2. МЕТОДОЛОГИЧЕСКИЕ И ОНТОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ КОСМОЛОГИИ А.Д. Панов МЕТОДОЛОГИЧЕСКИЕ ПРОБЛЕМЫ КОСМОЛОГИИ И КВАНТОВОЙ ГРАВИТАЦИИ

Методология физики и примыкающих к ней научных дисциплин возникла и развивалась преимущественно на основе философского осмысления опыта лабораторных исследований и наблюдений над регулярно повторяющимися небесными (астрономическими и метеорологическими) явлениями. В частности, в этом контексте очень полезными и эффективными оказались такие методологические принципы, как принцип наблюдаемости и принцип воспроизводимости эксперимента. Методология оказалась хорошо адаптированной именно к такому контексту, и она неявно предполагает, что другого контекста не существует.

Согласно принципу наблюдаемости, результаты физических теорий должны быть сформулированы в терминах, которые могут быть определены операционально, то есть прямо связаны с некоторой процедурой измерения. Иными словами, любая теория должна быть сформулирована в терминах измеримых величин, а сами измеримые величины приобретают смысл в рамках определенных теоретических моделей. Во избежание недоразумений надо отметить, что некоторые ингредиенты теории, возникающие на промежуточных этапах в ее математическом аппарате, могут прямо не соответствовать никаким наблюдаемым величинам. Таков, например, произвольный фазовый множитель перед волновой функцией в квантовом механике или точное значение потенциалов электромагнитного поля в электродинамике. Часто такие величины связаны с разными типами калибровочной инвариантности или калибровочной свободы, но могут появляться и по другим причинам. Принцип наблюдаемости показал свою исключительную эффективность, например, в анализе смысла понятия времени и одновременности при создании теории относительности, и в обсуждении принципа неопределенности (микроскоп Гейзенберга) и дополнительности во времена становления квантовой теории.

По нашему мнению, приведенная выше формулировка принципа наблюдаемости не только достаточно точно отвечает тому, как этот принцип был использован при создании специальной теории относительности и квантовой механики, но и практически точно таким же способом он используется в квантовой теории поля и в общей теории относительности (ОТО), пока речь не идет о космологических моделях. Становление принципа наблюдаемости в физике связано, в основном, с именами Гейзенберга и Эйнштейна, и соответствующие формулировки приведены, в частности, в статье Гейзенберга, где он, в числе прочего, описывает свое обсуждение принципа наблюдаемости с Эйнштейном. Одна сторона принципа наблюдаемости, а именно, то, что теории должны формулироваться в терминах наблюдаемых величин, сформулирована в упомянутой статье на стр. 303 Гейзенбергом как «…мысль об описании явлений только с помощью наблюдаемых величин». Вторая сторона принципа наблюдаемости — что сами измеримые величины приобретают смысл только в рамках определенных теоретических моделей — была сформулирована Эйнштейном, слова которого Гейзенберг приводит там же: «Можно ли наблюдать данное явление или нет — зависит от вашей теории. Именно теория должна установить, что можно наблюдать, а что нельзя». Однако, отношение Эйнштейна к принципу наблюдаемости было сложным. Он, в частности, заметил, что «…каждая разумная теория должна позволять измерять не только прямо наблюдаемые величины, но и величины, наблюдаемые косвенно», и, по словам Гейзенберга, неодобрительно отзывался о принципе наблюдаемости в целом. Эйнштейн не определил точно, что следует понимать под косвенными измерениями в общем случае, поэтому не полностью понятно, что он имел в виду. Вопрос о косвенных наблюдениях не прост, и он будет иметь большое значение в нашем последующем обсуждении.

Согласно принципу воспроизводимости эксперимента, научную информацию дает только такой эксперимент (или наблюдение), который (по крайней мере в принципе) может быть повторен неограниченное число раз и дает при этом повторяющиеся (воспроизводящиеся) результаты. Однако принцип воспроизводимости имеет отношение не только к интерпретации экспериментальных результатов. С этим принципом в теории тесно связано понятие ансамбля систем, которое является ядром многих теоретических схем. Воспроизводимость эксперимента подразумевает возможность иметь неограниченное количество копий изучаемой системы в заданном состоянии, над которыми можно проводить заданное измерение. Такое потенциально неограниченное число копий системы в заданном состоянии называется ансамблем. Важно отметить, что воспроизводимость в физике не обязательно означает точную повторяемость результатов измерений (в пределах ожидаемых ошибок) над системой в одном и том же исходном состоянии, но может означать лишь статистическую устойчивость средних значений или вероятностных распределений величин. В этом случае различные серии измерений должны приводить к одинаковым статистическим результатам в пределах ожидаемых флуктуаций статистики. Именно такой тип измерений над ансамблем и само существование ансамблей принципиально важны для формулировки квантовой теории, так как только в рамках ансамбля систем можно сделать ясным и недвусмысленным понятие средних значений и вероятностей, в терминах которых и формулируется связь квантовой теории с экспериментом. Следует добавить, что принцип воспроизводимости эксперимента и существование ансамблей определяет возможность измерений, в принципе, с любой наперед заданной точностью, так как статистические ошибки могут быть сделаны как угодно малыми за счет неограниченного увеличения статистики. Таким образом, интерпретация принципа наблюдаемости как измеримости, в принципе, с любой наперед заданной точностью зависит от принципа воспроизводимости.

Ниже мы рассмотрим значение принципов наблюдаемости и воспроизводимости в современных направлениях исследований фундаментальной физики, при этом нам придется обсуждать некоторые новые понятия, для которых не существует сложившейся терминологии. Мы не будем вводить для них новых терминов, но вместо этого некоторые существующие понятия нагрузим новым смыслом, и будем в рамках настоящей статьи использовать их не вполне традиционным образом. Такое словоупотребление надо понимать чисто формальным образом, подобно тому, как, например, в математике под термином росток понимается множество функций с одинаковым локальным поведением в данной точке, но вовсе не новорожденное растение в биологическом смысле. Такими формальными терминами будут используемые нами ниже понятия: традиционной методологии, объективного измерения и предиктивности и модельной реальности.

Методологию, основанную на принципах наблюдаемости и воспроизводимости эксперимента, будем называть (в контексте данной статьи) традиционной методологией. Помимо принципов наблюдаемости и воспроизводимости третьим важнейшим методологическим принципом является принцип фальсифицируемости, который означает, что теория должна давать такие предсказания для эмпирической проверки, которые в принципе могут быть однозначно отвергнуты экспериментом. Принцип фальсифицируемости вместе с принципами наблюдаемости и воспроизводимости дают то, что мы будем называть критерием научности знания в современном понимании. Надо, однако, отметить, что в реализации этого критерия всегда было множество тонкостей, на которых здесь нет возможности останавливаться[158]. Так, например, ряды метеорологических наблюдений представляют вполне научное знание, хотя не удовлетворяют критерию воспроизводимости, так как по определению относятся к уникальным событиям, и т. д. Однако в реализации традиционной методологии наметились и такие проблемы, которые тонкостями не назовешь.

В физике принципы наблюдаемости и воспроизводимости были чрезвычайно полезными и конструктивными и не приводили к серьезным трудностям до тех пор, пока можно было ограничиться изучением относительно простых и компактных объектов. Однако перенос той же методологии на более сложные случаи приводит к очень серьезным проблемам. Вот характерные примеры.

Один пример относится к понятиям квантовой вероятности и квантового состояния в применении к сложным макрообъектам. Если рассматривается некоторая относительно простая квантовая система (например — спин электрона) в заданном состоянии, то в принципе можно рассмотреть ансамбль, состоящий из неограниченного числа копий таких систем. Это означает, что такой ансамбль в принципе можно приготовить для экспериментального изучения. Проведя над этим ансамблем достаточно большое количество взаимно дополнительных (в квантовом смысле) измерений, можно с любой наперед заданной точностью определить распределения вероятностей и ожидаемые значения соответствующих наблюдаемых и с их помощью полностью реконструировать начальное состояние системы (это иногда называется квантовой томографией состояния). Например, для ансамбля, представляющего некоторое спиновое состояние электрона, достаточно измерить средние значения спина вдоль трех различных направлений[159]. Аналогичную процедуру можно реализовать и в более сложных случаях. В этом смысле квантовые вероятности, как и квантовое состояние, полностью удовлетворяют принципу наблюдаемости, являются нормальными физическими характеристиками системы и являются наблюдаемыми элементами физической реальности.

Если рассмотреть пару электронов, или, например, атом водорода, состоящий из протона и электрона, то будем иметь сложные квантовые системы, состоящие из более простых. Эти более сложные системы тоже могут характеризоваться квантовыми вероятностями и квантовыми состояниями, которые операционально могут быть определены на языке ансамблей, подобно тому, как это было показано выше. Принципиальных проблем не возникает. Сложная система, состоящая из двух или нескольких более простых квантовых подсистем, сама является квантовой системой и обладает квантовым состоянием, как и следовало ожидать.

Однако, если в качестве сложной системы, состоящей из квантовых подсистем — атомов и молекул, рассмотреть, например, некоторого конкретного человека, то окажется, что принципиально невозможно построить ансамбль таких систем в заданном состоянии. Мало того, что каждый человек абсолютно уникален, один и тот же человек на протяжении своей жизни не окажется даже дважды в одном и том же состоянии (в том числе — из-за неустранимого квантового взаимодействия с окружением), не говоря о неограниченном количестве повторений состояния. Подчеркнем, что состояние крупного и сложного макрообъекта, вообще говоря, принципиально невоспроизводимо в нашей Вселенной, так как оно подвергается непрерывному и неконтролируемому воздействию со стороны всей остальной Вселенной (например, в форме теплового излучения и микроволнового реликтового излучения)[160]. Фактически, каждое состояние макрообъекта почти столь же уникально, как и состояние всей Вселенной из-за непрерывного, неустранимого и неконтролируемого квантового перепутывания состояния этого макрообъекта с состоянием оставшейся части Вселенной. Отсюда следует, что, строго говоря, квантовые вероятности и квантовые состояния сложных макрообъектов вроде человека являются принципиально операционально неопределимыми. Означает ли это, что квантовое состояние человека просто не существует и человек вообще не может рассматриваться как квантовая система? Это кажется нелепым, ведь тело человека заведомо состоит из частей — атомов, каждый из которых является квантовой системой. Тем более, что весьма плодотворными в квантовой теории являются разного рода мысленные эксперименты, в которых рассматриваются системы, одной из составных частей которых является наблюдатель, трактуемый как квантовая система. Строго говоря, рассмотрение таких мысленных экспериментов с точки зрения принципов наблюдаемости и повторяемости методологически неприемлемо.

Другой пример связан с квантовой космологией. Здесь дела обстоят еще хуже, так как объектом изучения квантовой космологии должно быть квантовое поведение Вселенной в целом. В рамках квантовой космологии Вселенная приобретает статус всеобъемлющего и, тем самым, принципиально единственного в своем роде физического объекта[161], который при этом является существенно квантовым и совершает уникальную квантовую эволюцию[162]. В этом случае возникает множество проблем, одной из которых является то, что квантовые вероятности и квантовое состояние такой всеобъемлющей системы заведомо не имеют простого операционального смысла, так как ничего подобного ансамблю вселенных в одном и том же начальном состоянии с экспериментальной точки зрения иметь невозможно. Между тем, рассматривать Вселенную как квантовый объект необходимо для того, чтобы понять некоторые реально наблюдаемые явления. Среди них важнейшими являются анизотропия реликтового излучения и крупномасштабная неоднородность распределения вещества во Вселенной, которые являются следствием квантовых флуктуаций на очень ранней стадии эволюции Вселенной, когда были существенны крупномасштабные квантовые эффекты. Более того, квантово-космологические представления уже были применены с исключительным успехом для предсказания углового спектра анизотропии реликтового излучения (включая очень тонкие детали явления) и масштаба неоднородности наблюдаемого распределения вещества во Вселенной. Как понять этот результат? С точки зрения традиционной методологии он неприемлем, так как представление о Вселенной как о квантовом объекте в рамках принципов наблюдаемости и повторяемости лишено смысла. Однако успех этого неприемлемого с точки зрения традиционной методологии подхода слишком уж очевиден. Необходима нетрадиционная методология (в том или ином ее варианте).

По поводу квантовой космологии сделаем одно важное замечание. С квантовой космологией очень тесно связаны квантовые теории гравитации. Связь здесь такая. Не любая космологическая модель или теория, в которой существенны квантовые эффекты, является в то же время и моделью квантовой гравитации. Например, квантовые флуктуации, приводящие к анизотропии реликтового излучения, не имеют отношения к квантово-гравитационным эффектам (по крайней мере частично) и могут рассматриваться вне моделей квантовой гравитации. Речь здесь идет о квантовых флуктуациях поля инфлатона — скалярного поля, приводящего к инфляции, которые являются обычными квантово-полевыми флуктуациями, не имеющими прямого отношения к квантовой гравитации или квантованию пространства-времени. Но почти любая квантово-гравитационная теория описывает как единую квантовую систему всё пространство-время, то есть фактически является одновременно и моделью квантовой космологии. В этом качестве для квантовой гравитации характерны все те методологические проблемы, которые были упомянуты выше в отношении квантовой космологии. Ниже, говоря о проблемах квантовой космологии, мы всюду будем подразумевать и аналогичные проблемы в квантовой гравитации.

Как могут быть разрешены эти парадоксы (т. е., почему и как методологически неприемлемые теории приводят к практически полезным результатам), до сих пор не вполне ясно. Одно из возможных объяснений состоит в том, что эти парадоксы являются следствием попытки механически распространить традиционную методологию за те рамки, в пределах которых эта методология ранее была установлена и апробирована. Вероятно, следует честно признать, что методология науки не является чем-то совершенно незыблемым, но определенная методология может иметь границы применимости подобно тому, как имеет границы применимости и каждый отдельный физический закон. Важно отдавать себе отчет о возможности существования таких границ и необходимости ревизии важнейших методологических принципов при вынужденном выходе за эти границы, что как раз и означает переход к нетрадиционной методологии. Где же находятся эти границы и что могут представлять собой новые методологические принципы?

Мне представляется, что космология (и особенно — квантовая космология), квантовая гравитация и некоторые другие разделы физики вроде квантовой теории сознания заведомо лежат за этими границами, о чем говорят упомянутые выше парадоксы. Просто каким-либо уточнением существующих методологических принципов здесь, видимо, не обойтись — изменения методологии должны быть явными и довольно радикальными. Впрочем, исследователи в этих областях науки фактически уже давно выходят за рамки стандартной научной методологии (как это понятие было определено выше), но делают это неявно и, видимо, часто не вполне осознанно.

По моему мнению, имеется необходимость перейти от принципов наблюдаемости и воспроизводимости эксперимента (за пределами их применимости) к некоторым более общим положениям. Мы их попытаемся сформулировать следующим образом. Во-первых, теории должны всего лишь давать предсказания, хотя бы косвенно проверяемые в экспериментальных наблюдениях, но необязательно все существенные выходные данные теории должны быть строго операционально определимы. Это положение ниже будем называть принципом предиктивности, который заменяет принцип наблюдаемости. Во-вторых, сами экспериментальные наблюдения должны обладать свойством объективности, но не обязательно воспроизводимости. Это положение будем называть принципом объективности наблюдений, оно заменяет принцип воспроизводимости эксперимента. Введенные методологические положения требуют пояснений (в частности, было использовано не определенное понятие косвенного измерения). Хотелось бы, конечно, дать точные, строгие и исчерпывающие определения для введенных понятий, но эта задача представляется слишком сложной, и мы не будем пытаться ее здесь решить. Вместо этого поясним смысл введенных понятий просто на уровне здравого смысла, с использованием нескольких примеров.

Под «объективными экспериментальными наблюдениями» (принцип объективности) здесь понимаются наблюдения, обладающие следующими двумя свойствами. Во-первых, такие наблюдения подразумевают, что их результаты прямо доступны неограниченному числу экспертов-наблюдателей. Тем самым исключены, например, самонаблюдения над индивидуальным состоянием сознания экспериментатора и другие подобные наблюдения субъективного характера. Это нетривиально, так как некоторые подходы к интерпретации квантовой теории, и, в частности, в отношении квантовой структуры Вселенной, могут включать подобные самонаблюдения. Допущение подобных субъективных методов означало бы дальнейшее расширение методологической базы, что в данном случае не требуется. Во-вторых, требуется, чтобы наблюдения осуществлялись с помощью оборудования, которое приводит к воспроизводимым результатам в обычном смысле в тестовых экспериментах и калибровочных измерениях. От самих результатов измерений воспроизводимости, вообще говоря, не требуется, так как они могут иметь в каком-то смысле уникальный характер или не быть воспроизводимыми контролируемым образом. Примерами объективных, но невоспроизводимых наблюдений являются наблюдения некоторых уникальных астрофизических событий, например, нейтринной вспышки от взрыва сверхновой 1987А в Магеллановом облаке[163]. Невоспроизводимость некоторых объективных наблюдений нередко создает проблемы. Так, например, в то время, как особых сомнений в достоверности регистрации нейтринного сигнала сверхновой 1987А нет (так как он был зарегистрирован несколькими нейтринными телескопами с разной степенью надежности), то же самое нельзя сказать о регистрации гравитационного импульса, сопровождающего взрыв сверхновой 1987А, единичной установкой в Римском эксперименте по обнаружению гравитационных волн2.

Отметим, что принцип объективности наблюдения представляет собой ослабленный вариант принципа воспроизводимости, так как из воспроизводимости эксперимента всегда следует объективность соответствующего наблюдения, но обратное, вообще говоря, неверно. Можно отметить, что в качестве критерия научности экспериментальных результатов принцип объективности наблюдения очень часто и уже довольно давно используется неявно вместо критерия воспроизводимости эксперимента.

Рассмотрим теперь более подробно принцип предиктивности теорий. Принцип предиктивности требует, чтобы теории давали принципиально проверяемые следствия (вовсе не обязательно, чтобы эти следствия были проверяемы на уже достигнутом технологическом уровне!), некоторым образом (хотя бы косвенно) связанные с экспериментом, но не требует, чтобы каждый существенный ингредиент теоретической модели обязательно имел строгий операциональный смысл. Мы затрудняемся в общем виде определить, что следует понимать под непрямой (косвенной) связью теории и эксперимента, которое, по сути, является ядром понятия предиктивной теории. Вместо этого разберем смысл понятия предиктивности на важном и весьма нетривиальном реальном примере предсказания анизотропии реликтового излучения в инфляционной космологии, а вопрос о точном определении оставим для будущих исследований.

Квантовая теория, будучи примененной к ранним (инфляционным) стадиям эволюции Вселенной, предсказывает определенное распределение для квантовых флуктуаций поля инфлатона, которые в конце концов и становятся источником неоднородности распределения материи горячей вселенной и, затем, анизотропии реликтового излучения. Переход из фазы инфляции к фазе разогрева Вселенной1 эквивалентен некоторому измерению (в том смысле, в котором измерение понимается в квантовой теории) амплитуды этих квантовых флуктуаций. Виртуальные квантовые флуктуации фиксируются в виде флуктуаций плотности материи в классическом результате такого «измерения». Строго говоря, квантовая теория предсказывает лишь распределение вероятностей для получения различных картин распределения этих флуктуаций в пространстве и, соответственно, для получения различных распределений угловой анизотропии температуры реликтового излучения по небу.

Чрезвычайно важны две вещи. Во-первых, соответствующие квантовые вероятности операционально неопределимы (так как невозможен ансамбль вселенных), при том, что они представляют собой основной результат теоретической модели. Т. е. мы имеем дело с теорией, явно не удовлетворяющей классическому принципу наблюдаемости. Во-вторых, то, что мы видим, является результатом всего лишь единичного «измерения» картины распределения флуктуаций из всего того множества, которое описывается распределением вероятностей. Поэтому в точности то, что мы видим, с точки зрения квантовой теории принципиально непредсказуемо, так как квантовая теория не предсказывает результаты единичных измерений — она предсказывает только распределения вероятностей. Мы же имеем дело с единичным результатом измерения, который, в соответствии с теорией, может быть просто любым. Что же в таком случае можно сравнить (и реально сравнивается) с теорией?

Фактически теория предсказывает, что наиболее вероятны такие распределения флуктуаций плотности в момент разогрева Вселенной, которые приводят ко вполне определенному спектру неоднородностей плотности (именно: к почти плоскому спектру) и, затем, к определеннымкорреляциям в распределении температуры реликтового излучения по небу (к определенному типу анизотропии). В предположении, что именно такая наиболее вероятная картина и реализовалась, можно сравнить то, что мы видим, с тем, что теория предсказывает в качестве наиболее вероятного результата. Но мы априори не имеем никаких гарантий, что реализовался именно наиболее вероятный результат. Поэтому если мы обнаруживаем в наблюдениях существенное отклонение от этого наиболее вероятного результата, то нет никакого способа решить, в чем дело: теория неверна, или мы имеем дело с большой квантовой статистической флуктуацией.

Интересно, что реально имеет место именно этот последний случай. Имеется существенный недостаток в анизотропии с большими углами (одна или две низшие угловые гармоники в анизотропии), и невозможно понять, имеем ли мы дело со статистической флуктуацией, или с теорией что-то не то. Существенное отличие ситуации, которую мы имеем, от нормальной ситуации в квантовой теории измерений состоит в том, что нормально мы можем измерить все распределения вероятностей или средние значения с любой наперед заданной точностью, просто используя достаточно большой ансамбль систем. В космологии анизотропии реликтового фона, напротив, мы имеем дело фактически с единичным результатом квантового измерения или с ансамблем, состоящим из всего одного экземпляра системы и одного измерения над ней, и ничего не можем сделать для того, чтобы уменьшить статистическую погрешность. И мы в принципе не имеем никаких гарантий (кроме здравого смысла и статистических оценок), что полученное согласие или несогласие теории и наблюдений не является результатом просто статистической флуктуации. Таким образом, хотя связь теории с экспериментом имеется (и чисто внешне выглядит, как очень хорошее подтверждение теории наблюдениями), на самом деле эта связь весьма косвенная (это можно рассматривать как один из примеров косвенного измерения), и принцип наблюдаемости для теории не выполнен. Теория дает предсказания, лишь достаточно сложным образом связанные с наблюдением, и это есть пример выполнения принципа предиктивности, но не принципа наблюдаемости в точном смысле. В данном случае эта лишь косвенная связь теории с измерениями приводит к тому, что теория принципиально не может быть проверена со сколь угодно высокой точностью.

Эта фундаментальная неопределенность хорошо известна и называется космической вариабельностью (cosmic variance)[164]. Для мультиполя с номером l в анизотропии реликтового фона относительная амплитуда этой неустранимой вариабельности составляет величину порядка [l(l + 1)] -1/2, что для низшего мультиполя l = 2, который соответствует углу 90°, дает величину масштаба 50 %. Именно здесь имеется максимальное расхождение теории и эксперимента, которое составляет величину около 90 % от ожидаемого значения (т. е. наблюдается анизотропия в десять раз ниже ожидаемой). Хотя такое расхождение на фоне ожидаемой неустранимой вариабельности в 50 % невозможно считать статистически значимым, остается ощущение тревожной неопределенности в отношении природы этого отклонения. Важно, что никаким улучшением экспериментальных методик неопределенность эту устранить невозможно. Отметим, что ни в цитированной статье [165], ни в других источниках, где обсуждается космическая вариабельность, не представлено явное понимание того, что эта неопределенность является выражением принципиального ослабления эмпирической методологической базы в квантовой космологии по сравнению с традиционной методологией.

Можно заметить, что и в обычных квантовых измерениях (да и в любых других измерениях) результат тоже всегда получается лишь с конечной точностью. Однако эту точность, в принципе, всегда можно неограниченно увеличивать, используя ансамбли все большего размера, в то время как в примере наблюдения анизотропии реликтового фона никакое увеличение точности невозможно, так как мы ограничены ансамблем, состоящим из единственного квантового измерения. Эта ограниченная точность является для нас таким же фундаментальным свойством нашей Вселенной, как и принцип неопределенности, что является выражением более ограниченной эмпирической базы предиктивной теории по сравнению с теорией, отвечающей принципу наблюдаемости.

В отношении предиктивных теорий возникает следующий вопрос. Предположим, некоторая теория прошла проверки экспериментом и дала важные предсказания новых явлений, существование которых тоже подтверждено наблюдениями. При этом теория содержит существенные1 элементы, которые прямо не связаны с выполнимыми наблюдениями и не имеют прямого операционального смысла. Такими элементами могут быть некоторые объекты или некоторые свойства каких-либо объектов. Более того, теория может явно запрещать возможность прямого наблюдения этих элементов. Обоснованно предполагая, что теория «правильная», так как она дает правильные и полезные предсказания, должны ли мы считать такие ненаблюдаемые элементы реальными вместе с «реальностью» теории?

Я думаю, что дело здесь в неверной постановке вопроса как «или-или». Когда мы интересуемся, реален некоторый объект или не реален, мы неявно апеллируем к традиционной методологии, основанной на принципе наблюдаемости. В рамках традиционной методологии понятие реальности хорошо определено: что наблюдаемо, то и реально. Мы же работаем в рамках новой методологии, и в рамках этой методологии такие объекты получают статус, который не отвечает точно ни «реальности», ни «нереальности» в рамках старой методологии. Такой статус объекта логично назвать модельно-реальным, и этот статус не соответствует точно ни одному из старых понятий. Важно также отметить, что некоторый объект, который на определенном этапе развития теории имеет статус модельно-реального, со временем, в принципе, может поменять свой статус на просто реальный, то есть доступный прямому наблюдению. Для того, чтобы пояснить понятие модельной реальности теоретических объектов (элементов теории), полезно рассмотреть некоторые примеры.

Примеры модельно-реальных объектов мы уже, фактически, упоминали выше — это квантовое состояние Вселенной в моделях квантовой космологии и квантовой гравитации и квантовые состояния сложных макроскопических объектов. Другим объектом этого типа и, возможно, одним из самых интересных таких объектов, является инфляционный Мультиверс и заполняющие его «другие вселенные».

Как известно, инфляционная космология (см.[166]) смогла решить многие загадки фридмановской космологии и дала важнейшее предсказание анизотропии реликтового излучения, которое было блестяще подтверждено в более поздних наблюдениях. Однако большая часть инфляционных сценариев, в том числе наиболее простые и естественные сценарии, которые пока лучше всего соответствуют наблюдениям, описывают инфляционное рождение не одной Вселенной (нашей собственной), а сразу огромного числа вселенных (можно считать, что актуально бесконечного числа). Эти «дополнительные» вселенные являются практически неизбежным (или, по крайней мере, очень естественным) компонентом теории, которая прекрасно согласуется с наблюдениями. Множество этих вселенных называется Мультиверсом, или инфляционным Мультиверсом. Геометрия Мультиверса такова, что все другие вселенные в простейшем случае (в случае отсутствия топологических дефектов пространства, см. ниже) оказываются за нашим горизонтом событий и потому непосредственно недоступны для наблюдения. По этой причине Мультиверс, в соответствии с теорией инфляции, породившей это понятие, не удовлетворяет принципу наблюдаемости и в традиционной методологии должен быть признан несуществующим, а структура самой теории инфляции — неудовлетворительной, как предсказывающей существенные для нее ненаблюдаемые объекты.

Заметим, что Мультиверс, ведь, не является каким-то второстепенным элементом теории, появляющимся лишь на промежуточных этапах вычислений, вроде фазового множителя перед волновой функцией в квантовой механике. Здесь причина «существенности» объекта состоит, в частности, в том, что внутри самой инфляционной космологии наша собственная Вселенная имеет точно такой же статус, как и все другие локальные вселенные Мультиверса. Все они являются наблюдаемыми с точки зрения гипотетических локальных наблюдателей, помещенных в эти локальные вселенные, но только не с нашей собственной локальной точки зрения. То есть, здесь причина существенности объекта в теории состоит в существовании гипотетических наблюдателей, для которых объект реален. Эта причина отличается от причины существенности операционально неопределимых вероятностей в квантовой космологии и квантовой теории макрообъектов (см. выше).

Таким образом, так как инфляционная космология является весьма успешной теорией, подтверждаемой наблюдениями, но при этом подразумевает существование ненаблюдаемого Мультиверса, то Мультиверс в этой теории имеет статус модельно-реального объекта.

Поясним, как, в принципе, Мультиверс может поменять статус с модельно-реального на просто реальный. Если вселенные Мультиверса могут иметь топологические дефекты в виде пространственно-временных тоннелей, известных как кротовые норы, то не исключено, что они могут соединять различные вселенные (имеются соответствующие модели, являющиеся решениями уравнений ОТО[167]). Тогда через такой тоннель вселенные в принципе могут обмениваться информацией или даже материей. Кротовые норы в нашей Вселенной могут проявлять себя как астрофизические объекты особого рода[168]. Если такие объекты когда-нибудь будут обнаружены и будет показано, что они действительно соединяют разные вселенные, то существование Мультиверса будет доказано прямыми наблюдениями, после чего Мультиверс получит статус реального объекта.

Мультиверс является довольно экзотическим объектом, поэтому и его статус как модельно-реального объекта не слишком удивляет. Однако можно показать, что статусом модельно-реального элемента теории обладает и гораздо более привычное представление о глобальной однородности Вселенной. Действительно, проводя астрономические наблюдения очень удаленных областей Метагалактики, мы одновременно смотрим в далекое прошлое. Так как Вселенная расширяется, то в далеком прошлом плотность материи в ней была много выше, чем сейчас. Поэтому в прямых наблюдениях удаленных областей пространства мы обнаружим среднюю плотность материи более высокую, чем в нашем непосредственном окружении. Утверждение же о глобальной однородности Вселенной относится к плотности материи, измеренной в одно и то же космологическое время во всех точках пространства. Но одновременные с нами в смысле космологического времени и удаленные на космологические расстояния участки пространства находятся за нашим горизонтом событий и принципиально недоступны прямым наблюдениям. Т. е., если под прямыми наблюдениями понимать наблюдения причинно связанных с нами объектов[169], то однородность Вселенной не является прямо наблюдаемым свойством Вселенной. Глобальную однородность Вселенной можно подтвердить только, сравнив предсказания однородной космологической модели Фридмана-Робертсона-Уокера с результатами наблюдений, или пересчитав прямо наблюдаемую картину распределения плотности для разных времен (в зависимости от расстояния) на один и тот же момент космологического времени во всем пространстве в соответствие с моделью Фридмана-Робертсона-Уокера. Глобальная однородность Вселенной приобретает реальность только благодаря интерпретации экспериментальных данных с помощью однородных и изотропных космологических моделей, но недоступна в прямых наблюдениях, поэтому она имеет статус модельно-реальной, подобно Мультиверсу. В этом смысле предсказанная моделями инфляции картина анизотропии реликтового излучения тоже может (и даже должна) интерпретироваться как косвенное проявление существования Мультиверса. Более того, причина не полной, а лишь модельной реальности для Мультиверса и для однородности Вселенной одна и та же — в обоих случаях речь идет о реальности объектов, находящихся за нашим горизонтом событий[170].

Пример с глобальной однородностью Вселенной показывает, что различие между реальностью и модельной реальностью теоретических объектов является довольно тонким, и часто не осознается. Модельная реальность объектов наивно принимается просто за реальность.

Вернемся к принципу фальсифицируемости теорий. В традиционной методологии, если некоторая теория дает проверяемые следствия, то эти следствия могут быть в принципе проверены с любой требуемой точностью благодаря принципу воспроизводимости эксперимента. Поэтому, если только следствия теории не слишком тривиальны, теория автоматически оказывается фальсифицируемой, причем фальсифицируемой с любой требуемой надежностью (когда она приводит к следствиям, противоречащим результатам наблюдений). В нетрадиционной методологии ситуация сложнее, что мы видели на примере измерения анизотропии реликтового фона. Так как эксперимент может не обладать свойством воспроизводимости по отношению к рассматриваемой теории (мы имеем только один экземпляр рисунка анизотропии фона на небе, а надо бы — неограниченную выборку таких рисунков), то и теория не может быть фальсифицирована с любой наперед заданной степенью надежности. Расхождение наблюдений с теорией всегда можно списать на счет неконтролируемой флуктуации. Нетрадиционная методология приводит к возможности фальсификации теорий лишь с ограниченной степенью точности. Таким образом, изменение в принципах наблюдаемости и воспроизводимости неминуемо влечет изменение в понимании и принципа фальсифицируемости.

Вне всяких сомнений, принятие новой методологии означает снижение уровня научной строгости, что не может не вызывать беспокойства. Применение новой методологии в традиционных областях науки было бы совершенно неоправданным. Однако альтернатива, насколько мы ее понимаем, такова: либо значительную часть современной космологии и квантовой теории надо признать лежащей вне науки (если строго придерживаться традиционной методологии), либо принять новую методологию (как она была представлена в этой статье или какую-нибудь ее модификацию) и продвигаться дальше в таких дисциплинах, как инфляционная и квантовая космология, квантовая гравитация, квантовая теория сознания, и некоторых других направлениях, настоятельно требующих расширения методологической базы.

Нет никакой возможности доказать, что новая методология в каком-то смысле более правильная или менее правильная, чем традиционная. В конечном счете обоснованность выбора может определяться только субъективно понятой продуктивностью того или иного решения[171]. Фактически, новая методология или какой-то ее вариант принимается большинством исследователей, работающих в упомянутых выше областях. Однако выбор новой научной методологии рефлексируется очень слабо, остается неявным, и это порождает немало недоразумений, вплоть до того, что, например, космологи объявляются шарлатанами, Мультиверс — «научным мифом» и т. д.

Очень интересной публикацией, отражающей явное понимание ограниченности стандартной научной методологии применительно к космологии и квантовой гравитации, но при этом настаивающей на необходимости оставаться в рамках традиционной методологии, является недавно вышедшая статья известного специалиста в области космологии, квантовой гравитации и теории струн Ли Смолина[172].

Статья довольно многоплановая, не совсем проста для понимания, и я не берусь представить здесь все многообразие ее аргументации. Скорее, постараюсь дать свое понимание тех ее аспектов, которые относятся к обсуждавшимся выше вопросам.

Лейтмотивом статьи является мысль, что представления о Мультиверсе и о квантовом состоянии нашей собственной Вселенной физически бессмысленны. Первое бессмысленно по причине ненаблюдаемости Мультиверса, второе — по причине операциональной нереализуемости понятия квантовой вероятности в приложении к единственному экземпляру один раз эволюционирующей Вселенной, который только и доступен нашему наблюдению. Как мы видели, эти утверждения абсолютно верны в рамках традиционной методологии физики, основанной на принципах наблюдаемости и воспроизводимости. Собственно, мы и начали анализ с этих положений, так что здесь нечего возразить. Ли Смолин, сознательно и жестко придерживаясь стандартной методологии, доводит анализ до логического завершения.

В качестве одного из основных принципов космологии он предлагает следующее утверждение: «Существует только одна Вселенная. Не существует других вселенных, и не существует также ничего, что могло бы быть изоморфно им» (возвращаясь, тем самым, к традиционному пониманию объекта космологии). Это очень жесткое утверждение является вполне логичным и даже красивым следствием принципа наблюдаемости по той простой причине, что ни другие вселенные, ни объекты, изоморфные другим вселенным или Мультиверсу не могут иметь атрибута существования в рамках точного принципа наблюдаемости. Все, что наблюдаемо, по определению входит в нашу Вселенную, что ненаблюдаемо — просто не существует.

Хотелось бы отметить, что последствия столь жесткой декларации более чем значимы (сам Ли Смолин по этому поводу ничего не пишет). Поскольку инфляционная космология определенно содержит в себе объекты, изоморфные другим вселенным, а именно — всю концепцию Мультиверса, то она не имеет права на существование, то есть не может рассматриваться как жизнеспособная теория. Вместе с ней исчезают предложенные ей решения загадок фридмановской космологии (плоскостность, проблема горизонта и др.), предсказание анизотропии микроволнового фона и возмущений материи, из которых сформировались протогалактики, а также вся богатая идеями наука, которую породила концепция инфляции. Подчеркнем, что этот выглядит совершенно логичным, и, принимая точный принцип наблюдаемости, против этого нельзя возразить ни единого слова. Только вот вряд ли такой подход можно назвать продуктивным.

По моему глубокому убеждению, основным назначением науки является понимание природы — по крайней мере именно этот мотив движет исследователем. Наука, конечно, имеет и прикладное значение, и, чисто логически, может рассматриваться как способ предсказывать поведение систем по начальным данным, но не это главное, а главное — понимание. Трудно возражать против того, что инфляционная космология дала колоссальный объем и глубину нового понимания природы, и вот теперь все это понимание нужно объявить неприемлемым. С логической точки зрения такое положение дел совершенно нормально в рамках традиционной методологии, но психологически его принять трудно. И дело здесь, видимо, в том, что надо просто признать, что инфляционная космология оказалась за рамками традиционной методологии. Методология должна быть другой, а не инфляционная космология.

Ли Смолин идет еще дальше. Он справедливо отмечает следующие два обстоятельства. Во-первых, начальные условия Вселенной, которые привели в Большому взрыву, принципиально не полностью доступны нашему наблюдению (в частности, из-за горизонта событий), и, кроме того, мы не имеем возможности исследовать различные начальные условия, так как мы имеем одну-единственную эволюцию Вселенной. Во-вторых, по причине единственности доступного нам примера эволюции Вселенной, лишено операционального смысла понятие конфигурационного пространства Вселенной — то есть множества всех возможных ее состояний. Отсюда Смолин делает вывод, что обычная интерпретация физической теории (которую он называет ньютоновской), когда задается начальное состояние системы и вычисляется траектория системы в конфигурационном пространстве, для космологии не имеет смысла (поскольку не имеет смысла ни один из ее ингредиентов). Иначе говоря, не имеет смысла представлять себе динамику Вселенной как системы, которая потенциально может начинаться с различных начальных состояний и давать различную эволюцию в конфигурационном пространстве. Фундаментальные законы физики вместе с начальным состоянием Вселенной должны составлять единое целое, или, по-другому, начальное состояние имеет тот же статус, что и фундаментальные законы, оно столь же фундаментально. Разделять научное описание Вселенной на начальное состояние и эволюцию в конфигурационном пространстве неверно. Начальное состояние и эволюция должны представляться как единый теоретический объект. Это порождает новую ситуацию, когда не только ответы инфляционной космологии на вопросы о причине возникновения весьма специального начального состояния нашей Вселенной (плоскостность, возмущения плотности…) нельзя считать адекватными по причине неадекватности самой инфляционной космологии, но и сам вопрос о том, почему мы имеем такое начальное состояние, лишен смысла. Нам просто запрещено спрашивать, почему начальное состояние такое, какое оно есть, так как это фундаментальный и несводимый ни к чему факт. И опять, надо отметить, что в традиционной методологии наблюдаемости и воспроизводимости эти выводы вполне логичны.

Однако, мы уже имеем много убедительных ответов на разные «почему?» относительно структуры начального состояния Вселенной. Чисто логически, в традиционной методологии физики надо признать, что все эти ответы лишены смысла, так как бессмыслен сам вопрос (не говоря уже о способе ответа на него с использованием инфляционной космологии). Представляется, что это не особенно продуктивная позиция, и выход состоит в том, чтобы сознательно перейти к нетрадиционной методологии. Надо отметить, что сам Ли Смолин не приводит конкретных указаний, как конкретно должна строиться космология в такой жесткой классической методологии. Ссылок на конкретные модели у него нет.

С вопросом о единственности Вселенной и отсутствием у нее квантового состояния Ли Смолин связывает вопрос о фундаментальности понятия времени. Рассматриваемые им связи довольно многочисленны, и я их не буду анализировать детально, но суть аргументации сводится к следующему.

В современной физике есть по крайней мере два источника, из которых произрастает идея, что время не является фундаментальным понятием, но возникает лишь некоторым эффективным образом в нашем макроскопическом восприятии мира. Одним источником этой идеи стали уже самые ранние модели квантовой космологии и гравитации. Современные модели сохраняют это свойство. Квантовокосмологические модели определяют волновую функцию Вселенной, которая не содержит времени — она вневремен-ная. Соответствующее уравнение (уравнение Уилера-ДеВитта) тоже не содержит времени, и определяет некоторый статический объект — вневременную Вселенную. Общая причина этого проста. Она состоит в том, что эволюцию Вселенной нельзя параметризовать каким-то внешним по отношению к ней временем, так как время измеряется часами, а вне Вселенной нельзя поместить часы. Принимается, что все, что существует, по определению находится внутри Вселенной, и не может находиться вне ее. Фактически наблюдаемая внутри такой Вселенной эволюция является эффективным понятием для наблюдателей, находящихся внутри Вселенной, и представляется в терминах корреляции некоторых наблюдаемых величин. Если одну из таких величин назвать часами, то возникает эффективная эволюция подсистем Вселенной, в которой время можно рассматривать как параметр.

Вторым источником идеи эмерджентности времени является понятие Мультиверса инфляционной космологии. Здесь нет никакого единого времени, в котором существует весь этот объект. Эффективное время возникает только внутри локальных вселенных (да и то со множеством оговорок). Мультиверс в целом должен описываться некоторой вневременной физикой, которая описывает вероятности (в некотором операционально неопределимом смысле!) возникновения разных типов вселенных.

Как мы видели, в подходе Ли Смолина (точнее — в строгой традиционной методологии, которой он совершенно точно придерживается) как Мультиверс, так и квантовые состояния Вселенной вместе с квантовой космологией оказываются лишенными смысла. Поэтому оба источника идеи о нефундаментальности понятия времени оказываются недействительными. Поэтому Смолин считает, что нужно строить физику, в том числе и квантовую гравитацию, с использованием моделей, в которых времени возвращается его фундаментальная роль. Он приводит три примера квантово-гравитационных моделей, которые обладают этим свойством: причинная динамическая триангуляция, квантовое граффити, унимодулярная гравитация (см. ссылки[173]).

Надо согласиться, что логика Ли Смолина вполне понятна. Хотелось бы, однако, уточнить, что из нее действительно следует, что имеет смысл искать модели квантовой гравитации, где время играет фундаментальную роль, но не следует, что более общие модели, где время возникает только эффективно, недопустимы. Поэтому в данном случае его выводы никак не ограничивают свободы в выборе направления исследований.

Ли Смолин высказывает еще несколько интересных мыслей. В частности, раз время играет фундаментальную роль, то Ли Смолин предлагает серьезно рассмотреть возможность того, что фундаментальные законы явно зависят от фундаментального времени. Эта идея вызывает возражение. Дело в том, что даже если Вселенная строго единственна, в ней нет никакого единого фундаментального времени, от которого могли бы зависеть фундаментальные законы. ОТО, описывающая динамику Вселенной, допускает хорошо определенное понятие собственного времени для каждого отдельного наблюдателя, и это время действительно может быть в каком-то смысле фундаментальным, но единое универсальное время для обще-релятивистской системы, вообще говоря, не определено. Действительно, если говорить о нашей Вселенной, то, например, время вблизи поверхности нейтронной звезды и в межгалактическом пространстве течет совершенно по-разному, хотя Вселенная для них — одна. Можно привести и другие примеры. Космологическое время можно ввести лишь в некотором приближении благодаря тому, что Вселенная является приближенно однородной и изотропной. Его можно связать, например, с масштабным фактором или с температурой реликтового излучения, которая в однородных и изотропных моделях однозначно связана с масштабным фактором. Именно использование температуры реликтового излучения в качестве космологических часов позволяет легко убедиться, что точного космологического времени не существует. Проблема состоит в анизотропии реликтового излучения. В каждой точке пространства нет какой-то одной единой температуры, но она зависит от того, в каком направлении вы посмотрите. Относительная величина этой анизотропии составляет несколько стотысячных — это и есть степень приближенности понятия единого космологического времени. Это приближение является довольно грубым, и отклонения легко измеримы. Такое время не может быть параметром для фундаментальных законов, так как само не фундаментально, а другого фундаментального времени в нашей Вселенной, видимо, нет.

Очень интересно и остроумно Ли Смолин рассматривает физическую природу математики, которая также связывается с существованием фундаментального времени. Этот вопрос, однако, выходит за рамки настоящей статьи, и мы отсылаем заинтересованного читателя к оригиналу[174].

Подводя итоги обсуждения, еще раз отметим, что методы, используемые в современной космологии и квантовой гравитации, де факто уже вышли за пределы стандартной научной методологии физики, основанной на принципах наблюдаемости и воспроизводимости эксперимента. В этой статье мы попытались лишь явным образом зафиксировать этот выход. Нетрадиционная методология означает ослабление (или размывание) эмпирической базы новых направлений физики по сравнению с ее традиционными разделами, и это есть та цена, которую приходится платить за возможность более глубокого понимания природы. Однако следует подчеркнуть, что ослабление эмпирической базы не означает ее отсутствие. Так, например, важным эмпирическим критерием, позволяющим в принципе разделять квантовые теории гравитации друг от друга, является проверка Лоренц-инвариантности[175]. Однако в новых условиях заметно возрастает роль таких внеэмпирических критериев истинности, как самосогласованность и красота теории.

Статья Ли Смолина[176] является чрезвычайно ярким примером того, что получается, если и в космологии стараться строго придерживаться традиционной методологии. По нашему мнению, такой путь, хотя и логически допустим, непродуктивен. Более продуктивным путем является явное расширение традиционной методологии с фиксацией соответствующих обобщенных методологических принципов, что мы и попытались отразить в данной работе. Еще раз подчеркнем, что для каждого исследователя выбор методологической базы является предметом соглашения, и правильность того или иного выбора не может быть доказана чисто логически.

В заключение заметим, что представления, содержащиеся в настоящей статье, требуют дальнейшего уточнения и развития. В частности, смысл ряда введенных понятий мы смогли пояснить лишь на конкретных примерах их использования, и более точные и общие определения ждут своей формулировки.

Автор выражает благодарность участникам круглого стола «Философские проблемы космологии» 2008–2009 гг. в ИФРАН за плодотворное обсуждение вопросов, рассмотренных в данной статье, и В.В. Казютинскому за предложение написать саму статью. Хочется отметить, что автор начал обдумывать эти вопросы именно в ходе заседаний круглого стола, и некоторую завершенность соответствующим мыслям попытался придать в ходе подготовки статьи.

Загрузка...