Глава V ВЕНЕРА


Характеристики Венеры
Большая полуось орбиты 108,2 млн. км.=0,723 а.е. Сидерический период обращения («год») 224,7 сут.=0,615 лет. Синодический период (средний) 584,0 сут.=1,60 лет. Сидерический период вращения («звездные сутки») 243,02 сут. (вращение обратное). Наклонение орбиты к эклиптике 3,4°. Эксцентриситет орбиты 0,0068. Средняя орбитальная скорость 35 км/с. Наклон экватора к орбите (вращение обратное) 2,6°. Масса планеты 4,871×1024кг.=0,815 М. Средний радиус по верхней границе облачного слоя 6120 км. Средний радиус поверхности 6051 км.=0,949 R. Средняя плотность 5,24 г/см3. Ускорение свободного падения 8,87 м/с2. Безразмерный момент инерции (в единицах MR2) 0,333. Сферическое альбедо (по Бонду) 0,77. Поток солнечного излучения вблизи планеты 2,60 кВт/м2. Полное поглощаемое излучение 7,2×1010 МВт. Эффективная температура 228 К. Температура у поверхности 735 К. Давление у поверхности 90 бар. Состав атмосферы (% объема) СО2 (96,5), N2 (3,5), следы S02, Аr, Н20, СО, Не Магнитосфера нет. Спутники нет.

Венера, которая в раннюю эпоху была почти двойником Земли, в своей дальнейшей эволюции пошла иным путем. Поэтому Венера, как никакая другая планета, позволяет увидеть, какой могла (или может) оказаться эволюция нашей планеты под влиянием еще не до конца понятых внешних или внутренних причин.

Венера — вторая от Солнца планета. Она занимает особое положение среди других планет земной группы. Еще недавно ее называли двойником Земли. Сходство между Венерой и Землей в размере и массе (а значит и в средней плотности и силе тяжести) позволяет предположить, что и внутреннее строение двух планет схоже. Однако чем дальше продвигалось изучение Венеры, тем меньше оставалось у нее черт «двойника» Земли.

Венера — ближайшая к Земле планета, в максимальном сближении ее отделяет от Земли только 40 млн. км. Свет проходит это расстояние за 2 мин. 12 с. Но в этот период мы видим только ночную сторону планеты. Полностью ее дневную сторону мы видим при наибольшем удалении Венеры от Земли (260 млн. км).


Рис. Прохождение Венеры по диску Солнца.


В своем орбитальном движении она иногда оказывается на линии Солнце-Земля, и тогда ее можно видеть как маленькую черную точку, пересекающую солнечный диск. М.В. Ломоносов, наблюдая в 1761 г. такое «прохождение Венеры по Солнцу», обнаружил, что в момент видимого контакта с диском Солнца одного края планеты вокруг противоположного появился яркий ободок. «Сие ничто иное показывает как преломление лучей солнечных в Венериной атмосфере», — писал Ломоносов; он назвал эту атмосферу «знатной», но в действительности она оказалась значительно плотнее, чем тогда можно было предположить.

В телескоп Венера выглядит очень ярким неполным диском, который меняет фазы, подобно Луне. Изучая Венеру, астрономы постепенно поняли, что видят сплошной облачный покров планеты. В 1927 г. на ультрафиолетовых фотографиях облачного слоя планеты удалось различить характерное сочетание полос и пятен, которое, как выяснилось в дальнейшем, повторяется каждые 4 дня, смещаясь в сторону, противоположную направлению вращения Земли и других планет. В то же время, многие астрономы предполагали, что планета вращается синхронно, т.е. всегда обращена к Солнцу одной и той же стороной, а на другой стороне царит вечная ночь.



С 1961 г. в США и СССР были начаты радиолокационные исследования Венеры. Сначала слабый отраженный импульс позволял определять только расстояние до планеты. В 1970-х гг. по разностям сигналов, отраженных правой и левой сторонами диска был определен период вращения Венеры: 243,0185±0,0001сут. в направлении, не характерном для других планет — по ходу часовой стрелки, если смотреть с северного полюса эклиптики. Определить вращение помогли две яркие (в радиоотражении) области, которым временно присвоили названия «Альфа» и «Бета». Но, как это часто бывает, временные названия закрепились. Позже выяснилось, что Альфа и Бета — это гигантские геологические образования, по-видимому, вулканического происхождения. Из-за медленного вращения рассвет и закат на Венере длятся несколько земных суток. Смена времен года там отсутствует, поскольку наклон полярной оси не превышает 3°.

Сложение двух вращений — вокруг оси и вокруг Солнца, — происходящих в разных направлениях, приводит к тому, что солнечные сутки на Венере длятся 116,8 земных суток. Период повторения нижних соединений Венеры (ее максимальных сближений с Землей) составляет 584 земных суток; легко видеть, что за это время на планете проходит точно 5 солнечных суток. Поэтому в каждом нижнем соединении Венера обращена к Земле одной и той же стороной. Причина такой синхронизации не ясна, так как приливное взаимодействие между планетами очень слабое.

Необычное вращение Венеры и роль Меркурия в ее эволюции

Медленное вращение Венеры и его резонанс с движением относительно Земли — нерешенные загадки. Вполне вероятно, что когда-то Венера вращалась столь же быстро, как и другие планеты. Если исходить из принципа изохронизма, утверждающего, что начальные периоды вращения всех планет были близки между собою и составляли 5—8 ч, то для затормаживания Венеры нужны были очень сильные воздействия. При этом должна была выделиться гигантская энергия, около 1030Дж. Не ясно, что стало причиной потери вращательного момента планеты: катастрофическое событие в ее прошлом или длительное воздействие слабых возмущений.

Как уже говорилось в разделе о Меркурии, существует гипотеза, что Венеру затормозил некогда существовавший у нее массивный естественный спутник, которым и был Меркурий. Рассмотрим эту гипотезу подробнее. У нашей Земли очень большая Луна. Часто даже говорят, что Земля и Луна — двойная планета. Еще одна двойная планета, Плутон-Харон, в 20 раз более тесная, чем Земля-Луна, находится на окраине Солнечной системы. Согласно гипотезе, двойной планетой была и Венера, у которой диаметр спутника составлял лишь немного меньше ее радиуса, а масса — до 7% массы планеты. Согласно предположению, под действием приливных сил Меркурий удалялся от Венеры (как Луна удаляется сейчас от Земли) и в конце концов потерял с ней связь. В результате Меркурий сохранил очень вытянутую орбиту. Собственно, предположения о роли спутника в торможении Венеры появились уже после определения ее периода вращения. Поначалу эта гипотеза служила для объяснения особенностей орбиты Меркурия.

В 1976 г. был поставлен математический эксперимент, в котором вычислялась эволюция орбиты Меркурия, помещенного вначале на орбиту спутника Венеры. Эксперимент не только не опроверг предположения о возможном убегании Меркурия, но показал, что оно неизбежно должно было произойти за очень короткое в космогонических масштабах время — менее 500 млн. лет. Благодаря приливному взаимодействию обеих планет одна часть энергии их вращения расходовалась на разогрев недр, другая — на увеличение орбиты спутника. Когда расстояние между ними достигло примерно 460 тыс. км., создались условия для убегания Меркурия через одну из лагранжевых точек системы Венера-Солнце, причем возможны были вторичные неустойчивые его захваты при последующих сближениях планет. Перед убеганием период орбиты Меркурия должен был составлять около 40 сут. Все это довольно близко к периоду обращения нашей Луны (27 сут.) и расстоянию до нее (385 тыс. км.).

В течение предшествовавших 500 млн. лет (или менее) приливы в теле Венеры из-за воздействия в 4,5 раза более массивного, чем наша Луна, спутника выделяли очень много тепловой энергии в коре и недрах Венеры. Должны были происходить сдвиги коры и быстрая дегазация недр Венеры, в результате чего должна была возникнуть горячая планета с плотной, горячей атмосферой, огромными горами и очень медленным вращением, что и наблюдается ныне.

Эта интересная гипотеза, но ее нельзя считать доказанной. Тем не менее, такая трактовка ранней истории Венеры и Меркурия объясняет целый ряд фактов, в частности резонансный, но не синхронный период обращения Меркурия вокруг Солнца (3/2 периода вращения), потерю момента вращения Венеры и Меркурия, отсутствие спутников у этих планет.

Первые полеты к Венере

Как ни странно, старые наземные наблюдения пятен на Венере, из которых был выведен 4-суточный период вращения, оказались правильными: к такому выводу привели космические наблюдения. Только период этот относится к облачному слою, а не к твердой поверхности планеты.

Увидеть Венеру вблизи и заглянуть под ее облачный покров стало возможным с началом полетов к ней автоматических космических аппаратов. 18 октября 1967 г. зонд «Венера-4» при парашютном спуске в атмосфере впервые измерил ее параметры и состав. На высоте 23 км., когда давление достигло 18 атм., аппарат разрушился. Но сопоставление полученных «Венерой-4» данных о высоте и давлении с радиозатменными сведениями зонда «Маринер-5», который прошел вблизи Венеры через 1 сут., позволило рассчитать давление у поверхности планеты — около 100 бар. Последующие зонды были более прочными: например, корпус «Венеры-7» выдерживал 180 бар. Именно этот зонд впервые сел на поверхность и передал, что давление атмосферы там 93 атм., а ее температура 750 К (477°С). Несмотря на специальное жаропрочное покрытие, через 23 мин. работы на поверхности приборы вышли из строя. Зонд «Венера-8» имел такую же конструкцию, но проработал на поверхности вдвое дольше. Более поздние зонды «Венера» кроме спускаемого аппарата имели орбитальный отсек с научными приборами для долговременных исследований.

В 1975 г. на орбиты искусственных спутников планеты вышли «Венера-9 и -10», а их спускаемые аппараты передали первые изображения поверхности. За короткий период исследований космическими аппаратами о Венере удалось получить намного больше данных, чем за всю историю астрономии. Дальнейшее развитие науки позволило увидеть топографию Венеры в глобальном масштабе. Для этого спутники планеты «Венера-15 и -16» имели радиолокаторы бокового обзора; американский аппарат «Магеллан» развил этот эксперимент и детально картировал всю поверхность планеты.

Состав и строение атмосферы

Под туманоподобными облаками Венеры, которые занимают интервал высот от 49 до примерно 75 км., лежит огромный газовый океан, в основном состоящий из раскаленного углекислого газа СО2; его в атмосфере 96,5%. Свет проникает сквозь атмосферу, но рассеяние так велико, что даже находясь под нижней кромкой облаков различить поверхность планеты невозможно. С глубиной плотность углекислотной атмосферы растет и у поверхности Венеры достигает 65кг/м3. Это только в 14 раз меньше плотности воды. Масса газовой оболочки Венеры составляет 5×1020кг, что в сотню раз превосходит массу земной атмосферы и вполне сравнимо с массой земных океанов (1,37×1021кг).

Вторым по содержанию следует азот, на который приходятся почти все оставшиеся 3,5%. По абсолютному содержанию это в 5 раз больше, чем в земной атмосфере. С высотой в атмосфере быстро падают плотность, давление, температура. На высоте 30 км. это 9,4 бар., 10кг/м3 и 222°С, а на высоте 65 км. это 0,9 бар., 0,2кг/м3 и —30°С. Выше 150 км. атмосфера Венеры из-за высокого молекулярного веса уже более разрежена, чем атмосфера Земли на тех же высотах. Еще выше резко возрастает относительное содержание гелия и водорода (хотя, конечно, падает по абсолютной величине). Угарный газ (СО), кислород и водород образуются в стратосфере за счет диссоциации (разрушения) молекул углекислого газа и водяного пара ультрафиолетовым излучением Солнца. Выше 700 км. простирается чисто водородная корона (103—104 атомов/см3), которая постепенно переходит в межпланетную среду.

Плотность и температура короны и лежащей под ней криотермосферы сильно зависят от солнечной активности, но температура почти не зависит от высоты; выше примерно 160 км. температура в подсолнечной точке в годы низкой солнечной активности близка к 300 К, а в годы высокой — к 450 К. На той же высоте в противоположной точке планеты (ночью) температура падает до 100 К (отсюда название «криотермосфера»). Сравнительно высокие дневные температуры криотермосферы объясняются поглощением ультрафиолетовой части солнечного излучения.

На высоте 120 км. находится нижняя граница ионосферы. Максимальная концентрация электронов приходится на высоту 140 км.; днем она достигает 5×105см3, а ночью снижается примерно в 50 раз. Особенность ионосферы Венеры связана с отсутствием у планеты собственного магнитного поля: поэтому плазма солнечного ветра воздействует непосредственно на ионосферу, снижая днем ее верхнюю границу до 300—500 км.



По-видимому, именно различие условий формирования привело к большой разнице в содержании воды на Земле и Венере: для Земли это 1,37×1021кг., или 2,3×10—4 от ее массы, а для Венеры около 3×10—9. Если бы температура у поверхности Земли была не 20°С, а более 370°С, то океаны Земли испарились бы и давление водяного пара в атмосфере достигло бы огромного значения 260 бар. Вместе с тем на Венере парциальное давление водяного пара не превосходит 3 мбар. Расчеты показывают, что при всех разумных предположениях потери воды на Венере не могли составить более 1/10 земных запасов воды.

Предположения об очень высоких температурах и давлениях на Венере появились в 1940-х гг. на основе чисто теоретических соображений. Но в начале 1960-х еще многие ученые допускали, что вся планета покрыта океаном. «Венера-4» даже имела специальный, сделанный из сахара замок, который должен был освободить антенну в случае посадки аппарата на воду. Современный анализ содержания водяного пара дает его концентрацию в атмосфере Венеры примерно 3×10—5 во всей тропосфере, от поверхности до облаков.

Парниковый эффект

Количество водяного пара в атмосфере прямо связано с «парниковым эффектом», суть которого заключается в следующем. Хотя большую часть солнечного света облака отражают обратно, часть его все же проходит сквозь атмосферу, падает на поверхность планеты и поглощается ею. Поскольку планета пребывает в тепловом равновесии (т.е. не становится со временем горячее), вся поглощенная энергия должна снова излучаться в космос. Если бы не препятствовала атмосфера, поверхность планеты справилась бы с этой задачей, нагревшись примерно до 230 К (в среднем по двум полушариям; конечно, дневное было бы немного горячее, а ночное — холоднее). При этом излучение поверхности лежало бы в инфракрасном диапазоне с максимумом между 10 и 15 мкм. Но именно в этом диапазоне атмосфера малопрозрачна. Она перехватывает значительную часть излучения поверхности и возвращает ее назад. От этого поверхность нагревается еще сильнее, до такой температуры, при которой выходящий в космос поток тепла все же уравновешивает его приток от Солнца. Таким образом, равновесие восстанавливается, но уже с повышенной температурой поверхности (735 К).

Этот эффект назван «парниковым», поскольку стекло или пленка в садовом парнике играет ту же роль, что и атмосфера планеты: прозрачная для света крыша парника пропускает направленные к земле солнечные лучи, но задерживает идущее от земли инфракрасное излучение и восходящие потоки теплого воздуха.

Расчет показывает, что температура поверхности Венеры как раз соответствует концентрации водяного пара около 3×10—5; если бы его было больше, непрозрачность для инфракрасных лучей значительно возросла бы и температура поверхности стала бы еще выше. По-видимому, начальная температура Венеры из-за ее сравнительной близости к Солнцу была относительно высока. Это способствовало выделению из поверхности воды и углекислого газа, стимулировавших парниковый эффект и дальнейший рост температуры.

Малые составляющие атмосферы

Изотопный состав инертных, или благородных газов представляет особый интерес для науки о происхождении планет. Инертные газы не вступают в химические реакции с поверхностью или другими газами и достаточно тяжелы, чтобы сохраниться в том же количестве, в каком планета получила их при своем образовании или приобрела в процессе эволюции. Те изотопы инертных газов, которые достались планете на стадии ее формирования, называют первичными, или космогенными (например, 36Аr, 38Аr). А изотопы, образующиеся при распаде радиоактивных элементов, называют радиогенными (например, 40Аr, который образуется при распаде 40К).

Соотношение изотопов инертных газов в атмосфере Венеры не похоже ни на земное, ни на марсианское. Доля аргона в атмосфере Венеры 0,01%, а в земной атмосфере около 1%, но их абсолютное количество близко к друг к другу (поскольку атмосфера Венеры в 100 раз массивнее). Изотопный состав земного аргона такой: 0,996 приходится на радиогенный 40Аr и лишь 0,004 на 36Аr и 38Аr. А на Венере первичных изотопов столько же, сколько и радиогенных: доля 36Аr, 38Аr и 40Аr, соответственно, составляет 0,42; 0,08 и 0,50. Этим соотношением планета говорит что-то важное, но пока не ясно что именно.

Главным среди других малых составляющих оказался сернистый газ SO2, который играет важную роль в метеорологии Венеры. Его содержание составляет 2×10—5. В малых количествах имеются сероводород H2S и сероокись углерода COS. Известно также, что в атмосфере Венеры есть угарный газ (5×10—5), соляная (4×10—7) и плавиковая (10—8) кислоты. Концентрации указаны по отношению к углекислому газу. Таким образом, общим для атмосфер Земли и Венеры остается только азот. В остальном состав их совершенно различен. Причина этого лежит в разных путях эволюции планет.

Ветер Венеры

Значительная часть атмосферы Венеры находится в быстром движении. Сильные ветры связаны с общим быстрым вращении средних слоев атмосферы, содержащих и облачный слой, над медленно вращающейся планетой. Это движение газа, огибающее планету с 4-суточным периодом в направлении ее вращения, называют суперротацией атмосферы Венеры.

Средняя горизонтальная скорость ветра на высоте 54 км. составляет 65-70 м/с. Выше верхней границы облаков (70 км.) скорость ветров быстро падает. Она уменьшается также в глубь атмосферы, где увеличивается плотность газа. Наибольшую кинетическую энергию несут потоки газа в интервале 16-32 км. Ниже 10 км. скорость ветра — всего единицы метров в секунду. Прямые измерения скорости ветра у поверхности планеты показали от 0,4 до 1,3 м/с. Правда, из-за высокой плотности атмосферы, которая в 54 раза плотнее земной, эти скорости эквивалентны по динамическому давлению (ρυ2) в 7—8 раз более быстрым земным ветрам. По-видимому, этого все-таки недостаточно, чтобы пыль поднималась с поверхности, поскольку измерения неизменно показывают, что ниже облачного слоя атмосфера представляет собой чистую, незамутненную газовую среду.

Зональные ветры ураганной скорости (300 км/ч и более) охватывают широты от экватора до ±40°. Выше их скорость уменьшается, а в приполярных областях динамика атмосферы резко меняется. Здесь, по крайней мере у северного полюса, расположен так называемый полярный вихрь, который, по-видимому, включает в себя нисходящие потоки газа.

С суперротацией связан такой парадокс. Масса атмосферы составляет ощутимую часть (10—4) всей массы планеты. Между атмосферой и поверхностью есть трение. Тогда, каковы бы ни были причины быстрого движения атмосферы, вращаясь в одну и ту же сторону из века в век, она должна передавать поверхности часть своего момента импульса. Иными словами, атмосфера должна разгонять твердое тело планеты. В действительности же мы видим, что вращение Венеры заторможено, причем период ее вращения настолько близок к резонансному относительно Земли, что это не может быть случайным. Почему атмосфера не ускоряет вращения планеты, остается неясным.

Природа облаков Венеры и их роль в тепловом балансе

До полета«Венеры-8» было распространено мнение, что облака Венеры очень плотные. Считалось даже возможным, что на поверхности планеты царит вечная ночь. Все предшествовавшие аппараты опускались на ночной стороне, где заведомо темно и фотометрировать нечего. Спуск «Венеры-8» в районе утреннего терминатора (с местным временем около 6ч. 25мин.) позволил установить, что на поверхности светло, освещенность составляет сотни люксов. Особенно подробные исследования спектра освещенности и строения облаков в дневной зоне были выполнены в 1975—1982 гг. новым поколением зондов «Венера» (СССР) и «Пионер-Венера» (США). По мере спуска, от уровня 70 км. освещенность постепенно падает. Но даже на поверхности она остается еще высокой. Днем там примерно так же светло, как на Земле в пасмурный день со сплошной (но не грозовой) облачностью.



Строение облаков Венеры

Облака Венеры совсем не похожи на мощную облачность Земли. Они скорее напоминают туман, когда предметы, удаленные на несколько километров, становятся невидимыми. Кажущаяся плотность объясняется только большой протяженностью этого облачного слоя.

На высоте от 49 до 67 км. находятся три относительно плотных яруса облаков с периодически меняющейся концентрацией частиц и очень тонкие слоистые облака под их нижней границей. Вниз от 49 км. начинается практически безоблачная атмосфера. Под толстым слоем облаков находится глубочайший океан сильно сжатого углекислого газа. Газ настолько плотен, что и без облаков сильно рассеивает свет. Если облака ослабляют его всего в 2—3 раза, то подоблачная атмосфера — еще раз в 10. Вероятно, даже с высоты 25 км. поверхность планеты не видна. (Все же есть узкое спектральное «окно прозрачности» вблизи 1 мкм).

Состав облаков Венеры

Облака Земли, как известно, состоят из мелких капель воды. Но приписать ту же природу венерианским облакам не удавалось: хотя данные говорили о жидких каплях, но это не могла быть вода. Во-первых, количество водяного пара там очень мало. Во-вторых, измерения показали, что коэффициент преломления света у частиц в облаках Венеры составляет 1,44 (у воды он 1,33). К тому же, температура в верхней части облаков (—40°С) исключает жидкую воду.

Только в 1973 г. удалось найти химическое соединение, которое отвечало всем имевшимся данным. Верхний ярус венерианских туманоподобных облаков, расположенный в интервале высот от 57 до 75 км., — это мельчайшие капли с оптическими свойствами концентрированной 80%-ной серной кислоты. Их диаметр очень мал: 0,4—2 мкм. На высоте 66 км. таких частиц около 300 на 1 см3. Концентрация двухмикронных капелек в верхнем слое с увеличением высоты убывает практически до нуля, но более мелкие частицы, около 0,4 мкм., присутствуют здесь в большом количестве. Вероятно, здесь они и образуются из газовой фазы. Нижняя граница облаков 48—49 км. обладает какими-то критическими для капелек свойствами. Температура здесь близка к 110°С, а давление 1,1 бар.

Тепловой баланс Венеры

Облачный покров Венеры практически непроницаем для инфракрасного теплового излучения; это своеобразное «одеяло» планеты. Ее тепловой баланс почти полностью определяет уходящее в космос излучение самих облаков в диапазоне 7—25 мкм. Кроме этого Венера светится и в ближнем инфракрасном диапазоне 1—2,5 мкм. Свечение исходит от поверхности и из нижних, раскаленных слоев атмосферы; оно пробивается сквозь поглощающее «одеяло» углекислого газа в узких спектральных полосах, так называемых «окнах прозрачности».

Эффективная температура теплового излучения (т.е. температура абсолютно черного тела, которое излучает с единицы поверхности столько же энергии, сколько реальное исследуемое тело) у Венеры ниже, чем у Земли. Казалось бы, это противоречит тому, что поверхность Венеры гораздо горячее земной. Но противоречия здесь нет: уходящее в космос тепловое излучение Венеры создается ее облачным слоем. Вспомним, что сферическое альбедо Венеры в оптическом диапазоне составляет 0,77. То есть, планета отражает 77% падающего на нее солнечного света и только 23% поглощает, в то время как Земля поглощает 67%. Если учесть, что потоки солнечной энергии у Земли и Венеры соотносятся примерно как 1:2, то различие получается в пользу Земли: она поглощает в 1,5 раза больше энергии и должна во столько же раз больше ее излучать. Поэтому излучающая поверхность Земли (в основном это твердая поверхность) горячее, чем излучающая поверхность Венеры — ее облачный слой. А лежащая под облаками твердая поверхность Венеры не имеет почти никакого отношения к радиационному балансу планеты.

Динамика и химия облаков

Измерения показывают, что размеры капель в венерианских облаках удивительно однородны, в отличие от земных облаков. Это значит, что мы видим слой из недавно образовавшихся частиц, иначе однородность их размеров была бы нарушена в процессе столкновений и слияний частиц. Напрашивается вывод, что этот сернокислотный дождь падает откуда-то сверху. С некоторым преувеличением можно сказать, что в метеорологии сухой атмосферы Венеры соединения серы играют ту же роль, что вода в метеорологии Земли. Сернистый газ SO2, которого довольно мало, около 3×10—5 от количества СО2, в присутствии мощного ультрафиолетового излучения Солнца в надоблачной атмосфере фотолитически окисляется кислородом в серный ангидрид SO3.

Серный ангидрид тут же взаимодействует с небольшим имеющимся количеством водяного пара и дает серную кислоту. Ее количество невелико, но вполне достаточно для существования облачного слоя планеты. Эти частицы постепенно опускаются вниз, при этом они иногда сталкиваются и сливаются. Когда они достигают уровня 49 км., из-за высокой температуры серная кислота разрушается, а угарный газ реагирует с серным ангидридом, разрушает его и оставляет взамен углекислый и сернистый газы. Еще ниже остатки угарного газа отнимают у части сернистого газа последние атомы кислорода, а в атмосферу выделяется газообразная сера.

Наличие в атмосфере серной, соляной и плавиковой кислот связано с высокой температурой поверхности. Общее количество серной кислоты в атмосфере Венеры вполне соответствует обилию серы в вулканических газах и на поверхности. (Серная кислота в очень незначительных количествах появляется и в атмосфере Земли, но быстро растворяется в воде и выпадает с осадками). Кислоты взаимодействуют с материалом поверхности, благодаря чему устанавливается динамическое равновесие.

Химический состав облаков Венеры и особенности их движения позволили объяснить природу полос, заметных только в ультрафиолетовых лучах. Она заключается в том, что на основном слое облаков, который кончается на высоте примерно 70 км., лежит слой дымки толщиной 8—12 км. Эта дымка прозрачна и не видна для всех длин волн длиннее 350 нм. (ближний ультрафиолетовый диапазон). В ультрафиолетовых лучах она сильно рассеивает свет. Нижний слой, наоборот, сильно поглощает ультрафиолетовые лучи. По-видимому, пестрота облачного слоя отражает неравномерное распределение присутствующих в атмосфере газообразных соединений, вызывающих поглощение в ультрафиолете. На уровне верхней границы облаков весь слой завершает один оборот вокруг планеты за 4—5 сут., именно таков период, с которым повторяется рисунок ультрафиолетовой фигуры.

Прямые исследования поверхности Венеры

Далее, при описании поверхности Венеры, нам часто будут встречаться понятия «восток, запад, север, юг». Учитывая необычный характер вращения Венеры, их следует уточнить. Северное полушарие Венеры лежит к северу от эклиптики, южное — к югу. Восточным считается направление против часовой стрелки, если смотреть сверху на северный полюс планеты (так же, как и на Земле). Таким образом, вращается Венера с востока на запад (а Земля — с запада на восток). Отсчет долгот производится от центрального меридиана к востоку, от 0° до 360°. Этот нулевой меридиан выбран так, что он проходит точно через центр небольшого метеоритного кратера Ариадна диаметром 28 км., лежащего на равнине Седны (его северная широта около 44°). В качестве курьеза отметим, что Солнце на Венере восходит на западе. Впрочем, это не имеет значения, ибо с поверхности планеты его диск все равно не виден, а рассеянный солнечный свет практически однородно разлит по небосводу.

Телевизионное изображение поверхности Венеры, которое передала со дна ее газового океана советская «Венера-9» (1975 г.), было первым изображением, полученным с другой планеты (не считая Луны). Оно показало нагромождение камней на склоне горы — восточном склоне горного массива Бета, в точке с координатами 32°с.ш. и 291°в.д. Лишь спустя несколько лет выяснилось, что Бета — вулканический массив, причем один из крупнейших в Солнечной системе. Более того, по некоторым признакам одна из его частей может сейчас находиться в активном состоянии.


Рис. Массива Бета.

На панораме, которая охватывает угол в 170°, видны камни, разбросанные по всему полю снимка. Самые крупные из них — метровые глыбы у горизонта. Между камнями виден рыхлый грунт. В нем содержится 0,3% калия, 0,6×10—4% урана и 3,6×10—4% тория. Такой состав более или менее характерен для базальтоидов. Вместе с другими данными он свидетельствует о глубокой геохимической дифференциации коры Венеры.


«Венера-9» села на крутом склоне: приборы показали, что наклон составляет 30°. Аппарат проработал на поверхности 53 минуты, пока мог противостоять адскому теплу окружающей атмосферы. Камни на разрушающемся склоне горы указывают на активность коры планеты. Эти камни не могут быть очень старыми, поскольку за долгое время они все-таки разрушаются под действием ветра и небольших изменений температуры. Значительные изменения температуры, которые на Земле вместе с водой и ветром довольно быстро разрушают рельеф, на Венере отсутствуют: различие дневной и ночной температур поверхности по расчетам не превышает одного градуса — это своеобразный природный термостат. Скорость ветра у поверхности, как уже отмечалось, не превосходит 1 м/с, но из-за большой плотности атмосферы Венеры это равносильно земному ветру 8 м/с — весьма внушительно. «Свежие» обломки, которые видны на рис., могли возникнуть под действием каких-то внутренних сил, например, сейсмических явлений.

Зонд «Венера-10» (1975 г.) опустился ближе к экватору, на расстоянии 1700 км. от «Венеры-9», в точке с координатами 16°с.ш. и 291°в.д. Он сел практически без наклона на обширную каменную плиту на равнине у южного склона Беты и передавал данные в течение 65 минут. Зонды «Венера-13 и -14» (1 и 5 марта 1982 г.) опустились намного южнее Беты, на 750 и 1350 км. к югу от экватора, в 1600 и 2700 км. к востоку от центра меньшего, чем Бета, горного массива Феба, расположенного на той же долготе. Их телефотометры впервые передали цветное изображение ландшафта, окружающего аппараты. К тому же, каждый из аппаратов специальным грунтозаборником взял с поверхности образец грунта, поместил его в герметичный корпус аппарата и с помощью рентгеновского флюоресцентного спектрометра определил химический состав.

На снимках «Венеры-13» показана поверхность, очень похожая на ту, что видна на панораме «Венеры-10», хотя расстояние между точками их посадки 2820 км. Изображение состоит из двух частей; каждое охватывает по 170° одной из сторон от аппарата. Оси камер были наклонены на 50° к вертикали, что позволило увидеть подробности в центре снимка и получить изображение участков с меньшим разрешением вплоть до горизонта на краях панорамы.


Рис. «Венера-13».

Самые мелкие частицы грунта, различимые на снимке, имеют размер 3 мм. Раздробленный грунт в центре состоит из мелких частиц и камешков до 50 мм. Здесь же видны каменные плиты протяженностью 0,5—2 м. Возможно, рис. показывает наиболее распространенные на Венере пейзажи. Геологи считают, что каменные плиты — это выходы коренных скальных пород, обладающие заметной слоистостью. Поверхность плит носит следы выветривания (бугорки и ямки).

Интересно происхождение мелкого грунта. Частично это продукт разрушения каменных плит. Вид рыхлого грунта говорит о большом возрасте поверхности. Приборы зарегистрировали пылевое облако, которое образовалось при ударе аппарата в момент посадки. Грунт может также содержать вулканические пеплы, а некоторые тонкие каменные плиты могут быть сцементированной (литифицированной) коркой таких пеплов. Не исключено, что поверхность в районе посадки «Венеры-13» носит следы недалеких вулканических извержений, хотя геологи допускают, что на снимке рис. видны туфы базальтового состава, а не излившиеся на поверхность лавы.

Таким образом, однотипный ландшафт видели три «Венеры» из четырех. Это рыхлый грунт и выходы коренных пород, которые изломаны в куски каким-то неизвестным процессом.

Дальний склон на панорамах «Венеры-13 и -14» окрашен в яркий желто-зеленый цвет, в то время как ближняя часть того же района имеет бурые и оранжево-зеленоватые оттенки. Это связано с составом света, рассеянного в плотной атмосфере. Голубой цвет земного неба — результат рэлеевского рассеяния света молекулами воздуха, которое быстро ослабевает с ростом длины волны света —4). Поэтому небо Земли, строго говоря, больше фиолетовое, чем голубое. На Венере рэлеевское рассеяние действует во много раз сильнее. Кроме того, синие лучи поглощаются некоторыми газами в атмосфере. Лишь незначительная часть синих и голубых лучей достигает поверхности Венеры. Поэтому небо над горизонтом там имеет яркий оранжевый и желто-зеленый оттенок.

Поверхность Венеры, состоящая главным образом из базальтоидов, имеет неяркие характерные оттенки — черный и коричневый. Как и на Земле, основную окраску грунту придают соединения железа: двухвалентный ион железа дает зеленоватый тон, трехвалентный — красноватый. В качестве возможного земного аналога венерианской поверхности называют окрестности вулкана Толбачик на Камчатке, сильное извержение которого наблюдалось в 1975 г. Однако цвет вулканической породы у Толбачика отличается от цветов на снимках с Венеры из-за различий в спектральном составе освещения. В грунте Венеры примерно половину составляет кремнезем (Si02). В таблице приведен состав поверхности Венеры, найденный рентгенофлуоресцентным методом в трех точках посадки.

Исходя из состава, порода в месте посадки «Венеры-13» отнесена к довольно редким на Земле толеитовым базальтам, которые можно встретить, например, на Гавайях.

Цветовые оттенки на панорамах «Венеры-13 и -14» удобно сравнивать с белыми полуцилиндрическими крышками телефотометров. Эти крышки отбрасывались перед началом работы и лежат на грунте, как можно видеть на снимках. Но с одной из четырех крышек произошло непредвиденное: пробник для измерения механических свойств грунта, распрямляясь, вонзился именно в крышку. Другого места на Венере для него не нашлось!



Зонд «Венера-13» за 127 минут, которые он проработал на поверхности планеты, 11 раз передал панорамные изображения, которые показали, что количество грунта, выброшенного на поверхность посадочного буфера, постепенно уменьшалось. Причина может быть лишь одна: ветер. Он сдувал мелкие частицы, оставляя следы за выступающими деталями аппарата. Измерения показали, что скорость ветра вокруг «Венеры-13» была от 0,5 до 0,6 м/с, а иногда немного больше. В результате крупинки грунта до 4 мм., а также более мелкий материал постепенно исчезли с посадочного буфера.

Скорость ветра в месте посадки «Венеры-14» была почти вдвое меньше. Вид поверхности в этом районе (13°15'ю.ш., 310°09'в.д.) совершенно не похож на предыдущие снимки. В нижней половине видна ровная поверхность, образованная наслоением горизонтальных плоских плит небольшой толщины, иногда до 12 слоев. Местами плиты растрескались, но сыпучего грунта здесь почти нет.

Скорость ветра, которую при спуске аппарата обычно измеряют по доплеровскому смещению частоты радиосигнала, в 1982 г. определяли еще одним, несколько необычным методом — с помощью микрофона. Вообще говоря, он предназначался для регистрации шума, создаваемого устройствами самого зонда, поскольку эти шумы могли помешать регистрации микросейсмов — очень слабых колебаний грунта, которые записывал сейсмограф. Выяснилось, что кроме ожидавшихся звуков, микрофон слышал также шум ветра, обтекавшего его арматуру. В пересчете на условия Венеры скорость ветра составила всего 0,37 м/с. Этого хватало на перемещение лишь мелких частиц.

В левой части первой панорамы рис. сквозь разлом в темной поверхности видна более светлая плита нижнего слоя. Было высказано предположение, что грунт здесь представляет собой затвердевшие слои горизонтально растекавшейся во время вулканических извержений лавы. Однако по горизонтальной поверхности лава далеко не растечется, и ее поверхность при этом получается неровной. Но в дальнейшем сходный вулканический пейзаж на Земле все же удалось найти. Тем не менее группа геологов выступает с другой гипотезой, состоящей в том, что этот рельеф возник в процессах накопления осадков (седиментации), когда осаждение последовательных слоев происходило через большие интервалы времени. Предполагается, что пыль выбрасывалась в атмосферу вулканами, а затем медленно осаждалась на поверхность, где слеживалась и спекалась. «Венера-14» стоит на совершенно плоской равнине, в то время как «Венера-9 и -13» опустились в холмистой местности. По сравнению с температурой и давлением, зарегистрированными «Венерой-13» (738 К и 89,5 бар), более высокие значения (743 К и 93,5 бар), переданные «Венерой-14», указывают, что место ее посадки находится на 0,7 км. ниже.

Так выглядят небольшие участки поверхности, которую Венера долго скрывала от нас. Но кроме панорам мест посадки зондов «Венера», планетологи имеют и весьма детальные глобальные карты, полученные с помощью радиолокаторов, находящихся как на Земле, так и на борту космических аппаратов.

Радиолокационные карты и география Венеры

Планетную радиолокацию можно отнести к главным достижениям техники конца XX в. В начале 1970-х появилась первая радиокарта Венеры. Она давала распределение коэффициента радиоотражения, который, в принципе, прямо не связан с оптически темными и светлыми районами поверхности. Наземные радиолокационные исследования Венеры наиболее удобно проводить вблизи ее нижнего соединения, когда планета наиболее близка к Земле. В верхнем соединении планета слишком далека от нас. Поэтому первая наземная радиолокационная карта могла охватить только одно полушарие планеты (точнее, 30% всей ее территории).

Первые топографические карты были невыразительными, так как Венера оказалась равнинной планетой. Подробности появились вместе с новым мощным инструментом космических исследований — радиолокатором бокового обзора. Такие локаторы были установлены на советских аппаратах «Венера-15 и -16», выведенных в 1983 г. на полярные эллиптические орбиты с перицентром вблизи северного полюса планеты. За каждый виток орбиты аппараты картировали полосу поверхности шириной 150 км. и длиной в четверть окружности планеты. В общей сложности было картировано 66% территории северного полушария Венеры, включая район полюса с разрешением до 1 км. Еще лучшее разрешение, до 120 м., было получено локацией с американского аппарата «Магеллан», который работал на орбите спутника Венеры с 1990 по 1994 г.

Если бы поверхность Венеры была покрыта водой до «нулевого» уровня, т.е. до 6051 км. по радиусу, то 92% ее поверхности скрылось бы под неглубоким океаном. Над воображаемой водной поверхностью выступали бы только три массива — в северной, восточной и западной частях планеты. Рельеф Венеры характеризуется равнинными районами, горами и низменностями. По аналогии с Землей горные районы Венеры можно называть материками. Их суммарная площадь невелика. К ним относятся три большие области: земля Иштар, где расположены плато Лакшми и высочайшие на Венере горы Максвелла (центр у 63°с.ш., 2,5°в.д.); крупнейший материк — земля Афродиты, простирающийся в южном полушарии почти до 10-й параллели; область Бета (центр 30°с ш., 283°в.д., на левом краю), склоны которой известны по снимкам «Венеры-9 и -10». Горные районы Венеры похожи на горные районы Земли, но занимают всего 8% поверхности планеты.





Несколько большую площадь имеют низменности: 27%. К ним относятся Аталанта (центр 63°с.ш., 163°в.д.), представляющая большую равнину диаметром 2500 км., углубленную почти на 2 км. относительно среднего уровня, а также некоторые другие районы. Остальная поверхность находится на промежуточных высотах и представляет собой волнистые равнины, вероятно, вроде тех, что представлены на снимках «Венеры-13». В северо-восточной части земли Афродиты имеются многочисленные горные цепи высотой 1,5—2 км., разделенные интервалами около 1000 км.

Большая часть коры Венеры очень древняя; в пользу этого говорит сравнение кривых распределения метеоритных кратеров по размерам для Земли и Венеры. Возможно, кора Венеры более стабильна, тогда как Земля потеряла значительную часть древней коры в процессе ее переработки. По своей геологической истории Венера и Земля различаются. Тектоническая деятельность Венеры, по-видимому, менее активна, но локальные ее проявления очень заметны, например, земля Иштар, о которой речь пойдет ниже.

Земля и Венера — единственные планеты, носящие женские имена. Когда пришла пора называть детали на карте Венеры, было решено, что всем им (за одним исключением) будут присваиваться только женские имена из языков всех народов мира, принадлежащие историческим, мифологическим и литературным героиням.



Рис. Фото горы Маат высотой 8 км.


Если считать Альфу и Бету также женскими именами, то единственным исключением стало название «горы Максвелла», о которых речь пойдет впереди. Уточнение структуры области Альфа позволило привязать нулевой меридиан к небольшому, но заметному кратеру. Для начала координат среди женских имен было остроумно выбрано имя Ева.

Структура Альфы (25°ю.ш., 0°в.д., светлая область) — это волнистое плато размером около 1300 км. с небольшим понижением в центре. Альфа относится к древней части коры Венеры. Рельеф этой области образован многократным и длительным процессом сжатия, создавшим сложно ориентированную складчатость поверхности. Альфа возвышается до 2,5 км. над окружающей местностью (с юга это равнина Лавинии). Плато имеет сильно раздробленную поверхность. За время существования Альфы, достигающее 1 млрд. лет, процессы сжатия образовали систему пересекающихся долин и гряд. Такой рельеф получил название «тессера». На рис. крупным планом показан участок Альфы размером. Такие же тессеры встречаются и в других районах планеты.


Рис. Область Альфа с кратером Ева.



Рис. Чуть ниже центра область Альфа с кратером Ева (долгота центрального меридиана 0°). Высоко на севере располагаются плато Лакшми и горы Максвелла (светлое пятно).


Наибольший из «континентов», или «материков» — Земля Афродиты, расположенная в экваториальной области, имеет протяженность около 18 тыс. км. и охватывает долготы 60—220°. В широтном направлении она простирается от 10°с.ш. до 45°ю.ш. (более 5000 км.), а ее восточная оконечность Атла тянется до 30°с.ш. Площадь континента по уровню 6052,2 км. составляет 41 млн. км2., что близко к площади Африки. (В сумме континенты Венеры занимают лишь 5—7% территории, в зависимости от того, по какому превышению над средним уровнем считать). Здесь расположено большое число ярких в радиолучах кольцевых образований. Их глубина невелика, всего сотни метров.


Рис. Светлая полоса, пересекающая полушарие вдоль экватора, это крупнейшая возвышенность на Венере — Земли Афродиты (долгота центрального меридиана 180°).


На южной окраине Земли Афродиты находится необычное образование — каньон Артемиды (разомкнутое кольцо в юго-западной части). Это что-то вроде огромного кратера-фантома сравнительно правильной формы и диаметром около 2600 км., с сильно разрушенным двойным валом и ярким в радиолучах пятном в центре (34°ю.ш., 135°в.д.). Рифтовая система каньона Артемиды напоминает сильно разрушенный срединноокеанический хребет на Земле.


Рис. Каньон Артемиды.


Типичные равнины Венеры — обширные Равнины Седны и Гиневры. По многим признакам центральную и южную части равнины Седны можно отнести к вулканическим образованиям. Вероятно, она похожа на базальтовые равнины Марса и Луны. Равнину Седны составляют холмистые районы. Равнины Венеры можно лишь условно считать плоскими. На них встречается большое разнообразие рельефа. Гряды, вытянутые с северо-запада на юго-восток и разделенные интервалами примерно в 1 км., представляют рельеф в районе 30°с.ш., 333°в.д.


Рис. Равнина Гиневры.


Во многих районах Венеры встречаются кратеры несомненно метеоритного происхождения. Так, в 2000 км. к западу от Альфы, на равнине Лавинии расположена группа из трех больших ударных кратеров диаметрами от 37 до 63 км. По-видимому, они имеют общее происхождение и порождены большим метеоритным телом, распавшимся в атмосфере на три части. Высокая раздробленность материала валов кратеров увеличивает эффективность отражения радиоволн, поэтому валы кажутся светлыми. И наоборот, темный фон указывает на относительно гладкую поверхность окружающей равнины.



На Венере обнаружено 850 метеоритных кратеров диаметрами от 1,5 до 280 км.; они сравнительно равномерно распределены по поверхности. Плотная атмосфера рассеивает импульс, которым обладает метеоритное тело. Поэтому основное число метеоритных кратеров должно было образоваться в очень отдаленную эпоху, когда масса атмосферы была значительно меньше. Впрочем, крупные метеоритные тела с массой более 108 кг. могут пробить атмосферу Венеры даже теперь. Но таких тел мало. По результатам, полученным с «Магеллана», было установлено, что метеоритные кратеры Венеры похожи на молодые ударные кратеры Земли, но гораздо старше их; они отражают события последних 500 млн. лет. Многие удары сопровождались обильными лавовыми излияниями; таков кратер Изабелла.


Рис. Кратер Изабелла.


Следы намного более ранних событий на поверхности планеты не сохранились. Во всяком случае похоже, что полмиллиарда лет назад усиление вулканизма на Венере значительно обновило ее поверхность. Ныне вулканы планеты изливают около 0,5 км3 лавы в год, что близко к показателям Земли.

Вулканизм Венеры — важный фактор ее жизни. Вулканы там обычно небольшие, около 20 км. в диаметре, хотя имеются и более крупные: у 150 вулканических объектов диаметры превышают 100 км., а общее число вулканов — более 1600. Формы многих из них необычны. Среди них есть «короны» (концентрические валы), «арахноиды» (радиальные структуры с концентрическими валами), извилистые лавовые каналы, достигающие в длину 1000 км., и другие. Все данные указывают на присутствие огромных резервуаров лавы под поверхностью планеты. Вулканизм Венеры относится к восходящим мантийным потокам и системе «горячих пятен». У Венеры вулканизм распределен практически глобально, тогда как на Земле он концентрируется вдоль границ плит. Несколько повышена плотность вулканов в районах, охватывающих около 20% территории вдоль экватора Венеры.

Внимание исследователей привлекли необычные, совершенно круглые образования, с плоской, а иногда проваленной верхушкой и очень крутыми склонами. Семь таких «тарелок» диаметрами, в среднем, около 25 км. вытянуты в линию, вероятно, вдоль глубокой трещины, сквозь которую поднималась магма. Они расположены у восточного края Альфы, который виден на том же рисунке, и напоминают толстые блины с крутыми краями. Предполагается, что они образовались при излияниях очень вязкой лавы, которая медленно растекалась и застывала.



Вулканы Земли во время извержений часто выбрасывают огромные тучи пыли, которая покрывает толстым слоем окрестные районы. Заметить вулканическую пыль в атмосфере Венеры не удалось: ее подоблачная часть всегда была чистой. Но следы пыли на поверхности («хвосты» за некоторыми кратерами) все же удалось найти, причем не только от вулканов.

С севера к равнине Седны примыкает второй по величине материк Венеры — земля Иштар. Ее площадь около 8,5 млн. км2 (примерно площадь Австралии). В широтном направлении Земля Иштар тянется на 2500 км., в долготном — почти на 8000 км. Это своеобразный геоморфологический заповедник, объединяющий совершенно несходные элементы рельефа: обширное высокогорное плато Лакшми вулканического происхождения, горы Максвелла, примыкающие к нему с востока, и расположенный на восточной оконечности материка район особого рельефа. Плато Лакшми лежит на высоте 3—4 км (2—3 км над окружающим районом). Оно вдвое больше земного Тибета. На его поверхности можно видеть несколько крупных вулканических кальдер. Наиболее крупные — Сакаджавейя (64,5°с.ш., 336°в.д.) и Коллет (66°с.ш., 323°в.д.) размерами около 100 и 160 км. По ряду признаков они близки к щитовым вулканам. Рельеф горных районов Земли Иштар чрезвычайно сложен. Общего мнения о тектонических процессах образования Земли Иштар пока нет.


Рис. Земля Иштар плато Лакшми и горы Максвелла.

Другая достопримечательность этой области — горы Максвелла, примыкающие к плато Лакшми с востока. Ставшее исключением для топонимики Венеры мужское имя Джеймса Клерка Максвелла (1831—1879), теоретически открывшего радиоволны, было присвоено высочайшим горам планеты, чтобы подчеркнуть роль радиолокации в исследованиях Венеры. Горы Максвелла находятся в центральной части земли Иштар. На западе можно видеть выступающий язык плато Лакшми. Центральная часть горного массива находится на уровне 7 км. над плато, причем крутизна склона с западной стороны очень велика; даже усредненная по радиоизмерениям она достигает 18°. Во многих отношениях горы Максвелла напоминают горы Акны и Фрейи, обрамляющие плато Лакшми с севера и запада, — такая же складчатость рельефа с типичной шириной складок 10—20 км. Высочайшая часть гор Максвелла находится в 50 км. от их подножья со стороны плато. Вершина массива (63°с.ш., 2,5°в.д.) достигает уровня 11 км. над средней поверхностью (радиус 6051,6 км). На 5 км. ниже вершины расположен необычный кратер — патера Клеопатры (66°с.ш., 10°в.д.) с диаметром внешнего вала 100 км. Внутри большого кратера находится еще один с внутренним диаметром 50 км и глубиной 1 км относительно дна внешнего. Общая их глубина 2,5 км.



Рис. Радарный снимок «Магеллана». Горы Максвелла — светлая область. Слева внизу — плато Лакшми, справа — тессера Фортуны. Тёмный кратер правее и выше центра — Клеопатра. Чёрные полоски — незаснятые места.

Происхождение этого кратера вызывает споры. Если он метеоритный, то как удалось очень большому метеориту угодить почти точно в высочайшую вершину? Если же это вулканическая кальдера, то почему она находится в стороне от вершины? Против вулканической гипотезы говорит отсутствие радиальных лавовых потоков, но оказалось, что такой же вид имеет вулкан Пакка в Кении (Африка). Все же большинство планетологов считает, что Патера Клеопатры — это ударный кратер гигантских размеров. На его северо-восточном склоне виден прорыв вала, через который лава вытекала и заливала всю восточную часть района. Излияние лавы могло быть следствием вскрытия ее резервуаров при ударе метеоритного тела. Возможно также, что при ударе расплавились горные породы, что вызвало извержение.

По-видимому, тектоническая активность Земли Иштар относится к прошлому. Возраст плато Лакшми и прилегающих районов оценен в 0,5—1 млрд. лет. Это подтверждает, что метеоритные кратеры на Венере сохраняются до 500 млн. лет, в то время как на Земле они разрушаются за несколько миллионов лет.

В 4000 км. к юго-западу от Земли Иштар находится область Бета. Этот массив состоит из двух сходных по размерам частей: горы Реи и горы Тейи. Вид восточного склона Беты известен: там опустились «Венера-9 и -10». С большой вероятностью можно считать Бету огромным щитовым вулканом. На светлом фоне горы Тейи выделяется черное пятно, похожее на вулканическую кальдеру на вершине горы. Отходящие в стороны лучи — это, вероятно, следы лавовых потоков. Массив Бета достигает в высоту 4—5 км. над средним уровнем планеты. Исходя из видимых разрушений, специалисты считают гору Реи старым образованием, а гору Тейи — более молодым. Проявления современного вулканизма возможны именно в районе Беты.


Рис. Область Бета.


Таким образом, радиолокационная техника позволила осуществить то, о чем так долго мечтали астрономы: увидеть поверхность Венеры.

Парадокс устойчивости рельефа

Существование на поверхности Венеры высоких гор еще недавно казалось сомнительным. В самом деле, материал, из которого сложена кора Венеры, по составу близок к базальту.

Об этом говорят все измерения. На Земле высокие горы плавают на более плотной мантии за счет «поплавков» — корней из материала относительно малой плотности, например толстого слоя базальта. Однако температура поверхности Венеры (460°С) такая же, как на глубине около 15 км. в земной коре. Если градиент температуры там такой же, как на Земле, то на уровне нижней части корней горных массивов базальт должен быть размягченным. Следовательно, высокие горы Венеры за непродолжительное время, казалось бы, должны «утонуть» в литосфере планеты. Но они не тонут. Объяснить это можно было бы тем, что литосфера имеет более толстый свод, и уровень размягчения коры сдвинут вниз. Но для этого требуется уменьшить градиент температуры в коре, а значит — сократить поток тепла, поступающего снизу.

Известно, что часть теплового потока создается за счет распада радиоактивных элементов, рассеянных в литосфере и, частично, в мантии, главным образом — урана, тория и калия-40. Измерения с зондов «Венера» показали, что эти элементы действительно содержатся в коре Венеры и должны создавать соответствующий градиент температуры.

Другая, значительная часть тепла, выходящего сегодня сквозь кору Земли, родилась на ранней стадии ее истории. Если высокие горы Венеры действительно указывают на малый температурный градиент в ее недрах, то это означает, что начальный запас тепла у нее был меньше, чем у Земли, либо она каким-то образом растеряла запасы своего тепла еще на ранней стадии эволюции.

Анализ рельефа Венеры указывает на большие различия геологических историй ее и Земли. Тектонические явления на Венере не носят глобального характера. Во многих местах сохранилась древняя кора. Не исключено, что поступление в атмосферу малых газообразных составляющих происходит за счет вулканической активности. Литосфера Венеры, несмотря на высокую температуру поверхности, удерживает от погружения в мантию огромные горные массивы. Несмотря на весьма плотную атмосферу во множестве сохранились ударные метеоритные кратеры.

Кроме геологических различий, есть, по-видимому, различия в составе. Если бы химический состав обеих планет совпадал полностью, средняя плотность Венеры была бы 5,34, а не 5,24 г/см3. Что же касается плотности поверхности (2,0—2,9 г/см3), то она близка к плотности поверхностных пород Земли.

«Электрический дракон» Венеры

До 1980-х годов отсутствовали сведения о грозах на других планетах, хотя предположения высказывались. По мере углубления знаний о составе атмосферы Венеры возник вопрос о том, откуда берутся некоторые ее малые составляющие. Была высказана догадка, что их происхождение связано с электрическими разрядами в атмосфере — молниями, под действием которых, например, в земной тропосфере образуются озон, окислы азота и даже циан. Некоторые астрономы сообщали о том, что иногда ночная сторона Венеры слегка светится. Но если это свечение было вызвано молниями, то на Венере они должны были вспыхивать в тысячи раз чаще, чем на Земле.

Специальные радиоприемники «Венеры-11 и -12» в декабре 1978 г. не только обнаружили многочисленные электрические разряды в атмосфере Венеры, но и установили некоторые их особенности. Судя по большому числу принимавшихся радиоимпульсов, венерианские молнии действительно многочисленнее земных. Зонд «Пионер-Венера» также принял низкочастотное радиоизлучение, отождествленное с электромагнитными импульсами молний. Была рассчитана яркость ночных облаков за счет их подсветки изнутри молниями: она оказалась немалой. Наконец, в 1995 г. появилось сообщение, что вспышки молний действительно удалось наблюдать при помощи наземных телескопов.

Но с грозами на Венере еще не все ясно. Анализ показывает, что в облаках планеты слишком мала масса материала, чтобы накопился большой заряд и возникла молния. Далее, высотная зависимость напряженности низкочастотного поля, полученная на зондах «Венера-11, -12, -13 и -14», показала: источник импульсов, возможно, находился на небольших высотах, а не в облаках. Далее поступили сообщения о странных явлениях, происходивших с четырьмя американскими зондами «Пионер-Венера» глубоко под нижней границей облаков. У всех зондов на высоте около 12,5 км. были повреждены датчики температуры и другие устройства. Лабораторные исследования приборов-двойников показали, что наиболее вероятной причиной повреждения мог быть внешний электрический разряд. Если учесть, что зонды опускались в совершенно разных районах планеты, напрашивается вывод, что электрически активная зона в атмосфере расположена низко и имеет глобальную протяженность. Еще раньше отмечались особенности радиосигналов с «Венер», словно они проходили сквозь слой плотной плазмы. Но существование плазмы на этих высотах необъяснимо с точки зрения теории. Природа электрической активности на этих высотах остается непонятной.

Если учесть, что низкочастотные радиоволны в атмосфере Венеры распространяются не на очень большие расстояния, то район, в котором принят импульс, можно грубо считать местом его возникновения. Оказалось, что импульсы действительно концентрируются в нескольких районах планеты, в том числе у горных массивов Бета и Феба, которые относятся к вулканическим, и в восточной части Земли Афродиты. В 1990 г. аппарат «Галилей» на сложном пути к Юпитеру сблизился с Венерой. Его приборы тут же зарегистрировали знакомые электромагнитные всплески, идущие от планеты. И в этом эксперименте был сделан прежний вывод: импульсы рождаются в мощных электрических разрядах на планете. К сожалению, эксперимент не позволял определить, откуда приходят импульсы, хотя область Феба была в пределах видимости.

Именно близ Фебы в 1978 и 1982 гг. опустились аппараты «Венера-11, -12, -13 и -14». Возможно, «Венера-11» попала в одну из самых активных областей. Позже установили, что районы регистрации электромагнитных импульсов обычно соседствуют с областями гравитационных аномалий. На Земле такие аномалии сопутствуют молодому вулканизму, причем при извержениях вулканов часто наблюдаются электрические разряды. Поэтому не исключено, что молнии на Венере связаны не с облаками, а с вулканическими извержениями, которые еще предстоит обнаружить.

Недра Венеры. Отсутствие магнитного поля

Если тепловыделение от распада радиоактивных элементов в коре Земли и Венеры одинаково, то средний тепловой поток через поверхность планеты должен быть около 0,05 Вт/м2. Благодаря конвекции в мантии Земли, тепловой поток выносится на ее поверхность главным образом через «горячие точки» — срединноокеанические рифты и, в меньшей степени, вулканы. Но на Венере, где рифты немногочисленны, основной вынос тепла может происходить лишь при извержении вулканов. Просачивание тепла сквозь кристаллическую кору благодаря молекулярной теплопроводности для Венеры должно играть второстепенную роль, так как при большом тепловом потоке существование высоких гор на планете было бы невозможным. Постоянно извергающиеся вулканы могли бы дать выход теплу и сохранить от плавления корни горных массивов.

Впрочем, противники вулканизма Венеры обращают внимание, что гравитационные аномалии там значительно сильнее, чем для массивов того же масштаба на Земле, что указывает на какие-то необычные процессы в литосфере Венеры. Возможно, в горячих точках лава выдавливается на поверхность из мантии и динамически поддерживает вулканические массивы вроде Максвелла или Беты.

Следует упомянуть еще один аспект вулканизма Венеры. С космических аппаратов наблюдалось внезапное резкое обогащение верхней части облачного слоя дымкой — мельчайшими аэрозольными каплями. Имеются сообщения, что подобное иногда наблюдалось и на Земле. Для образования избытка аэрозоля что-то должно было резко увеличить концентрацию сернистого газа. Было высказано предположение, что причиной служит гигантское вулканическое извержение. Но количество сернистого газа в атмосфере не может существенно измениться в результате одного извержения; для этого нужны миллионы лет. Механизм проще. Сернистого газа много в подоблачной атмосфере. В момент мощного извержения (как извержение Тамборы в 1815 г.) выбрасывается огромное количество тепла, которое разогревает приземные слои атмосферы и образует настолько мощную конвекцию, что восходящие потоки воздуха выносят достаточное количество сернистого газа в надоблачную атмосферу. Там он перерабатывается в серную кислоту и образует избыток аэрозоля. Подтверждается такое объяснение не только внезапностью обогащения, но и постепенным, в течение нескольких лет, уменьшением концентрации аэрозоля.



О строении недр Венеры пока мало данных. Ее безразмерный момент инерции, по-видимому, лишь чуть больше, чем у Земли. Пока он точно не найден; обычно принимают значение 0,333. Ядро планеты несколько меньше, чем у Земли. На него приходится около 12% массы (у Земли 16%). В целом недра Венеры должны быть похожи на земные недра, хотя литосфера может быть более толстой.

С внутренним строением Венеры и особенностями ее вращения связана проблема отсутствия у нее магнитного поля, что выделяет ее из планет земной группы. У Венеры и Земли близки размеры, средняя плотность и, вероятно, строение недр. Одна из современных теорий генерации магнитного поля у небесных тел (теория динамо) указывает, что напряженность магнитного поля планеты зависит от скорости ее вращения и прецессии полярной оси. Из этой теории следует, что дипольное поле Венеры должно быть слабым. Но измерения указывают на напряженность, еще по крайней мере в 10 раз более низкую, чем предсказывает теория. Похоже, что общего дипольного поля у Венеры вообще нет.

Те слабые хаотические магнитные поля напряженностью 15—20 нТл., которые замечены в ионосфере Венеры, индуцируются в ней вмороженным в солнечный ветер межпланетным магнитным полем, напряженность которого поблизости от планеты около 10 нТл. (10—4 Гс).

Литература

Атлас поверхности Венеры. М.: Изд-во ГУГК при СМ СССР, 1989.

Бурба Г.А. Номенклатура деталей рельефа Венеры. М.: Наука, 1988.

Ксанфомалити Л.В. Планета Венера. М.: Наука, 1985.

Лазарев Е.Н., Родионова Ж.Ф. Гипсометрическая карта Венеры. М.: ГАИШ МГУ, 2008.

Gazetteer of Planetary Nomenclature (Название, их происхождение, положение на карте и изображение деталей поверхности планет и спутников) http://planetarynames.wr.usgs.gov


Загрузка...