Глава XIV МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ


Термин «малое тело Солнечной системы» (small Solar system body, SSSB) был принят Международным астрономическим союзом в 2006 г. для обозначения всех объектов Солнечной системы, не являющихся классическими планетами (Меркурий, Нептун) или планетами-карликами (dwarf planet). Таким образом, в число малых тел Солнечной системы попали все кометы; все традиционные астероиды (за исключением Цереры, отнесенной к планетам-карликам); все «кентавры» (centaur), движущиеся между орбитами планет-гигантов; все «троянцы», движущиеся по орбитам планет синхронно с ними, а также почти все объекты за орбитой Нептуна (trans-Neptunian object, TNO), кроме Плутона и Эриды, отнесенных в планетам-карликам. Спутники планет не входят в число малых тел Солнечной системы.

Не исключено, что со временем некоторые крупнейшие из малых тел Солнечной системы перейдут в разряд планет-карликов, если выяснится, что они имеют округлую форму, приобретенную под действием собственной гравитации (т.е. находятся в состоянии гидростатического равновесия). Очевидно, среди спутников планет некоторые входили когда-то в число малых тел Солнечной системы, а позже были захвачены на околопланетные орбиты; прежде всего это относится к иррегулярным внешним спутникам планет-гигантов. Что касается нижней границы масс малых тел Солнечной системы, то формально она не определена, и поэтому в их число можно включать даже мелкие объекты типа метеороидов размером 1—100 м. Поэтому в этой главе рассказано не только об астероидах и кометах, но также о метеорах и метеоритах.

Астероиды. Общие сведения

Астероиды — это твердые каменистые тела, которые, подобно планетам, движутся по околосолнечным эллиптическим орбитам. Но размеры этих тел намного меньше, чем у обычных планет, поэтому астероиды раньше называли малыми планетами. В последнее время термин «малые планеты» употреблять не рекомендуется, чтобы не возникало путаницы с официально принятым термином «планеты-карлики», прототипом которых стал Плутон и в число которых попал крупнейший астероид — Церера. После выделения планет-карликов в самостоятельную группу, среди астероидов действительно остались только твердые тела, внутренняя структура которых способна сопротивляться гравитационному сжатию. По этой причине астероиды менее подвержены внутренней эволюции, чем планеты (например, в их недрах не должна происходить гравитационная дифференциация вещества), но слабее сопротивляются внешним факторам, таким как ударная переработка поверхности и эволюция орбиты. В этом смысле класс астероидов стал более однородным. Однако далее при описании астероидов мы будем упоминать и Цереру — как в силу традиции, так и по причине ее пограничного положения, позволяющего считать это тело переходным между астероидами и планетами-карликами.

Диаметры астероидов заключены в пределах от нескольких десятков метров (условно) до примерно 1000 км. (размер Цереры). Первый астероид — все та же Церера — открыл 1 января 1801 г. сицилийский астроном Джузеппе Пиацци (1746—1826). Термин «астероид» (т.е. «звездоподобный») ввел Вильям Гершель (1738—1822), желая подчеркнуть тот факт, что при наблюдении в телескоп астероиды похожи на звезды. Даже с помощью лучших наземных телескопов невозможно различить форму крупнейших астероидов: их угловой диаметр не превышает 0,5". Как и большие планеты, астероиды в видимом диапазоне спектра светят отраженным солнечным светом.

Диаметры некоторых астероидов были измерены методом покрытия звезд в те удачные моменты, когда астероиды оказывались на одном луче зрения с достаточно яркими звездами. В большинстве же случаев их размеры оцениваются косвенно, по блеску, цвету и расстоянию.

Большинство известных астероидов движется между орбитами Марса и Юпитера на расстояниях от Солнца 2,2—3,2 а.е. Всего к середине 2007 г. открыто около 380 тыс. астероидов. Из них около 150 тыс. зарегистрированы, т.е. им присвоены номера, их орбиты рассчитаны с большой точностью, так что эти астероиды уже не могут «потеряться». Около 14 тыс. астероидов получили собственные имена. Если вспомнить, что в ноябре 2004 г. было известно около 265 тыс. астероидов, то легко видеть, что средний темп их открытия за последние годы составляет около 130 астероидов в сутки!

Имена астероидам обычно присваивают их первооткрыватели в соответствии с международными правилами. Вначале им давали мифологические имена, продолжая традицию наименования больших планет. Когда древние имена иссякли, астероидам стали давать имена выдающихся людей. Но в последнее время, благодаря автоматизации астрономических наблюдений, частота открытия новых астероидов значительно превысила возможности Международного астрономического союза по рассмотрению заявок на присвоение имен. Возможно, скоро эта традиция окончательно прервется.



Кольцевую область между орбитами Марса и Юпитера, населенную астероидами, традиционно называют Главным поясом астероидов (в последнее время некоторые авторы предлагают называть эту область Поясом Фаэтона). Длительность орбитального периода в этой зоне от 3 до 9 земных лет в зависимости от удаленности от Солнца. Средняя орбитальная скорость в ней около 20 км/с. Наклоны орбит астероидов к плоскости эклиптики (ι) достигают 70°, но обычно не превышают 10°. На этом основании астероиды Главного пояса делят примерно поровну на плоскую (ι<8°) и сферическую подсистемы.

Систематически измеряя блеск астероидов, астрономы давно обнаружили, что практически у всех он изменяется за короткое время: от часов до недель. С самого начала было очевидно, что эти изменения связаны с неправильной формой и вращением астероидов. Это подтвердили первые же снимки с близкого расстояния, полученные космическими зондами: они показали, что поверхность астероидов изрыта кратерами и воронками разного размера. Судя по всему, форма и структура поверхности малых тел обязана их многочисленным столкновениям друг с другом. Поскольку точная форма наблюдаемых с Земли астероидов неизвестна, ее обычно представляют в виде трехосного эллипсоида с параметрами, позволяющими объяснить вариации блеска.


Ρ — период обращения.

α — большая полуось орбиты.

e — эксцентрисетет.


Веста — обнаружены признаки базальтовой коры, покрывающей оливиновую мантию, что может указывать на плавление и дифференциацию вещества. Изображение впервые получено в 1995 г. телескопом «Хаббл».


Рис. Веста.


Флора — крупнейший член семейства из нескольких десятков астероидов. В 1915—18 гг. японский астроном Кийогуцу Хираяма (1874—1943) впервые выделил 5 семейств астероидов: Флоры, Фемиды, Эоса, Корониды и Марии. Члены каждого семейства имеют сходные орбитальные элементы, что, вероятно, указывает на их генетическое родство. Возможно, это осколки одного родительского тела, разрушенного столкновением.

Ида — изображения получены зондом «Галилео» 28 августа 1993 г. На них обнаружен спутник размером 1,5 км., названный Дактилем и обращающийся вокруг Иды на расстоянии около 100 км.


Рис. Астероид Ида со спутником Дактиль.


Эрос — сближающийся с Землей астероид. В феврале 1999 г. зонд NEAR получил его изображения. 14 февраля 2000 г. зонд стал спутником Эроса — первым в истории искусственным спутником астероида, — а 12 февраля 2001 г. сел на его поверхность.


Рис. Эрос.


Гаспра — изображения получены зондом «Галилео» 29 октября 1991 г. во время первого в истории сближения с астероидом.

Икарус — сближается с Землей и пересекает ее орбиту.

Географ — сближающийся с Землей астероид. Либо двойной, либо имеет очень неправильную форму (сильная переменность блеска и вытянутое радиолокационное изображение).

Аполлон — крупнейший астероид одноименного семейства, члены которого сближаются с Землей и пересекают ее орбиту.

Хирон — астероид-комета, демонстрирующий периодическую активность: яркость резко возрастает вблизи перигелия, вероятно, из-за испарения летучих соединений с поверхности. Движется между орбитами Сатурна и Урана. Прототип семейства кентавров.

Тоутатис — двойной астероид, компоненты которого, вероятно, находятся в контакте и имеют размеры около 2,5 и 1,5 км. Изображения получены радиолокаторами в Аресибо и Голдстоуне. Сближение Тоутатиса с Землей произошло 29 сентября 2004 г. на расстояние 1,5 млн. км.


Рис. Тоутатис.


Касталия — двойной астероид с одинаковыми компонентами (по 0,75 км. в диаметре), находящимися в контакте. Изображение получено радиолокатором в Аресибо.

Как мог возникнуть Главный пояс астероидов?

Большой вклад в формирование современной теории происхождения Солнечной системы внесли советские ученые О.Ю.Шмидт (1891—1956), B.C.Сафронов (1917—1999) и их ученики. Идеи отечественной школы космогонистов помогают реконструировать историю астероидов главного пояса.

Около 4,5 млрд. лет назад на расстоянии 5 а.е. от Солнца одна из крупных планетезималей в ходе «естественного отбора» превзошла размером остальные и стала «зародышем» будущего Юпитера. Находясь на границе конденсации летучих соединений (Н2, Н2О, NH3, CO2, CH4 и др.), которые изгонялись из центральной, более теплой зоны протопланетного диска, это тело служило центром аккумуляции замерзающих газовых конденсатов. При достижении еще большей массы, оно стало захватывать вещество, находящееся ближе к Солнцу, в зоне родительских тел астероидов, и таким образом тормозить их рост.

Мелкие тела, попавшие в сферу гравитационного влияния прото-Юпитера, но не захваченные им, эффективно разбрасывались в разные стороны. Аналогично, хотя и не так интенсивно, происходил выброс тел из зоны формирования Сатурна. Двигаясь по вытянутым орбитам, выброшенные тела пронизывали пояс родительских тел астероидов между орбитами Марса и Юпитера, подвергая их дроблению. До возникновения планет-гигантов в этой области происходил рост родительских тел астероидов, поскольку их взаимные скорости были невелики (менее 0,5 км/с), и столкновение двух тел заканчивалось их объединением, а не дроблением.

Попадание в пояс астероидов быстрых объектов, выброшенных Юпитером и Сатурном, привело к тому, что относительные скорости возросли до 3—5 км/с. Процесс аккумуляции родительских тел астероидов сменился их взаимным разрушением, а возможность формирования большой планеты в этой области Солнечной системы исчезла навсегда.

Орбиты астероидов

Астероиды Главного пояса движутся по устойчивым орбитам, близким к круговым или слабо эксцентричным. Они находятся в «безопасной» зоне, где минимально гравитационное влияние на них больших планет, в первую очередь, — Юпитера. Считается, что именно Юпитер «виноват» в том, что на месте Главного пояса астероидов в период молодости Солнечной системы не смогла сформироваться крупная планета.

Впрочем, еще в начале XX в. многие ученые полагали, что между Юпитером и Марсом раньше существовала большая планета, которая по каким-то причинам разрушилась. Первым высказал эту гипотезу Ольберс, сразу после открытия им Паллады. Он же предложил назвать гипотетическую планету Фаэтоном. Однако современная космогония отказалась от идеи разрушения большой планеты: пояс астероидов, вероятно, всегда содержал множество небольших тел, объединиться которым мешало влияние Юпитера.

Этот гигант по-прежнему продолжает играть первостепенную роль в эволюции орбит астероидов. Его длительное (более 4 млрд. лет) гравитационное влияние на астероиды Главного пояса привело к тому, что возник ряд «запретных» орбит и даже зон, в которых малых тел практически нет, а если они туда и попадают, то не могут долго там находиться. Эти зоны называют пробелами (или люками) Кирквуда по имени Дэниела Кирквуда (1814—1895), впервые обнаружившего их в распределении периодов обращения всего нескольких дюжин астероидов.

Орбиты в люках Кирквуда называют резонансными, поскольку движущиеся по ним астероиды испытывают регулярное гравитационное возмущение со стороны Юпитера в одних и тех же точках своей орбиты. Периоды обращения по этим орбитам находятся в простых отношениях с периодом обращения Юпитера (например, 1:2, 3:7, 2:5, 1:3). Если какой-либо астероид, например, в результате столкновения с другим телом, попадает на резонансную орбиту, то ее эксцентриситет и большая полуось быстро меняются под влиянием гравитационного поля Юпитера. Астероид покидает резонансную орбиту и может даже уйти из Главного пояса. Таков постоянно действующий механизм «очистки» пробелов Кирквуда.

Однако заметим, что если изобразить мгновенное распределение всех астероидов Главного пояса, то никаких «щелей» мы не увидим. В любой момент времени астероиды достаточно равномерно заполняют пояс, поскольку, двигаясь по эллиптическим орбитам, они часто пересекают «запретные зоны».

Существует еще один, противоположный, пример гравитационного влияния Юпитера: у внешней границы Главного пояса астероидов есть две узкие «зоны», содержащие избыточное число астероидов. Периоды обращения в них находятся в пропорциях 2:3 и 1:1 с периодом обращения Юпитера. Ясно, что резонанс 1:1 означает, что астероиды движутся практически по орбите Юпитера. Но они не сближаются с гигантской планетой, а держат дистанцию, в среднем равную радиусу орбиты Юпитера. Эти астероиды получили имена героев Троянской войны. Те из них, которые в своем движении по орбите опережают Юпитер, называют «греками», а отстающую группу — «троянцами» (обе группы вместе часто называют «троянцами»). Движение этих малых тел происходит в окрестности «треугольных точек Лагранжа», где при круговом движении уравниваются гравитационные и центробежные силы. Важно, что при небольшом отклонении от положения равновесия возникают силы, стремящиеся вернуть объект на место, т.е. его движение происходит устойчиво.



В отличие от троянцев, которые могли постепенно накопиться в окрестностях точек Лагранжа в ходе длительной столкновительной эволюции астероидов, существуют иные семейства астероидов, скорее всего возникшие в результате относительно недавнего распада крупных родительских тел. Например, это семейство Флоры, включающее около 60 членов. Сейчас астрономы пытаются определить общее число таких семейств, чтобы оценить исходное количество родительских тел.

Астероиды, сближающиеся с Землей

У внутреннего края главного пояса астероидов выделяются группы тел, орбиты которых вытянуты в центральную область Солнечной системы и могут пересекаться с орбитами Марса, Земли, Венеры и даже Меркурия. В первую очередь, это группы Амура, Аполлона и Атона (по именам их крупнейших членов). Орбиты этих астероидов уже не так стабильны, как у членов главного пояса: они быстро эволюционируют под влиянием не только Юпитера, но и планет земной группы. По этой причине астероиды могут переходить из одной группы в другую, а само их деление на вышеназванные группы довольно условно и основано на данных об их современных орбитах. Так, амурцы движутся по эллиптическим орбитам с расстоянием в перигелии не более 1,3 а.е. (но и не менее 1 а.е.). У аполлонцев это расстояние менее 1 а.е., т.е. они проникают внутрь земной орбиты. В то время, как у амурцев и аполлонцев большая полуось орбиты заметно превосходит 1 а.е., у атонцев она менее или порядка этой величины, поэтому они движутся в основном внутри земной орбиты.



Ясно, что аполлонцы и атонцы, пересекая орбиту Земли, создают угрозу столкновения. Существует даже общее название группы малых тел с большими полуосями орбит менее 1,3 а.е. — «объекты, сближающиеся с Землей» (near-Earth object, NEO). К 1 сентября 2006 г. таких объектов было обнаружено 4187. Из них 57 комет и 4130 астероидов (near-Earth asteroid, NEA). Около 1000 из них имеют размер более 1 км. и поэтому представляют потенциальную угрозу для всей биосферы Земли. Хотя в последние годы поиск подобных тел проводится очень активно, ясно, что их общее количество может быть заметно больше: до 1500—2000 размером более 1 км. и до 140000 размером более 100 м. (такие объекты грозят нам локальными катастрофами).


Рис. Итокава.


Один из астероидов, сближающихся с Землей, — 25143 Itokawa — уже изучен весьма подробно: рядом с этим 500-метровым телом в 2005 г. несколько месяцев работал японский зонд «Хаябуса». Дважды (20 и 25 ноября) он садился на поверхность астероида и пытался взять образцы грунта, но уверенности в том, что это удалось, нет. Тем не менее, экспедиция оказалась удачной: детально изучена поверхность астероида, измерена средняя плотность его вещества (2 г/см3), альбедо (0,53), период вращения (12 час.), скорость отрыва с поверхности (около 20 см/с). «Хаябуса» должен вернуться на Землю в 2010 г., возможно, с образцами грунта.

О других астероидных поясах

За орбитой Юпитера также существуют астероидоподобные тела. Более того, оказалось, что таких тел очень много на периферии Солнечной системы. (См. об этом также в главах «Солнечная система» и «Плутон».) В 1990-е гг. за орбитой Нептуна обнаружили более 300 астероидоподобных объектов диаметрами от 100 до 800 км. Населенную ими область назвали «поясом Койпера». К 2007 г. их число перевалило за 1000, а диаметр крупнейшего из них (Эрида) оказался 2400 км. По оценкам, количество тел в поясе Койпера может быть не меньше, чем в Главном поясе астероидов. Предположения об этом в разное время высказывались различными астрономами, но свое название новый резервуар малых тел получил в честь известного американского астронома Джерарда Койпера, который в 1951 г. сформулировал гипотезу о том, что за орбитой Нептуна, на расстояниях 30—50 а.е. от Солнца может быть скопище тел, служащих источником короткопериодических комет. Как выяснилось позже, в 1949 г. такое же предположение сделал англичанин Кеннет Эджворт (Edgeworth К.Е., 1880—1972), поэтому в Европе многие предпочитают называть эту область Солнечной системы поясом Эджворта-Койпера.

По параметрам орбит транснептуновые объекты разделили на два класса. Класс «плутино» объединил те из них, которые (как и Плутон) движутся в резонансе 3:2 с Нептуном по довольно эллиптичным орбитам: большие полуоси около 39 а.е.; эксцетриситеты 0,11—0,35; наклоны орбит к эклиптике от 0 до 20°. В конце 1990-х была даже дискуссия, считать ли Плутон полноправной планетой или только одним из плутино. Тогда решили считать его планетой, поскольку он был крупнее любого из новооткрытых тел и к тому же имеет атмосферу и большой спутник — Харон. Но к 2006 г. в поясе Койпера обнаружились объекты крупнее Плутона, поэтому вместе с Плутоном их выделили в особый тип планет-карликов. Однако по характеру движения Плутон по-прежнему входит в класс плутино.

Во второй, более многочисленный класс вошли «типичные объекты пояса Койпера», движущиеся по орбитам, близким к круговым, с большими полуосями от 40 до 48 а.е. и наклонами от 0 до 40°. О внутреннем составе всех этих объектов пока трудно что-либо сказать. Не ясно даже, какого они типа — астероидного или кометного. Ясно одно: их состав должен быть весьма примитивным, поскольку на далекой периферии Солнечной системы он не испытал больших изменений с момента конденсации из протопланетной туманности.

Обнаружены также объекты между поясом Койпера и главным поясом астероидов — это «кентавры», первым из которых был открыт в 1977 г. Хирон, имеющий диаметр около 200 км. В афелии (18,8 а.е.) он касается орбиты Урана, а по пути к перигелию (8,43 а.е.) пересекает орбиту Сатурна. Поэтому его движение очень неустойчиво, и он в скором времени либо столкнется с одной из планет, либо будет выброшен из планетной системы. Хирон зарегистрировали как астероид, но в 1989 г. у него обнаружилась пылевая кома, в 1991 г. — газовая оболочка, а к 1996 г., проходя перигелий, он уже был типичной кометой, наглядно демонстрируя отсутствие резкой границы между астероидами и кометами как по составу вещества, так и, возможно, по происхождению. Двойственная природа кентавров очень точно отразилась в названии этого семейства малых тел. Первым из них присвоили имена легендарных кентавров, но исторических имен на всех не хватило.

Предлагается область, населенную кентаврами, назвать «поясом Казимирчак-Полонской» в честь Елены Ивановны Казимирчак-Полонской (1902—1992), теоретически доказавшей возможность существования астероидных тел между орбитами планет-гигантов.

О методах исследования астероидов

Наши представления об астероидах пока ограничены весьма общими знаниями о веществе, покрывающем их поверхность. Они основаны на нескольких источниках информации: наземных телескопических наблюдениях в оптическом диапазоне, радиолокационных измерениях, детальных изображениях поверхности нескольких тел, переданных космическими зондами, а также на результатах анализа земных пород и найденных на Земле метеоритов, которые (см. разд. «Метеориты») считаются осколками астероидов, ядер комет и поверхностей планет земной группы.

Массовое изучение поверхности малых тел основано на характеристиках отраженного ими солнечного света. В соответствии с формой спектра отраженного света астероиды делят на несколько спектральных типов или классов. Это позволяет разделить огромное количество малых тел на несколько групп с приблизительно одинаковым типом поверхности и даже оценить химико-минералогический состав их вещества. Иногда принимают во внимание и дополнительные данные, например, о радиолокационной отражательной способности астероида и о скорости его вращения вокруг оси. Естественное желание ученых поделить астероиды на несколько простых классов при детальном исследовании оказалось невыполнимым. В последнее время возникла необходимость введения подклассов и более мелкого деления спектральных типов для характеристики особенностей отдельных групп астероидов.

Поясним, как можно с помощью дистанционных измерений оценить состав вещества. Астероиды делят на группы по схожести цвета (его измеряют на небольших телескопах, фотографируя астероиды через светофильтры) или даже по форме спектра (для тусклых астероидов спектральные данные получить сложно — нужны большие телескопы). Затем в каждой группе выводят средние показатели цвета или характеристики спектра и сравнивают их с аналогичными величинами для земных горных пород и минералов, а также для метеоритов из научных коллекций. Подбирая «образцы-аналоги» с похожими цветовыми и спектральными характеристиками, считают, что в первом приближении их химический и минеральный состав соответствует веществу астероидов данного типа.

Как оказалось, в отличие от земных горных пород вещество астероидов в целом выглядит значительно более простым и даже примитивным. Это говорит о том, что физические и химические процессы в нем были не такими разнообразными и сложными, как в недрах планет земной группы. Тогда как на Земле сейчас надежно выделено около 4000 минеральных видов, на астероидах их может быть всего несколько сотен. Об этом можно судить хотя бы по количеству минеральных видов (около 300), найденных в метеоритах — обломках астероидов.

Большое разнообразие минералов на Земле возникло не только потому, что наша планета, по сравнению с астероидами, формировалась значительно ближе к Солнцу, а значит, и при более высокой температуре, стимулирующей химические реакции. Существенную роль сыграла и большая масса нашей планеты. Разогретое в ее недрах и ставшее пластичным силикатное вещество, металлы и их соединения разделились (дифференцировались) по удельному весу в гравитационном поле Земли. Эти процессы оказались благоприятными для возникновения постоянной газовой или жидкой окислительной среды, основными компонентами которой были кислород и вода. Их длительное взаимодействие с первичными минералами и породами земной коры дало то богатство минералов, которое мы наблюдаем.

Астероиды, по дистанционным данным, в основном состоят из простых силикатных соединений. В первую очередь это безводные силикаты, такие как пироксены (обобщенная формула ABZ2O6, где позиции «А» и «В» занимают катионы разных металлов, a «Z» — это Аl или Si), оливины (A22+SiO4 где A=Fe, Mg, Mn, Ni) и иногда плагиоклазы (общая формула (Na,Ca)Al(Al,Si)Si2O8; в скобках указаны пары элементов, один из которых может входить в реальную формулу минерала). Их называют породообразующими минералами, поскольку они составляют основу большинства горных пород.

Широко представлены на астероидах и силикатные соединения другого типа — гидросиликаты, или слоистые силикаты. К ним принадлежат серпентины (общая формула A3Si2O5(0H), где A=Mg, Fe2+, Ni), хлориты (A4—6Z4O10(OH, O)8, где А и Z — это в основном катионы разных металлов) и ряд других минералов, содержащих гидроксил (ОН). Предполагают, что на астероидах встречаются не только простые окислы, соединения (например, сернистые) и сплавы железа и других металлов (в частности, FeNi), органические (т.е. углеродные) соединения, но даже металлы и углерод в свободном состоянии. Об этом свидетельствует исследование метеоритов.

Спектральные типы астероидов

Выделено более дюжины основных спектральных типов (классов) астероидов, обозначенных латинскими буквами: А, В, С, F, G, D, Р, Е, М, Q, R, S, V и Т. Дадим их краткую характеристику.

Астероиды типа А имеют довольно высокое альбедо и самый красный цвет, вызванный значительным ростом с длиной волны их отражательной способности. Судя по цвету и спектру, они могут состоять из высокотемпературных оливинов (температура плавления от 1100 до 1900°С) или из смеси оливина с металлами.

Напротив, у астероидов типов В, С, F, и G низкое альбедо (тип В светлее других) и почти плоский, «бесцветный» спектр в видимом диапазоне, резко спадающий на коротких волнах. Поэтому считают, что эти астероиды в основном состоят из низкотемпературных гидратированных силикатов (температура разложения или плавления от 500 до 1500°С) с примесью углерода или органических соединений, имеющих похожие спектральные характеристики.

Астероиды с низким альбедо и красноватым цветом отнесены к типам D и Р (более красные — D). Такие свойства имеют силикаты, богатые углеродом или органическими веществами. Из них состоят, например, частички межзвездной пыли, которая заполняла и околосолнечный протопланетный диск еще до образования планет. На основе этого сходства предполагают, что D- и Р-астероиды — наиболее древние, малоизмененные члены главного пояса астероидов.

Астероиды типа Е имеют самое высокое альбедо (их поверхность отражает до 50% падающего света) и слегка красноватый цвет. Такие же спектральные характеристики имеет минерал энстатит (высокотемпературная разновидность пироксена) или другие силикаты, содержащие железо в свободном (неокисленном) состоянии, которые, следовательно, могут входить в состав астероидов Е-типа.

Астероиды, похожие по форме спектра на Р- и Е-тип, но по значению альбедо лежащие между ними, относят к М-типу. Оказалось, что по оптическим свойствам они очень похожи на металлы в свободном состоянии или металлические соединения, находящиеся в смеси с энстатитом или другими пироксенами. Таких астероидов сейчас известно около 30. Недавние наземные наблюдения открыли интересный факт: у многих из этих астероидов на поверхности присутствуют гидратированные силикаты. Хотя причина возникновения такой необычной комбинации высокотемпературных и низкотемпературных материалов еще окончательно не установлена, можно предположить, что гидросиликаты попали на астероиды М-типа при их столкновениях с более примитивными телами (например, недифференцированными астероидами, ядрами комет и т.п.

По значению альбедо и общей форме спектров отражения в видимом диапазоне астероиды Q-, R-, S- и V-типов достаточно схожи: у них довольно высокое альбедо и красноватый цвет. Различия же между ними сводятся к тому, что присутствующая в ближнем инфракрасном диапазоне спектра широкая полоса поглощения вблизи 1 мкм. имеет разную глубину. Эта полоса характерна для смеси пироксенов и оливинов; положение ее центра и глубина зависят от долевого и общего содержания этих минералов в поверхностном слое астероида. С другой стороны, глубина любой полосы поглощения в спектре отражения силикатного вещества уменьшается при наличии в нем каких-либо непрозрачных частичек (например, углерода, металлов или их соединений), которые экранируют диффузно-отраженный (т.е. пропускаемый через вещество и несущий информацию о его составе) свет. У данных астероидов глубина полосы поглощения вблизи 1 мкм. увеличивается от S- к Q-, R- и V-типам. Поэтому астероиды перечисленных типов (кроме V) могут состоять из смеси оливинов, пироксенов и металлов. Вещество же астероидов V-типа может включать наряду с пироксенами также и полевые шпаты, а по составу быть похожим на земные базальты.

И наконец, к типу Т относят астероиды, имеющие низкое альбедо и красноватый спектр отражения, похожий на спектры Р- и D-типов, но по наклону занимающий промежуточное положение. Поэтому минералогический состав астероидов Т-, Р- и D-типов считают примерно одинаковым и соответствующим силикатам, богатым углеродом или органическими соединениями.

При изучении распределения астероидов в пространстве обнаружилась явная связь их предполагаемого химикоминерального состава с расстоянием до Солнца. Оказалось, что чем более простой минеральный состав имеют астероиды (т.е. чем больше в них летучих соединений), тем дальше, как правило, они находятся от Солнца. В целом более 75% всех астероидов принадлежат С-типу и располагаются преимущественно в периферийной части главного пояса. Примерно 17% принадлежат S-типу и преобладают во внутренней части пояса. Большая часть из оставшихся астероидов относится к М-типу и также в основном движется в средней части астероидного кольца. Максимумы распределений астероидов этих трех типов находятся в пределах главного пояса. Максимум общего распределения астероидов Е- и R-типов несколько выходит за пределы внутренней границы пояса в сторону Солнца. Интересно, что максимум суммарного распределения астероидов Р- и D-типов лежит на далекой периферии главного пояса и выходит не только за пределы астероидного кольца, но и за пределы орбиты Юпитера. Не исключено, что распределение Р- и D-астероидов главного пояса перекрывается с астероидными поясами Казимирчак-Полонской, находящимися между орбитами планет-гигантов.

В заключение кратко изложим смысл общей гипотезы о происхождении астероидов различных классов, которая находит все больше подтверждений.

О происхождении малых тел

На заре формирования Солнечной системы, около 4,5 млрд. лет назад, из окружающего Солнце газо-пылевого диска вследствие турбулентных и других нестационарных явлений возникли сгустки вещества, которые при взаимных неупругих столкновениях и гравитационных взаимодействиях объединялись в планетезимали. С увеличением расстояния от Солнца уменьшалась средняя температура газо-пылевого вещества и, соответственно, менялся его общий химический состав. Кольцевая зона протопланетного диска, из которого впоследствии сформировался главный пояс астероидов, оказалась вблизи границы конденсации летучих соединений, в частности, водяного пара. Во-первых, это обстоятельство привело к опережающему росту зародыша Юпитера, находившегося рядом с указанной границей и ставшего центром аккумуляции водорода, азота, углерода и их соединений, покидавших более разогретую центральную часть Солнечной системы. Во-вторых, газо-пылевое вещество, из которого образовались астероиды, оказалось весьма неоднородным по составу в зависимости от расстояния до Солнца: относительное содержание в нем простейших силикатных соединений резко убывало, а содержание летучих соединений нарастало с удалением от Солнца в области от 2,0 до 3,5 а.е.

Усиливающиеся гравитационные возмущения со стороны быстро растущего Юпитера препятствовали образованию в поясе астероидов крупного протопланетного тела. К моменту, когда процесс аккумуляции вещества там прекратился, успели сформироваться лишь несколько десятков планетезималей умеренного размера (около 500—1000 км), которые затем начали дробиться при столкновениях вследствие быстрого роста относительных скоростей (от 0,1 до 5 км/с). Однако в этот период некоторые родительские тела астероидов или, по крайней мере, те из них, которые содержали высокую долю силикатных соединений и находились ближе к Солнцу, уже были разогреты или даже испытали гравитационную дифференциацию.

Ранее рассматривались два возможных механизма разогрева протоастероидов: распад радиоактивных изотопов, либо действие индукционных токов, наведенных мощным (в ту эпоху) солнечным ветром. Однако сейчас второй из этих механизмов считается менее вероятным или имевшим ограниченное действие. При исследованиях метеоритного вещества было установлено, что пылевой (силикатный) компонент вещества в протопланетном облаке был обогащен рядом короткоживущих радиоактивных изотопов, главным образом 26Аl (с временем полураспада около миллиона лет). Такие изотопы могли образоваться при вспышке новой (или сверхновой) звезды, предшествующей формированию Солнечной системы. Был получен еще один важный результат: в дифференцированных метеоритах достаточно обилен изотоп 26Mg — продукт распада 26Аl. Кроме того, эффективность действия 26Аl как источника разогрева протоастероидов оказалась высокой благодаря совпадению времени его распада с периодом аккумуляции этих тел.

Что касается объектов в поясе Койпера, то эти ледяные тела могут содержать до 30% силикатного вещества, изначально также включавшего 26Аl. Поэтому в течение нескольких первых миллионов лет их существования имелась возможность разогрева их недр изотопом 26Аl. Расчеты показывают, что сочетание радиоизотопного разогрева вещества с тепловыми эффектами от ударных процессов могло привести на койперовских телах диаметром более 100 км. к образованию и длительному существованию (до 10 млн. лет) внутреннего водного океана. В результате там могла произойти дифференциация вещества, то есть образование силикатно-органических ядер и водной мантии. Так это или нет, покажут будущие исследования койперовских тел с помощью космических аппаратов.

Протоастероидами, сохранившимися по каким-то причинам до наших дней, возможно, являются Церера и Веста. Если такое тело нагревалось достаточно для плавления силикатного вещества, то в процессе гравитационной дифференциации в нем выделялись металлическое ядро и более легкая силикатная оболочка, а в некоторых случаях (например, у Весты) даже базальтовая кора, как у планет земной группы. Поскольку вещество в зоне астероидов содержало значительное количество летучих соединений, его средняя температура плавления была относительно низкой. Расчеты показали, что температура плавления такого силикатного вещества лежит в диапазоне 500—1000°С.

После дифференциации и остывания протоастероиды испытали многочисленные столкновения не только между собой и своими обломками, но и с телами, вторгавшимися в пояс астероидов из зон Юпитера, Сатурна и более дальней периферии Солнечной системы. В результате длительной ударной эволюции протоастероиды были раздроблены на огромное количество осколков, наблюдающихся сейчас как астероиды. При относительных скоростях в несколько километров в секунду столкновения тел, состоявших из нескольких силикатных оболочек с различной механической прочностью (чем больше в твердом веществе металлов, тем оно прочнее), приводили к «сдиранию» и дроблению на мелкие фрагменты в первую очередь наименее прочных внешних силикатных оболочек.

Считается, что астероиды тех спектральных типов, которые соответствуют высокотемпературным силикатам, происходят из разных силикатных оболочек их родительских тел, прошедших плавление и дифференциацию. В частности, крупные астероиды М- и S-типов могут быть уцелевшими ядрами протоастероидов (например, S-астероид Эвномия и М-астероид Психея диаметрами около 270 км.) или их осколками, поскольку в их веществе, возможно, самое высокое содержание металлов. Астероиды А- и R-типов могут быть осколками промежуточных силикатных оболочек, а Е- и V-типов — внешних оболочек таких родительских тел. Таким образом, астероиды Е-, V-, R-, А-, М- и S-типов, подверглись наиболее интенсивной тепловой и ударной переработке.

Что же касается астероидов других типов, то их считают либо частично измененными (метаморфическими) вследствие столкновений или локального нагрева, не приводившего к общему плавлению (Т, В, G и F), либо примитивными и мало измененными (D, Р, С и Q). Доля астероидов указанных типов растет к периферии главного пояса. Несомненно, что все они испытали столкновения и дробление, но этот процесс, вероятно, не был настолько интенсивным, чтобы заметно повлиять на их химико-минеральный состав и отразиться на наблюдаемых характеристиках (см. разд. «Метеориты»).

Как показывает численное моделирование столкновений силикатных тел астероидного размера, многие из существующих сейчас астероидов после взаимных столкновений могли реаккумулироваться (т.е. вновь объединиться из фрагментов) и поэтому представляют собой не монолитные тела, а «груды булыжников». Высказывались обоснованные утверждения, что именно такое строение имеет астероид Итокава, похожий на конгломерат обломков, засыпанных слоем реголита.

Имеются наблюдательные признаки (по специфическим изменениям блеска) наличия у ряда астероидов гравитационно связанных с ними маленьких спутников, которые, вероятно, возникли как отколовшиеся при столкновении фрагменты. Раньше эта идея вызывала жаркие дискуссии среди астрономов, но была убедительно подтверждена на примере астероида Ида: космический зонд «Галилео» получил изображение спутника этого астероида.

О том, чего мы пока не знаем

В мире астероидов еще много неясного и даже загадочного. Во-первых, это общие проблемы происхождения и эволюции твердого вещества в Главном и других астероидных поясах, связанные с проблемой происхождения всей Солнечной системы.

Вероятно, к решению этих проблем мы подойдем не раньше, чем изучим несколько планетных систем других, похожих на Солнце звезд. Пока в них обнаружены лишь планеты-гиганты, но возможности астрономических приборов уже приближаются к тому, чтобы обнаружить у этих звезд и меньшие планеты земного типа. Затем настанет очередь астероидов и комет.

Есть также вопросы, на которые можно ответить лишь путем подробного изучения отдельных малых тел. По существу, каждое из этих тел уникально и имеет свою собственную, иногда весьма драматическую историю. Например, члены динамических семейств астероидов (Фемиды, Флоры, Гильды, Эос и др.), очевидно имеющие общее происхождение, могут заметно различаться по оптическим характеристикам, что указывает на какие-то их особенности.

Ясно, что для детального исследования тысяч астероидов потребуется много времени и сил. Но только путем сбора подробной и точной информации о каждом из них можно понять природу этих тел и основные закономерности их эволюции.

Кометы

Кометы — самые необычные по внешнему виду небесные объекты, доступные для наблюдения невооруженным глазом. Они привлекают внимание человека с глубокой древности. Вместе с астероидами и метеорными телами кометы относят к малым телам Солнечной системы. Особенностью комет является то, что при сближении с Солнцем у них появляется хвост, почти всегда направленный в сторону от Солнца.

История кометной астрономии

Предыстория изучения комет. Тысячи лет назад люди поняли, что небесные светила практически не меняют своего взаимного расположения (звезды), а если и перемещаются, то по строго установленным путям и с вполне определенной скоростью («блуждающие звезды», или планеты, включая Луну и Солнце). Поэтому неожиданное появление на ночном небе «хвостатых светил» вызывало у людей чувство страха и считалось предвестником плохих событий.

«Комета» в переводе с греческого означает «волосатая звезда». В Древней Греции, а затем и в Средние века комету часто изображали в виде отрубленной головы с развевающимися волосами. Поскольку история человечества всегда была насыщена трагическими событиями — войнами, эпидемиями, дворцовыми переворотами, убийствами вельмож, — то каждому появлению яркой кометы непременно сопутствовало какое-либо из этих событий. Придворным астрологам оставалось лишь глубокомысленно «увязать» дела земные и небесные.

Римские историки сообщили, что смерть Юлия Цезаря в 44 г. до н.э. совпала с появлением на небе яркой кометы. Поэтому в Средние века и даже позднее при королевских дворах Европы было распространено мнение, что комета предвещает смерть королю или его наследнику (весьма удобный способ «списать» дворцовую интригу на явление природы).

Вот пример эмоционального описания кометы 1528 г., оставленного известным французским хирургом Амбруазом Паре: «Эта комета была столь ужасна и страшна и порождала в народе столь великое смятение, что некоторые умирали от одного лишь страха, а другие заболевали. Она представляла собой светило громадной длины и кровавого цвета; в вершине ее была видна сжатая рука, держащая длинный меч, как бы готовый разить. У конца его клинка были видны три звезды. По обе стороны лучей, выходящих из хвоста этой кометы, виднелось множество топоров, ножей, мечей, обагренных кровью, а среди них были видны ужасные человеческие лица с всклокоченными бородами и дыбом стоящими волосами».

Первое, зафиксированное в истории появление кометы относится к 2296 г. до н.э. Тогда ее наблюдали китайские астрономы, старательно следившие за перемещением кометы по созвездиям. В представлении древних китайцев небо было огромной империей, управляемой Солнцем и состоящей из многочисленных областей и провинций, в которых яркие планеты были правителями. Для доставки императорских указов в отдаленные провинции нужны были курьеры. Их роль как раз и отводилась «хвостатым светилам», поскольку они быстро перемещались через многие созвездия и могли передавать императорскую волю. Подтверждением этого китайские астрономы считали перемещение «по воле императора» планет-правителей из одного созвездия в другое после прохождения кометы. Любопытно, что столь положительную роль кометам приписывали только в Китае.

Против обывательских взглядов, разумеется, устояли некоторые древнегреческие и римские мыслители, рассматривавшие кометы как природное явление, не связанное с судьбой человека. Аристотель (IV в. до н.э.) считал кометы атмосферным феноменом, принадлежащим изменчивому «подлунному миру», своеобразным родом земных испарений, нагревающихся или даже воспламеняющихся от близости к небесной «сфере огня». Правда, он не особенно настаивал на своей гипотезе; он писал: «Поскольку мы о кометах не имеем мнения, опирающегося на ощущения, то я должен быть доволен таким объяснением, которое не содержит противоречий с известными истинами».

Ближе всех к современной научной истине, пожалуй, подошел римский философ Сенека (I в. н.э.), который в заочном споре с Аристотелем писал: «Я не могу согласиться, что комета — это только зажженный огонь; это, скорее, одно из вечных творений природы… Комета имеет собственное место между небесными телами…, она описывает свой путь и не гаснет, а только удаляется. Не будем удивляться, что законы движения комет еще не разгаданы; придет время, когда упорный труд откроет нам скрытую сейчас правду…». Это время пришло лишь через полтора тысячелетия.

Рождение научной кометографии. Тихо Браге, наблюдавший яркую комету 1577 г., сопоставил свои данные с наблюдениями других европейских астрономов и пришел к выводу, что у кометы не было заметного параллакса, а значит она находилась далеко за пределом земной атмосферы и даже за пределом орбиты Луны, т.е. была самостоятельным небесным телом.

Теоретический труд Николая Коперника и практические открытия, сделанные с телескопом Галилея, окончательно подорвали доверие к геоцентрической системе мира Аристотеля и Птолемея, служившей основой научного мировоззрения почти два тысячелетия. Наверное этому факту более других удивился бы сам Аристотель. В отличие от своих многочисленных последователей он не был догматиком; он писал: «Я говорю о небесных телах, но я вижу их только издали; я не могу их наблюдать там, где они есть, и большая часть того, что происходит на небе, избегает наших глаз… Если кто-нибудь может дать другое объяснение этим феноменам, опирающееся на лучшее и более естественное основание, он приобретет законное право на нашу благодарность».

Заочную благодарность Аристотеля заслужили те, кто подготовил почву для поиска общих законов движения небесных тел — астрономы эпохи Тихо и Галилея. Сами же эти законы были установлены в 1609-18 гг. талантливым математиком Иоганном Кеплером, который использовал точнейшие данные о движениях планет, полученные Тихо Браге. Кеплер установил три закона движения планет по эллиптическим траекториям вокруг Солнца, но причина такого движения была неясна. И только закон всемирного тяготения и законы механики, окончательно сформулированные Иссаком Ньютоном в 1687 г., дали этому научное объяснение.

Расчеты, произведенные Ньютоном по просьбе английского астронома Эдмонда Галлея (1656—1742), доказали, что яркая комета 1682 г. движется по эллиптической орбите. На основе собственных наблюдений этой кометы и анализа достоверных исторических записей о наблюдениях комет за предшествовавшие 300 лет Галлей составил первый каталог 24 комет, включавший рассчитанные им элементы их орбит. Анализируя эти данные, Галлей заметил близкое совпадение орбитальных элементов у трех комет, появлявшихся в 1531, 1607 и 1682 гг. Он предположил, что это может быть одна и та же комета. Ее период обращения вокруг Солнца оказался 75,5 года, так что следующее появление должно было произойти в 1758 г. Предсказание Галлея подтвердилось: в начале 1759 г. появилась яркая комета, утвердив доверие к законам механики, на основе которых были выполнены расчеты кометных траекторий. К сожалению, Галлей не дожил до этого дня. Открытую им периодическую комету назвали кометой Галлея. Так начались научные исследования комет.

Орбиты комет и их классификация

Согласно законам механики, движение тела под действием гравитационного притяжения к другому телу — к Солнцу — происходит по одному из конических сечений — окружности, эллипсу, параболе или гиперболе. Коническими сечениями они названы не случайно: еще древние греки знали, что если плоскостью рассечь круговой конус перпендикулярно его оси, то получится круг; под небольшими углами к оси — эллипсы; параллельно образующей конуса — парабола, а далее, с уменьшением угла между плоскостью и ось конуса будем получать гиперболы. Не случайно слова эллипс, парабола и гипербола имеют греческое происхождение. Любопытства ради заметим, что возможны еще два конических сечения, также представляющих поведение тела в поле тяготения: это прямая линия и точка.



В уравнениях движения за форму орбиты отвечает эксцентриситет (е), физический смысл которого в том, что он указывает отношение кинетической энергии тела к его потенциальной энергии в гравитационном поле Солнца. Если е<1, тело не может преодолеть притяжение Солнца и движется вокруг него по замкнутой орбите — эллипсу или, в частном случае, окружности. При е⩾1 орбита разомкнута; это гипербола или, в частном случае, парабола. К сожалению, в небесной механике столь изящное решение имеет только задача двух тел, например, Солнце + планета. При взаимодействии трех и более тел простого аналитического выражения для их орбит не существует.

К счастью, Солнце гораздо массивнее любой планеты; поэтому каждая из них движется почти по эллиптической орбите, пока не испытает тесного сближения с другой планетой. За миллиарды лет эволюции более или менее массивные члены Солнечной системы «разобрались» друг с другом и устроились на почти круговых орбитах, гарантирующих отсутствие тесных сближений. Большинство малых тел — астероидов, обитающих между орбитами больших планет, пытаясь избежать их влияния, также устроились на стабильных эллиптических орбитах, поэтому их движение вполне предсказуемо (для надежного расчета такой орбиты достаточно измерить небесные координаты тела всего в трех точках его траектории).

С кометами дело обстоит сложнее. По своему статусу — «хвостатое светило» — они должны большую часть жизни проводить в холодных провинциях Солнечной системы (чтобы сохранить летучие элементы), изредка приближаясь к Солнцу (чтобы согреться и показать хвост). Поэтому они вынуждены пересекать орбиты планет и подвергаться их влиянию. В пределах планетной системы ни одна комета не движется по идеальному коническому сечению, поскольку гравитационное воздействие планет постоянно искажает ее «правильную» траекторию.

Кометы делят на два основных класса в зависимости от периода их обращения вокруг Солнца: короткопериодические имеют период менее 200 лет, долгопериодические — более 200 лет. В конце XX в. наблюдалась очень яркая долгопериодическая комета Хейла-Боппа, которая впервые за исторический период появилась в окрестности Солнца. Уже обнаружено около 700 долгопериодических комет. Их эллиптические орбиты настолько вытянуты, что почти не отличимы от парабол, поэтому такие кометы еще называют параболическими. Из них около 30 имеют очень малые перигелийные расстояния, отчего их иногда называются «царапающими Солнце». В отличие от планет и большинства астероидов, орбиты которых лежат вблизи эклиптики, а обращение происходит в одном («прямом») направлении, орбиты долгопериодических комет наклонены к плоскости эклиптики под всевозможными углами, а обращение происходит как в прямом, так и в обратном направлениях.



Короткопериодических комет сейчас известно более 200. Как правило, их орбиты расположены близко к плоскости эклиптики. Все короткопериодические кометы являются членами кометно-планетных семейств. Крупнейшее семейство принадлежит Юпитеру: около 150 комет с афелийными расстояниями (т.е. наибольшим удалением от Солнца) близкими к большой полуоси орбиты Юпитера (5,2 а.е). Их периоды обращения заключены в пределах 3,3—20 лет. Из них часто наблюдаются кометы Энке, Темпеля-2, Понса-Виннеке, Фая.

У других планет кометные семейства не так богаты: известно около 20 комет семейства Сатурна (Тутля, Неуймина-1, Ван Бисбрука, Гейла и др. с периодами 10—20 лет), несколько комет семейства Урана (Кроммелина, Темпеля-Тутля и др. с периодами 28—40 лет) и около 10-ти из семейства Нептуна (Галлея, Ольберса, Понса-Брукса и др. с периодами 58—120 лет). Считается, что все эти короткопериодические кометы вначале были долгопериодическими, но под действием гравитационного влияния больших планет постепенно перешли на орбиты, связанные с соответствующими планетами и стали членами их кометных семейств. Большая численность кометного семейства Юпитера, разумеется, есть следствие огромной массы этой планеты, оказывающей значительно большее гравитационное влияние на движение комет, чем любая другая планета.

Из всех короткопериодических комет наименьший период обращения у кометы Энке из семейства Юпитера: 3,3 года. Эта комета наблюдалась максимальное число раз при сближениях с Солнцем: около 60 раз за два столетия. Но самой известной в истории человечества является комета Галлея из семейства Нептуна. Имеются записи о ее наблюдениях начиная с 467 г. до н.э. За это время она проходила близ Солнца 32 раза, имея средний период обращения 76,08 лет.

Мини-кометы. Как уже было сказано, за последние годы обнаружено более 4000 астероидов, сближающихся с Землей. По оценкам, общее количество таких тел размером более 100 м. может достигать 140000. Но оказалось, что не только астероиды опасно сближаются с Землей. В последнее время вблизи Земли обнаружены так называемые мини-кометы. По каким траекториям они движутся, пока неизвестно, но их орбиты, вероятно, должны быть похожими на орбиты метеорных и болидных потоков (Леонид, Персеид, Акварид, Драконид и других, известных как потоки «падающих звезд»), пересекающихся с земной орбитой в разное время года. Ведь большинство метеорных потоков, как уже твердо установлено, образовалось при распаде кометных ядер.

Попадания мини-комет в нашу планету, по-видимому, уже наблюдались: с помощью наземных телескопов и снимков со спутника «Полар» в земной стратосфере были обнаружены вспышки, предположительно вызванные падением небольших (около 10 м. в диаметре) объектов ледяного состава.

Форма головы и хвоста кометы

Что представляют собой кометы и почему они выглядят так необычно? Первую удачную попытку объяснить феномен кометы предпринял немецкий математик и астроном Фридрих Бессель (1784—1846) в период наблюдения им кометы Галлея в 1835 г. Бессель создал механическую теорию кометных оболочек, основываясь на идее о том, что в голове кометы частички пыли движутся под действием притяжения к Солнцу и отталкивания от него. В конце XIX в. русский астроном Федор Александрович Бредихин (1831—1904) развил теорию Бесселя и построил эмпирическую классификацию кометных хвостов, хорошо описывающую поведение пылевой составляющей кометного вещества и не потерявшую своего значения до наших дней.

Бредихин использовал относительную величину, назовем ее h, которая показывает, во сколько раз солнечная сила отталкивания, действующая на частицы кометного хвоста, превышает силу тяготения. (Теперь известно, что это отталкивание вызвано давлением света на частицы пыли и нейтральные молекулы, а также давлением солнечного ветра на ионизованные молекулы газа.) Бредихин рассчитал формы кометных хвостов при разных значениях величины h и в соответствие с этим классифицировал наблюдавшиеся хвосты.



К I типу он отнес прямолинейные узкие хвосты, почти не отклоняющиеся от направления Солнце-комета; на их частицы действует очень сильное отталкивание; значение h для них лежит в пределах от нескольких десятков до нескольких тысяч единиц. Это газовые, а точнее — плазменные хвосты. Очертания таких хвостов часто бывают неправильными, а их внутренняя структура иногда струйчатая, винтовая или волнистая. Вдоль этих лучей могут перемещаться с большой скоростью сгустки кометной материи — облачные образования.

Ко II типу были отнесены кометные хвосты, для которых 0,6<h<2,5. Хвосты этого типа напоминают сильно изогнутый конус, отклоненный назад. Они образованы пылинками разной величины, непрерывно выделяющимися из ядра. В конце таких хвостов часто наблюдаются раздвоенные полоски, направленные к ядру кометы, — так называемые синхроны. Они возникают при единовременном (синхронном) выбросе из ядра кометы целого облака частиц, которые затем движутся с различным ускорением (световое давление действует по разному на пылевые частицы разного размера).

Если в системе координат, связанной с ядром, диапазон ускорений начинается от нуля, то и синхрона выходит непосредственно из ядра. Таковы хвосты III типа, у которых 0<h<2,5. Это короткие прямые хвосты, представляющие одну сплошную синхрону. Серия последовательных выбросов приводит к образованию нескольких синхрон в хвосте кометы.

Аномальные хвосты. Иногда у комет появляются хвосты совершенно необычного вида, их называют аномальными. В отличие от нормального кометного хвоста, направленного от Солнца, аномальный хвост имеет вид заостренной пики и направлен прямо к Солнцу. Это необычное явление отчасти объясняется геометрическими причинами: при некоторых взаимных положениях кометы, Земли и Солнца отклоненные назад хвосты II и III типов видны с Земли как бы направленными в сторону Солнца. Но, вероятно, это не единственная причина.

Возможно, аномальный хвост возникает при выбросе из ядра кометы (чаще всего — в момент наибольшего сближения с Солнцем) крупнозернистой пыли с размером частиц 0,1—1 мм. Давление света на такие крупные пылинки намного меньше их притяжения к Солнцу, поэтому и движение у них весьма своеобразное.

Есть причины полагать, что для образования аномальных хвостов недостаточно действия только сил тяготения и светового давления. Скорее всего, такие хвосты возникают при резком выбросе пылевых частиц из некоторых кометных ядер в сторону Солнца. Однако механизм направленного выброса пыли пока остается неясным.

Аномальные хвосты наблюдались более чем у 20 комет. Одной из них была комета Когоутека (1973 XII), на необычный хвост которой первыми обратили внимание астронавты, работавшие на орбитальной станции «Скайлэб».

Физические процессы в атмосфере кометы

Изучая форму комет и их спектры, астрономы в конце XIX и начале XX вв. поняли, что разреженные головы и хвосты комет состоят из молекул газа и твердых пылинок, движущихся под действием гравитации и давления солнечного света. Но ясное представление о физико-химических процессах, происходящих в кометах, сформировалось только к середине XX в.

Напомним, что раскаленные жидкости и твердые тела, а также полностью ионизованные газы дают излучение с непрерывным спектром. Горячий газ, состоящий из атомов, излучает отдельные линии, а молекулярный газ излучает широкие полосы, состоящие из множества линий.

Механизм свечения кометных «голов и хвостов» выясняли довольно долго: в период пролета кометы Галлея (1910 II) К. Шварцшильд и Е. Крон в 1911 г. установили, что молекулы и атомы кометной атмосферы не рассеивают, а переизлучают солнечный свет. Но только к 1934 г. стало окончательно ясно, что при этом происходит резонансная люминесценция, при которой атом возбуждается фотоном из основного состояния, а затем возвращается в него, излучая точно такой же фотон. Но обнаружены и другие виды свечения кометных газов, которые не удается объяснить люминесценцией. Например, зеленая и красная запрещенные линии кислорода (которые видны также в спектрах полярных сияний), красная линия атомарного водорода и ряд других. Их наличие в спектрах комет пытались и пытаются объяснить рядом механизмов (электронный удар, фотодиссоциация). Но окончательное решение еще не найдено.

Исследование спектров комет позволяет определить состав газа и его физическое состояние, например, степень ионизации. Выяснилось, что хвосты III типа имеют непрерывный спектр; это подтверждает предположение об их пылевом составе. Хотя хвосты II типа тоже демонстрируют непрерывный спектр, но есть основания считать, что он формируется путем многократного наложения большого количества спектральных полос разных молекул газа. Спектры хвостов I типа, в отличие от других, полосатые. В них присутствует излучение только ионизованных молекул (в основном N+2, СО+ и реже СО+2). Именно с этим связаны аномально большие ускорения частиц в хвостах I типа, которые невозможно объяснить действием лучевого давления. Теперь понятно, что большие ускорения и быстрые спиралевидные и волновые движения в хвостах этого типа вызваны давлением на ионизованный газ потоков солнечного ветра, несущего магнитное поле. Впрочем, далеко не все особенности поведения кометных хвостов уже вполне объяснены.

Поведение кометы

Вдали от Солнца у комет нет атмосферы, и они ничем не отличаются от обычных астероидов. После сближения с Солнцем до расстояния примерно 11 а.е. у них появляется оболочка неправильной формы — кома. Твердое ядро и окружающую его кому вместе называют головой кометы. В телескоп такая комета видна как туманное пятнышко, и отличить ее от далекого звездного скопления или планетарной туманности удается только по заметному собственному движению.

На расстоянии 3—4 а.е. от Солнца у кометы постепенно начинает развиваться хвост, который становится хорошо заметным на расстоянии менее 2 а.е. Хвост кометы представляет величественное зрелище: он простирается иногда на десятки и даже сотни миллионов километров, хотя и представляет из себя «видимое ничто». При дальнейшем сближении кометы с Солнцем ее хвост может разделиться на два и более хвостов, приобретая сложную структуру. Голова же кометы увеличивается до максимального размера на расстояниях 1,6—0,9 а.е., а затем уменьшается.

В разделе «Астероиды» рассказано об спектральной классификации малых планет. Предпринимаются попытки осуществить систематизацию и кометных спектров, чтобы на этой основе провести классификацию комет. Возможно, в будущем, когда будет накоплен больший наблюдательный материал по спектрам разных комет, это удастся осуществить.

Один из способов описания спектров комет предложил астроном И. Боушка. Для краткой характеристики спектра он использует следующие обозначения: «С» (от continuum) для непрерывного спектра; «Е» (от emission) для молекулярного спектра излучения; интенсивность спектра в соответствии с ее ростом характеризуется цифрами 1, 2 и 3; на отсутствие непрерывного или эмиссионного спектра указывает цифра «0»; если наиболее интенсивны полосы циана, добавляется буква «с», если присутствуют линии натрия — буква «n», если линии металлов — буква «m», и т.д. В скобках добавляется гелиоцентрическое расстояние кометы в момент получения спектра. Например, запись для одного из спектров кометы Когоутека (1970 III) выглядит так: СЗЕ1с(1,7). Это означает, что на гелиоцентрическом расстоянии 1,7 а.е. у кометы наблюдался очень сильный непрерывный спектр и слабые молекулярные полосы, среди которых наиболее интенсивными были полосы циана.

По спектрам комет в их головах и хвостах были обнаружены многие атомы, молекулы и пылевые частицы. Зафиксированные в кометах молекулы разделяют на родительские и дочерние. Родительские — это исходные, присутствующие в холодном веществе кометы, а дочерние — фрагменты родительских, возникающие под действием высокой температуры, коротковолнового излучения, бомбардировки космическими частицами. Какие именно молекулы родительские, а какие — дочерние, вопрос непростой. Многие специалисты считают, что родительские — это наиболее стабильные молекулы.

Предлагаются разные комбинации родительских молекул, вплоть до сложных органических соединений типа нитрилов, альдегидов, карбоновых кислот и аминокислот, лежащих в основе живой материи. Но есть и мнение, что родительскими могут быть только молекулы, которые имеют в своем составе радикалы (группы из нескольких атомов) со слабой химической связью с молекулярными основаниями, разрушаемой при изменении физических условий. Получившиеся после этого свободные радикалы способны образовывать новые — дочерние — соединения. Эти вопросы требуют дальнейших исследований.

Сейчас считается общепринятым, что в состав кометных атмосфер входят следующие компоненты:

1. Органические молекулы:

а) дочерние (производные): С, С2, С3, CN, СО, CS;

б) родительские: HCN, CH3CN, С3СН и др.;

2. Неорганические молекулы:

а) дочерние: Н, О, ОН, NH, NH2;

б) родительские: Н2О, N2 и др.;

3. Металлы: Na, Са, Cr, Со, Mn, Fe, Ni, Сu, V, Si.

4. Ионы: СО+, СО+2, СН+, CN+, N+2, ОН+, Н20+ и др.

5. Пыль: силикаты.

Ядра комет

Предположение о том, что причиной увеличения яркости комет и появления у них комы и хвостов при сближении с Солнцем является присутствие в их ядрах льдов высказал в 1948 г. С.К. Всехсвятский и детально развил в начале 1950-х Ф. Уиппл (хотя близкие идеи высказывали еще П.С. Лаплас и Ф. Бессель). Согласно модели Уиппла, ядро кометы — это ком из «грязного снега», то есть сравнительно рыхлое образование из льдов разного состава (вода, аммиак, метан и углекислый газ), смерзшегося с пылью и фрагментами горных пород. Резкое возрастание светимости кометы объясняется ее нагревом при сближении с Солнцем и потерей вещества вследствие испарения (точнее — сублимации, т.е. перехода вещества из твердой фазы сразу в пар).

У новых или «молодых» комет, совершивших всего одно или несколько сближений с Солнцем, этот процесс идет интенсивно, поскольку они состоят из реликтовых (неизмененных) льдов. Но у «старых» комет при очередных возвращениях к Солнцу испарение вещества происходит все слабее, поскольку на поверхности их ядер накапливаются тугоплавкие частицы пыли и крупные силикатные фрагменты, образующие защитную корку, предохраняющую лежащий под ней лед от испарения.

Модель Уиппла проста, поэтому не может объяснить тонкостей. Если исходить из этой модели, то льды разных летучих соединений должны испаряться с разными скоростями и, что самое главное — при разных температурах, а значит, на разных расстояниях от Солнца. Но это не подтверждают спектральные наблюдения. В 1952 г. модель Уиппла усовершенствовали П. Свинге и А. Дельзем, предположив, что в кометные ядра входят не чистые льды летучих веществ, а их гидраты. В каждое из таких соединений наряду с «родительской» молекулой вещества входят и несколько молекул воды, число которых определяется свойствами родительской молекулы. Такие сложные гидраты могут образовываться в космическом вакууме при очень низких температурах. По физическим свойствам все они очень схожи, в частности, испаряются примерно при одинаковой температуре и с близкими скоростями.

Современные модели «новых» комет представляют ядро как очень рыхлое образование, типа гигантского снежного кома. После многократных прохождений близ Солнца «новая» комета стареет, ее ядро уменьшается за счет потери большей части летучих из поверхностного слоя и покрывается коркой из нелетучих соединений.

С другой стороны, ядра «старых» комет, к которым относят и комету Галлея, хорошо описываются «пятнистой» моделью. Такое название связано с предположением о том, что в поверхностной теплоизолирующей корке имеются дыры, трещины или другие обнажения подкоркового вещества с высоким содержанием летучих соединений, из которых происходит интенсивная сублимация этих веществ, вплоть до истечения газовых струй, способных вызывать реактивное ускорение кометного ядра.

Массы ядер комет, вероятно, лежат в пределах от нескольких тонн (мини-кометы) до 1011—1012 т. Измерить массы кометных ядер пока не удается по причине их малости. Более или менее точно удалось оценить только массу ядра кометы Галлея по его гравитационному влиянию на космические зонды «Вега-1 и -2» (СССР) и «Джотто» (ЕКА), сблизившиеся с ним в марте 1986 г. В тот момент масса ядра была близка к 6×1011 т.

Тогда же было подтверждено, что ядро кометы Галлея представляет ледяную глыбу (по форме напоминающую картофелену. Размер этого тела вдоль большой оси около 14 км., а вдоль двух малых осей — по 7,5 км. Ядро вращается вокруг малой оси с периодом 53 часа. Температура поверхности ядра на расстоянии 0,8 а.е. от Солнца была 360 К (87°С). Поверхность ядра оказалась очень темной, отражающей лишь 4% света (примерно как свеженакатанный асфальт). Вероятно, ледяное тело кометы действительно покрыто теплоизолирующим слоем из тугоплавких частиц (металлов, серы, кремния, их окислов и других соединений), существование которого предполагал Уиппл в своей модели. Там, где лед испаряется, струи водяного пара, углекислого и других газов вместе с пылью вырываются из-под коры. В момент прохождения перигелия комета каждую секунду теряла около 45 т. газообразных соединений и 5-8 т. пыли.


Рис. Ядро кометы Галлея.


Легко подсчитать, что запасов летучего вещества должно хватить комете Галлея на сотню тысяч лет. За это время она может совершить еще около 1300 оборотов вокруг Солнца, а затем, вероятно, пополнит число вымерших комет. Это бывшие кометные ядра, которые уже не проявляют признаков активности и по наблюдаемым характеристикам ничем не отличаются от астероидов.

Опасно ли для Земли столкновение с кометой?

При прохождении Земли через кометные хвосты не было замечено никаких, даже самых незначительных эффектов. Опасность для Земли могут представлять только кометные ядра. Подтверждением этого, служит явление «Тунгусского метеорита», случившееся 17 (30) июня 1908 г. в безлюдном таежном районе Сибири, в бассейне р. Подкаменная Тунгуска. В действительности, это уникальное природное событие закончилось не падением на землю метеорита, а мощным взрывом в атмосфере, на высоте около 10 км. Энергия взрыва составила 1016—1017 Дж, что эквивалентно 10-мегатонной бомбе. Произошел массовый вывал леса в радиусе 15—30 км., но ни вещества метеорита, ни кратера от его падения найдено не было. Отсутствие космических обломков стало одним из основных аргументов в пользу кометной природы Тунгусского тела. Если оно состояло из замерзших летучих веществ, то могло полностью испариться при резком торможении и взрыве в земной атмосфере. Астрономы И.Т. Зоткин и Л. Кресак независимо показали, что координаты радианта Тунгусского метеорита (т.е. направление, откуда он двигался) совпадают с координатами радианта метеорного потока Таурид, связанного с кометой Энке (2P/Encke).

Наибольшую опасность для биосферы Земли представляют массивные долгопериодические кометы, хотя они и попадают в зону планет земной группы примерно в десять раз реже, чем короткопериодические. Их появление чаще всего бывает неожиданным из-за произвольной ориентации плоскостей орбит и очень больших периодов обращения. На встречных траекториях скорость столкновения этих комет с Землей очень высока — до 72 км/с, что может вызвать колоссальный взрыв. Возможность подобной катастрофы подтверждается фактами: на поверхности Земли обнаружены сотни крупных ударных кратеров.

Одно из самых массовых вымираний флоры и фауны за последние 230 млн. лет произошло 65 млн. лет назад (между мезозойской и кайнозойской биологическими эрами, т.е. на рубеже мелового и третичного геологических периодов), когда исчезло около 2/3 всех биологических видов, включая динозавров. С этим же моментом в геологических отложениях связан слой с повышенным содержанием очень редкого на Земле элемента иридия. Л. Альварес и С. Ванденберг показали, что содержание иридия в тот период на земной поверхности могло резко увеличиться в результате падения крупного кометного ядра, имевшего повышенное содержание этого элемента. Был даже найден кратер с подходящим возрастом и соответствующими морфологическими особенностями, который мог при этом образоваться. Это кратер Чиксулуб диаметром 180 км. на полуострове Юкатан в Мексике. Но причиной вымирания стала не повышенная концентрация иридия, а сильнейший взрыв при столкновении кометного ядра с Землей, который привел к выбросу в атмосферу огромного количества пыли.

Глобальное запыление атмосферы неизбежно приводит к резкому падению температуры ее нижних слоев (на 10—15°С), так как пыль экранирует солнечные лучи. Такое изменение средней температуры может сохраняться до 1 года, вызывая эффект «ядерной зимы» (неизбежный при массовом применении ядерного оружия, откуда и родилось его название). Вполне вероятно, что такой эффект, вызванный падением крупного кометного ядра или астероида, привел 65 млн. лет назад к катастрофической гибели живых организмов.

Еще одно недавнее событие напомнило нам о реальности столкновения с кометой: в июле 1994 г. в Юпитер врезались фрагменты кометы Шумейкеров-Леви-9. Ее обнаружили в окрестности Юпитера в начале 1993 г. уже после того, как она распалась на 20 фрагментов, цепочкой растянувшихся вдоль орбиты. Вероятно, это кометное ядро было разорвано на части приливными силами Юпитера в момент близкого прохождения мимо него. Падение обломков кометы размером от 1 до 10 км. со скоростью около 60 км/с происходило с 16 по 22 июля 1994 г. Эффект был грандиозным. Следы взрывов в виде огромных темных пятен надолго остались в атмосфере Юпитера.

Но столкновения с кометами могут приводить не только к катастрофам. Ряд ученых считает, что сразу после своего формирования охладившаяся поверхность Земли была очень суха (как сейчас лунная), и что практически вся вода и другие летучие соединения были принесены на Землю ядрами комет. Кстати, кометы могли доставить не только воду, но и сложные органические соединения, создав основу для зарождения жизни.

О происхождении комет и их эволюции

В процессе многократных прохождений вблизи Солнца кометы либо истощаются и становятся похожими на астероиды, либо разрушаются и рассеиваются, превращаясь в метеорные потоки, либо сталкиваются с более крупными телами. Казалось бы, число комет должно со временем уменьшаться. Но в действительности количество вновь открываемых комет не уменьшается, а скорее наоборот. Конечно, отчасти это происходит потому, что возрастает количество наземных обсерваторий, увеличиваются наблюдательные возможности и даже просто становится больше людей, занимающихся поиском новых комет. Тем не менее, по оценкам ученых поток комет во внутренние области Солнечной системы не ослабевает. Поэтому, естественно предположить, что взамен исчезающих комет откуда-то постоянно «приходят» новые.

Происхождение комет — это наиболее сложная и интересная проблема для астрономов, изучающих кометы. Лет 50 назад казалось, что ответы на главные вопросы уже получены. В конце 1940-х гг. советские космогонисты О.Ю. Шмидт, Б.Ю. Левин и В.С. Сафронов показали, что в процессе роста планет-гигантов (особенно Юпитера и Сатурна) их гравитационные возмущения становятся настолько сильными, что начинается массовый выброс более мелких первичных тел (планетезималей) из ближайших к орбитам гигантов кольцевых зон. Практически все тела, не вошедшие к этому моменту в состав планет, были выброшены из этих зон. Выброс планетезималей не только мог существенно повлиять на эволюцию пояса астероидов и планет земной группы, но и мог создать на периферии Солнечной системы резервуар кометных тел, из которого они приходят сейчас.

В 1950 г. голландский астрофизик Ян Оорт, проанализировав движение известных в то время 19 долгопериодических комет, обнаружил, что афелии их первичных орбит удалены на расстояние около 200000 а.е. от Солнца. Оорт предположил, что Солнечная система окружена гигантским облаком кометных тел или ледяных планетезималей, которых по его оценке насчитывается до 1011 тел. Если в 1950 г. Оорт исходил из предположения о том, что эти тела были «заброшены» на такие расстояния в результате взрыва гипотетической планеты (которая раньше якобы существовала на месте современного главного пояса астероидов), то уже в 1951 г. он согласился с выводами шмидтовской школы. Предсказанное им кометное облако в дальнейшем стали называть «облаком Оорта». Заметим однако, что идею о существовании связанного с Солнцем семейства комет высказывал еще в начале 1870-х гг. Дж. Скиапарелли.



Итак, согласно гипотезе Оорта, это облако является тем резервуаром комет, в котором они «хранятся» и из которого под действием гравитационных возмущений от сближающихся с Солнцем звезд или гигантских газо-пылевых облаков попадают во внутреннюю область нашей планетной системы как «новые кометы». Однако те же гравитационные возмущения должны вызывать и рассеяние этого облака со временем, поэтому вопрос о его стабильности в течение времени существования Солнечной системы пока не решен.

Новые кометы становятся долгопериодическими, если возмущения от планет-гигантов или других планет не переводят их в разряд короткопериодических. Но о происхождении последних были и специальные гипотезы. Так называемую «эруптивную» гипотезу предложил в 1812 г. Ж.-Л. Лагранж. Он полагал, что кометы рождаются при вулканических выбросах с планет-гигантов. В середине XX в. эта гипотеза была развита С.К. Всехсвятским, который «перенес» источник эруптивных выбросов комет с планет-гигантов на их крупные спутники (где позже действительно была обнаружена вулканическая активность).

Но гипотезы Оорта и Лагранжа-Всехсвятского приходят в противоречие с наблюдательными данными о короткопериодических кометах. Орбиты этих комет лежат близко к плоскости эклиптики. Это обстоятельство свидетельствует о возможной общности их происхождения. В последнее время ряд ученых развивает гипотезу о том, что большинство короткопериодических комет появляется из реликтовых поясов ледяных планетезималей (поясов Казимирчак-Полонской), возникших при формировании Солнечной системы и сохранившихся между планетами-гигантами близ плоскости эклиптики. Как показывают расчеты, между орбитами всех больших планет имеются весьма широкие кольцевые зоны, в которых пояса малых тел могут быть вполне устойчивыми. Минимальные расстояния между зонами сильных возмущений (сферами Хилла) соседних больших планет составляют: 4,0 а.е. (Юпитер—Сатурн), 9,2 а.е. (Сатурн—Уран) и 11,2 а.е. (Уран—Нептун). Все эти величины превышают аналогичное расстояние для пары Марс—Юпитер (3,2 а.е.), в пределах которого стабильно существует главный пояс астероидов.

Сильным аргументом в пользу существования таких поясов является и открытие «занептунного» пояса Койпера, в котором уже обнаружено около двухсот крупных тел размером 100—800 км. Их орбиты простираются до 200 а.е. Пояс Койпера уже можно рассматривать как источник долгопериодических комет, приходящих в центральную область Солнечной системы в результате столкновений между телами этого пояса. С другой стороны, пока не ясно, почему обнаружено так мало кометных тел (кроме астероида-кометы Хирона и еще нескольких подобных объектов) на расстояниях, соответствующих предполагаемым поясам Казимирчак-Полонской. Остается надеяться, что дальнейшие исследования комет позволят ответить на эти вопросы.

Метеоры и метеориты. Метеорные явления и «камни, падающие с неба»

Земля, как и другие планеты, регулярно испытывает столкновения с космическими телами. Обычно их размер невелик, не более песчинки, но за 4,6 млрд. лет эволюции случались и ощутимые удары; их следы заметны на поверхности Земли и других планет. С одной стороны, это вызывает естественное беспокойство и желание предвидеть возможную катастрофу, а с другой — любопытство и жажду исследовать попавшее на Землю вещество: кто знает, из каких космических глубин оно прибыло? Страх и любознательность сопровождают человека с момента его появления на планете. Плодом любознательности, как правило, является освобождение от страха.

«Падающие звезды» — метеоры и болиды

Межпланетные объекты, размер которых не превышает нескольких сотен метров, принято называть метеорными телами, или метеороидами. Влетая с космической скоростью в атмосферу планеты, они из-за столкновения с молекулами газа сильно нагреваются, дробятся, плавятся, испаряются и оставляют за собой в полете светящийся секунду-другую след. Это атмосферное явление называют метеором. Обычно метеоры замечают на фоне ясного ночного неба, поэтому в народе их называют «падающими звездами». Видимую яркость метеоров выражают так же, как яркость других небесных объектов — в звездных величинах, основываясь на субъективном впечатлении, которое метеор оставляет у наблюдателя.

Если яркость метеора превосходит —4m (т.е. яркость Венеры), то его называют болидом. Наиболее яркие болиды видны даже днем; их полет иногда сопровождается яркими вспышками, дымным следом, а порой и мощными звуками. При яркости более —6m на поверхность Земли обычно выпадает твердый остаток — метеорит. Наиболее вероятными кандидатами на выпадение метеорита являются медленные болиды, не демонстрирующие в конце траектории резкой вспышки, означающей разрушение.

Если несколько независимых наблюдателей сообщают точные данные о траектории болида, т.е. вероятность обнаружить выпавший метеорит. Особую ценность представляют фото- и видеозаписи болидов, точные зарисовки их траекторий относительно звезд с указанием времени и места наблюдения. Эту информацию следует направлять в Комитет по метеоритам РАН, адрес которого указан в конце этой главы.

Звездопады — метеорные дожди

Иногда можно наблюдать метеорный дождь — захватывающее зрелище почти одновременного массового входа в атмосферу метеороидов, движущихся по параллельным траекториям. В отличие от метеорного дождя, метеорным потоком называют множественное появление метеоров примерно в одной и той же области неба в течение более значительного промежутка времени, например, в течение нескольких ночей. Если видимые пути этих метеоров продолжить назад, то они пересекутся вблизи одной точки неба, называемой радиантом метеорного потока.

Многие метеорные потоки можно наблюдать периодически, в одни и те же дни года, на фоне одного и того же созвездия. На этом основании метеорным потокам присваивают названия, образованные от латинских имен тех созвездий, в которых лежат их радианты. Многим знакомы такие «звездопады», как Персеиды (в августе), Леониды (в ноябре) и некоторые другие. Например, поток Леониды, наблюдающийся в районе созвездия Льва, известен с 902 г.


Рис. Метеорный поток Персеиды.


В разделе «Кометы» говорится о том, что абсолютное большинство метеорных потоков образовалось в результате распада ядер комет, растерявших самые летучие соединения при неоднократных сближениях с Солнцем. Поэтому в названиях некоторых метеорных потоков используют имена тех комет, с которыми, как было установлено, они связаны (Биэлиды, Джакобиниды, и т.п.).

Начало метеоритных исследований

Как справедливо писал в 1819 г. известный химик Петербургской Академии наук Иван Мухин, «начало преданий о низпадающих из воздуха камнях и железных глыбах теряется в глубочайшем мраке веков протекших».

Метеориты известны человеку уже многие тысячи лет. Обнаружены орудия первобытных людей, сделанные из метеоритного железа. Случайно находя метеориты, люди едва ли догадывались об их особом происхождении. Исключение составляли находки «небесных камней» сразу после грандиозного зрелища их падения. Тогда метеориты становились предметами религиозного поклонения. О них слагали легенды, их описывали в летописях, боялись и даже приковывали цепями, чтобы они снова не улетели на небо.

Сохранились сведения, что Анаксагор считал метеориты обломками Земли или твердых небесных тел, а другие древнегреческие мыслители — обломками небесной тверди (см.: Романский И.Д. Анаксагор с. 93-94). Эти, в принципе, правильные представления продержались до тех пор, пока люди еще верили в существование небесной тверди или твердых небесных тел. Затем на длинное время их сменили совершенно другие идеи, объяснявшие происхождение метеоритов любыми причинами, но только не небесными.

Основы научной метеоритики заложил Эрнст Хладни (1756—1827), уже достаточно известный к тому времени немецкий физик-акустик. По совету своего друга-физика X. Лихтенберга он занялся сбором и изучением описаний болидов и сравнением этой информации с той, что была известна о найденных камнях. В результате этой работы Хладни в 1794 г. издал книгу «О происхождении найденной Палласом и других подобных ей железных масс и о некоторых связанных с этим явлениях природы». В ней, в частности, обсуждался загадочный образчик «самородного железа», обнаруженный в 1772 г. экспедицией академика Петра Палласа и впоследствии доставленный в Петербург из Сибири. Как оказалось, эта масса была найдена еще в 1749 г. местным кузнецом Яковом Медведевым и первоначально весила около 42 пудов (почти 700 кг.). Анализ показал, что она состоит из смеси железа с каменистыми включениями и представляет собой редкий тип метеорита. В честь Палласа метеориты этого типа были названы палласитами. В книге Хладни убедительно доказано, что Палласово железо и многие другие «упавшие с неба» камни имеют космическое происхождение.

Метеориты делят на «упавшие» и «найденные». Если кто-то видел, как метеорит падал сквозь атмосферу и затем его действительно обнаружили на земле (событие редкое), то такой метеорит называют упавшим. Если же он был найден случайно и опознан как «космический пришелец» (что типично для железных метеоритов), то его называют найденным. Метеоритам дают имена по названиям мест, где их нашли.

Случаи падения метеоритов на территории России

Старейшая запись о падении метеорита на территории России обнаружена в Лаврентьевской летописи 1091 г., но она не очень подробна. Зато в XX в. в России произошел ряд крупных метеоритных событий. В первую очередь (не только хронологически, но и по масштабу явления) это падение Тунгусского метеорита, случившееся 30 июня 1908 г. (по новому стилю) в районе реки Подкаменная Тунгусска. Столкновение этого тела с Землей привело к сильнейшему взрыву в атмосфере. Возникшая при этом взрывная волна несколько раз обошла земной шар, а в месте взрыва повалила деревья в радиусе до 40 км. от эпицентра и привела к гибели большого количества оленей. К счастью, это грандиозное явление произошло в безлюдном районе Сибири и почти никто из людей не пострадал.

К сожалению, из-за войн и революций исследование района Тунгусского взрыва началось только через 20 лет. К удивлению ученых, они не обнаружили в эпицентре никаких, даже самых незначительных обломков упавшего тела. После многократных и тщательных исследований Тунгусского события большинство специалистов считает, что оно было связано с падением на Землю небольшого ядра кометы.

Дождь каменных метеоритов выпал 6 декабря 1922 г. близ села Царев (ныне Волгоградской области). Но его следы были обнаружены только летом 1979 г. Собрано 80 осколков общим весом 1,6 тонны на площади около 15 кв. км. Вес крупнейшего фрагмента составил 284 кг. Это наибольший по массе каменный метеорит, найденный в России, и третий в мире.

К числу самых крупных, наблюдавшихся при падении метеоритов, относится Сихоте-Алиньский. Он упал 12 февраля 1947 г. на Дальнем Востоке в окрестностях хребта Сихоте-Алинь. Вызванный им ослепительный болид наблюдали в дневное время (около 11 ч. утра) в Хабаровске и других местах в радиусе 400 км. После исчезновения болида раздавались грохот и гул, происходили сотрясения воздуха, а оставшийся пылевой след медленно рассеивался около двух часов. Место падения метеорита быстро обнаружили по сведениям о наблюдении болида из разных пунктов. Туда немедленно отправилась экспедиция Академии наук СССР под руководством акад. В.Г. Фесенкова и Е.Л. Кринова — известных исследователей метеоритов и малых тел Солнечной системы. Следы падения были хорошо видны на фоне снежного покрова: 24 кратера диаметром от 9 до 27 м. и множество мелких воронок. Оказалось, что метеорит еще в воздухе распался и выпал в виде «железного дождя» на площади около 3 кв. км. Все найденные 3500 обломков состояли из железа с небольшими включениями силикатов. Крупнейший фрагмент метеорита имеет массу 1745 кг., а общая масса всего найденного вещества составила 27 т. По рассчетам начальная масса метеороида была близка к 70 тоннам, а размер — около 2,5 м. По счастливой случайности этот метеорит также упал в ненаселенном районе, и никто не пострадал.

И наконец, о последних событиях XX в. Одно из них также произошло на территории России, в Башкирии, близ г. Стерлитамак. Очень яркий болид наблюдали 17 мая 1990 г. в 23 ч. 20 мин. Очевидцы сообщили, что на несколько секунд стало светло, как днем, раздались гром, треск и шум, от которых зазвенели оконные стекла. Сразу после этого на загородном поле обнаружили кратер диаметром 10 м. и глубиной 5 м., но нашли только два относительно небольших фрагмента железного метеорита (весом 6 и 3 кг.) и много мелких. К сожалению, при разработке этого кратера с помощью экскаватора был пропущен более крупный фрагмент метеорита. И только спустя год дети обнаружили в отвалах грунта, извлеченного экскаватором из кратера, основную часть метеорита весом 315 кг.

20 июня 1998 г., около 17 часов в Туркмении, близ города Куня-Ургенч днем при ясной погоде упал хондритовый метеорит. Перед этим наблюдался очень яркий болид, причем на высоте 10—15 км. произошла вспышка, сравнимая по яркости с Солнцем, раздался звук взрыва, грохот и треск, которые были слышны на расстоянии до 100 км. Основная часть метеорита весом 820 кг. упала на хлопковое поле всего в нескольких десятках метров от работавших на нем людей, образовав воронку диаметром 5 м. и глубиной 3,5 м.

Физические явления, вызванные полетом метеороида в атмосфере

Скорость тела, падающего на Землю издалека, вблизи ее поверхности всегда превышает вторую космическую скорость (11,2 км/с). Но она может быть и значительно больше. Скорость движения Земли по орбите составляет 30 км/с. Пересекая орбиту Земли, объекты Солнечной системы могут иметь скорость до 42 км/с (параболическая скорость на расстоянии 1 а.е. от Солнца, равная √2×30 км/с). Поэтому на встречных траекториях метеороид может столкнуться с Землей со скоростью до 72 км/с.

При входе метеороида в земную атмосферу происходит много интересных явлений, о которых мы только упомянем. Вначале тело вступает во взаимодействие с очень разреженной верхней атмосферой, где расстояния между молекулами газа больше размера метеороида. Если тело массивное, то это никак не влияет на его состояние и движение. Но если масса тела ненамного превышает массу молекулы, то оно может полностью затормозиться уже в верхних слоях атмосферы и будет медленно оседать к земной поверхности под действием силы тяжести. Оказывается, таким путем, т.е. в виде пыли, на Землю попадает основная доля твердого космического вещества. Подсчитано, что ежедневно на Землю поступает порядка 100 т. внеземного вещества, но только 1% этой массы представлен крупными телами, имеющими возможность долететь до поверхности.

Заметное торможение крупных объектов начинается в плотных слоях атмосферы, на высотах менее 100 км. Движение твердого тела в газовой среде характеризуется числом Маха (М) — отношением скорости тела к скорости звука в газе. Число М для метеороида меняется с высотой, но обычно не превосходит М=50. Перед метеороидом образуется ударная волна в виде сильно сжатого и разогретого атмосферного газа. Взаимодействуя с ней, поверхность тела нагревается до плавления и даже испарения. Набегающие газовые струи разбрызгивают и уносят с поверхности расплавленный, а иногда и твердый раздробленный материал. Этот процесс называют абляцией.

Раскаленные газы за фронтом ударной волны, а также капельки и частички вещества, уносимые с поверхности тела, светятся и создают явление метеора или болида. При большой массе тела явление болида сопровождается не только ярким свечением, но порой и звуковыми эффектами: громким хлопком, как от сверхзвукового самолета, раскатами грома, шипением, и т.п. Если масса тела не слишком велика, а его скорость находится в диапазоне от 11 км/с до 22 км/с (это возможно на «догоняющих» Землю траекториях), то оно успевает затормозиться в атмосфере. После этого метеороид движется с такой скоростью, при которой абляция уже не эффективна, и он может в неизменном виде долететь до земной поверхности. Торможение в атмосфере может полностью погасить горизонтальную скорость метеороида, и дальнейшее его падение будет происходить почти вертикально со скоростью 50—150 м/с, при которой сила тяжести сравнивается с сопротивлением воздуха. С такими скоростями на Землю упало большинство метеоритов.

При очень большой массе (более 100 т.) метеороид не успевает ни сгореть, ни сильно затормозиться; он ударяется о поверхность с космической скоростью. Происходит взрыв, вызванный переходом большой кинетической энергии тела в тепловую, и на земной поверхности образуется взрывной кратер. В результате значительная часть метеорита и окружающие породы плавятся и испаряются.

Нередко наблюдается выпадение метеоритных дождей. Они образуются из фрагментов разрушающихся при падении метеороидов. Примером может служить Сихоте-Алиньский метеоритный дождь. Как показывают расчеты, при снижении твердого тела в плотных слоях земной атмосферы на него действуют огромные аэродинамические нагрузки. Например, для тела, движущегося со скоростью 20 км/с разность давлений на его фронтальную и тыльную поверхности меняется от 100 атм. на высоте 30 км. до 1000 атм. на высоте 15 км. Такие нагрузки способны разрушить абсолютное большинство падающих тел. Только наиболее прочные монолитные металлические или каменные метеориты способны их выдержать и долететь до земной поверхности.

Уже несколько десятилетий существуют так называемые болидные сети — системы наблюдательных пунктов, оборудованных специальными фотокамерами для регистрации метеоров и болидов. По этим снимкам оперативно вычисляются координаты возможного места падения метеоритов и проводится их поиск. Такие сети были созданы в США, Канаде, Европе и СССР и охватывают территории примерно по 106 кв. км.

О метеоритных кратерах и других последствиях падений метеоритов

Встречи Земли с крупными метеороидами создают опасность для людей и всего, что ими создано, а также для земной флоры и фауны. Более того, катастрофические события, подобные Тунгусскому, могут создать угрозу всей человеческой цивилизации. Конечно, это может произойти только при столкновении с достаточно большим телом, типа астероида или ядра кометы. Земная поверхность хранит следы таких столкновений в виде кратеров больших размеров — так называемых астроблем (т.е. «звездных ран»). Их уже обнаружено более 230. Диаметры самых крупных из них превышают 200 км.

Один из хорошо сохранившихся кратеров (по причине его относительной молодости) — так называемый Метеорный кратер, или Каньон дьявола, расположенный на плато Колорадо (1700 м. над уровнем моря) в северной части штата Аризона, США. В 1906 г. горный инженер Дэниел Берринджер (D.М. Barringer, 1860—1929) доказал, что этот кратер диаметром 1,2 км. имеет ударное происхождение: Берринджер обнаружил фрагменты метеорита, рассеянные в радиусе 5 км. вокруг кратера. При дальнейших исследованиях было собрано около 12 т. космического вещества и установлено, что кратер возник при падении железо-никелевого метеорита размером около 40 м. и массой около 300 тыс. тонн, летевшего со скоростью около 12 км/с. Это удалось установить в 2005 г. путем математического моделирования процесса образования кратера. Расчет показал, что метеорит начал разрушаться на высоте около 5 км., сплющился и превратился в «блин» диаметром 200 м. В воздушной ударной волне рассеялась энергия, эквивалентная взрыву 6,5 мегатонн ТНТ, и еще 2,5 Мт. выделилось при ударе о поверхность. Таким образом, полная энергия была почти такой же, как у Тунгусского метеорита, но результат оказался совсем иной!

Из-за атмосферной и водной эрозии на Земле практически не осталось древних кратеров размером менее 1 км. Даже гигантские кратеры диаметром в сотни километров исчезают примерно за 100 млн. лет. Известный пример — кратер Чиксулуб (Chicxulub) на п-ове Юкатан (Мексика). Его диаметр около 180 км.; он образовался 65 млн. лет от падения астероида размером около 10 км. (энергия взрыва составили 5×1023 Дж, или 1014 тонн ТНТ), но следы этого происшествия, стоившего жизни динозаврам, уже практически исчезли.

Значительно лучше и дольше сохраняются метеоритные кратеры на Луне, Меркурии, Марсе и других планетах и спутниках с разреженной атмосферой или вообще без нее. Как показывают расчеты, в течение первых 100 млн. лет после своего образования Земля вычерпала практически все твердое вещество, двигавшееся в окрестности ее орбиты. Однако Земля и сейчас продолжает встречать на своем пути пыль, камни и даже глыбы километровых размеров. Откуда же они берутся? Мы ответим на этот вопрос, но сначала познакомимся с составом и структурой метеоритного вещества.

Состав и строение метеоритного вещества

Среди падающего на Землю метеоритного вещества по количеству падений примерно 92% составляют каменные метеориты, 6% железные и 2% железо-каменные (а по общей массе, соответственно, 85, 10 и 5%).

Атмосфера служит первым «фильтром», сквозь который должно пройти метеоритное вещество. Чем более оно тугоплавкое и прочное, тем больше у него шансов попасть на земную поверхность. Еще одним фильтром можно считать селекцию метеоритов при их находках. Чем сильнее метеорит выделяется на фоне земной поверхности, тем легче его найти. Тридцать лет назад японские ученые обнаружили, что лучшим местом для поиска метеоритов является Антарктида. Во-первых, метеорит легко обнаружить на фоне белого льда. Во-вторых, во льдах они лучше сохраняются. Упавшие в других местах Земли метеориты подвергаются действию атмосферного выветривания, водной эрозии и прочих разрушающих факторов; поэтому они либо разлагаются, либо оказываются погребенными.

Основными компонентами метеоритного вещества, достигающего поверхности Земли, являются железо-магнезиальные силикаты и никелистое железо. Иногда бывают обильны и сульфиды железа (троилит и др.). Распространенные минералы, входящие в силикаты метеоритного вещества, — это оливины (Fe, Mg)2SiО4 (от фаялита Fe2SiО4 до форстерита Mg2SiО4) и пироксены (Fe, Mg)SiО3 (от ферросилита FeSiО3 до энстатита MgSiO3) разного состава. Они присутствуют в силикатах либо в виде мелких кристаллов или стекла, либо как смесь с разными пропорциями. На сегодняшний день в метеоритном веществе обнаружено около 300 разных минералов. И хотя их количество в процессе исследований новых метеоритов постепенно увеличивается, но все равно более чем на порядок уступает числу известных земных минералов.

Хондриты

Наиболее многочисленные каменные метеориты делят на две группы: хондриты и ахондриты. Хондриты названы так из-за наличия необычных светлых образований сферической или эллиптической формы — хондр, включенных в более темное вещество — матрицу. Хондры можно видеть на поверхности разлома метеорита, но лучше всего они заметны на полированной поверхности его распила. Размер хондр бывает от микроскопических до сантиметровых. Иногда они занимают до 50% объема метеорита. Хондры и матрица практически не различаются по составу и состоят в основном из мелкокристаллических железо-магнезиальных силикатов и стекол. Но структура хондр в основном кристаллическая. На этом основании некоторые специалисты считают, что хондры кристаллизовались из расплава. Содержание никелистого железа в хондритах не превышает 30%, и присутствует оно в виде мелких частиц неправильной или сферической формы. В целом вещество хондритов сравнительно плотное (2,0—3,7 г/см3), но хрупкое. Достаточно небольшого усилия для того, чтобы раскрошить в руках хондритовый метеорит. Удивительно, что хондры до сих пор обнаружены только в метеоритах. Их происхождение пока остается загадкой, поскольку неизвестны механизмы их возникновения.

Другой важной особенностью хондритов является их предельно простой элементный состав. Если не учитывать самые летучие элементы (Н, Не, О и некоторые другие), то получается, что состав хондритов очень близок к элементному составу Солнца. Причем такая близость прослеживается не только по основным элементам, но и по примесным, также служащим важными индикаторами. Примесные элементы делят на три группы: литофильные (Se, Sr, Rb, Ва, Се, Cs, Th, U и др.), халькофильные (Сu, Zn, Sn, Pb, Ag, Hg, Cd, In и др.) и сидерофильные (Ga, Ge, Ru, Pt, Pd, Os, Ir, Rh и др.); они демонстрируют сродство с минералами, богатыми кислородом, серой и железом соответственно. В частности, горные породы Земли, прошедшие магматическую дифференциацию, содержат в основном литофильные примесные элементы. Халькофильные элементы встречаются на земной поверхности только в ограниченных областях рудных месторождений, а сидерофильные практически отсутствуют. Оказалось, что в хондритовых метеоритах примесные элементы разных групп присутствуют в тех же пропорциях (с незначительными вариациями), что и на Солнце. Это означает, что хондриты образовались из вещества солнечного состава и не проходили дифференциацию. В то же время, очевидно, что они эпизодически подвергались нагреванию, хотя и не очень сильному, поэтому в них произошли некоторые структурные и минералогические изменения, называемые тепловым метаморфизмом.

Хондриты четко делятся на три больших класса по форме содержания железа, точнее по степени его окисленности. Хондритам этих классов дали следующие названия и обозначения: энстатитовые (Е), обыкновенные (О) и углистые (С). В том же порядке в них увеличивается содержание окисленного (двух- и трехвалентного) железа. Все хондриты поделены на шесть петрологических типов, в которых постепенно усиливаются структурные и минералогические проявления теплового метаморфизма (от 1-го к 6-му типу).

Углистые хондриты. Углистые хондриты (обозначаемые буквой «С», от англ. carbonaceous, углистый) — самые темные, чем и оправдывают свое название. Они содержат много железа, но оно почти целиком находится в связанном состоянии в силикатах. Темную окраску углистым хондритам в основном придает минерал магнетит (Fе3O4), а также небольшие количества графита, сажи и органических соединений. Эти метеориты содержат также значительную долю водосодержащих минералов или гидросиликатов (серпентин, хлорит, монтмориллонит и ряд других).

Дж. Вассон предложил в 1970-х гг. разделить углистые хондриты на четыре группы (CI, СМ, СО и CV) на основании постепенного изменения их свойств. В каждой группе есть типичный, эталонный метеорит, первая буква имени которого добавляется к индексу «С» при обозначении группы. Типичными представителями в упомянутых группах являются метеориты Ivuna, Мигеи (найден на Украине, в Николаевской обл.), Ornans и Vigarano. Несколько раньше, в 1956 г., Г. Виик предложил деление углистых хондритов на три группы (CI, СII и CIII), упоминания о которых можно иногда встретить в литературе. Группы Вассона CI и СМ полностью соответствуют группам CI и СII Виика, а группы СО и CV можно рассматривать как составляющие группы CIII.

В CI-хондритах гидратированные силикаты занимают большую часть объема. Их рентгеновские исследования показали, что преобладающим силикатом является септехлорит (общая формула септехлоритов Y6(Z4О10)(OH)8, где Y = Fe2+, Mg; Z=Si, Al, Fe3+). Причем, все гидросиликаты находятся в аморфной форме, т.е. в форме стекла. Дегидратированных силикатов (пироксенов, оливинов и др., которые появляются при температурах более 100°С) здесь вообще нет. CI-метеориты представляют собой исключение среди хондритов, поскольку их вещество вообще не содержит хондр, а состоит как бы из одной матрицы. Это подтверждает идею о кристаллизации хондр из расплавленного вещества, поскольку исследования показывают, что вещество CI-хондритов не подвергалось плавлению. Оно считается наиболее неизмененным, по сути первичным веществом Солнечной системы, сохранившимся с момента конденсации протопланетного облака. Именно этим объясняется высокий интерес ученых к CI-метеоритам.

В СМ-хондритах содержится лишь 10—15% связанной воды (в составе гидросиликатов), а в виде хондр присутствует 10—30% пироксена и оливина.

В СО- и СV-хондритах содержится всего 1% воды в связанном состоянии и преобладают пироксены, оливины и другие дегидратированные силикаты. В небольших количествах в них имеется и никелистое железо. Присутствие гидросиликатов заметно снижает плотность углистых хондритов: от 3,2 г/см3 в CV до 2,2 г/см3 в СI-метеоритах.

Обыкновенные хондриты. Обыкновенные хондриты названы так потому, что они встречаются наиболее часто в метеоритных коллекциях. Они включают в себя три химические группы: Н, L и LL (Н — от англ. high, высокий; L — от low, низкий). Метеориты этих групп похожи по ряду свойств, но отличаются по общему содержанию железа и сидерофильных элементов (Н >L>LL) и по отношению окисленного железа к металлическому (LL>L>Н). Хондриты группы Н охватывают петрологические типы от 3 до 6, а хондриты групп L и LL относятся к петрологическим типам 3—7.

Структурные и минералогические особенности обыкновенных хондритов свидетельствуют, что эти метеориты испытали тепловой метаморфизм при температурах примерно от 400°С (для низкого петрологического типа 3) до более 950°С (для типа 7) и при ударных давлениях до 1000 атм. (нарастающих при увеличении температуры). По сравнению с более «правильными» хондрами углистых хондритов хондры обыкновенных чаще имеют неправильную форму и заполнены обломочным материалом. Общее содержание железа в обыкновенных хондритах по группам меняется в следующих пределах: 18—22% (LL), 19—24% (L), 25—30% (Н). Количество металлического железа также увеличивается от группы LL к L и далее — к Н.

Энстатитовые хондриты. В энстатитовых (Е) хондритах железо находится в основном в металлической фазе, т.е. в свободном состоянии (при нулевой валентности). В то же время в их силикатных соединениях железа содержится очень мало. Практически весь пироксен в них представлен в виде энстатита (откуда и название данного класса). Структурные и минералогические особенности энстатитовых хондритов показывают, что они испытывали тепловой метаморфизм при максимальных (для хондритов) температурах, примерно в диапазоне от 600°С до 1000°С. Как следствие, Е-хондриты по сравнению с другими хондритами являются наиболее восстановленными и содержат наименьшее количество летучих соединений.

В этой группе выделяются три петрологических типа (Е4, Е5 и Е6), в которых прослеживается нарастание признаков теплового метаморфизма. Было также обнаружено, что в Е-хондритах имеют место широкие вариации содержаний железа и серы в зависимости от петрологического типа. На этом основании некоторые ученые делят их еще на типы I (куда входят Е4 и Е5) и II (Е6). Хондры в энстатитовых хондритах погружены в темную мелкодисперсную матрицу, имеют неправильные очертания и заполнены обломочным материалом.

Дифференцированные метеориты

Ахондриты. Менее многочисленная группа каменных метеоритов (около 10%) — ахондриты. В них нет хондр и они химически не похожи на хондриты, поскольку имеют несолнечный состав. Ахондриты составляют ряд от почти мономинеральных оливиновых или пироксеновых пород до объектов, сходных по структуре и химическому составу с земными и лунными базальтами. Они бедны железом и сидерофильными примесными элементами, у них разное содержание Fe, Mg и Са. В основном эти метеориты похожи на изверженные породы Земли и Луны, прошедшие магматическую дифференциацию.

Предполагается, что ахондриты образовались из исходного вещества хондритового состава в одном процессе дифференциации, который дал и железные метеориты. Ахондриты делят на группы по минеральному составу. Название каждой из групп соответствует либо названию основного минерала, либо названию метеорита, который можно считать типичным представителем данной группы: обриты (97% по весу составляет ортоэн-статит), уреилиты (85% оливина), диогениты (95% ортопироксена), говардиты (40—80% ортопироксена) и эвкриты (40—80% пижонита).

Железные и железо-каменные метеориты. Кроме ахондритов, дифференцированными метеоритами являются еще железные и железо-каменные метеориты. Они вызывают значительный интерес не только потому, что падают на Землю реже хондритов, но и потому, что представляют иной этап эволюции вещества Солнечной системы. В то время как в хондритах записана история аккумуляции вещества в допланетном облаке и при образовании планетезималей, дифференцированные метеориты запечатлели последовательность процессов, протекавших в родительских телах метеоритов, и их внутреннюю структуру. Железные метеориты раньше считали частью разрушенного ядра одного большого родительского тела размером с Луну или больше.

Но теперь известно, что они представляют множество химических групп, которые в большинстве случаев свидетельствуют в пользу кристаллизации вещества этих метеоритов в ядрах разных родительских тел астероидных размеров (порядка нескольких сотен километров). Другие же из этих метеоритов, возможно, представляют собой образцы отдельных сгустков металла, который был рассеян в родительских телах. Есть и такие, которые несут доказательства неполного разделения металла и силикатов, как железо-каменные метеориты.

Железо-каменные метеориты делят на два типа, различающиеся химическими и структурными свойствами: палласиты и мезосидериты. Палласитами называют те метеориты, силикаты которых состоят из кристаллов магнезиального оливина или их обломков, заключенных в сплошной матрице из никелистого железа. Мезосидеритами называют железо-каменные метеориты, силикаты которых представляют собой в основном перекристаллизованные смеси из разных силикатов, входящие также в ячейки металла.

Железные метеориты почти целиком состоят из никелистого железа и содержат небольшие количества минералов в виде включений. Никелистое железо (FeNi) — это твердый раствор никеля в железе. При высоком содержании никеля (30—50%) никелистое железо находится в основном в форме тэнита (γ-фаза) — минерала с гранецентрированной ячейкой кристаллической решетки, при низком (6—7%) содержании никеля в метеорите никелистое железо состоит почти из камасита (α-фаза) — минерала с объемно-центрированной ячейкой решетки.

Большинство железных метеоритов имеет удивительную структуру: они состоят из четырех систем параллельных камаситовых пластин (по-разному ориентированных) с прослойками, состоящими из тэнита, на фоне из тонкозернистой смеси камасита и тэнита. Толщина пластин камасита может быть разной — от долей миллиметра до сантиметра, но для каждого метеорита характерна своя толщина пластин.

Если полированную поверхность распила железного метеорита протравить раствором кислоты, то проявится его характерная внутренняя структура в виде видманштеттеновых фигур. Названы они в честь А. де Видманштеттена, наблюдавшего их первым в 1808 г. Такие фигуры обнаруживаются только в метеоритах и связаны с необычайно медленным (в течение миллионов лет) процессом остывания никелистого железа и фазовыми превращениями в его монокристаллах.


Рис. Железный метеорит с видманштеттеновой структурой.


До начала 1950-х гг. железные метеориты классифицировали исключительно по их структуре. Метеориты, имеющие видманштеттеновы фигуры, стали называть октаэдритами, поскольку составляющие эти фигуры камаситовые пластины располагаются в плоскостях, образующих октаэдр.

В зависимости от толщины L камаситовых пластинок (которая связана с общим содержанием никеля) октаэдриты делят на следующие структурные подгруппы: весьма грубоструктурные (L>3,3 мм.), грубоструктурные (1,3

У некоторых железных метеоритов, имеющих низкое содержание никеля (6—8%), видманштеттеновы фигуры не проявляются. Такие метеориты состоят как бы из одного монокристалла камасита. Называют их гексаэдритами, так как они обладают в основном кубической кристаллической решеткой. Иногда встречаются метеориты со структурой промежуточного типа, которые называются гексаоктаэдритами. Существуют также железные метеориты, вообще не имеющие упорядоченной структуры — атакситы (в переводе «лишенные порядка»), в которых содержание никеля может меняться в широких пределах: от 6 до 60%.

Накопление данных о содержании сидерофильных элементов в железных метеоритах позволило создать также их химическую классификацию. Если в n-мерном пространстве, осями которого служат содержания разных сидерофильных элементов (Ga, Ge, Ir, Os, Pd и др.), точками отметить положения разных железных метеоритов, то сгущения этих точек (кластеры) будут соответствовать таким химическим группам. Среди почти 500 известных сейчас железных метеоритов по содержанию Ni, Ga, Ge и Ir четко выделяются 16 химических групп (IA, IB, IC, IIА, IIВ, IIС, IID, IIЕ, IIIA, IIIB, IIIC, IIID, IIIE, IIIF, IVA, IVB). Поскольку 73 метеорита в такой классификации оказались аномальными (их выделяют в подгруппу неклассифицированных), то существует мнение, что есть и другие химические группы — возможно их более 50, но они пока недостаточно представлены в коллекциях.

Химические и структурные группы железных метеоритов связаны неоднозначно. Но метеориты из одной химической группы, как правило, имеют похожую структуру и некоторую характерную толщину камаситовых пластинок. Вероятно, метеориты каждой химической группы формировались в близких температурных условиях, быть может, даже в одном родительском теле.

Методы изучения метеоритов и их результаты

При нагревании чистого кристаллического железа температура фазового превращения камасит (α-фаза)→тэнит (γ-фаза) составляет 910°С. При типичных средних концентрациях никеля в железных метеоритах (7—14%) превращение γ→α начинается при более низких температурах (650—750°С). При падении температуры в тэните появляется камасит в виде тонких листков, или пластинок, ориентированных вдоль граней октаэдра — четырех плоскостей с эквивалентным расположением атомов. Поэтому железные метеориты в процессе (γ→α)-превращения приобретают октаэдритовую структуру, отражающую направления преимущественного роста пластин камасита.

В зависимости от направления распила метеорита по отношению к октаэдритовой ориентировке его пластин видманштеттеновы фигуры имеют разный рисунок. Сами же пластины в сечении выглядят как балки. Чем меньше содержание никеля в исходном тэните, тем выше температура, при которой начинается фазовое превращение и тем дольше длится рост камаситовых пластин, и тем более толстыми они оказываются к концу роста. Этим объясняется, почему метеориты с высоким содержанием никеля являются тонкоструктурными, а метеориты с низким его содержанием — грубоструктурными, вплоть до образования сплошного монокристалла камасита толщиной до 50 см, как у гексаэдритов.

В конце 1950-х гг. в железных метеоритах советские исследователи обнаружили методом электронного микрозондирования специфический М-образный профиль распределения никеля в сечении тэнитовых слоев, находящихся между камаситовыми. В 1960-х гг. Дж. Голстейн, В. Бухвальд и др. показали, что этот профиль образуется также при (γ→α)-превращениях в никелистом железе при его остывании. Он возникает из-за разной скорости диффузии никеля в камасите и тэните (в камасите она в 100 раз больше) и более низкой растворимости никеля в камасите, чем в тэните. Это открытие дало астрономам новый метод реконструкции истории метеоритов.

Рассчитывая профили никеля в тэните при разных его начальных содержаниях и сравнивая их с измеренными в метеоритах, удается оценить скорости остывания вещества железных метеоритов в недрах родительских тел, а следовательно, и размеры этих тел. Дж. Вуд предложил еще один метод оценки скорости остывания — по ширине тэнитовой пластины и концентрации никеля в ее центре по отношению к среднему содержанию никеля в метеорите. Оба эти метода дали совпадающие результаты. Оказалось, что вещество октаэдритов в интервале температур 600—400°С остывало со скоростью 1—10°С за миллион лет, а иногда и медленнее. Аналогичный результат получился и для железо-каменных метеоритов, металл которых также имеет октаэдритовую структуру.

Более того, изучение металлических частиц, присутствующих в метеоритах других классов, показало, что в них также есть тэнит и камасит. Дж. Вуд применил свою методику, разработанную для железных метеоритов, к хондритам и оценил скорость их остывания. Неожиданно оказалось, что большинство хондритов остывало примерно с той же скоростью, что и железные метеориты: около 10°С за миллион лет в интервале температур 550—450°С. Такое длительное остывание вещества самых разных метеоритов означает, что после разогрева оно находилось глубоко в недрах родительских тел от десятков до сотен миллионов лет.

Расчеты показали, что для обеспечения столь медленного остывания толщина защитного слоя с низкой теплопроводностью (как у каменистого вещества с хондритовым составом) должна составлять 70—200 км. Значит, минимальный диаметр первичных родительских тел метеоритов разных классов был около 140—400 км., а это в точности соответствует размерам крупных астероидов.

Итак, родительскими телами большинства метеоритов были крупные астероиды, причем у некоторых недра были расплавлены, что требовало температуры не менее 1200—1400°С (для вещества хондритового состава). Источником нагрева астероидов могли быть либо радиоактивные элементы (например, изотоп 26Аl, который с периодом полураспада 760 тыс. лет превращается в 26Mg, выделяя много энергии), либо индуктивные токи, которые мог возбуждать в астероидах мощный звездный ветер молодого Солнца. Но пока это гипотезы, не получившие надежного подтверждения. К тому же, некоторое количество метеоритов из научных коллекций не имеют признаков пребывания в недрах родительских тел.

Эпоху вторичного разогрева некоторых метеоритов можно определить с помощью гелий-аргонового метода. Он основан на измерении содержания Не и Аr, возникающих в веществе при радиоактивном распаде, соответственно, Th и 40К. При низкой температуре эти газы удерживаются веществом, но при высокой начинают из него просачиваться (диффундировать). Причем диффузия гелия начинается при температуре выше 200°С, а аргона — выше 300°С. Определив соотношение радиоактивных изотопов и благородных газов, можно определить время, прошедшее от эпохи последнего разогрева образца до температур, выше указанных, до наших дней.

Можно оценить и период самостоятельного существования метеороида, давшего конкретный метеорит, т.е. интервал времени от дробления родительского тела до падения метеорита на Землю. Этот космический возраст метеорита определяют по плотности треков, оставленных в его веществе космическими частицами солнечного или галактического происхождения. Они не проникают глубоко, а задерживаются в слое толщиной около 1 м. Если от родительского тела откалывается обломок и некоторое время самостоятельно живет в межпланетном пространстве, то его космический возраст определяется возрастом наиболее «свежей» его стороны. Оказалось, что космические возрасты различаются у метеоритов разных классов. В частности, для энстатитовых хондритов удалось измерить два достаточно молодых возраста: 7 и 20 млн. лет. А некоторые железо-никелевые по «космическим» часам намного старше: им около 700 млн. лет. Тем не менее, нельзя исключить, что наиболее насыщенная треками космических частиц поверхность хондритов частично разрушается при прохождении земной атмосферы, что может привести к ложной оценке разницы в их возрасте по сравнению с более прочными железными метеоритами.

Абсолютный возраст метеоритов определяют рубидиевостронциевым методом: при распаде долгоживущего изотопа 87Rb образуется стабильный 87Sr; измеряя его содержание по отношению к стабильному изотопу 86Sr, находят возраст метеорита. Он оказывается в пределах 4,5—4,7 млрд. лет, как и у земных пород.

Сложная история метеоритного вещества

Существует еще один важный аргумент в пользу астероидного происхождения большинства метеоритов. Вещество метеоритов во многих случаях представляет сложный конгломерат материалов, которые могли возникнуть в разных, иногда даже несовместимых условиях. Часто примитивные по составу углистые хондриты содержат включения материалов, свойственных обыкновенным, энстатитовым или даже железным метеоритам, и наоборот. Удивительный образец такого вещества представляет метеорит Кайдун массой 850 г., упавший 3 декабря 1980 г. на территорию советской военной базы в Йемене. В нем обнаружены частицы трех типов углистых хондритов, обыкновенного хондрита, двух энстатитовых хондритов, а также водно-измененные частицы металлического железа. Вероятно, это фрагмент тела, имевшего весьма сложную историю.

Такую структуру метеоритов не удавалось объяснить до 1970-х гг. К счастью, при изучении доставленных на Землю образцов лунного грунта (1969—1972 гг.) оказалось, что в большинстве случаев он представляет собой смесь вещества из разных областей лунной поверхности. Лунный грунт многократно перемешан ударами бомбардирующих Луну метеоритов. То же должно происходить и с веществом на поверхности астероидов. Космические снимки астероидов Гаспра, Ида, Матильда и Эрос подтверждают, что их форма неправильная, а поверхность покрыта множеством кратеров. Очевидно, это результат соударений астероидов между собой и с более мелкими телами. По этой причине поверхность астероидов, как и лунная, покрыта слоем раздробленного вещества — реголитом. В настоящую эпоху средняя относительная скорость астероидов в главном поясе, определяемая характером их орбит, составляет около 5 км/с. При такой скорости каждый килограмм вещества несет кинетическую энергию около 107 Дж. В момент столкновения большая часть этой энергии переходит в тепло, что приводит к взрыву, плавлению и испарению значительной части вещества соударяющихся тел. При такой скорости удара давление взрыва достигает 1,5 Мбар. Значительная часть энергии переходит в механическую энергию ударных волн и идет на дробление, разбрасывание или, наоборот, уплотнение (в зависимости от направления и расстояния от места взрыва) окружающего вещества астероида.

В истории Солнечной системы был период, когда сравнительно спокойное, с относительными скоростями менее 1 км/с, движение астероидов главного пояса подверглось сильным возмущениям со стороны растущего Юпитера, а сами эти тела, имевшие разный состав на разных гелиоцентрических расстояниях, были сильно «перемешаны». На соседних или пересекающихся орбитах оказались астероиды разных типов, имеющие существенно разный состав вещества. В процессе их столкновений и дроблений в поверхностных слоях многих астероидов накапливались материалы, возникшие в разных физико-химических условиях. Родительское тело метеорита Кайдун, например, могло двигаться по сильно вытянутой орбите, сталкиваясь на своем пути с телами разного состава и как бы «собирая» образцы их вещества. Не исключено, что этим родительским телом был не астероид с аномальной орбитой, а ядро кометы, исчерпавшее запас летучих соединений.

Расчет показывает, что при образовании крупного кратера на астероиде размером около 200 км. примерно 85% выброшенного взрывом вещества не в состоянии преодолеть притяжение астероида (хотя скорость убегания с его поверхности составляет всего 50 м/с). Рождение ударного кратера на астероиде сопровождается образованием кратковременной «атмосферы» из камней и пыли, которая через некоторое время оседает и покрывает всю его поверхность. Толщина этого слоя зависит от силы удара и, соответственно, объема выброшенного вещества. Трещины, возникающие при все новых падениях тел на астероид, могут его постепенно фрагментировать (если он достаточно крупный) и последующие падения тел уже будут происходить в раздробленный материал. Чем сильнее астероид раздроблен и разрыхлен, тем быстрее в нем затухают колебания. При этом энергия падающего тела поглощается в меньшем объеме, сопровождаясь более мощными эффектами. Скорее всего при таком ударном «уплотнении» разнородного вещества на поверхностях астероидов в течение десятков и сотен миллионов лет формировались некоторые образцы, упавшие в виде метеоритов на Землю.

Обломки других планет?

То, о чем рассказывается в этом параграфе, казалось бы, противоречит только что сказанному о «мягкости» метеоритных ударов. Выясняется, космическая бомбардировка может не только «нежно перемешивать» грунт планет и астероидов, но и выбрасывать его в космос, перенося с одной планеты на другую. В этих вопросах еще мало ясности, но результаты неожиданных находок заставляют относиться к ним очень серьезно.

Чтобы преодолеть тяготение Земли (даже без учета сопротивления атмосферы), необходима скорость более 11,2 км/с, для Марса это 5 км/с, а для Луны 2,4 км/с. Только при такой или большей стартовой скорости осколки планет могут попадать в космическое пространство и, блуждая там, захватываться другими планетами. Еще недавно такой процесс казался невозможным. Но, похоже, астрономы недооценили фантазию природы. Сейчас многие специалисты уверены, что на Земле найдены осколки Луны и Марса. Возможно, удары крупных метеоритов действительно могут «запускать» частицы планет в космос.

Лунные и марсианские метеориты

При сравнении доставленных на Землю образцов Луны с группой похожих на них метеоритов оказалось, что это практически одно и то же вещество. Сегодня уже нет сомнений, что задолго до космических полетов в метеоритных коллекциях «пылились» образцы лунного грунта. Правда, чтобы доказать это, нужно было слетать на Луну.

Кроме того, среди метеоритов была выделена группа, которая резко отличается по характеристикам от других, но ее члены схожи между собой. Эту группу назвали SNC, по первым буквам имен их типичных представителей — метеоритов Shergotty, Nakhla и Chassigny. Сейчас известно около 30 таких метеоритов и считается, что они попали на Землю с Марса. На это указывает химический и, что очень важно, изотопный состав микроскопических пузырьков газа в одном из метеоритов этой группы, ЕЕТА 79001, совпадающий с составом атмосферы Марса, измеренным зондами «Викинг» в 1976 г. (см. подробнее в гл. «Марс».)

Окаменелости древней марсианской жизни?

Один из «марсианских» метеоритов, ALH 84001 массой 1,9 кг., найденный в Антарктиде в районе Алан Хилс и отнесенный к группе SNC, вызвал настоящую сенсацию. Изучение вещества ALH 84001 открыло его интереснейшую историю. Вещество этого метеорита возникло из жидкой магмы 4,5 млрд. лет назад, когда Марс еще только формировался. Затем, 3,9 млрд. лет назад, вещество подверглось сильному удару, оставившему многочисленные трещины. Еще более мощный удар 16 млн. лет назад выбросил его с поверхности Марса в космос, где оно и находилось до встречи с Землей. И, наконец, 13 тыс. лет назад метеорит упал на льды Антарктиды, где пролежал до наших дней.

Но самое интересное не в этом: после 1,5-летних исследований группа американских ученых в августе 1996 г. сообщила, что в этом метеорите, возможно, присутствуют древние окаменелости внеземного биологического происхождения. Вблизи поверхности метеорита было обнаружено множество овальных образований, похожих на окаменелые колонии древнейших земных бактерий. Но их размеры (10—100 нм.) в 100—1000 раз меньше, чем у типичных земных бактерий.

В течение нескольких лет этот метеорит скрупулезно изучали специалисты разных наук. Появилось множество аргументов как за, так и против «биологической» гипотезы (см. подробнее в гл. «Марс»). Эти исследования заставили ученых по-новому взглянуть на идею панспермии (распространения во Вселенной микроскопических зародышей жизни), которая многие годы подвергалась критике. Может быть метеориты и есть те самые переносчики жизни, которые доставили ее откуда-то на Землю?

О нерешенных проблемах

До сих пор продолжаются дискуссии о соответствии метеоритов разных классов астероидам разного типа. В частности о том, почему оптические характеристики наиболее многочисленных астероидов S-типа не совпадают с теми же характеристиками наиболее часто падающих на Землю хондритов.

Но самое главное, до сих пор уверенно не решена небесномеханическая проблема транспортировки вещества из пояса астероидов к орбите Земли. Считается, что наиболее вероятными источниками метеоритов служат астероиды, сближающиеся с Землей — атонцы, аполлонцы и амурцы (см. разд. «Астероиды»). Однако все они мелкие: крупнейшие из них Ганимед и Эрос имеют средние диаметры 38,5 и 22 км. Вообще, популяция сближающихся с Землей астероидов еще изучена недостаточно, чтобы считать именно их основным источником метеоритного вещества.

Прямое изучение планет и астероидов космическими зондами, начавшееся в наши дни, позволит связать их свойства с детально изученными в лаборатории свойствами метеоритов. Это сделает метеориты еще более ценным свидетелем истории нашей планетной системы, а быть может, и других миров.

Полезно знать:

Комитет по метеоритам находится в ГЕОХИ РАН по адресу: 117975 Москва ул.Косыгина, 19; тел. (495)-939-7070 или 939-0205; электронный адрес: nazarov@geokhi.ru Председатель Комитета — проф. Ю.А. Шуколюков (тел. 137-4370)

Посещение Музея внеземного вещества осуществляется по предварительным заявкам (хранитель Музея — А.Я. Скрипник, тел. 939-0205).

Диагностика метеоритов проводится лабораторией космохимии и метеоритики ГЕОХИ РАН, зав. лаб. М.А. Назаров, тел. 939-7070.

Сообщения о наблюдении метеоров и находке метеоритов можно направлять и в международную организацию International Meteor Organization (IMO) Fireball Data Centre (Saarbrucker Str. 8, D-40476 Duesseldorf, Germany; fidac@imo.net).

Дополнительную информацию можно найти на сайте http://www.imo.net.

Литература

Гетман В.С. Внуки Солнца. М.: Наука, 1989.

Иванов А.В. Метеорит Kaidun — образец с Фобоса? // Астрономический Вестник. 2004. Т.38, №2. С. 113-125.

Марочник Л.С. Свидание с кометой Галлея. М.: Наука, 1985.

Муртазов А.К. Экология околоземного космического пространства. М.: Физматлит, 2004.

Назаров М.А. Метеоритная коллекция Российской академии наук // Природа. 1999. № 12, С. 49-58.

Орлов С.В. О природе комет. М.: Изд-во АН СССР, 1960.

Рожанский И.Д. Анаксагор. М.: Наука, 1972.

Симоненко А.Н. Астероиды. М.: Наука, 1985.

Симоненко А.Н. Метеориты — осколки астероидов. М.: Наука, 1979.

Сурдин В.Г. Метеорит с Фобоса? // Природа. 2005. №2. С. 64-65.

Сурдин В.Г. Неуловимая планета. Фрязино: Век-2, 2006.

Тирский Г.А. Взаимодействие космических тел с атмосферами Земли и планет // Соросовский образовательный журнал. 2000. Т. 6, №5. С. 76-82.

Угроза с неба: рок или случайность? Под ред. А.А. Боярчука. М.: Космосинформ, 1999.

Уральская В.С. Объекты внешней области Солнечной системы. Астрономический календарь на 2000 г. М.: Космосинформ, 1999. С.186.

Флейшер М. Словарь минеральных видов. М.: Мир, 1990.

Чурюмов К.И. Кометы и их наблюдение. М.: Наука, 1980.

Шульман Л.М. Ядра комет. М.: Наука, 1987.

Brugge N. SNC-Meteorites: Finds, which are identified as stones from the Mars.

(Детальные данные о «марсианских» метеоритах.)

http:hometown.aol.de/SLVehicles4/SNC/SNC.htm

Данные об авторах

Бережной Алексей Андреевич, кандидат физико-математических наук, Государственный астрономический институт им. П.К. Штернберга, МГУ.

Бусарев Владимир Васильевич, кандидат физико-математических наук, Государственный астрономический институт им. П.К. Штернберга, МГУ.

Ксанфомалити Леонид Васильевич, доктор физико-математических наук, Институт космических исследований РАН.

Сурдин Владимир Георгиевич, кандидат физико-математических наук, доцент, Государственный астрономический институт им. П.К. Штернберга, МГУ.

Холшевников Константин Владиславович, доктор физико-математических наук, профессор. Астрономический институт, Санкт-Петербургский государственный университет.

Загрузка...