Выше много говорилось о способности смерча переносить морских и пресноводных животных на сушу, песок и соль в такие места, где они обычным путем не должны накапливаться. Все это попадает в осадок. Осадок перекрывается новыми отложениями, захороняется и становится геологическим образованием. Потом геологи смотрят на него, недоумевают: как такое сочетание могло получиться, а подчас и делают ошибочные выводы.
Результаты воздействия смерчей на осадки обычно бывает трудно отличить от воздействия ураганов и бурь, которые оставляют более яркие следы. Поэтому рассмотрим геологическую деятельность ветра в целом, которая почти исключительно связана с осадконакоплением. Иногда она выражена в ничтожной примеси эолового материала, но нередки случаи, когда эоловый материал слагает громадные толщи песков или лёссовые покровы, определяющие жизнь целых пародов.
Часто соль, приносимая ветрами, устанавливается в осадке тончайшими химическими анализами, но бывает и так, что эоловая соль образует довольно крупные месторождения. Однако важнее даже не количественная сторона, а планетарная распространенность действия ветра.
Это явление, как правило, недооценивается геологами, а то и просто забывается. В своих объяснениях они прибегают обычно к помощи моря и тектоники: чуть что-нибудь новое — сразу говорят о морских отложениях и тектонических движениях. В природе же мы очень часто имеем дело с континентальными отложениями, содержащими морскую фауну, принесенную ветрами. Перерывы в отложениях, морские трансгрессии возникают не всегда благодаря тектоническим движениям, а вследствие поднятия и опускания уровня моря во время ураганов и бурь. Нельзя забывать, что такие поднятия иногда достигают огромных размеров — 20 и даже 40 м. Найдя в разрезе соленосную или гипсоносную пачку, геологи нередко устанавливают аридный климат. На самом же деле это соль или гипс, принесенные пыльными бурями за сотни и тысячи километров.
Геологическая деятельность ураганов, бурь и ветров выражается в разрушении, переносе продуктов разрушения и образовании новых отложений.
Передвижение ветром — это могучая сила. На первый взгляд это положение кажется парадоксальным или просто неверным. Как может нежное дуновение ветерка определять образование большинства осадков? Ответ прост: во-первых, нежное дуновение действительно малосущественно, но ужасающие ураганы, бури и смерчи — это страшная сила. Во-вторых, действие ветра связано не только с чистым воздухом, но и с воздухом, несущим различные примеси и в первую очередь воду. Ветер, действующий с водой, — это тоже огромная сила.
Передвижение тел зависит от давления на них, а давление определяется двумя условиями: скоростью движения и удельным весом движущейся среды. Удельный вес чистого воздуха невелик, поэтому давление, производимое им, становится значительным только при очень больших скоростях. Если воздух содержит пыль или воду особенно в больших количествах, удельный вес его резко возрастает. Так же резко увеличивается и давление — иногда в десятки раз. Фактически все передвижение производится загрязненным воздухом, с большей или меньшей примесью различных частиц.
Среди последних наиболее важны два компонента: водяные и минеральные частицы. По количеству и распространению резко преобладают жидкие частицы. Так же часто и почти повсеместно встречаются твердые частицы, но их гораздо меньше. Классическими примерами воздуха, загрязненного твердыми частицами, являются пыльные и песчаные бури, мгла и дым. Наполнение воздуха водяными частицами вызывает образование облаков, максимальное содержание воды в кучево-дождевых.
В ураганах, бурях, смерчах и других вертикальных и горизонтальных вихрях воды настолько много, что иногда трудно сказать, чего в них больше — воды или воздуха, особенно по весу. Рыбы переносятся смерчевыми облаками на десятки километров и остаются живыми в течение многих десятков минут; они живут, конечно, в воде: в одном воздухе они давно бы задохнулись.
Страшная разрушительная деятельность ураганов и смерчей, перед которыми не могут устоять даже каменные стены, объясняется тем, что в давлении принимает участие не только воздух, но и вода, иногда в громадных количествах.
Нередко пыльные бури сдирают слой почвы толщиной в несколько сантиметров. Это сдирание производится в основном не воздухом, а теми песчаными и пылеватыми частицами, которыми он насыщен.
Итак, ветер — это перенос не чистого воздуха, а смеси газообразных, жидких и твердых частиц. Обычно преобладает воздух, но иногда, например в местах потоковых ливней, пальма первенства принадлежит воде. Во время особо сильных песчаных бурь количество песчинок и пылинок в воздухе настолько велико, что людям и животным, застигнутым бурей, становится тяжело дышать.
Очень важной работой, производимой совместно ветром и водой, является деятельность волн — абразия.
Передвижение больших предметов определяется в первую очередь их поверхностью сопротивления и во вторую — их весом. Ветер может поднять мост весом более 100 т и плавно опустить его в воду, но он не может поднять небольшой круглый камень.
В описаниях ураганов и смерчей нередки случаи, когда тяжелые предметы переносятся на сравнительно небольшие расстояния, если они обладают большой поверхностью сопротивления ветру. Примеры черепиц и их обломков, летающих по воздуху, многочисленны, но нет указаний на кирпичи, поднятые с земли.
Уникален случай, когда ураган Газель перенес с острова Гаити на побережье Северной Америки (на расстояние 1500 км) тяжелый деревянный бокал, зеленые кокосовые орехи и тяжелые раковины.
В пустынях самые сильные пыльные и песчаные бури не в состоянии передвигать сколько-нибудь значительные количества щебня. Передвижение песка сейчас хорошо изучено; есть несколько систем пескоуловителей, но нет ни одного щебнеуловителя. Путешественники, попадавшие в песчаные бури, описывают уколы от летящих крупных песчинок, но ни один из них не говорит об ударах летящим щебнем. Тем не менее случаи передвижения щебня и отдельных обломков существуют и среди масс эолового песка встречаются небольшие тонкие линзы грубообломочного материала. Чаще всего они лежат в понижениях между буграми эоловых песков.
Своеобразной формой концентрации щебневого материала является поверхность щебнево-глинистой пустыни. Концентрация щебня возникает не благодаря его передвижению, а благодаря уносу ветром всего более мелкого песчаного и пылеватого материала.
За последние десятилетия передвижение песка изучалось не раз, ему посвящены десятки работ. Удалось развеять массу мифов, но многое еще неясно. Исчезли легенды о песчаных бурях, о невероятных стенах песка, надвигающихся на путешественников. Оказалось, что песчаные бури на самом деле пыльные и что ужасающие стены песка состоят из пыли. Развенчан миф о громадных количествах песка, уносимого из Сахары в Атлантику и через Средиземное море в Европу. Весь этот песок тоже оказался пылью. Установлено, что песчинки кварца, полевых шпатов и других минералов обладают ничтожной поверхностью сопротивления и почти не могут лететь в воздухе. Основная форма передвижения — скачки больших или меньших размеров.
Только пластинки слюды легко подхватываются ветром и летят на большие расстояния вместе с пылью. Пластинки слюды очень часто концентрируются на поверхности напластования и на поверхностях перерыва. Перенос их нередко вызывал споры. Сейчас можно с полной определенностью сказать, что они принесены ветром.
Передвижение песчинок скачками вызывает ряд особенностей их распространения. Кроме сильного ветра, должен быть твердый грунт, от которого песчинки могли бы отскакивать. Таким грунтом обычно бывают другие песчинки, поэтому песок часто распределяется сплошными, резко ограниченными массивами.
Любая глинистая, илистая или болотистая почва служит преградой для движения песка, пока он постепенно не перекрывает ее. Водная преграда задерживает песок, и он концентрируется у ее берега. Береговые дюны образуются не только ветром, дующим с моря, но и с суши. Ветер с моря уносит песок с пляжа, а ветер с суши снова приносит его на пляж. Скачки песчинок даже во время бурь не превышают нескольких метров, поэтому и прыгать в море или большую реку дальше этого расстояния они не могут.
Надо сказать, что влияние скачкообразного передвижения песчинок на форму и распределение песчаных массивов пока еще недостаточно изучено. Все наши прежние построения основаны на предположении, что песок летит в воздухе, а этого не бывает — он только прыгает. Основная загадка — постоянство границ больших песчаных массивов. Они почти не изменяются за сотни лет.
Песчинки средних размеров прыгают на несколько метров, пыль средних размеров свободно летит на десятки и сотни километров. Особый интерес представляет передвижение частиц промежуточных размеров, которые меньше частиц песка средних размеров и больше частиц пыли средних размеров. Обычно их называют алевритом.
Точных, опытных наблюдений за передвижением этих частиц нет. Они или тонут в массе песка, или летят вместе с пылью. Теоретически они должны прыгать, как песчинки, по прыжки их будут гораздо больших размеров — в десятки, сотни, а может быть, и в тысячи метров. Начало и конец прыжка у них будут такие же, как у песка. В средней же части они будут лететь, как пыль. Возможно, что в это время они и будут образовывать то, что путешественники и моряки в Атлантике называют летящим песком, песчаной бурей.
Пыльные бури представляют собой грозное явление, нередко приносящее громадные убытки народному хозяйству. Они хорошо изучены. Подсчитано даже количество переносимого материала: оно достигает нескольких десятков кубических километров для одной бури, длящейся несколько дней.
Значительно менее изучен перенос пыли пыльными вихрями и смерчами. Каждое из этих образований, даже крупных размеров, переносит небольшие количества пыли, поэтому на них не обращают особого внимания. В течение длительного времени они повторяются тысячи, а может быть, и миллионы раз. Соответственно количество переносимой ими пыли также велико.
Особое значение перенос пыли бурями и вихрями имеет в образовании озерных и болотных отложений, и в частности угленосных и соленосных толщ.
В угленосных толщах примесь к углям алевритового и глинистого материала и образование прослоев алевритов и глии обычно объясняют деятельностью рек. Чаще всего это неверно. Громадные болота, места образования углей располагаются в обширных низинах и сплошь зарастают густым растительным покровом. Реки или обходят такие низины, или пересекают их, не затрагивая растительных массивов, или исчезают у их окраины. В большую, центральную часть этих массивов материал, приносимый реками, не проникает. Пыль и глинистые частицы приносятся туда только ветром, и в частности пыльными бурями и вихрями.
Еще более значителен принос тонкозернистого материала в горько-соленые озера, как правило встречающиеся в аридных областях, В этих областях реки или отсутствуют, или пересыхают. Весь обломочный материал приносится бурями и вихрями. Он слагает пачки и прослои глин и алевритов, а иногда тонкозернистых песчаников, чередующихся с прослоями чистых солей.
В периоды ослабления и прекращения ветров отлагаются частые соли. Как только начинаются бури, озера заносятся пылью и глиной — отлагаются алевриты и глины. Периодическое повторение бурь и затишья является причиной ритмической слоистости, столь характерной для озерных отложений.
Пыль переносится в воздухе на тысячи километров, но все же ее передвижение ограничено путями ураганов и бурь. Мгла, состоящая из тончайших глинистых частиц, находится в воздухе во взвешенном состоянии, и размеры и пути ее передвижения не ограничены. Ее распространение планетарно.
Абсолютное весовое количество глинистых частиц во мгле ничтожно, но принос их неограничен и запасы неисчерпаемы. Накапливаясь в течение длительного времени, мгла может дать вполне осязаемый осадок. Этот осадок особенно важен там, где другие источники терригенного материала отсутствуют. К таким областям в первую очередь относятся поверхности морей и океанов, удаленные от берегов. В сложении осадков этих областей глинистые частицы мглы принимают заметное участие. Отмечалось оно для красной глубоководной глины и других абиссальных осадков — глобигеринового, диатомового и синего илов.
Участие мглы в образовании глинистых осадков больших озер и болот несомненно, а иногда может играть ведущую роль. В нормальных же осадках мгла рассеивается среди других компонентов. Она заметна только тогда, когда эти компоненты отсутствуют или представлены в ничтожных количествах.
Интересной разновидностью пыли является красная пыль, выносимая ветрами из Африки и выпадающая перед Альпами, а зачастую и севернее их. К. Г. Эренберг [Erenberg, 1849] показал, что она состоит из красной глинистой массы, мельчайших частиц кварца и преимущественно пресноводных микроорганизмов. Эта пыль окрашивает дождь и снег, сильно действуя на воображение людей. В прошлом подобные дожди называли «кровавыми». Два указания имеются в «Илиаде» Гомера. Многочисленные описания ураганов и сопровождавших их «кровавых» дождей содержатся в творениях римских писателей начиная с 461 г. до н. э. Еще более фантастические описания относятся к средним векам. Рассказы о «кровавых» дождях XVII и XVIII вв. становятся более реалистичными. Все эти явления фиксировались главным образом в Западной и Центральной Европе, в Южной Англии, во Франции, Италии, Албании, а также в Сирии и Иране.
Широкое площадное распространение однотипных красных осадков, содержащих одинаковую микрофауну, пусть даже в виде тончайших прослойков, могло сыграть огромную роль для корреляции геологических разрезов, но, к сожалению, эта красная пыль быстро смывалась дождями и уловить ее в разрезах пока не удается. Большее геологическое значение имеют споры и пыльца растений, переносимых ветром на огромные расстояния. Размеры их обычно равны десяткам микрон, но транспортируются они лучше, чем минеральные частицы такого же размера, так как имеют меньший удельный вес, чем кварц и глина.
В монографии Д. Эрдтмана [Erdtman, 1943] описываются наблюдения, производившиеся на палубе парохода, шедшего из Дании в Нью-Йорк. Споры и пыльца садились все время, в трех случаях образуя типичные споровые дожди. Определение состава спор и пыльцы показало размеры переноса: обычно несколько сот километров, в двух случаях 650 и около 1500 км.
Изучение торфа на Фарерских островах показало наличие спор растений, растущих в Норвегии (580 км), Шотландии (420 км) и Исландии (430 км). Торф Гренландии заключает споры деревьев, преобладающих в Лабрадоре (1000 км и более).
По сути говоря, все эти наблюдения излишни. Пере-нос пыли на расстояния в несколько тысяч километров — факт бесспорный и доказанный. Споры и пыльца обладают аэрозольной крупностью, значительно меньшей, чем обычные минеральные частицы пыли.
Пути вест-индских ураганов показывают, что африканские споры и пыльца свободно переносятся в Центральную и Северную Америку, а американские формы транспортируются в Южную и Северную Европу. Указание Эренберга о нахождении южноамериканских микроорганизмов в красной пыли, осаждающейся в Европе, может быть вполне правильным.
Определения диатомей и данные о их распространении, приведенные в работах Эренберга, были просмотрены с точки зрения современной науки специалистом по диатомеям. Он считает, что в основном определения и Ma-, териал о распространении, данные Эренбергом, подтвержу даются современными исследованиями. Большинство диатомей — космополитные пресноводные формы или формы, присущие Европе. Сравнительно мало морских форм. Для большинства форм, считавшихся Эренбергом южноамериканскими, сейчас доказано космополитное распространение, но все же три вида и в настоящее время остаются южноамериканскими.
Загадочен состав фораминифер в красной ураганной пыли. Он необыкновенно однообразен и резко отличается от состава фораминифер как в верхнемеловых известняках Сахары, так и в песках пляжа Северной Африки. Более или менее часто встречаются только две группы: формы, близкие к Rotalia, и формы, близкие к Textularia.
Таким составом обладают только фораминиферы, живущие в подземных водах Сахары и Каракумов. Нахождение их в песках и пыли Северной Сахары вполне естественно и неизбежно. Это еще более подтверждает вывод, что основным источником пыли, несомой из Африки в Европу, являются пресноводные, солоноватоводные и наземные голоценовые отложения обширных пустынных равнин Северной Африки. Они постоянно и непрерывно выдуваются ветром и дают неисчерпаемые количества пыли, переносимой в Европу на больших высотах.
Мы знаем эоловые отложения, в основном состоящие из терригенного, карбонатного, галогенного, кремнистого и органогенного материала, но мы не знаем отложений, которые в основном состояли бы из целых организмов, перенесенных ветром. Если можно так выразиться, «эоловые» организмы всегда встречаются в ограниченном количестве в виде примеси ко всем типам эоловых отложений. Они не являются породообразующим материалом. Очень редко количество их значительно, например в диатомовой пыли.
Перенос смерчами организмов уже освещался ранее, поэтому сейчас можно ограничиться лишь краткой сводкой.
Случаи переноса крупных животных — слонов, китов, больших рыб — неизвестны. Теоретически они возможны, но в пределах немногих метров.
Животные средних размеров (лошади, коровы, буйволы), а также люди поднимаются на метры и даже немногие десятки метров и переносятся на сотни метров, изредка на 2–3 км. В 1904 г. во время смерча под Москвой мальчик пролетел около 5 км.
Небольшие животные — куры, собаки, кошки — особого внимания не привлекают, и их полеты регистрируются редко. Известно, что они легко переносятся на несколько километров, возможно на 10–20 км.
Своеобразен и интересен перенос животных, могущих летать (птиц и насекомых), во внутренней полости урагана. Расстояние определяется длительностью способности птицы или насекомого поддерживать себя в воздухе. Туча саранчи из Африки опустилась на судно, попавшее в «глаз бури» и находившееся в 2000 км от берега. Сотни стрекоз были перенесены более чем на 1000 км. Аналогичные данные — порядка тысяч километров — приводятся и для птиц. Вместе с птицами и насекомыми переносятся и другие организмы, в частности микроорганизмы, способные долгое время находиться в воздухе во взвешенном состоянии.
Перенос всегда идет в одном направлении, с юга на север, точнее, от экватора к полюсам по более или менее сложной кривой, соответствующей пути урагана. Для характеристики миграции направленность переноса имеет существенное значение.
Маленькие животные, размером не более 15–20 см и весом до 2–3 кг, переносятся легко и на расстояния от нескольких десятков километров до немногих сот километров. Своеобразен перенос их смерчевыми облаками. Зарегистрированы переносы до 100–150 км, но возможен перенос и на 500 км и несколько больше, поскольку некоторые смерчи и смерчевые облака проходят эти расстояния.
Перенос отдельных животных и небольших их групп обычно остается незамеченным. Отмечаются, да и то не всегда, только массовые переносы, заканчивающиеся дождями с рыбами, лягушками, крабами, медузами, крысами. Такие дожди отнюдь не являются редкостью, а в геологических масштабах они представляют обычные, часто повторяющиеся явления.
Нет сомнения, что ураганы с их гигантскими невообразимыми облачными вихрями и даже сильные бури и штормы переносят маленьких животных на многие сотни и даже тысячи километров. Когда мы находим остатки животных в отложениях, в которых им не полагается находиться, например морские раковины в наземных отложениях, мы с недоумением пожимаем плечами. На самом же деле это остатки животных, перенесенные вихрями в ураганах, смерчах и смерчевых облаках.
С растениями происходит то же, что и с животными. Благодаря большей поверхности сопротивления они поднимаются легче и переносятся дальше, но падение их почти никогда не замечается. Известен лишь один дождь с ветками.
Несмотря на частую повторяемость, перенос макроорганизмов в мировом масштабе редок и не нарушает общей картины их распределения. Такие переносы представляют исключения, но не общее правило. Совершенно иное наблюдается в отношении микроорганизмов. Их перенос ветрами уже не исключение, а общее правило, имеющее большое значение.
По всей поверхности земного шара морские микроорганизмы летят в глубь континентов на сотни и тысячи километров. Пресноводных диатомей находят в середине Атлантического океана. Перенос идет везде, и различие заключается только в количестве и дальности переноса. В средних широтах, особенно в областях путей ураганов и смерчей, поражают количество переносимых микроорганизмов и длительность переноса.
Без преувеличения можно сказать, что в таких областях нахождение микроорганизмов в любых количествах не может служить для целей палеогеографии. Морские формы будут находиться в континентальных отложениях, пресноводные и наземные — в морских. Сообщества смешанного состава будут обычны.
В распределении эоловых микроорганизмов наблюдается существенная особенность — неравномерная концентрация. В одних прослоях они редки, в других встречаются в больших количествах. Это объясняется периодичностью сильных ветров, несущих массы микроорганизмов. Во время ураганов, бурь и смерчей образующиеся прослойки будут переполнены эоловыми микроорганизмами. Во время затиший последние редки или отсутствуют.
Ритмичность осадконакопления сопровождается ритмичностью появления животных и растений, переносимых ветрами.
Особенности эоловых отложений следующие:
1) резкое преобладание тонкозернистого материала с частицами не более 1 мм. Сравнительная редкость частиц от 1 до 10 мм и отсутствие обломков, крупных валунов и глыб. Последние изредка могут вноситься в эоловый материал путем обвалов, оползней и выветривания, а во время очень сильных ураганов — путем перекатывания;
2) резкое преобладание терригенного материала. Карбонаты и соли встречаются в подчиненном количестве, во вторичном залегании, в результате выдувания водных осадков. Кремнистые частицы очень редки и состоят из продуктов выдувания кремнистых пород и кремневых скелетных образований, преимущественно диатомей;
3) слоистость неясная, неправильная, косая, быстро меняющаяся, часто отсутствует или представлена тонкими горизонтальными прослойками, разделяющими неслоистую толщу на отдельные пачки. Прослои, прослеживающиеся на больших площадях, редки и весьма небольшой мощности. Они образуются только во время самых сильных ураганов и бурь;
4) ритмическое строение неясное и недостаточно изученное. Периодическое повторение ураганов и бурь, казалось бы, должно вызывать ритмическое строение их отложений. Однако в наиболее распространенных отложениях — эоловых песках и лёссе — ритмическое строение неясное, плохо выраженное, нарушенное.
На больших аллювиальных равнинах тонкозернистый материал, приносимый ураганом, немедленно перерабатывается текущими водами, в первую очередь дождевыми.
Все же возможность эолового происхождения некоторых тонкозернистых, ритмически построенных немых толщ не исключена.
Транспортирование ветром и водой. Общепринято считать, что абразия — это разрушение берегов суши морскими волнами, прибоем. Поэтому абразию рассматривают как одну из форм деятельности моря. Формально это правильно, но по существу неточно.
Море само по себе никакой абразии не производит и не может производить. Достаточно прийти на берег моря во время полного штиля, чтобы убедиться в этом. Для абразии нужны волны, а волны создает ветер. Чем сильнее ветер, тем больше абразия; наибольшей силы она достигает во время страшнейших ураганов. Абразия — совместное действие двух элементов земной поверхности: воды и ветра. При рассмотрении деятельности ураганов и бурь включение в нее абразии необходимо. Обычно об этом забывают.
Разрушительная деятельность гигантских ураганных и штормовых волн велика. Самые твердые утесы не могут устоять перед ней. Метр за метром они подмываются, падают в море, раздробляются и уносятся в виде гальки, песка и ила.
Это все происходит на наших глазах, но если мы обратимся к геологической истории длительностью в миллионы лет, то метры разрушения становятся километрами, а затем сотнями и даже тысячами километров. Возникают поразительные явления, которые мы называем трансгрессиями моря, великими уравнителями суши. Значение их трудно переоценить.
Абразия и связанная с ней аккумуляция детально описаны в известной монографии В. П. Зенковича «Основы учения о развитии морских берегов» [1962]. Он пишет, что в процессе абразии берег подвергается ударам прибойных волн огромной силы, поэтому нередко размывы и разрушения клифов (крутых берегов) оказываются катастрофическими. Общеизвестны громадные разрушения портовых сооружений и набережных, которые волны производят во время прибоя. Многочисленные примеры этого рода можно найти во всех сводках по океанографии и геоморфологии.
Значительно реже описываются катастрофические разрушения естественных крутых и протяженных берегов во время сильных штормов, хотя они обычны на любом крутом берегу, подвергающемуся воздействию волн. Однако главное значение в абразии берегов имеют не эти катастрофические случаи, а непрерывное раздробление и стачивание коренных пород, которые волны любых размеров вместе с галькой производят у берега изо дня в день, из года в год.
Подобная сравнительная оценка деятельности штормовых и обычных волн требует проверки. Нет сомнения, что общая сумма разрушений, производимых бурями, больше суммы разрушений от обычных ветров. Штормы повторяются сравнительно часто.
Исключительно важные разрушения старых берегов и образование новых, аккумулятивных, описаны Зенковичем с большой полнотой и детальностью.
Все мы знаем Прикаспийскую низменность. Однообразная, желтовато-серая, гладкая, как стол, равнина простирается на сотни и тысячи километров. Скорый поезд идет по ней долгие часы, и все время перед глазами степь. Совсем недавно, десятки тысяч лет назад, здесь простиралось безбрежное синее море — древний Каспий. Его волны, бушевавшие на нем бури и создали великую равнину.
Прикаспийская равнина переходит без перерыва в еще большие пространства, занятые сейчас пустынями Каракумы и Кызылкумы. Изучение отложений, слагающих их основание, показало, что оно состоит из осадков морей, сравнительно недавно занимавших эти равнины.
Плоское дно моря сменилось обширными аллювиальными равнинами. На них тот же ветер, который гнал волны моря, образовал волны песков, барханы, громаднейшие песчаные массивы. Древняя неровная суша с хорошо развитым рельефом была срезана трансгрессией моря, абразивной деятельностью его волн.
Общее поднятие сменило море сушей, уже абрадированной равниной. Громадные реки пересекали ее поверхность. Русла их непрерывно меняли свое положение, меандрируя по поверхности равнин. Реки приносили и отлагали громадные количества рыхлых тонкозернистых песчано-пылеватых осадков, довольно равномерно распределяя их по всей поверхности равнин. Обилие осадков вызывало появление богатого растительного покрова. Поэтому деятельность ураганов и бурь была сравнительно слабой. Они образовывали небольшие скопления речных дюн и обогащали почвы пылеватым материалом.
Наступила третья, современная, эпоха. Благодаря окраинным тектоническим движениям вся область пустынь превратилась в обширнейшую бессточную впадину с базисами эрозии в Каспийском и Аральском морях, Балхаше и Алаколе. Осадки резко уменьшились, и вся впадина превратилась в пустыню, по окраинам — в полупустыню. Пыльные бури стали основным фактором переноса осадков, сменив морские волны и равнинные реки.
В первую эпоху преобладала вода — море, во вторую тоже вода — реки, но уже ветер начал играть существенную роль в переносе осадков. В третью эпоху значение воды — больших рек — стало минимальным и на первое место выдвинулись бури и ураганы.
Буквально такая же последовательность отмечена в Сахаре. И там центральная часть абрадирована морем, остатки фауны которого и сейчас живут в подземных солоноватых водах, циркулирующих в песках. Море сменилось цветущей аллювиальной равниной, на которой появились первые селения и города. Около 2000 лет назад эта равнина высохла, реки исчезли, кроме Нигера, и возникла современная пустыня.
Трудно восстановить историю воздушных потоков, циркулирующих в течение этих трех эпох» Они достигали значительной силы в первую, морскую, эпоху, возможно, ослабли во вторую, дождливую, и снова начали свирепствовать в третью, пустынную эпоху. Пока еще нет науки «историческая метеорология», но нет сомнения, что она скоро будет и, скорее всего, как часть палеогеографии.
В краткой, но содержательной и интересной работе профессора географии Кембриджского университета Дж. Стирса [Steers, 1966] описываются основные типы берегов Англии и Уэльса. Анализируя условия их образования, он выделяет два типа берегов — обрывистые и низменные. В первом преобладает разрушение, во втором — накопление. Последний тип более распространен, и в настоящее время площадь Великобритании постепенно увеличивается.
Влияние штормов и ураганов Стирс специально не рассматривает, но в ряде мест подчеркивает громадное значение волн, создаваемых сильными штормами. Кроме волн, сильные штормы образуют местные кратковременные течения. Эти течения, исключительно большой силы, важны для переноса и перераспределения мелкозернистых песчаных и глинистых отложений, особенно вдоль низменных берегов.
Штормовые волны у берегов Англии достигают колоссальной высоты (12 м), длины и силы. У обрывистых берегов они перекрывают пляж, достигают подножия обрывов и разрушают их. В качестве примера можно привести высокие обрывы вдоль южного берега Англии, сложенные массивами белого мела.
Подчеркивая, что берег моря постоянно и непрерывно изменяется, Стирс пишет: «В спокойную погоду эти изменения незначительны, но шторм перемывает весь берег, а иногда совсем уносит и песок, и гальку… Тогда обнажается основание, на котором они лежали, платформа, образованная эрозией».
Абразия свойственна, конечно, не только берегам Англии. Она наблюдается вдоль всех обрывистых берегов, там, где образуется зона пляжа.
Абразия обрывистых берегов с зоной пляжа — один из примеров, бесспорно показывающих ошибочность мнения о том, что основные разрушения берега производятся небольшими волнами, которые действуют медленно, но в течение длительного срока. В данном случае сколько бы они ни действовали, никакой абразии произвести они не могут.
Нельзя, конечно, отрицать наличие абразии небольшими волнами там, где обрывы прямо уходят в море и пляж отсутствует, но и в этих, более редких случаях неясно, что важнее и значительнее — длительное и медленное действие небольших волн или катастрофическое воздействие штормовых гигантов. Есть все основания считать, что последнее.
Переходя к низменным берегам, Стирс отмечает, что и здесь громадные штормовые волны производят такие изменения, которые недоступны для обычного прибоя, сколько бы оп ни действовал. Особенно велики эти изменения у баров, перемычек, обособляющих лагуны и береговые болота от открытого моря. Даже знаменитая галечная перемычка Чезил-бенк, совершенно недоступная для обычного прибоя, перекрывается штормовыми волнами, и морская вода с морской фауной прорывается в береговые болота на громадных площадях.
Эти прорывы интересны тем, что они создают своеобразную смену солоноватоводных отложений отложениями с морской фауной. Подобная смена представляет типичную трансгрессию, правда ограниченных размеров. Эту трансгрессию можно назвать эолово-морской. В ископаемом состоянии она отличается от настоящей трансгрессии только небольшой площадью распространения и небольшой мощностью осадков.
Не менее важно явление, отмеченное Стирсом и пока еще не получившее должного внимания. Штормовые ветры с их необыкновенной скоростью создают не только гигантские волны, но и не менее удивительные береговые течения. Они обладают ограниченным распространением, соответствующим ширине зоны действия шторма. Штормовые течения кратковременны и исчезают после прекращения шторма. Сила и скорость их громадны: они переносят вдоль берега колоссальные количества ила, песка и гальки. Штормовые течения тесно связаны с движениями воды, сопровождающими штормовые волны, но часто имеют другое, иногда перпендикулярное направление.
Штормовые течения не изучены, и даже самое существование их доказывается лишь исключительно большими перемещениями рыхлых осадков, которые происходят во время штормов и ураганов. Нередко эти перемещения настолько значительны, что карты береговой полосы, особенно батиметрические, показывающие глубины, становятся неверными. Их составляют заново.
Стирс пишет: «Проходящая волна часто поднимает песок вверх с морского дна. Если в это время существует течение вдоль берега, то часть этого песка будет перенесена в сторону. В тихую погоду этот перенос незначителен, но при сильном ветре и особенно при буре и больших волнах большое количество песка, возможно и более грубого материала, поднимается вверх и переносится вбок течениями. Таким путем могут быть передвинуты невероятные количества материала».
В своих работах Стирс неоднократно подчеркивает громадное значение ураганов и бурь в абразии берегов морей. В ряде случаев абразия происходит во время бурь и отсутствует в тихую погоду. Эти указания заслуживают серьезного внимания и заставляют пересмотреть точку зрения, согласно которой основная абразия связана с небольшими, нормальными ветрами и волнами.
Трансгрессия и бури. Трансгрессии представляют одно из распространенных явлений. Они невозможны без абразии, а абразия невозможна без бурь. Следовательно, в образовании трансгрессии бури и ураганы играют весьма существенную роль.
В геологической и географической литературе трансгрессии и абразии относят к деятельности моря. Это правильно, но только частично. Одного моря и одной воды недостаточно — необходимы волны.
Трансгрессии считают результатом длительного действия небольших, едва заметных явлений, т. е. эволюционным процессом. Это, конечно, неверно. Трансгрессия создается крупными, необычайными катастрофическими явлениями — ураганами и бурями. Только их многократное повторение может быть причиной трансгрессии, причиной разрушения, перемещения и переотложения громадных масс самых различных пород. Как показали детальные наблюдения вдоль берегов Англии, размеры срезания высокого обрывистого берега достигают 1,8 м ежегодно, а местами даже 3,9 м. Эти цифры имеют местное значение. Часто они меньше, но иногда значительно больше. Максимальные значения приводятся для абразии штормовой волной бури 1953 г., которая у города Лоустофта за сутки срезала обрыв высотой 12 м, сложенный ледниковыми песками, на 12 м, а там, где этот обрыв имел высоту 2 м, он был срезан на 2,7 м. Эти данные тем более поразительны, что они являются результатом деятельности, одной, правда весьма сильной, бури.
Для этих же рыхлых обрывистых берегов наблюдения за 25 лет (1925–1950) дали средние величины 0,9–3 и даже 5 м в год.
Несколько севернее, на берегу Северного моря, также в ледниковых отложениях абразия наблюдалась с 1852 по 1952 г. Обрывистый берег срезался со средней скоростью 0,3–2,75 м, чаще порядка 1–2 м в год, или 1–2 км в тысячелетие. Соответственно трансгрессия, которая проникает в глубь континента на 300 км, требует для своего образования 150–300 тыс. лет. Срок достаточно значительный даже для геологических масштабов. Он определяет длительность перерывов в седиментации, связанных с трансгрессиями, сопровождающимися абразией. Стратиграфия в этом отношении дает очень мало. Анализ же длительности трансгрессии вносит существенный вклад.
К сожалению, диапазон, в котором колеблются эти данные, чрезвычайно велик. Приведенные выше цифры — это лишь небольшая часть возможностей. Другие цифры могут быть значительно больше, если абрадируются массивы очень твердых пород. Наблюдения над такими современными массивами показали, что они иногда почти не разрушаются многие тысячелетия. В Уэльсе в пещерах, открывающихся к морю, были найдены остатки фауны возрастом не менее 20 тыс. лет. За этот большой срок скалы, сложенные нижнекаменноугольными известняками, фактически не разрушались.
С другой стороны, опускание низменных берегов значительно ускоряет трансгрессии. Переходя в ингрессии, они почти не сопровождаются абразией. За сотни лет она проникает в глубь континента на десятки километров, особенно по широким долинам рек.
Касаясь значения абразии в трансгрессиях, К. Кинг [King, 1959] указывает и на то, что одновременно с морской абразией идет наземная эрозия. Возможно, в ряде случаев основное нивелирование рельефа производится реками. На долю моря остается только конечное приглаживание, выравнивание уже образованного реками пенеплена.
Это указание еще более усложняет изучение механизма трансгрессии, но и то, что мы знаем, убеждает, что в этом сложном и разностороннем процессе абразия, производимая ураганами и бурями, существенна и заслуживает пристального внимания.
Ураганы и землетрясения. Совпадение землетрясений и ураганов отмечалось неоднократно. Одна из величайших катастроф современности была вызвана ураганом 1923 г. в Японии и почти одновременно происшедшим землетрясением. И в Токио, и в Иокагаме ураган начался несколько раньше землетрясения. Землетрясение 1–2 сентября вызвало разрушение домов и пожары. Ураган превратил эти пожары в стихийное бедствие. Погибло почти 100 тыс. человек, около 50 тыс. человек пропало без вести и почти 105 тыс. было ранено. Многие японские сейсмологи считали, что резкое понижение давления во время урагана было одним из факторов, начавших землетрясения. Подсчитано, что уменьшение давления на 50 мм рт. ст. снижает нагрузку на каждую квадратную милю на 2 млн. т. Наоборот, ураганная волна высотой 10 фут. увеличивает нагрузку на квадратную милю на 9 млн. т. Эти громадные изменения давления на земную кору действительно могут начать землетрясения.
Связь землетрясений и ураганов на берегах Тихого океана рассматривается в монографии С. Вишера [Visher, 1925]. Он считает, что в сейсмически неустойчивых областях ураганы могут быть толчком к уже подготовленному землетрясению, «соломинкой, переломившей спину верблюда». Он повторяет данные о том, что изменения давления, происходящие во время урагана, приводят к изменениям нагрузки в 2–3 млн. т на одну квадратную милю, происходящим в несколько часов.
Ураганная приливная волна вызывает давление в 7 млн. т на квадратную милю при высоте 2,5 м. Гигантские волны высотой 10–12 м производят давление во много раз большее. Их наступление и отступление, совпадающие с изменением давления, вызывают изменения в напряжениях внутри слоев земной коры, могущие быть причиной разрыва неустойчивых зон в сейсмических областях, например в Японии.
Если связь сильных землетрясений и ураганов еще недостаточно ясна, то связь ураганов и микросейсм несомненна. Она привлекала к себе внимание ряда исследователей. Краткая сводка данных и указания на литературу приведены в книге Р. Таннехилла [Tannehill, 1956]. Он пишет, что «изучение микросейсм в Атлантическом и Тихом океанах в связи с ураганами и тайфунами показало, что последние всегда вызывают увеличение амплитуды микросейсм на вблизи расположенных сейсмологических станциях. Увеличение амплитуды прямо пропорционально размерам и силе ураганов. В некоторых случаях сильные штормы удавалось находить на больших расстояниях, даже больше 1500 миль». Пока неизвестно, каким образом ураганы усиливают микросейсмы, и правильность предсказания не всегда наблюдается. Во всяком случае, в США влияние на микросейсмы рассматривается как один из способов предсказывания ураганов, хотя и второстепенного значения.
В советской литературе этому вопросу посвящена статья Е. Ф. Саваренского и соавторов. Он считает, что дальность определения циклонов и тайфунов достигает 2–3 тыс. км. Наблюдения систематически осуществляются в ряде стран; они входят в систему метеорологической службы. Для этой цели в зарубежных странах организовано большое число микросейсмических станций.
В СССР наблюдения велись с двух станций — в Ленинграде и в Крыму. Они дали хорошие результаты.
Твердо установлено, что микросейсмы возникают при изменениях атмосферного давления над водными пространствами и что эти изменения передаются в земную кору посредством волн. Особое значение имеют стоячие волны, образующиеся в центральной части ураганов и тайфунов.
Образование перерывов в разрезах. Страшная сила ураганов и сопровождающих их гигантских волн вызывает весьма существенные изменения в осадконакоплении в прибрежной зоне как моря, так и суши. Важно, что эти изменения распространяются на большие участки побережья, например на Мексиканский и Бенгальский заливы. Геологическое значение этих изменений велико, по мало изучено.
Имеется ряд указаний, что после сильных ураганов, сопровождающихся большими ураганными волнами, прибрежная зона, особенно у пологих равнинных берегов, значительно изменяет свой облик. Меняются очертания береговой линии. Там, где были песчаные перешейки, полуострова и острова, образуется море с глубинами в несколько метров. Замкнутые лагуны и прибрежные озера превращаются в открытые заливы моря. Существовавшие заливы углубляются. Громадные подводные песчаные валы и целые гряды дюн исчезают, перемещаясь в другое место. Наоборот, там, где было море, иногда большой глубины, возникают отмели и острова. Глубокие подводные русла рек заносятся песком и илом, становятся недоступными для судоходства. На месте прибрежных озер и болот появляются дюны значительной высоты, состоящие из песка с морской фауной. Ураганные волны, проникая далеко в глубь суши, заносят песком и илом значительные участки аллювиальной равнины, иногда целые улицы и площади селений и городов. Береговые коралловые рифы подмываются и опрокидываются. Можно привести ряд других примеров подобных изменений.
В геологическом отношении у них сущность одна. На размытой неровной поверхности одних отложений отлагаются другие, иногда противоположные. На месте илов и торфов отлагаются морские пески. Илы глубоких подводных русел сменяются песком и галькой. И наоборот, на размытой поверхности песков перешейков и островов начинают отлагаться тонкозернистые пески и ил с морской фауной. На размытой поверхности аллювия вдруг появляются линзовидные пласты песка и ила с морской фауной, вверху снова покрывающейся аллювием. Мелководные морские отложения сменяются резко и с размывом более глубоководными, и наоборот. Морские отложения покрываются наземными, и еще чаще на наземные отложения с размывом ложатся морские.
В ископаемом состоянии все эти изменения получат одно объяснение: тектонические движения, поднятия и опускания, регрессии и трансгрессии. После урагана в подавляющем большинстве случаев морские отложения с размывом будут залегать на континентальных; в разрезах будет наблюдаться типичная трансгрессия или ингрессия. Реже, например, когда дюна передвинется и закроет часть дна морского залива, будут обратные взаимоотношения, и геолог с торжеством заявит: произошло поднятие и морские отложения сменились континентальными. На самом деле никаких тектонических движений не было. Все объясняется геологической деятельностью ураганов и ураганных волн.
Деятельность ураганов не ограничивается образованием перерывов в осадконакоплении в береговой зоне. Весьма существенные изменения в осадконакоплении происходят вдали от берега моря, главным образом в речных долинах и на их склонах. Эти изменения вызываются сильными ливнями, сопровождающими ураганы, и наводнениями, которые образуются после ливней.
Ураган «Флора», прошедший над островами Тобаго, Гаити и Куба в октябре 1963 г., надолго запомнится жителям. Всюду «Флора» сеяла смерть и разрушение. 1 октября ураган ударил по острову Тобаго. Скорость ветра в урагане достигала 60 м/с. За несколько часов остров превратился в груду развалин. Медленно двигаясь (со скоростью 20 км/ч), ураган пересек Карибское море и 3 октября бушевал на острове Гаити. Ветер, скорость которого превышала 70 м/с, опрокидывал тяжелые грузовики, передвигал строения вместе с находившимися в них людьми, сносил с лица земли целые селения. Гаити — гористый остров, изобилующий реками. Ливни, принесенные «Флорой», переполнили реки. Равнинные участки острова с многочисленными селениями оказались затопленными. Вода прибывала так быстро, что многие жители не могли спастись. Всего погибло около 5 тыс. человек и 100 тыс. остались без крова.
Покинув Гаити, «Флора» медленно двинулась к Кубе и 4 октября вступила в провинцию Орьенте на востоке острова. Скорость ветра достигала 40 м/с. Страшные ливни немедленно вызвали наводнения. Вечером 4 октября ураган достиг города Ольгин и наводнение охватило всю провинцию. Ураган шел очень медленно, со скоростью всего 2 км/ч, описывая петли над островом в течение 30 час. Скорость ветра все время была 50–60 м/с, и ливни не прекращались.
5 октября «Флора» двинулась на юг, наиболее плодородные земли были затоплены. Множество семей искали убежища в возвышенных районах. Изменив направление, ураган снова вступил в провинцию Орьенте. Все крупные города были отрезаны водой. Наводнение приняло катастрофический характер. Речная вода залила столицу провинции, город Сантьяго-де-Куба. Многочисленные крестьянские селения оказались отрезанными, и только часть жителей успела эвакуироваться.
7 октября «Флора» повернула на север. Уровень реки Ятибонико поднялся на 2 м; она разлилась так широко, что напоминала морской пролив. Уровень воды в реке Тана поднялся на 4,5 м. Над городом Камагуэй ураган бушевал несколько часов, заливая его потоками воды.
Утром 8 октября «Флора» наконец покинула Кубу, вызвав гибель тысячи людей и громаднейшие потери.
Ураганные ливни нередко вызывают оползни. 9 мая 1961 г. ливни, сопровождавшие тропический ураган, вызвали большой оползень в Восточном Пакистане. Погибло 450 человек.
Подобных примеров множество. Они показывают, что катастрофические наводнения являются одним из последствий тропических ураганов. Геологическое значение таких наводнений значительно: они несут большое количество песчано-глинистого материала, иногда щебневатого, более грубозернистого, чем обычные речные отложения. Эти грубозернистые породы будут перекрывать самые разнообразные отложения: речные, озерные, наземные. Образуется отчетливо выраженный перерыв, который будет прослеживаться почти по всей поверхности Кубы на значительной площади. По мере спада наводнения грубозернистые породы будут постепенно сменяться более тонкозернистыми породами. Возникает четко выраженный ритм осадконакопления, имеющий громадное распространение, — руководящий горизонт. Повторение ураганных наводнений вызовет повторение ритма.
Завершая рассказ о смерчах, хочется отметить, что происходят они все же сравнительно редко и не каждому в своей жизни случается наблюдать это удивительное явление природы. Как уже говорилось, смерчей почти нет там, где постоянно холодно или жарко, т. е. в приполярных и экваториальных областях. Мало их и в открытых океанах. Чаще они появляются у берегов при сравнительно тихой погоде. Все это подтверждает мнение о том, что причиной образования смерчей служит местный контраст температур. Он в свою очередь порождает потоки воздуха, пути которых составляют лишь первые десятки километров.
Ураганы и бури хотя и случаются реже, но они охватывают площадь в 1000 раз более обширную, чем смерчи, и длятся гораздо дольше. Сильнее они влияют и на природу, оставляя заметный след в геологических пластах, чего нельзя сказать о смерчах.
Энергия ураганов огромна. Очень заманчиво использовать ее на пользу людям, превратив, хотя бы частично, разрушающую силу в созидающую.