной.

Когда темной ночью капитан корабля видит вдали мигающий фонарь маяка, он легко ориентируется и узнает расстояние до берега; так и астроном, заметив среди какой-либо звездной стаи или скопления чудесную цефеиду, видит в ней подобие маяка, который помогает ему ориентироваться в пространстве.

Несколько ночей подряд астроном измеряет блеск цефеиды и устанавливает длину ее периода. Узнав период, он определяет ее светимость. Допустим, что замеченная им цефеида по светимости равна Арктуру — «стражу Медведицы» из созвездия Волопаса. Поставленные в пространстве рядом, цефеида и Арктур казались бы земному наблюдателю совершенно одинаковыми звездами.

Но на небе они выглядят неодинаковыми. Арктур блестит, как звезда первой величины, а найденная цефеида виднеется звездочкой одиннадцатой величины, то есть совсем тусклой. Ее блеск ослаблен расстоянием. Она, очевидно, расположена гораздо дальше Арктура. И можно вычислить на сколько она дальше его.

Закон убывания видимой яркости источника света с увеличением расстояния прост, и соответствующие вычисления не сложны.

Так как найденная цефеида по блеску слабее Арктура на 10 звездных величин, то, следовательно, она в 100 раз дальше его.

Арктур — близкая звезда. Расстояние до нее известно достаточно точно. Оно равно 33 световым годам. Следовательно, цефеида находится на расстоянии в 3300 световых года.

Каждая цефеида оказывается своеобразным верстовым столбом. Ее период и блеск говорят и о расстоянии до нее. Открытие замечательных свойств цефеид было прекрасным подарком науке.

Впервые в мире расстояние до звезд было измерено в 1838 году великим русским астрономом В. Я. Струве. К 1913 году, то есть за 75 лет, ценой напряженных усилий астрономов всех стран удалось измерить расстояния всего лишь до 50 наиболее близких звезд. Наука приобрела план ближайших окрестностей Солнца — небольшого участка радиусом в несколько десятков световых лет. Все остальное оставалось недоступным.

Движущиеся скопления, зеленоватые туманности, звездные облака Млечного Пути, загадочные белые спирали и шаровые звездные кучи — все это находилось за пределами досягаемости. Их видели на небе, но было неизвестно, что ближе, а что дальше.

Пытливая человеческая мысль открыла закономерность, связывающую период и светимость цефеид. Казавшееся недосягаемым, стало простым и доступным.

Учеными на первых порах учтено 980 цефеид, Эти цефеиды превратились в «верстовые столбы», расположенные в различных областях Млечного Пути. Почти тысяча невидимых нитей протянулась от Земли по разным направлениям. И длина каждой нити стала известной. Ученые сделали сразу тысячу промеров Вселенной. Наука торжествовала победу. Перед ней открылись широкие горизонты.

Млечный Путь — Галактика

Первые измерения, сделанные с помощью маяков Вселенной, показали, что окружающий нас мир звезд хотя и велик, но не безграничен. Звезды рассеяны в пространстве не равномерно, а собраны в огромное облако.

Это скопление звезд по форме похоже на спортивный диск или на две мелкие тарелки, сложенные краями — оно круглое и сплющенное.

В бесконечном просторе Вселенной наше звездное облако, как остров среди океана, а звезды, его составляющие, по сравнению с самим облаком, подобны ничтожно-малым светящимся пылинкам. Одну из этих пылинок мы называем своим Солнцем.

Солнце, и мы вместе с ним, находится в звездном облаке и поэтому видеть его мы можем только изнутри. Как зритель на трибуне стадиона, оглядевшись вокруг, видит множество зрителей, сплошной стеной опоясавших стадион, так и наш взгляд встречает по направлению к краям облака мириады звезд, сгустившихся возле центральной плоскости звездного облака.

Мы наблюдаем это сгущение звезд на нашем небе и называем его Млечным Путем. Он охватывает небо сплошной серебристо-жемчужной лентой, как бы сотканной из мельчайшей звездной пыли. Но это не пыль, это звезды не менее яркие, чем наше Солнце. Они только выглядят мелкими, потому что находятся далеко.

И скученность их кажущаяся. Как ряд придорожных столбов виден редким вблизи и частым вдали, так и звезды Млечною пути — они расположены на больших расстояниях друг от друга, а впечатление тесноты в Млечном Пути создает перспектива.

В действительности же такой скученности там нет. И Млечный Путь — не путь и ничего не имеет общего с молоком. Это старинное название возникло в глубокой древности, когда поэтическое воображение первых наблюдателей сравнивало далекие звездочки с мельчайшими брызгами молока.

Ученые сохранили старинное название, оно послужило им основой для нового термина Галактика (галактос — молоко). Галактикой назвали то гигантское скопление звезд, в котором находится наше Солнце.

С открытием Галактики астрономы почувствовали себя путешественниками, попавшими в совершении незнакомый город, причем выяснилось, что они вовсе не путешественники, а в этом городе они родились, в нем жили всегда, никуда из него не уезжали, но только не знали о существовании этого звездного города.

Понятно, что свое многолетнее заблуждение астрономы постарались исправить как можно скорей. И они настойчиво изучали планировку своей Галактики, знакомились с ее достопримечательностями и с ее обитателями и старались определить свое местоположение в ней.

Галактика велика. Ее поперечник составляет, примерно, 85 тысяч световых лет, а толщина равна 10 тысячам световых лет.

Солнце расположено не в центре этого звездного города, а почти что на его окраине. От центра мы находимся в 27 тысячах лет полета светового луча и в 15 тысячах световых лет от ближайшего к нам края.

Ближний край Галактики нам, жителям северного полушария Земли, не виден — она находится по направлению созвездия Кормы Корабля на небе южного полушария.

Схемы, изображающие нашу Галактику. С — Солнце.


Центральная область Галактики расположена по направлению к созвездию Стрельца и тоже нам не видна — но уже по другой причине: она заслонена большими облаками темной космической пыли, которые растянулись по всей средней плоскости Галактики. Эти облака чернеют на фоне Млечного Пути и в созвездиях Лебедя и Стрельца разделяют его на два рукава.

К великой досаде астрономов Солнце помещается близ средней плоскости Галактики, то есть там, где скопилось больше всего космической пыли. Мы вынуждены наблюдать Галактику не только с краю, но и из наиболее запыленной ее части.

Астрономы имеют все основания быть недовольными местоположением Солнца: видимость плохая. Окажись Солнце на несколько сот световых лет ниже или выше средней плоскости Галактики, изучать наш звездный город было бы гораздо удобнее.

Наша Галактика вращается, как гигантская карусель, а Солнце и все остальные звезды летят по своим орбитам вокруг галактического центра.

Скорости звезд неодинаковы. Одни движутся быстрее своих соседей и обгоняют их. Другие — неторопливы и постепенно отстают.

Если известно, что расстояние между Солнцем и Вегой сокращается в каждую секунду на 14 километров, то это еще не значит, что Солнце и Вега летят друг другу навстречу. И Солнце и Вега движутся в одну сторону. Но наша скорость больше, и мы настигаем Вегу. Когда-нибудь, через много миллиардов лет, Солнце обгонит Вегу, как обгоняют друг друга автомобили на шоссе.

Скорость движения Солнца по галактической орбите составляет около 250 километров в секунду.

Скорость значительная, но и Галактика тоже велика. Чтобы облететь ее, нужен большой срок.

Галактический год, то есть время одного обращения Солнца вокруг центра Галактики, равняется, примерно, 200 миллионам лет.

Земля существует 3,5–4 миллиарда лет. Следовательно, со времени образования земного шара прошло всего лишь 17 или 20 галактических лет! Наша планета вовсе не так стара, если считать ее возраст не солнечными годами, а галактическими.

Итак, в распоряжении ученых оказалось еще несколько важных фактов. Наше Солнце является членом гигантского звездного облака Галактики. Оно находится недалеко от средней плоскости Галактики среди облаков темной космической пыли. Солнце движется по своей галактической орбите и со времени рождения Земли успело совершить около двадцати оборотов.

Все это ценные сведения, которые пригодились советским ученым для создания новой космогонической гипотезы.

Дружба звезд и туманностей

Связь между светлыми туманностями и яркими белыми звездами ученые заметили очень давно. Еще в XVIII веке в астрономическом сочинении, которое перевел с латыни на русский язык племянник М. В. Ломоносова, Михаил Головин, сказано: «Туманная звезда Ориона достойнее примечания всех туманных звезд. Она имеет вид неправильной, продолговатой, и изогнутой; ее белизна кажется сквозь трубу явственно — там в бледной, но равномерной ясности примечают седмь небольших звезд».

Старинное название этих светил — туманные звезды — в науке не сохранилось. Какие же это звезды, если они прозрачны и сквозь них просвечивают настоящие звезды?

Природу светлых туманностей неправильной формы астрономы разгадали сравнительно легко — это большие и светящиеся облака мелкой пыли и разреженных газов; а вот звезды, видимые внутри туманностей, долго оставались загадкой. По сути дела она и до сих пор не разрешена до конца.

В самом деле, как попали в «бледную, но равномерную ясность» туманности Ориона ее «седмь небольших звезд»? Какова их роль? Может быть они родились в туманности и теперь выглядывают из нее, как из колыбели? А может быть, странствуя по бесконечным дорогам Вселенной, эти звезды влетели в туманность, как пушечные ядра в легкое облачко?

Звезд, просвечивающих из туманностей, довольно много. Не только в созвездии Ориона, но и на многих других участках неба есть звезды, укутанные в туманное вещество, словно в вату.

Сначала ученые думали, что яркие белые звезды только временные постояльцы в туманности, ее попутчики. С течением веков звезда уйдет, а туманность, лишенная освещения, померкнет и перестанет быть видимой. Она превратится в обычную темную туманность.

Темные и светлые туманности отличаются друг от друга только тем, что одни из них освещены, а другие нет. Сами по себе они светиться не могут — это ведь только облака холодной космической пыли.

Размеры туманностей велики — есть облака, имеющие в поперечнике от 10 до 30 световых лет, то есть луч света далекой звезды, чтобы пролететь от края и до края такой туманности, должен лететь от 10 до 30 лет.

Встреча звезды со столь протяженным космическим образованием не может быть редким явлением.

Звезды могут встречаться с туманностями, могут проходить сквозь них.

Может быть и Солнце когда-либо встретилось с туманностью?

Загрузка...