Часть II. Концепции и методы

Глава 3. Игры с последовательными ходами

* * *

Игры с последовательными ходами предполагают стратегические ситуации, в которых существует строгий порядок ведения игры. Игроки ходят поочередно и осведомлены о действиях соперников, сделавших свои ходы до них. Для того чтобы хорошо играть в такую игру, ее участникам необходимо использовать определенный тип интерактивного мышления. Каждый игрок должен просчитать возможную реакцию противника на тот или иной ход. Всякий раз при выполнении действий игрокам следует думать о том, как их текущие действия повлияют на будущие действия как самого игрока, так и его соперников. Следовательно, игроки выбирают ходы на основании расчета вероятных последствий.

Большинство реальных игр сочетают в себе аспекты игр как с последовательными, так и с одновременными ходами. Но концепции и методы анализа легче понять, если вводить их сначала отдельно для двух чистых типов игр. Исходя из этого, в данной главе рассматриваются только игры с последовательными ходами. Глава 4 и глава 5 целиком и полностью посвящены играм с одновременными ходами, а в главе 6 и нескольких разделах главы 7 показано, как объединить оба типа анализа в более реалистичных смешанных ситуациях. Представленный здесь анализ можно использовать всякий раз, когда игра включает в себя последовательное принятие решений. Кроме того, изучение игр с последовательными ходами позволяет определить, когда игроку выгоднее ходить первым, а когда вторым. Затем игроки могут разработать способы, так называемые стратегические ходы, манипулирования порядком игры в свою пользу. Подробно они рассматриваются в главе 9.

1. Дерево игры

Начнем с описания графического метода отображения и анализа игр с последовательными ходами, именуемого дерево игры. На таком дереве, также называемом экстенсивной формой игры, представлены все ее элементы, о которых шла речь в главе 2: игроки, действия и выигрыши.

Скорее всего, вы уже сталкивались с деревьями решений в других контекстах. Такие деревья демонстрируют всю последовательность точек принятия решений (или узлов) одним игроком в нейтральной среде. Дерево решений также включает в себя ветви, которые соответствуют имеющимся вариантам выбора и исходят из каждого узла. Дерево игры — это просто совокупность деревьев решений всех ее участников. Такое дерево отображает все возможные действия, которые могут предпринять все игроки, а также все возможные исходы игры.

А. Узлы, ветви и пути игры

На рис. 3.1 изображено дерево конкретной игры с последовательными ходами. Мы не будем здесь описывать ее историю, поскольку хотим опустить многочисленные детали, чтобы вы могли сфокусироваться на общих концепциях. В игре участвуют четыре человека: Энн, Боб, Крис и Деб. Согласно правилам игры, первый ход делает Энн; это показано в крайней левой точке дерева, или узле под названием начальный узел или корень дерева игры. В этом узле, который еще можно называть узлом действия или узлом принятия решений, у Энн есть два доступных варианта выбора. Они обозначены как «стоп» и «вперед» (не забывайте, что это абстрактные обозначения и они не обязательно должны иметь какой-то смысл) и показаны на рисунке в виде ветвей, исходящих из начального узла.


Рис. 3.1. Иллюстративное дерево игры


Если Энн выберет «стоп», наступит очередь Боба делать ход. У него в узле действия есть три варианта выбора, обозначенные как 1, 2 и 3. Если Энн выбирает «вперед», то следующий ход делает Крис с вариантами выбора «рискованно» и «безопасно». Другие узлы и ветви следуют друг за другом, но вместо того чтобы их перечислять, мы просто обратим ваше внимание на некоторые характерные особенности данного дерева.

Если Энн выберет «стоп», после чего Боб выберет 1, Энн получит право на следующий ход с новыми вариантами выбора — «вверх» и «вниз». В реальных играх с последовательными ходами достаточно типична ситуация, когда игрок делает несколько ходов, причем они могут быть разными в разных узлах. В шахматах, например, два игрока ходят по очереди; каждый такой ход меняет ситуацию на доске, а значит, меняются и ходы, доступные для игрока, который будет ходить следующим.

Б. Неопределенность и «ходы природы»

Если Энн выберет ход «вперед», а Крис — «рискованно», произойдет случайное событие, например подбрасывание монеты, и исход игры будет зависеть от того, выпадет орел или решка. Этот аспект игры представляет собой пример внешней неопределенности и отображается на дереве игры посредством введения внешнего игрока под названием «природа». Ему передается контроль над случайным событием, и он как будто выбирает одну из ветвей, каждую с вероятностью 50 %. Вероятность здесь определяется посредством случайного события одного типа, а именно подбрасывания монеты, но в других обстоятельствах могут использоваться и события иных типов. Например, в случае бросания игральных костей «природа» могла бы указать шесть возможных вариантов, каждый с вероятностью 162/3 процента. Использование игрока под названием «природа» позволяет ввести в игру фактор внешней неопределенности и предоставляет в наше распоряжение механизм, который делает возможным наступление событий, находящихся вне контроля реальных участников игры.

Вы можете определить количество различных путей, существующих на дереве игры, передвигаясь по следующим друг за другом ветвям. На рис. 3.1 каждый путь приводит к конечной точке игры за конечное число ходов. Конечная точка не является обязательным элементом всех игр, некоторые из них теоретически могут вестись до бесконечности. Но в большинстве наших примеров представлены конечные игры.

В. Исходы и выигрыши

В последнем узле каждого пути, так называемом концевом узле, ни один игрок не может сделать очередной ход. (Обратите внимание, что именно этим концевые узлы отличаются от узлов действия.) Вместо этого мы показываем в этом узле исход определенной последовательности действий, выраженный в выигрышах игроков. Выигрыши наших четырех героев перечислены в таком порядке: Энн, Боб, Крис, Деб. Важно указать, какой выигрыш соответствует каждому игроку. Обычно выигрыши принято указывать в том порядке, в каком игроки делают ходы. Однако иногда этот метод бывает неоднозначным; в нашем примере непонятно, кто должен делать следующий ход, Боб или Крис. Поэтому мы перечислили их в алфавитном порядке (англ. Ann, Bob, Chris, Deb), а кроме того, использовали цветную маркировку информации об игроках. Так, имя Энн, ее варианты выбора и выигрыши выделены черным цветом, Боба — темно-серым, Криса — светло-серым, а Деб — серым. При построении деревьев для игр, которые вы будете анализировать, можно выбрать любую понравившуюся вам систему обозначений, но вы должны четко сформулировать и объяснить ее тому, кто будет читать дерево игры.

Выигрыш — это числовая величина, и, как правило, для каждого игрока чем она больше, тем лучше исход игры. Таким образом, для Энн самый нижний путь (выигрыш 3) лучше самого верхнего (выигрыш 2). Однако выигрыши разных игроков не обязательно должны быть сопоставимы. В данном примере неочевидно, что в конце самого верхнего пути Боб (выигрыш 7) добивается большего, чем Энн (выигрыш 2). Иногда, например если выигрыш исчисляется в денежных единицах, сравнение выигрышей может иметь смысл.

Игроки используют информацию о выигрышах при выборе доступных действий. Включение случайного события (выбор, сделанный «природой») означает, что игрокам необходимо определить, что они получат в среднем, когда «природа» сделает свой ход. Например, если Энн выберет «вперед» в качестве первого хода в игре, Крис может выбрать «рискованно», что приведет к подбрасыванию монеты и выбору «природой» варианта «хорошо» или «плохо». В такой ситуации Энн в половине случаев может рассчитывать на выигрыш 6 и в половине случаев — на выигрыш 2; иными словами, статистическое среднее, или ожидаемый выигрыш, составит 4 = (0,5 × 6) + (0,5 × 2).

Г. Стратегии

И наконец, мы используем дерево игры, представленное на рис. 3.1, чтобы объяснить концепцию стратегии. Единичное действие, предпринятое игроком в узле, называется ходом. Но игроки могут и должны составлять планы последовательности выполнения ходов, которые они намерены сделать во всех возможных случаях в ходе игры. Такой план действий и называется стратегией.

На данном дереве игры Боб, Крис и Деб получают возможность сделать ход максимум один раз; например, Крис будет ходить только в случае, если Энн в качестве первого хода выберет «вперед». Для этих игроков между ходом и стратегией нет разницы. Мы можем определить ход, указав условие, при котором он будет сделан; так, в случае Боба может быть следующая стратегия: «Выбрать 1, если Энн выберет “стоп”». Однако у Энн есть две возможности сделать ход, поэтому ее стратегия требует более полного описания. Одна из стратегий Энн: «Выбрать “стоп”, а если Боб выберет 1, выбрать “вниз”».

В более сложных играх, таких как шахматы, где есть длинные последовательности ходов с большим количеством вариантов выбора в каждой, описание стратегий усложняется; мы обсудим данный аспект более подробно далее в этой главе. Однако общий принцип построения стратегий достаточно прост, за исключением одной особенности. Если Энн выберет «вперед» на первом ходе, она так и не получит шанса сделать второй ход. Следует ли в стратегии, согласно которой она выбирает «вперед», указывать то, что Энн сделала бы в гипотетическом случае, если бы каким-то образом оказалась в узле своего второго действия? Возможно, ваша интуиция скажет «нет», но формальная теория игр говорит «да» по двум причинам.

Во-первых, выбор Энн варианта «вперед» в качестве первого хода может зависеть от ее рассуждений о том, что ей пришлось бы сделать на втором ходе, если бы она изначально предпочла вариант «стоп». Например, тогда Боб мог бы выбрать 1, и Энн получила бы второй ход, а ее лучшим выбором стал бы вариант «вверх», обеспечивающий ей выигрыш 2. Если Энн для первого хода выберет «вперед», Крис выберет вариант «безопасно» (поскольку его выигрыш 3 в случае варианта «безопасно» больше, чем ожидаемый выигрыш от варианта «рискованно»), и такой исход игры обеспечит Энн выигрыш 3. Для того чтобы процесс размышлений был понятнее, можно сформулировать стратегию Энн так: «Выбрать “вперед” на первом ходе и выбрать “вверх”, если появится возможность походить еще раз».

Вторая причина для такого, казалось бы, педантичного описания стратегий имеет отношение к устойчивости равновесия. При анализе устойчивости мы спрашиваем, что бы произошло, если бы выбор игроков был подвержен влиянию небольших помех, среди которых и мелкие ошибки самих игроков. Скажем, если бы выбор нужно было делать посредством нажатия клавиши, не исключено, что у Энн дрогнула бы рука и она случайно вместо клавиши «вперед» нажала бы клавишу «стоп». Исходя из этого, важно определить, как Энн будет действовать, обнаружив ошибку, поскольку Боб выберет 1 и наступит очередь Энн делать следующий ход. На более продвинутых уровнях теории игр анализ устойчивости обязателен, поэтому мы хотим подготовить вас заранее, настаивая на том, чтобы вы изначально формулировали свои стратегии в виде исчерпывающих планов действий.

Д. Построение дерева

Теперь подытожим общие концепции, проиллюстрированные деревом, представленным на рис. 3.1. Дерево игры состоит из узлов и ветвей. Узлы соединены между собой ветвями и бывают двух типов. Узел первого типа обозначается термином «узел принятия решений». Каждый такой узел соответствует игроку, который выбирает в нем действие. Каждое дерево имеет один узел принятия решений — это начальный узел дерева, отправная точка игры. Узел второго типа называется «концевой узел». Каждому концевому узлу соответствует совокупность исходов игры для ее участников; эти исходы представляют собой выигрыши, полученные каждым игроком, если игра проходила по ветвям, приведшим к данному концевому узлу.

Ветви дерева игры представляют действия, которые можно предпринять из любого узла принятия решений. Каждая ветвь на дереве ведет от узла принятия решений либо к другому узлу принятия решений (как правило, другого игрока), либо к концевому узлу. В дереве должны учитываться все допустимые варианты действий, которые игрок может выбрать в каждом узле, поэтому некоторые деревья включают также ветви, соответствующие варианту «ничего не делать». Из каждого узла принятия решений должна исходить как минимум одна ветвь, но ограничений на количество ветвей нет. При этом к каждому узлу принятия решений может вести только одна ветвь.

Деревья игры часто рисуют на странице слева направо, однако их можно рисовать в любом наиболее подходящем для рассматриваемой игры направлении: снизу вверх, в сторону, сверху вниз или даже радиально, от центра. Дерево — это метафора, в основе которой лежит идея о последовательном ветвлении, поскольку решения принимаются в узлах деревьев.

2. Решение игр с помощью деревьев

Мы проиллюстрируем использование деревьев на примере поиска равновесных исходов игр с последовательными ходами в очень простой ситуации, с которой, по всей вероятности, сталкивались многие из вас, — курить или не курить. Эту и многие другие аналогичные стратегические ситуации с участием одного игрока можно рассматривать как игры, если мы признаем, что впоследствии выбор предстоит делать будущему «я» игрока, которое подвержено влиянию различных факторов и иначе оценивает идеальный исход игры.

Возьмем, к примеру, подростка по имени Кармен, которая решает, следует ли ей курить. Во-первых, она должна определиться, стоит ли ей вообще пробовать курить. Если она все же попробует, в будущем ей предстоит принять еще одно решение: продолжать ли курить. Мы проиллюстрируем этот пример с помощью дерева, представленного на рис. 3.2.


Рис. 3.2. Принятие решения о курении


Узлы и ветви обозначены доступными Кармен вариантами выбора, но мы должны объяснить выигрыши. Примем исход игры «никогда не курить» за эталон для сравнения и присвоим ему выигрыш 0. Число 0 в этом контексте ничего особо не значит; все, что имеет значение для сравнения исходов, а следовательно, и решения Кармен, — соответствующий выигрыш больше или меньше остальных. Предположим, что для Кармен наиболее предпочтителен исход игры, при котором она попробует какое-то время курить, а потом бросит. Возможно, причина в том, что Кармен не привыкла верить на слово и желает обо всем составить собственное представление, или в том, что это позволит ей со знанием дела заявить: «Я это пробовала и уверяю, что ничего хорошего в этом нет», когда в будущем ей придется наставлять своих детей на путь истинный. Присвоим этому исходу выигрыш +1. Худший исход игры — когда Кармен попробует курить и не сможет остановиться. Даже если не брать во внимание вред, наносимый курением здоровью в долгосрочной перспективе, в краткосрочном периоде появятся не менее насущные проблемы: волосы и одежда Кармен будут неприятно пахнуть, а друзья станут ее избегать. Присвоим этому исходу выигрыш −1. В итоге выбор Кармен кажется очевидным: попробовать курить, но не продолжать это делать.

Однако в этом анализе не учтена проблема зависимости. Как только Кармен попробует какое-то время курить, у нее сформируются другие вкусы и изменятся выигрыши. Решение о том, продолжать ли курить, будет принимать уже не нынешняя Кармен с ее теперешней оценкой исходов игры в том виде, как показано на рис. 3.2, а будущая Кармен, которая иначе оценит дальнейшие альтернативы. Делая выбор сегодня, Кармен нужно проанализировать его последствия и учесть это в своем решении, которое она должна принять исходя из текущих предпочтений. Другими словами, проблема выбора, касающаяся курения, — на самом деле не решение в том смысле, о котором шла речь в главе 2 (выбор, сделанный в нейтральной среде), а игра в формальном смысле, также представленная в главе 2, в которой другой игрок — это будущее «я» Кармен со своими особыми приоритетами. И нынешней Кармен при принятии решения предстоит вести игру с будущей Кармен.

Мы превратим дерево решений, представленное на рис. 3.2, в дерево игры на рис. 3.3 посредством введения двух игроков, делающих выбор в двух узлах. В начальном узле нынешняя Кармен решает, стоит ли ей пробовать курить. В случае положительного ответа появляется будущая Кармен, попавшая в зависимость от курения, и уже она решает, продолжать ей курить или нет. Давайте изобразим здоровую, не загрязняющую окружающую среду нынешнюю Кармен, ее действия и выигрыши серым цветом, а пристрастившуюся к курению будущую Кармен, ее действия и выигрыши — черным (такими стали ее легкие). Выигрыши нынешней Кармен остались прежними. А вот будущая Кармен продолжит наслаждаться курением, а при попытке бросить у нее наступит ужасный абстинентный синдром. Пусть выигрыш будущей Кармен при выборе варианта «курить» составляет +1, а при выборе «не курить» — −1.


Рис. 3.3. Игра «курение»


Учитывая предпочтения будущей курильщицы Кармен, в узле принятия решений она выберет вариант «продолжать». Нынешняя Кармен должна проанализировать эту перспективу и учесть ее при принятии текущего решения, признав, что если перевесит желание покурить, то это неизбежно приведет к тому, что она будет курить и впоследствии. Несмотря на то что нынешняя Кармен этого не хочет, она не сможет в дальнейшем реализовать свой текущий выбор, поскольку будущая Кармен, у которой совсем иные наклонности, сделает именно такой выбор. Следовательно, нынешняя Кармен должна предвидеть, что выбор варианта «попробовать» приведет к выбору «продолжать» и обеспечит ей выигрыш −1 по ее текущим оценкам, тогда как выбор варианта «нет» даст выигрыш 0. Таким образом, ей следует предпочесть второе.

Подобная аргументация более наглядно представлена на рис. 3.4. На рис. 3.4а мы обрезаем, или отсекаем, ветвь «нет», исходящую из второго узла. Такое отсекание говорит о том, что будущая Кармен, которая делает выбор в этом узле, не выберет действие, соответствующее этой ветви, учитывая ее предпочтения, выделенные черным цветом.




Рис. 3.4. Отсечение ветвей дерева игры «курение»


На дереве остались две ветви, исходящие из первого узла, в котором делает выбор нынешняя Кармен; каждая из ветвей ведет непосредственно к концевому узлу. Такое отсечение позволяет нынешней Кармен просчитать все возможные последствия любого своего решения. Выбор варианта «попробовать» приведет к варианту «продолжать» и обеспечит выигрыш −1 с точки зрения предпочтений нынешней Кармен, тогда как выбор варианта «нет» даст выигрыш 0. Таким образом, на данный момент Кармен должна выбрать вариант «нет», а не «попробовать». Следовательно, мы можем отсечь ветвь «попробовать», исходящую из первого узла (вместе с ее предполагаемым продолжением), как показано на рис. 3.4б. На нем изображено «полностью усеченное» дерево всего с одной ветвью, исходящей из начального узла и ведущей к концевому. Единственный оставшийся путь, пролегающий по дереву игры, демонстрирует, что произойдет в игре, если все ее участники сделают лучший выбор на основании правильного прогнозирования всех вероятных исходов.

При обрезке ветвей дерева игры на рис. 3.4 мы вычеркнули ветви, которые не выбрали. Еще один эквивалентный, но альтернативный способ показать выбор игрока — как-то выделить выбираемые им ветви. Для этого можно отметить их галочками или стрелками или выделить более жирными линиями. Подойдет любой способ (на рис. 3.5 показаны все перечисленные варианты[21]), вам виднее, но все же второй вариант, особенно выделение стрелками, имеет свои преимущества. Во-первых, он обеспечивает формирование более четкой картины происходящего. Во-вторых, в случае вычеркивания ветвей не всегда понятен порядок их отсечения. Например, на рис. 3.4б читатель может подумать, что ветвь «продолжать», исходящая из второго узла, была отсечена первой, а уже после этого была отсечена ветвь «попробовать» в первом узле и следующая за ней ветвь «нет» во втором узле. Последний и самый важный аргумент в пользу этого способа состоит в том, что стрелки более наглядно показывают результат последовательности оптимальных вариантов выбора в виде непрерывной цепочки стрелок от начального до концевого узла. Вот почему в других диаграммах такого типа, представленных далее в книге, мы используем стрелки вместо вычеркивания ветвей. В процессе построения деревьев игр вам следует попрактиковаться в применении обоих способов, а когда научитесь строить такие деревья, можете выбрать тот способ, который вам больше нравится.


Рис. 3.5. Выбор ветвей на дереве игры «курение»


Независимо от того, как вы отобразите свои размышления на дереве игры, логика анализа во всех случаях будет одинаковой и важной. Вы должны начать с рассмотрения узлов действий, ведущих непосредственно к концевым узлам. Оптимальный выбор для игрока, делающего ход в таком узле, можно определить путем сравнения его выигрышей в соответствующих концевых узлах. Использование вариантов выбора в конце игры для прогнозирования последствий более ранних действий позволяет рассчитать выбор в узлах, предшествующих узлам окончательного принятия решений. Затем то же самое можно сделать с предыдущими узлами и т. д. Передвигаясь таким образом по дереву игры в обратном направлении, вы можете решить всю игру.

Данный метод определения поведения в игре с последовательными ходами (смотреть вперед и рассуждать в обратном порядке) известен как метод обратных рассуждений. Как подразумевает само его название, сперва следует подумать, что произойдет во всех концевых узлах, а затем передвигаться по дереву в обратном направлении вплоть до начального узла, анализируя соответствующие действия. Поскольку такие рассуждения требуют передвижения в обратном направлении по одному шагу за один раз, этот метод обозначают также термином «обратная индукция». Мы предпочитаем термин «обратные рассуждения», ввиду того что он проще и получает все более широкое распространение, однако в других книгах по теории игр используется старый термин «обратная индукция». Вам следует просто запомнить, что они эквивалентны.

Когда все участники игры для выбора оптимальных стратегий применяют метод обратных рассуждений, такая совокупность стратегий в данной игре называется равновесием обратных рассуждений, а исход игры, обусловленный использованием этих стратегий, — исходом равновесия обратных рассуждений. В более сложных учебниках по теории игр эта концепция обозначается как совершенное равновесие подыгры; возможно, ваш преподаватель предпочитает именно этот термин. Мы приводим формальное объяснение и анализ совершенного равновесия подыгры в главе 6, но склоняемся к употреблению более простого и интуитивно понятного термина «равновесие обратных рассуждений». Теория игр предсказывает такой исход в качестве равновесия в игре с последовательными ходами, в которой все игроки становятся рациональными вычислителями в погоне за максимальным выигрышем. Далее в данной главе мы проанализируем, как этот прогноз подтверждается на практике. А пока вам следует знать, что во всех конечных играх с последовательными ходами, представленных в этой книге, есть по крайней мере одно равновесие обратных рассуждений. В действительности в большинстве игр присутствует в точности одно такое равновесие. И только в исключительных случаях, когда игрок получает одинаковые выигрыши в результате двух или более наборов ходов, а значит, не может отдать явное предпочтение ни одному из них, их может быть больше.

В игре «курение» равновесие обратных рассуждений наблюдается в случае, когда нынешняя Кармен выбирает стратегию «нет», а будущая Кармен — стратегию «продолжить». Когда нынешняя Кармен совершает оптимальное действие, пристрастившаяся к курению будущая Кармен вообще не появляется на свет, а значит, и не получает реальной возможности сделать ход. Однако призрачное присутствие будущей Кармен и стратегия, которую бы она предпочла, если бы нынешняя Кармен выбрала вариант «попробовать» и предоставила бы ей шанс сделать ход, — важный элемент игры, на самом деле являющийся ключевым в определении оптимального хода нынешней Кармен.

Итак, мы описали концепции дерева игры и анализа методом обратных рассуждений с помощью очень простых примеров, в которых решение было очевидным на основании словесных аргументов. А теперь перейдем к использованию этих концепций в более сложных ситуациях, когда выполнение вербального анализа усложняется, в связи с чем роль визуального анализа с помощью дерева игры возрастает.

3. Увеличение количества игроков

Действие методов, представленных в разделе 2 в самой простой ситуации с двумя игроками и двумя ходами, можно легко расширить, при этом деревья становятся более сложными, в них увеличивается количество ветвей, узлов и уровней, но основные концепции и метод обратных рассуждений не меняются. В данном разделе мы рассмотрим игру с тремя участниками, у каждого из которых есть два варианта выбора. С небольшими вариациями эта игра будет появляться во многих следующих главах.

Три игрока, Эмили, Нина и Талия, живут на одной маленькой улице. Каждую девушку попросили внести свой вклад в создание декоративного сада на месте пересечения улицы с автомагистралью. Окончательная площадь и пышность сада зависят от того, сколько участницы игры готовы в него вложить. Кроме того, хотя все три участницы были бы счастливы иметь такой сад (а его размер еще больше усилил бы это ощущение), ни одна из них не спешит с инвестициями из-за их размера.

Предположим, что если две или три участницы игры внесут свой вклад в создание сада, то этих ресурсов хватит для его закладки и последующего ухода за растениями, а сам сад будет весьма привлекательным и милым. Тем не менее, если всего одна из девушек или никто из них этого не сделают, сад будет скудным и неухоженным и не принесет радости людям. Таким образом, с точки зрения каждой участницы, существуют четыре разных исхода.


• Одна участница игры не инвестирует в сад, в отличие от двух остальных (что приводит к созданию привлекательного сада и позволяет ей сэкономить на вкладе).

• Одна участница игры инвестирует в сад, и остальные, одна или обе, — тоже (что приводит к созданию привлекательного сада, но не позволяет ей сэкономить на вкладе).

• Одна участница игры не инвестирует в сад, и только одна из двух оставшихся участниц вносит свой вклад (что приводит к созданию скудного сада, но позволяет ей сэкономить на вкладе).

• Одна участница игры инвестирует в сад, в отличие от двух остальных (что приводит к созданию скудного сада и не позволяет ей сэкономить на вкладе).


Очевидно, что первый из исходов — лучший, тогда как последний — худший. Мы хотим, чтобы более высокие показатели выигрышей соответствовали более благоприятным исходам, поэтому присваиваем первому исходу в списке выигрыш 4, а последнему — выигрыш 1. (Иногда выигрыши соответствуют порядковому номеру исхода в списке исходов. Следовательно, при наличии четырех исходов первый был бы лучшим, а четвертый — худшим, а меньшие числа обозначали бы более предпочтительные исходы. Читая книгу по теории игр, обратите особое внимание на то, какую систему обозначений выбрал автор; если вы пишете о теории игр, вам следует точно указать используемую систему обозначений.)

В двух средних исходах присутствует некоторая неоднозначность. Предположим, каждый игрок ценит привлекательный сад более высоко, чем собственный вклад в его создание. В таком случае исход, указанный в списке вторым, обеспечит выигрыш 3, а исход под номером три — выигрыш 2.

Допустим, участницы игры ходят поочередно. Эмили получает право первого хода и решает, инвестировать ли ей в сад. В свою очередь Нина, глядя на выбор Эмили, решает, стоит ли и ей так поступить. И наконец, Талия, оценив выбор Эмили и Нины, делает аналогичный выбор[22].

На рис. 3.6 изображено дерево этой игры. Чтобы облегчить ее описание, мы обозначили узлы действия специальными символами. Эмили делает ход в начальном узле a, а ветви, соответствующие двум имеющимся у нее вариантам выбора («внести вклад» и «не вносить вклад»), ведут к узлам b и c. В каждом из них должна сделать ход Нина и выбрать один из представленных вариантов. Ее выбор приводит к узлам d, e, f и g, в каждом из которых наступает очередь Талии ходить. Имеющиеся у Талии варианты выбора приводят к восьми концевым узлам, где мы показываем выигрыш в таком порядке: (Эмили, Нина, Талия)[23]. Например, если Эмили решает инвестировать в создание сада, Нина нет, а Талия да, то красивый декоративный сад будет разбит и две участницы, внесшие вклад в его создание, получат выигрыш 3 каждая, а участница, которая решила сэкономить, — свой максимальный выигрыш 4. В данном случае список выигрышей выглядит так: (3, 4, 3).


Рис. 3.6. Игра «уличный сад»


Для того чтобы применить к этой игре метод обратных рассуждений, начнем с узлов действия, расположенных непосредственно перед концевыми узлами, а именно с узлов d, e, f и g. Талия делает ход в каждом из этих узлов. В узле d она сталкивается с ситуацией, когда и Эмили, и Нина вносят вклад в создание сада, то есть сад уже наверняка будет красивым, поэтому, выбрав вариант «не вносить вклад», Талия получает свой максимальный выигрыш 4, тогда как в противном случае — следующий по размеру выигрыш 3. Стало быть, предпочтительный для Талии вариант выбора в данном узле — «не вносить вклад». Мы отображаем это путем выделения соответствующей ветви жирной линией и добавления к ней стрелки; любого из этих способов было бы достаточно для иллюстрации выбора Талии. В узле e Эмили выбрала вариант «внести вклад», а Нина — «не вносить», поэтому вклад Талии крайне важен для создания красивого сада. Талия получит выигрыш 3, если выберет «внести вклад», и 2 в результате отказа. Ее предпочтительный вариант выбора в узле e — «внести вклад». Аналогичным образом можно проверить выбор Талии в двух оставшихся узлах.

Теперь давайте вернемся немного назад и проанализируем предыдущий этап — а именно узлы b и c, в которых наступает очередь Нины выбирать. В узле b Эмили решила инвестировать в создание сада, поэтому Нина рассуждает так: «Если я выберу вариант “внести вклад”, это приведет игру в узел d, а там, насколько мне известно, Талия выберет “не вносить вклад”, и мой выигрыш составит 3. (Сад будет красивым, но я понесу убытки.) Если я выберу “не вносить вклад”, игра переместится в узел e, где, как мне известно, Талия выберет “внести вклад”, а мой выигрыш будет 4. (Сад будет красивым, а я сэкономлю на расходах.) Следовательно, я выбираю “не вносить вклад”». Аналогичные рассуждения показывают, что в узле c Нина предпочтет вариант «внести вклад».

И наконец, рассмотрим выбор Эмили в начальном узле a. Она может предвидеть последующий выбор как Нины, так и Талии и знает, что если выберет вариант «внести вклад», то Нина выберет «не вносить вклад», а Талия — «внести вклад». Если две участницы игры инвестируют в создание сада, он будет красивым, но Эмили понесет издержки, а значит, ее выигрыш составит 3. Если Эмили предпочтет «не вносить вклад», то в двух следующих друг за другом узлах будет выбран вариант «внести вклад», и при наличии красивого сада и отсутствии издержек ее выигрыш составит 4. Таким образом, оптимальный выбор Эмили в узле a — «не вносить вклад».

Теперь подвести итоги анализа игры «уличный сад» методом обратных рассуждений не составит труда. Эмили выберет вариант «не вносить вклад», затем Нина — «внести вклад» и наконец Талия — тоже «внести вклад». Такая последовательность выбора образует конкретный путь игры на данном дереве, который проходит по нижней ветви, исходящей из начального узла, а затем по верхним ветвям в каждом из двух идущих друг за другом следующих узлов, с и f. На рис. 3.6 этот путь игры легко отследить как непрерывную последовательность стрелок, пролегающую от начального до пятого концевого узла, если вести отсчет от верхней части дерева. Выигрыши, которые получат участницы игры, показаны в концевом узле.

Анализ методом обратных рассуждений прост и привлекателен. Мы бы хотели подчеркнуть его некоторые особенности. Во-первых, обратите внимание, что на равновесном пути игры с последовательными ходами отсутствует большинство ветвей и узлов. Однако вычисление лучших действий, которые следовало бы предпринять, если бы игра все же их достигла, — важная часть процесса поиска окончательного равновесия. Выбор на ранних этапах игры ее участницы делают под влиянием своих ожиданий в отношении того, что произойдет, если они выберут действие, отличающееся от оптимального, а также что бы произошло, если бы любая из оставшихся участниц игры предпочла нечто иное, чем то, что является для нее лучшим. Эти ожидания, основанные на прогнозируемых вариантах выбора в узлах, расположенных вне равновесного пути игры (то есть в узлах, которые соответствуют ветвям, отсеченным в процессе анализа методом обратных рассуждений), позволяют участницам игры совершать оптимальные действия в каждом узле. Например, предпочтительный выбор Эмили «не вносить вклад», сделанный в первом узле, обусловлен пониманием того, что если она выберет вариант «внести вклад», то Нина выберет «не вносить вклад», после чего Талия решит «внести вклад»; эта последовательность обеспечит Эмили выигрыш 3 вместо выигрыша 4, который она могла бы получить, указав вариант «не вносить вклад» на первом ходе.

Равновесие обратных рассуждений обеспечивает полное описание всего процесса анализа посредством формулировки оптимальной стратегии для каждого игрока. Мы уже отмечали, что стратегия — это исчерпывающий план действий. Эмили делает первый ход, имея два варианта выбора, а значит, ее стратегия достаточно проста и фактически сводится к одному ходу. Но Нина, которая ходит второй, действует уже в каком-то из двух узлов: в одном — если Эмили выбрала вариант «внести вклад», и в другом — если Эмили предпочла «не вносить вклад». В исчерпывающем плане Нины должны быть указаны действия в каждом из этих случаев. Один такой план, или стратегия, может быть следующим: «Выбрать “внести вклад”, если Эмили выбрала “внести вклад”, и “не вносить вклад”, если Эмили его не вносит». Благодаря анализу методом обратных рассуждений мы знаем, что Нина не выберет эту стратегию, но на данном этапе нам необходимо описать все доступные стратегии, из которых Нина сможет выбирать согласно правилам игры. Мы можем сократить их описание, используя обозначение «В» вместо «внести вклад» и «Н» вместо «не вносить вклад». В результате вышеупомянутую стратегию можно представить так: «В, если Эмили выберет В, а значит, игра перейдет в узел b; Н, если Эмили выберет Н и игра перейдет в узел с», или еще проще: «В в b, Н в c», или даже «ВН», если обстоятельства, при которых выбирается каждое из указанных действий, очевидны или разъяснены ранее. Теперь легко увидеть, что поскольку у Нины по два варианта выбора в каждом из двух узлов, в которых она может действовать, в ее распоряжении находятся четыре плана действий, или стратегии: «В в b, В в c»; «В в b, Н в c»; «Н в b, В в c» и «Н в b, Н в c», или «ВВ», «ВН», «НВ» и «НН». Анализ методом обратных рассуждений, а также стрелки в узлах b и c на рис. 3.6 показывают, что оптимальная стратегия Нины — «НВ».

В случае Талии ситуация усложняется. Когда наступит ее черед, история игры может представлять собой любой из четырех возможных вариантов. Очередь действовать переходит к Талии в одном из четырех узлов дерева: один после выбора Эмили В и Нины В (узел d); второй после В Эмили и Н Нины (узел e); третий после Н Эмили и В Нины (узел f) и четвертый после Н и Эмили, и Нины (узел g). Каждая из стратегий (или исчерпывающих планов действий) Талии должна определять одно из двух действий по каждому из этих четырех сценариев или одно из двух действий в каждом из возможных узлов действия. При наличии четырех узлов, в которых необходимо указать действие, и двух действий, из которых следует выбрать одно в каждом узле, существует 2 × 2 × 2 × 2, или 16, вероятных комбинаций действий. Следовательно, в распоряжении Талии 16 доступных стратегий. Одну из них можно было бы записать так:

«В в d, Н в e, Н в f, В в g», или для краткости «ВННВ»

Здесь мы зафиксировали последовательность четырех сценариев (историй ходов Эмили и Нины) в порядке расположения узлов d, e, f и g. Далее с помощью такой же сокращенной формы записи можно составить полный список всех 16 находящихся в распоряжении Талии стратегий:

ВВВВ, ВВВН, ВВНВ, ВВНН, ВНВВ, ВНВН, ВННВ, ВННН, НВВВ, НВВН, НВНВ, НВНН, ННВВ, ННВН, НННВ, НННН.

Анализ методом обратных рассуждений дерева игры на рис. 3.6, а также стрелки в узлах d, e, f и g показывают, что оптимальная стратегия Талии — НВВН.

Теперь выводы нашего анализа методом обратных рассуждений можно представить в виде описания стратегического выбора, сделанного каждой участницей игры: Эмили выберет Н из двух имеющихся у нее стратегий, Нина — НВ из четырех доступных стратегий, а Талия — НВВН из шестнадцати стратегий. Когда каждая из участниц анализирует следующие ветви и узлы дерева игры, чтобы составить прогноз конечных результатов текущих действий, она вычисляет оптимальные стратегии других участниц игры. Эта конфигурация стратегий (Н в случае Эмили, НВ — Нины и НВВН — Талии) представляет собой равновесие в данной игре, полученное методом обратных рассуждений.

Мы можем объединить оптимальные стратегии участниц игры, чтобы найти фактический путь игры, который приведет к равновесию обратных рассуждений. Эмили начнет с выбора Н. Нина, придерживаясь своей стратегии НВ, выберет в ответ на действие Эмили Н действие В. (Помните: стратегия НВ Нины означает «выбрать Н, если Эмили выбрала В, и В, если Эмили предпочла Н».) Согласно принятой нами договоренности, фактическое действие Талии после Н Эмили и В Нины (из узла f) обозначается третьей буквой в нашем четырехбуквенном описании ее стратегий. Поскольку оптимальная стратегия Талии — НВВН, ее действие по пути игры — В. Таким образом, фактический путь игры состоит из действия Н, выбранного Эмили, и действия В, сделанного Ниной и Талией.

В итоге мы имеем три разные концепции:

1. Список доступных стратегий для каждого игрока, который, особенно для игроков, вступающих в игру на более поздних этапах, может быть очень длинным, поскольку необходимо перечислить их действия в ситуациях, соответствующих всем возможным предыдущим ходам других игроков.

2. Оптимальная стратегия, или исчерпывающий план действий, для каждого игрока. Эта стратегия должна описывать лучший выбор игрока в каждом узле, в котором, согласно правилам игры, игрок делает ход, даже если многие из этих узлов так и не будут достигнуты на фактическом пути игры. По сути, такое описание — это прогноз игроков, сделавших предыдущие ходы, относительно того, что бы произошло, если бы они предприняли другие действия, а значит, оно представляет собой важную часть определения их наилучших действий в предыдущих узлах. Совокупность оптимальных стратегий всех игроков образует равновесие обратных рассуждений.

3. Фактический путь игры в равновесии обратных рассуждений, найденный посредством объединения оптимальных стратегий всех игроков.

4. Преимущества порядка

В равновесии обратных рассуждений в игре «уличный сад» Эмили получает наилучший исход (выигрыш 4) благодаря возможности сделать первый ход. Решив не вносить вклад в создание сада, Эмили перекладывает бремя ответственности на двух других участниц игры, каждая из которых может получить следующий лучший исход только при условии, что обе выберут вариант «внести вклад». Большинство людей, не имеющих опыта ведения стратегических игр, придерживаются мнения, будто преимущество первого хода должно присутствовать во всех играх. Однако это не так. Во многих играх второй ход более выигрышный. Представьте себе стратегическое взаимодействие между двумя компаниями, продающими аналогичные товары по каталогам, скажем, Land’s End и L.L. Bean. Если бы одна из них выпустила каталог первой, вторая еще до выпуска своего каталога обрела бы шанс узнать, какие цены установила первая компания, и смогла бы предложить на свои товары более низкие цены, получив в результате огромное конкурентное преимущество.

Преимущество первого хода зависит от способности игрока взять на себя обязательство в связи с выгодной позицией и вынудить других игроков приспосабливаться к нему; преимущество второго хода обусловлено гибкостью адаптации игрока, делающего ход вторым, к выбору других игроков. Что важнее в той или иной игре, обязательство или гибкость, определяется ее конкретной конфигурацией стратегий и выигрышей; общего правила здесь нет. На протяжении всей книги мы будем встречать примеры преимуществ обоих типов. Основная мысль (противоречащая общепринятому мнению) состоит в том, что преимущество не всегда получает игрок, который ходит первым. И она настолько важна, что мы сочли необходимым подчеркнуть ее с самого начала.

Когда в игре есть преимущество первого или второго хода, каждый игрок может попытаться манипулировать порядком игры, чтобы обеспечить себе выгодную позицию. Тактические приемы такой манипуляции — это стратегические ходы, которые мы рассмотрим в главе 9.

5. Увеличение количества ходов

В разделе 3 мы говорили о том, что увеличение количества игроков усложняет анализ игр с последовательными ходами. В данном разделе мы рассмотрим еще один тип сложности, возникающий в результате добавления в игру дополнительных ходов. Самый простой способ сделать это в игре с двумя участниками — разрешить им чередовать ходы более одного раза. В итоге дерево игры разрастается таким же образом, как и дерево игры со многими участниками, но последующие ходы делают те же игроки, что и на более ранних этапах игры.

Многие широко распространенные игры, такие как крестики-нолики, шашки и шахматы, и есть стратегические игры с двумя участниками и чередующимися последовательными ходами. Использование дерева игры и анализа методом обратных рассуждений теоретически позволяет их «решить», то есть определить равновесный исход игры методом обратных рассуждений, а также равновесные стратегии, обеспечивающие такой исход. К сожалению, по мере того как игра усложняется, а стратегии становятся все запутаннее, поиск оптимальной стратегии тоже затрудняется. В таких случаях на помощь приходят стандартные компьютерные программы вроде упомянутой в главе 2 Gambit.

А. Крестики-нолики

Начнем с игры в крестики-нолики, самой простой из вышеупомянутых, и рассмотрим ее более легкий вариант, в котором каждый из двух игроков (Х и 0) пытается первым заполнить двумя своими символами любой столбец, ряд или диагональ в игре на поле два на два. У первого игрока четыре возможных действия или позиции, в которых он может поставить крестик. Второй игрок имеет три возможных действия в каждом из четырех узлов принятия решений. Когда первый игрок получает право сделать второй ход, у него есть два варианта действия в каждом из 12 (4 × 3) узлов принятия решений. Как показано на рис. 3.7, даже у этой мини-игры в крестики-нолики очень сложное дерево игры. Хотя на самом деле оно не такое уж сложное, поскольку игра гарантированно закончится, после того как первый игрок сделает второй ход. Тем не менее на этом дереве 24 концевых узла, и их необходимо проанализировать.


Рис. 3.7. Сложное дерево простой игры в крестики-нолики на поле два на два


Это дерево служит здесь иллюстрацией того, насколько сложным может быть дерево даже в случае простых (или упрощенных) игр. Как оказалось, применение метода обратных рассуждений к анализу мини-игры в крестики-нолики позволяет быстро найти равновесие. Из такого анализа следует, что любой выбор первого игрока на втором ходе приводит к одному и тому же исходу игры. Здесь нет оптимального действия; любой ход так же хорош, как и остальные. Стало быть, когда второй игрок делает первый ход, он тоже видит, что любой возможный ход даст тот же результат, поэтому может с одинаковым успехом выбрать любой из трех вариантов в каждом из четырех узлов принятия решений. И наконец, то же самое верно и для первого игрока, делающего первый ход: любой вариант выбора равноценен остальным вариантам, а значит, он гарантированно победит в игре.

Хотя у этой версии игры в крестики-нолики весьма занимательное дерево, ее решение не представляет особого интереса. Первый игрок всегда выигрывает, поэтому выбор, сделанный обоими игроками, никак не влияет на конечный результат. Многим из нас больше знакома версия «три на три» игры в крестики-нолики. Для того чтобы проиллюстрировать ее деревом игры, нам пришлось бы показать, что первый игрок имеет девять возможных действий в начальном узле, у второго игрока восемь вариантов действий в каждом из девяти узлов принятия решения. На втором ходе у первого игрока семь возможных действий в каждом из 8 × 9 = 72 узлов, тогда как у второго игрока на втором ходе — шесть возможных действий в каждом из 7 × 8 × 9 = 504 узлов. Эта закономерность продолжается до тех пор, пока дерево не прекратит стремительно разрастаться, поскольку определенные комбинации ходов приводят к победе первого игрока, после чего игра заканчивается. Однако минимум до пятого хода победа невозможна. Для того чтобы нарисовать полное дерево этой игры, понадобится огромный лист бумаги или очень мелкий почерк.

Однако большинство из вас знают, как в худшем случае добиться хотя бы ничьей в игре в крестики-нолики на поле три на три. Так что есть простое решение этой игры, которое можно найти посредством обратных рассуждений, и истинный стратег способен существенно снизить сложность игры в ходе его поисков. Оказывается, как и в версии игры «два на два», многие возможные пути на дереве игры со стратегической точки зрения идентичны. В частности, девять начальных ходов могут быть только трех типов: вы ставите крестик на угловую позицию (четыре возможных варианта), на боковую позицию (также четыре возможных варианта) и на центральную позицию (один вариант). Использование этого метода для упрощения дерева игры поможет снизить уровень сложности задачи и приведет вас к описанию оптимальной равновесной стратегии, полученной методом обратных рассуждений. К примеру, мы могли бы показать, что игрок, который ходит вторым, может гарантированно добиться как минимум ничьей, сделав надлежащий первый ход и постоянно блокируя в дальнейшем попытки первого игрока выставить три символа в ряд[24].

Б. Шахматы

Хотя сравнительно простые игры, такие как крестики-нолики, решаемы методом обратных рассуждений, выше мы показали, насколько быстро повышается сложность дерева игры даже в играх с двумя участниками. Поэтому при анализе более сложных игр вроде шахмат находить полное решение становится гораздо труднее.

В шахматах в распоряжении игроков (условно называемых «белые» и «черные») имеются наборы из 16 фигур разной формы, которые передвигаются по шахматной доске восемь на восемь клеток (рис. 3.8) в соответствии с заданными правилами[25]. Белые ходят первыми, черные — вторыми, и так далее по очереди. Все ходы видны другому игроку, и ничего не оставлено на волю случая, как в карточных играх, где карты перетасовываются и сдаются. Кроме того, шахматная партия должна заканчиваться за конечное число ходов. Согласно правилам, при троекратном повторении одной и той же позиции в течение игры объявляется ничья. Ввиду наличия конечного количества способов разместить 32 фигуры (или меньше, если некоторые фигуры побиты) на 64 клетках шахматной доски, партия не может продолжаться бесконечно долго без возникновения подобной ситуации. Поэтому в принципе шахматы поддаются полному анализу методом обратных рассуждений.


Рис. 3.8. Шахматная доска


Однако этот анализ так и не проведен. Шахматы не «решены» так, как в свое время крестики-нолики, а причина в том, что, несмотря на простоту правил, шахматы — чрезвычайно сложная игра. Из начальной позиции набора фигур, показанных на рис. 3.8, белые могут сделать любой из 20 ходов[26], а черные — ответить любым из 20 ходов. Следовательно, из первого узла исходят 20 ветвей, каждая ведет ко второму узлу, из которого исходят еще 20 ветвей. Всего после двух ходов образуется 400 ветвей, и каждая ведет к узлу, из которого исходят очередные ветви. Общее же количество возможных ходов в шахматах составляет, по примерным оценкам, 10120, то есть единицу со 120 нулями. Суперкомпьютеру, в тысячу раз превышающему ваш ПК по быстродействию и выполняющему один триллион операций в секунду, понадобилось бы более 10100 лет, чтобы проверить все ходы[27]. Астрономы отводят нам менее 1010 лет до того момента, когда Солнце превратится в красный гигант и поглотит Землю.

Получается, что хотя для игры в шахматы теоретически можно найти всеобъемлющее решение методом обратных рассуждений, ее полное дерево может оказаться слишком сложным для того, чтобы реализовать такое решение на практике. Что делать игроку в данной ситуации? Знакомство с историей попыток запрограммировать компьютер на игру в шахматы поможет нам многое об этом узнать.

Когда стало ясно, что компьютеры способны выполнять сложные вычисления в науке и бизнесе, многие математики и программисты решили, что вскоре компьютерная шахматная программа победит именитых гроссмейстеров. Но это произошло не так быстро, хотя компьютерные технологии развивались стремительными темпами, тогда как человеческое мышление несколько поотстало. В конце концов в декабре 1992 года немецкая компьютерная программа под названием Fritz2 выиграла у чемпиона мира Гарри Каспарова несколько блицпартий. Согласно обычным правилам, каждому игроку предоставляется 2,5 часа на выполнение 40 ходов, и люди дольше удерживали превосходство. Команда специалистов, финансируемая компанией IBM, вложила немало усилий и ресурсов в разработку специализированного компьютера (получившего название Deep Blue) для игры в шахматы и соответствующего программного обеспечения. В феврале 1996 года Deep Blue выступил в роли противника Гарри Каспарова в матче из шести партий и произвел сенсацию, выиграв первую партию, но Каспаров быстро выявил его слабые места, улучшил контрстратегии и мастерски выиграл остальные партии. На протяжении следующих 15 месяцев команда IBM совершенствовала аппаратное и программное обеспечение компьютера, после чего в мае 1997 года модифицированный Deep Blue выиграл у Каспарова очередной матч из шести партий.

Таким образом, развитие компьютерных технологий характеризовалось сочетанием периодов медленного поэтапного улучшения и ряда стремительных рывков, в то время как люди, сохранив определенное превосходство, не смогли перестроиться настолько быстро, чтобы удержать передовые позиции. При ближайшем рассмотрении оказалось, что люди и компьютеры используют абсолютно разные подходы к анализу очень сложного дерева игры в шахматы.

При обдумывании хода в шахматах крайне трудно (для обоих: и людей, и компьютеров) заранее предвидеть исход игры. Но как насчет того, чтобы просчитать часть ходов, скажем 5−10, вперед и проанализировать игру в обратном порядке из этой позиции? Игра необязательно должна закончиться в рамках этого ограниченного периода; иными словами, узлы, которых вы достигнете через 5−10 ходов, не будут концевыми. Однако в соответствии с правилами игры выигрыши указываются только для концевых узлов. Следовательно, необходим некий косвенный способ присвоения правдоподобных выигрышей неконцевым узлам, поскольку вы не можете проанализировать все дерево игры методом обратных рассуждений с самого конца. Правило, согласно которому присваиваются промежуточные выигрыши, называется функцией промежуточной оценки.

В шахматах и люди, и компьютерные программы используют такой частичный упреждающий анализ в сочетании с функцией промежуточной оценки. Классический метод присваивает определенные значения каждой фигуре, а также позиционным и комбинационным преимуществам, которые могут возникнуть в процессе игры. Количественная оценка значений для различных позиций производится на основе опыта игры, накопленного всем шахматным сообществом в ходе прошлых партий, начинавшихся с соответствующих позиций или комбинаций; этот опыт называется знанием. Сумма всех числовых значений, закрепленных за шахматными фигурами и их комбинациями на той или иной позиции, и есть ее промежуточная оценка. Целесообразность хода определяется по оценке позиции, на которую предположительно выйдет игра после точного упреждающего вычисления конкретного количества (например, пяти или шести) ходов.

Дальше всего оценка промежуточных позиций продвинулась в отношении дебютов, то есть первой дюжины ходов игры. Каждый отдельно взятый дебют может привести к любому из огромного множества дальнейших ходов и позиций, однако опыт позволяет игрокам делать вывод о том, какой дебют с определенной степенью вероятности более выгоден для того или иного игрока. Эта информация записана в объемных книгах о шахматных дебютах; все шахматисты высокого класса и компьютерные программы помнят и используют эти знания.

На последних стадиях игры, когда на доске остается всего несколько фигур, сам процесс обратных рассуждений зачастую достаточно прост, чтобы быть выполнимым, и достаточно полон, чтобы дать исчерпывающий ответ. Труднее всего проанализировать миттельшпиль (середину игры), когда позиции развились до того уровня сложности, который не упростится за несколько ходов. Для поиска удачного хода из такой позиции хорошо проработанная функция промежуточной оценки может быть более значимой, чем способность рассчитать игру еще на несколько ходов вперед.

Именно на стадии миттельшпиля на первый план выходит искусство игры в шахматы. У лучших шахматистов развивается интуиция, которая позволяет им распознавать хорошие возможности и избегать скрытых ловушек на уровне, с которым компьютерным программам сложно конкурировать. Программисты обнаружили, что в большинстве случаев компьютеры трудно обучить тем навыкам распознавания образов, которые люди развивают и используют инстинктивно, — например, когда они узнают лица и связывают их с именами. Искусство ведения игры на стадии миттельшпиля в шахматах — это распознавание и оценка комбинаций столь же загадочным способом. Именно в этом состояло самое большое преимущество Каспарова перед Fritz2 или Deep Blue. Это также объясняет, почему компьютерные программы показывают более высокие результаты в игре с людьми в блицпартиях или партиях с ограниченным временем обдумывания ходов: человеку просто не хватает времени, чтобы применить свое искусство ведения игры на стадии миттельшпиля.

Иными словами, лучшие шахматисты обладают филигранным знанием шахмат, основанным на опыте или способности распознавать образы, что предоставляет в их распоряжение более эффективную функцию промежуточной оценки. Компьютеры доминируют в области вычислений методом грубой силы. Таким образом, хотя в настоящее время и люди, и компьютеры используют сочетание упреждающей и промежуточной оценки, они применяют их в разных пропорциях: шахматисты просчитывают наперед не так много ходов, но располагают более развитой функцией промежуточной оценки на основании знаний; компьютеры имеют менее развитые функции оценки, но могут просчитывать наперед гораздо больше ходов благодаря огромной вычислительной мощности.

В последнее время компьютеры начали накапливать больше знаний. В процессе модификации Deep Blue в 1996–1997 годах специалисты IBM заручились поддержкой экспертов по шахматам для улучшения функции промежуточной оценки в своих программах. Консультанты много раз играли в шахматы с компьютером, отмечали его слабые места и подсказывали, как изменить функцию оценки, чтобы устранить дефекты. Deep Blue явно пошел на пользу вклад экспертов и их тонкое мышление, ставшее результатом многолетнего опыта и знания сложных взаимосвязей между фигурами на шахматной доске.

Если люди, постепенно формулируя свои глубинные знания, передают их компьютерам, то на что рассчитывать шахматистам, не получающим от ПК аналогичной помощи? В момент первой встречи с Deep Blue в 1997 году Каспаров был поражен человеческим или даже сверхчеловеческим качеством игры компьютера. Он даже увидел в одном из его ходов «руку Бога». А ведь ситуация может усугубиться еще сильнее: способность компьютеров просчитывать ходы методом грубой силы стремительно повышается, причем одновременно, хотя и медленнее, они обретают тонкость мышления, свойственную человеку.

Абстрактная теория шахмат гласит, что это конечная игра, которая может быть решена методом обратных рассуждений. Шахматы зачастую требуют искусства ведения игры, опирающегося на опыт, интуицию и тонкие суждения. Плохо ли это с точки зрения использования метода обратных рассуждений в процессе анализа игр с последовательными ходами? Мы считаем, что нет. Теория действительно не позволяет найти полное решение игры в шахматы, но дает возможность достаточно далеко продвинуться в этом направлении. Упреждающий анализ нескольких ходов — важный аспект подхода, подразумевающий сочетание просчета ходов методом грубой силы и основанной на знаниях оценки промежуточных позиций. По мере увеличения вычислительной мощности компьютеров будет возрастать и роль просчитывания ходов методом грубой силы, а значит, и область применения теории обратных рассуждений.

Данные исследований игры в шашки, о чем мы расскажем ниже, говорят о том, что решение игры в шахматы все же может быть найдено.

В. Шашки

Невероятное количество компьютерных и человеко-часов ушло на поиск решения игры в шахматы. С не меньшим упорством исследователи работали и над решением несколько более простой игры — в шашки, и в 2007 году объявили, что оно найдено[28].

Шашки — еще одна игра с двумя участниками, в которую играют на доске восемь на восемь клеток. Каждый игрок имеет по 12 круглых фигур, или шашек, разного цвета (рис. 3.9), и игроки по очереди передвигают их по диагонали, перепрыгивая (и захватывая) шашки противника, когда это возможно. Как и в шахматах, игра заканчивается и игрок А выигрывает, если у игрока Б не остается шашек или ему некуда ходить. Кроме того, партия может завершиться вничью, если оба игрока согласятся, что ни один из них не может победить.


Рис. 3.9. Шашки


Хотя сложность шашек меркнет на фоне шахмат (количество вероятных позиций в шашках приблизительно равно квадратному корню из количества позиций в шахматах), существует 5 × 1020 возможных позиций, так что о построении дерева игры не может быть и речи. Если исходить из здравого смысла и результатов чемпионатов мира по шашкам за многие годы, то хорошая игра должна приводить к ничьей, но это не было доказано. Однако спустя какое-то время программисту из Канады все же удалось получить такое доказательство — компьютерную программу Chinook, которая способна обеспечить гарантированную ничью.

Chinook появилась в 1989 году, а в 1992-м впервые сразилась с чемпионом мира по шашкам Марионом Тинсли (проиграв со счетом 4:2 при 33 ничьих), а затем еще раз в 1994 году (когда во время серии ничьих у Тинсли пошатнулось здоровье). В период с 1997 по 2001 год работа над программой была приостановлена, поскольку ее создатели ждали усовершенствования компьютерных технологий. И наконец весной 2007 года Chinook продемонстрировала беспроигрышный алгоритм игры в шашки, использующий комбинацию анализа методом обратных рассуждений с конца игры и прямого анализа игры с исходной позиции наряду с эквивалентом функции промежуточной оценки для отслеживания лучших ходов в базе данных, включающей все возможные позиции на доске.

Создатели Chinook называют полную игру в шашки «слабо решенной»; они знают, что могут обеспечить ничью, и у них есть стратегия ее достижения с исходной позиции. Для всех 39 × 1012 возможных позиций с наличием 10 или менее шашек на доске они описывают игру как «строго решенную». В этом случае они знают, что могут не только сыграть вничью, но и достичь ее из любой позиции, сформировавшейся после того, как на доске останется не более 10 шашек. Этот алгоритм сначала решил эндшпиль с 10 шашками, а затем вернулся к началу игры, чтобы найти те ее пути, на которых оба игрока делают оптимальный выбор. Механизм поиска, включающий комплексную систему оценки каждой промежуточной позиции, неизбежно приводил к тем позициям с 10 шашками, которые гарантировали ничью.

Следовательно, наша надежда на будущее анализа методом обратных рассуждений небеспочвенна. Мы знаем, что в действительно простых играх можем найти равновесие посредством вербальных рассуждений без необходимости рисовать дерево игры в явной форме. В играх среднего уровня сложности процесс вербальных размышлений затрудняется, но можно нарисовать дерево игры и использовать его в ходе анализа методом обратных рассуждений. Иногда при анализе дерева игры умеренной сложности имеет смысл прибегнуть к помощи компьютера. В более сложных играх, таких как шашки и шахматы, мы можем нарисовать только часть дерева игры, поэтому должны применять сочетание двух методов: 1) просчет ходов, строящийся на логике обратных рассуждений; 2) эмпирическая оценка промежуточных позиций на основе опыта. Вычислительные возможности существующих алгоритмов подтверждают тот факт, что даже некоторые игры этой категории поддаются решению при наличии соответствующего времени и ресурсов.

К счастью, большинство стратегических игр, с которыми мы сталкиваемся в области экономики, политики, спорта, бизнеса и в повседневной жизни, гораздо проще по сравнению с шахматами или даже шашками. В них может быть несколько игроков, которые ходят по несколько раз, и даже большое количество игроков и большое количество ходов. Однако у нас есть шанс нарисовать приемлемое дерево для игр, последовательных по своей сути. Логика обратных рассуждений остается в силе; и часто так бывает, что стоит вам освоить этот метод, и вы легко выполняете необходимый логический анализ и решаете игру даже без построения дерева игры в явной форме. Кроме того, именно на этом промежуточном уровне сложности (между простыми примерами, которые мы решили в данной главе, и нерешенными играми вроде шахмат) могут пригодиться такие компьютерные программы, как Gambit; это открывает перспективу применения теории к решению многих игр на практике.

6. Фактические данные, касающиеся метода обратных рассуждений

Насколько хорошо фактические участники игр с последовательными ходами выполняют вычисления в рамках анализа методом обратных рассуждений? Таких систематизированных данных крайне мало, но аудиторные и научно-исследовательские эксперименты с некоторыми играми привели к результатам, на первый взгляд противоречащим прогнозам теории. Ряд экспериментов имеют весьма интересные последствия для стратегического анализа игр с последовательными ходами.

Например, в ходе многих экспериментов разыгрывалась состоящая из одного раунда переговорная игра, где двух игроков, А и Б, выбирали из группы студентов или добровольцев. Затем экспериментатор давал им один доллар или другую оговоренную сумму, которую следовало разделить между двумя игроками по следующей схеме: игрок А предлагает, скажем, вариант «75 центов мне и 25 центов игроку Б». Если Б принимает это предложение, то доллар делится именно так, если отклоняет, то никто ничего не получает.

В данном случае анализ методом обратных рассуждений говорит о том, что игроку Б следует принять любую сумму, какой бы маленькой она ни была, поскольку альтернатива еще хуже (то есть 0), и исходя из этого игрок А вообще должен предложить «99 центов мне и 1 цент Б». Однако подобного исхода почти никогда не бывает. Большинство игроков, выступающих в роли игрока А, предлагают более справедливое, близкое к равному разделение суммы. На самом деле 50:50 — самый распространенный вариант. Мало того, большинство участников, будучи в роли игрока Б, отклоняют предложения, оставляющие им менее 25 % от общей суммы, и уходят ни с чем, а некоторые отвергают даже 40 %[29].

Многие специалисты по теории игр не согласны, что эти выводы подрывают теорию, аргументируя свою точку зрения примерно так: «Эти суммы настолько малы, что разум игроков воспринимает происходящее как нечто тривиальное. Игрок Б теряет 25 или 40 центов, что практически равно нулю, но при этом, возможно, испытывает определенное удовлетворение от того, что отказался от столь унизительного предложения. Если бы на кону стояла тысяча долларов и 25 % составляли бы приличную сумму, то любой игрок Б принял бы такое предложение». Но этот аргумент нельзя считать бесспорным. Эксперименты с гораздо более высокими ставками демонстрируют аналогичные результаты. В Индонезии, например, оперировали суммами, не очень большими в долларах, но составлявшими трехмесячный заработок участников экспериментов. И тем не менее их результаты не показали явной склонности игроков А делать предложения о менее равноценном дележе общей суммы, хотя по мере ее увеличения игроки Б были готовы принимать несколько меньшую долю. Аналогичные эксперименты, проведенные в Словацкой Республике, доказали, что серьезное изменение выигрышей не влияет на поведение неопытных игроков[30].

Как правило, у участников подобных экспериментов нет ни базовых знаний в области теории игр, ни специальных вычислительных навыков. Но это чрезвычайно простая игра, и наверняка даже самый неопытный игрок может ее проанализировать посредством обратных рассуждений, а ответы на прямые вопросы, поставленные после эксперимента, обычно говорят о том, что большинство его участников действительно делают это. Такие результаты свидетельствуют не столько о несостоятельности метода обратных рассуждений, сколько об ошибке теоретиков, полагающих, что каждого игрока интересует исключительно собственная прибыль, и не учитывающих моральный аспект вопроса. В большинстве стран общество прививает своим членам обостренное чувство справедливости, которое заставляет игроков Б отклонять любое явно несправедливое предложение. Учитывая это, игроки А предлагают практически равное разделение общей суммы.

Эти выводы подтверждают данные, полученные в рамках изучения новой науки под названием нейроэкономика. Алан Сэнфи и его коллеги сделали томограмму головного мозга игроков в момент принятия решений в ультимативной игре и обнаружили возбуждение активности в области головного мозга, отвечающей за негативные эмоции, в тот момент, когда игроки Б отклоняли «несправедливые» (менее чем 50:50) предложения о дележе общей суммы. Создается впечатление, что глубинные инстинкты и чувство гнева и отвращения причастны к таким отказам. Кроме того, исследователи обнаружили, что «несправедливые» предложения (менее чем 50:50) отклонялись реже, когда игроки Б знали, что их делает компьютер, по сравнению со случаями, когда они исходили от человека[31].

Примечательно, что игроки А демонстрируют склонность к щедрости даже при отсутствии угрозы возмездия. В радикальном варианте игры под названием диктаторская игра, где игрок А решает, как делить общую сумму, а Б вообще лишен выбора, многие игроки А все же отдают вполне приличную долю игрокам Б. Это позволяет предположить, что у игроков есть некое врожденное предпочтение к относительно равноценному распределению общей суммы[32]. Однако в игре в диктатора предложения игроков А заметно менее щедрые, чем в ультимативной игре; это доказывает, что реальный страх возмездия также весьма сильный мотиватор. Кроме того, по всей видимости, немалую роль играет и мнение о нас окружающих. Примечательно, что когда схема эксперимента меняется таким образом, чтобы даже экспериментатор не мог определить, кто предложил (или принял) разделение, готовность делиться заметно снижается.

Еще одна экспериментальная игра со столь же парадоксальными результатами проходит по следующей схеме: выбираются два игрока, А и Б. Экспериментатор кладет на стол монету в 10 центов. Игрок А может ее взять или пропустить ход. Если игрок А берет монету, игра закончена; при этом А получает 10 центов, а Б — ничего. Если игрок А пропускает ход, экспериментатор кладет на стол еще одну монету в 10 центов, и теперь игроку Б предстоит выбирать, взять ли ему обе монеты или пропустить ход. Игроки действуют по очереди, а стопка монет растет до тех пор, пока не достигнет определенной предельной суммы (например, одного доллара), заранее известной обоим игрокам.

Дерево этой игры показано на рис. 3.10. Из-за его внешнего вида игры такого типа часто называют игра «стоножка»[33]. Возможно, вам даже не понадобится строить дерево игры, чтобы проанализировать ее методом обратных рассуждений. Очевидно, что игрок Б возьмет один доллар на последнем этапе, поэтому игроку А следует взять 90 центов на предпоследнем этапе и т. д. Следовательно, игрок А должен взять монету в 10 центов в самом начале и закончить игру.


Рис. 3.10. Игра «стоножка»


Однако во время экспериментов такие игры длятся, как правило, несколько раундов. Примечательно, что благодаря иррациональному поведению игроки как группа получают больше денег, чем в случае, если бы они придерживались логики обратных рассуждений. Иногда более весомых успехов добивается игрок А, а иногда — игрок Б, а порой им даже удается разрешить конфликт или задачу с переговорами. В ходе аудиторного эксперимента, который проводил один из нас (Диксит), одна такая игра дошла до самого конца. Игрок Б забрал свой доллар и совершенно добровольно отдал 50 центов игроку А. Диксит спросил: «Вы сговорились? Вы с Б друзья?» На что игрок А ответил: «Нет, мы даже не были знакомы раньше. Но теперь он мой друг». Мы столкнемся с аналогичными примерами сотрудничества, на первый взгляд противоречащими логике обратных рассуждений, при анализе повторяющихся игр с дилеммой заключенных в главе 10.

Игра «стоножка» указывает на возможную проблему с логикой обратных рассуждений в играх с ненулевой суммой, даже если игроки принимают решения исходя исключительно из денежных соображений. Обратите внимание, что, пропуская ход в первом раунде, игрок А уже показывает, что не опирается на метод обратных рассуждений. Так чего следует ожидать от него игроку Б в третьем раунде? Пропустив ход однажды, игрок А может снова это сделать, а значит, игроку Б было бы целесообразно пропустить ход во втором раунде. В конечном счете кто-то заберет всю стопку монет, но исходное отклонение от логики обратных рассуждений не позволяет предсказать, когда именно это произойдет. А поскольку стопка монет продолжает расти, если я увижу, что вы отклоняетесь от логики обратных рассуждений, у меня также может возникнуть желание отклониться от нее как минимум на какое-то время. Игрок может сознательно пропустить ход в одном из начальных раундов игры, чтобы сигнализировать о готовности пропускать ходы в будущих раундах. Такая проблема не возникает в играх с нулевой суммой, в которых отсутствует стимул к сотрудничеству посредством ожидания.

В поддержку этого наблюдения Стивен Левитт, Джон Лист и Салли Сэдофф провели эксперименты с участием шахматистов мирового класса и обнаружили, что поведение игроков в большей степени соответствует логике обратных рассуждений в играх с последовательными ходами с нулевой суммой, чем в игре «стоножка» с ненулевой суммой. Их игра «стоножка» состоит из шести узлов, а общая сумма выигрыша растет довольно резко от раунда к раунду[34]. Несмотря на значительные выгоды для игроков, способных пропускать ходы, передавая их друг другу, согласно равновесию обратных рассуждений в каждом узле необходимо выбирать вариант «взять». Вопреки теории всего 4 процента игроков сыграли «взять» в первом узле, практически не поддержав равновесие обратных рассуждений даже в этой простой игре на шесть ходов. (Доля игроков, выбравших вариант «взять», увеличивалась в ходе игры[35].)

Напротив, в игре с последовательными ходами с нулевой суммой, в которой равновесие обратных рассуждений достигается за 20 ходов (вам предстоит решить эту игру в упражнении S7), шахматисты играли в точном соответствии с ним в 10 раз чаще, чем в игре «стоножка», состоящей из шести ходов[36].

Левитт и его соавторы также экспериментировали с похожей, но более сложной игрой с нулевой суммой (одну из версий которой вам предлагается решить в упражнении U5), где шахматисты достигали полного равновесия обратных рассуждений только в 10 процентах случаев (в 20 процентах, когда в игре участвовали гроссмейстеры с самым высоким рейтингом), хотя на последних нескольких ходах согласование ходов с методом обратных рассуждений составляло почти 100 процентов. Поскольку шахматисты мирового класса проводят десятки тысяч часов в попытках выиграть шахматные партии посредством обратных рассуждений, эти результаты указывают на то, что даже в высшей степени опытные игроки зачастую не могут мгновенно включиться в новую игру: им необходимо накопить в ней немного опыта, прежде чем они смогут определить оптимальную стратегию. Изучение теории игр поможет вам без труда находить глубинное сходство между разными на первый взгляд ситуациями, а значит, и быстрее вырабатывать эффективные стратегии в любых новых играх, с которыми вы можете столкнуться.

Исходя из приведенных примеров можно сделать вывод, что кажущееся нарушение стратегической логики во многих случаях объясняется заботой людей не только о денежном выигрыше, но и о моральной стороне вопроса, в данном случае о справедливости. Однако подобное объяснение подходит не для всех наблюдаемых методов ведения игры, противоречащих принципу обратных рассуждений. Люди действительно не умеют заглядывать достаточно далеко вперед и делать надлежащие выводы из таких попыток. Скажем, когда эмитенты кредитных карт предлагают выгодные исходные процентные ставки или полное отсутствие комиссионных за первый год, многие попадаются на эту удочку, не осознавая, что впоследствии им, возможно, придется выложить гораздо больше. Следовательно, теоретико-игровой анализ метода обратных рассуждений и равновесий, полученных посредством этого метода, выполняет рекомендательную функцию в той же степени, что и описательную. Люди, овладевшие теорией обратных рассуждений, склонны принимать более эффективные решения и обычно получают более высокие выигрыши, что бы они ни включали в их расчеты. А специалисты по теории игр могут использовать свои знания, чтобы давать ценные советы тем, кто попал в сложные стратегические ситуации и не имеет навыков определения лучшей стратегии.

7. Стратегии в реалити-шоу Survivor

Примеры, приведенные в предыдущих разделах, намеренно подобраны так, чтобы проиллюстрировать и объяснить базовые концепции, такие как узлы, ветви, ходы и стратегии, а также метод обратных рассуждений. Теперь мы покажем, как их все применить, рассмотрев ситуацию из реальной жизни (или по крайней мере из жизни в реалити-шоу).

Летом 2000 года телеканал CBS показал первое реалити-шоу Survivor[37], которое моментально обрело популярность и способствовало созданию нового телевизионного жанра — «реалити-ТВ». Если опустить множество сложных деталей и некоторые более ранние этапы шоу, не имеющие отношения к нашей цели, то его концепция состояла в следующем. Группу участников под названием «племя» отправляли на необитаемый остров, где они должны были сами добывать себе пищу и искать крышу над головой. Каждые три дня члены племени путем голосования исключали из своих рядов одного из товарищей. Человек, набравший наибольшее количество голосов против, становился жертвой дня. Однако перед каждым собранием совета племени продержавшиеся до этого момента состязались в игре, требовавшей наличия физических или психических навыков, придуманной продюсерами специально для данного случая. Ее победитель получал иммунитет от предстоящего голосования. Кроме того, никто не имел права голосовать против себя. И наконец, когда оставалось всего два участника шоу, семь выбывших ранее членов племени возвращались в игру в качестве жюри, чтобы выбрать одного из них как ее победителя и обладателя приза в миллион долларов.

Перед каждым участником состязания стояли следующие стратегические задачи: 1) добиться того, чтобы остальные члены племени воспринимали его как человека, вносящего ценный вклад в поиски пищи и выполнение других задач по выживанию, но при этом не показаться сильным конкурентом, а значит, кандидатом на вылет; 2) сформировать союзы с другими соплеменниками, чтобы обеспечить блоки голосов и защитить себя от исключения из племени; 3) предать союзников, когда в игре останется слишком мало участников и каждому придется против кого-то голосовать; 4) сделать это без серьезной потери популярности среди других игроков, которые в конечном счете получат право голоса в жюри.

Мы рассмотрим ситуацию, когда в реалити-шоу осталось всего три участника: Руди, Келли и Рик. Самый старший, Руди, был честным, прямолинейным человеком, который пользовался большим авторитетом среди ранее выбывших участников шоу. По всеобщему мнению, если бы Руди был одним из двух последних игроков, то именно он стал бы победителем в реалити-шоу. Следовательно, и Келли, и Рик были заинтересованы в том, чтобы на последнем голосовании противостоять друг другу, а не Руди. Однако ни один из них не хотел играть решающую роль в голосовании против Руди, потому что, когда в игре остается три участника, голос обладателя иммунитета фактически становится решающим, поскольку два других игрока голосуют друг против друга. Таким образом, члены жюри точно бы знали, кто ответственен за изгнание Руди, и, учитывая его популярность, неодобрительно отнеслись бы к голосованию против него. Человек, сделавший это, снизил бы свои шансы на последнем голосовании. Это было особенно актуально для Рика, так как всем было известно, что он заключил с Руди союз.

Испытание на получение иммунитета было проверкой на выносливость: каждый участник игры должен был стоять на неудобной опоре, наклонившись так, чтобы прикасаться одной рукой к установленному на центральном столбе тотему под названием «идол иммунитета». Игрок, который отрывал от него руку хотя бы на мгновение, проигрывал испытание; победителем становился тот, кто смог продержаться дольше всех.

Через полтора часа после начала испытания Рик понял, что его лучшая стратегия — намеренно его проиграть. Тогда, если Руди получит иммунитет, он сохранит союз и поддержит Рика — Руди был известен как хозяин своего слова. В таком случае Рик проиграл бы в итоге Руди, но для него это было бы ничуть не хуже, чем если бы он выиграл состязание и поддержал Руди. Если иммунитет получит Келли (а это куда более вероятно), то она будет заинтересована голосовать против Руди: у нее есть хотя бы какие-то шансы в борьбе против Рика, но никаких — в противостоянии с Руди. При таком сценарии шансы Рика на победу становились весьма неплохими. С другой стороны, если бы сам Рик получил иммунитет, а затем проголосовал против Руди, его шансы в борьбе против Келли снизились бы в связи с голосованием за изгнание Руди.

В итоге Рик умышленно сошел с опоры и впоследствии совершенно четко объяснил причины своего решения перед камерой. Его расчет оказался верным. Келли выиграла испытание и проголосовала против Руди. А в решающем голосовании жюри с перевесом в один голос отдало звание победителя Рику.

Фактически размышления Рика представляли собой анализ дерева игры методом обратных рассуждений. Он выполнил его интуитивно, без построения дерева, стоя в неудобной позе, ухватившись за идола иммунитета. Но ему понадобилось полтора часа, чтобы прийти к такому выводу.

Это дерево игры изображено на рис. 3.11. Очевидно, что оно гораздо более сложное по сравнению с деревьями, представленными в предыдущих разделах. В нем больше ветвей и ходов, кроме того, есть неопределенные исходы, а вероятность победы или поражения в различных альтернативных ситуациях необходимо оценивать, поскольку точное значение неизвестно. Однако вы увидите, как в процессе анализа дерева игры мы будем делать обоснованные предположения относительно шансов на победу или поражение.


Рис. 3.11. Дерево игры в иммунитет в реалити-шоу Survivor


В начальном узле Рик решает, стоит ли продолжать участвовать в испытании на получение иммунитета. В любом случае возможного победителя с уверенностью предсказать нельзя, что отображено на дереве игры и позволяет сделать выбор «природе», как в ситуации с подбрасыванием монеты на рис. 3.1. Если Рик продолжит игру, «природа» выберет победителя из трех участников состязания. Поскольку фактические значения вероятности нам неизвестны, мы возьмем конкретные значения для наглядности и укажем важные исходные предположения. Первое состоит в том, что Келли обладает высокой выносливостью, а Руди, будучи самым старшим, вряд ли победит. Поэтому мы присваиваем следующие значения вероятности победы в случае, если Рик решит продолжить игру: Келли — 0,5 (50 %), Рик — 0,45 и Руди — всего 0,05. Если Рик сойдет с дистанции, «природа» случайным образом выберет победителя из двух оставшихся игроков. Здесь мы основываемся на предположении, что Келли выиграет с вероятностью 0,9, а Руди — 0,1.

Остальные ветви дерева исходят из узлов, соответствующих трем возможным победителям испытания. Если выиграет Руди, он, как и обещал, поддержит Рика, и жюри проголосует за Рика[38]. Если иммунитет получит Рик, ему придется решать, кого поддержать — Келли или Руди. Если Руди, то жюри за него и проголосует. Если Келли, то неизвестно, кого предпочтет жюри. Мы предполагаем, что Рик, выступив против Руди, утратит расположение некоторых членов жюри и, несмотря на большую благосклонность со стороны жюри по сравнению с Келли, получит голоса его членов с вероятностью всего 0,4. Точно так же, если иммунитет достанется Келли, она может поддержать либо Руди и потерять голоса членов жюри, либо Рика. Если Келли выберет Рика, его вероятность получить голоса членов жюри повысится — 0,6, поскольку в этом случае жюри ему больше симпатизирует и он не голосовал против Руди.

Как насчет фактических выигрышей игроков? Мы можем с уверенностью предположить, что и Рик, и Келли стремятся максимизировать вероятность того, что в конечном счете кто-то из них выиграет 1 миллион долларов. Руди тоже хочет получить этот приз, но для него крайне важно сдержать данное Рику слово. С учетом этих предпочтений игроков Рик может выполнить анализ дерева игры методом обратных рассуждений, чтобы определить свой первоначальный выбор.

Рик знает, что, выиграв испытание на получение иммунитета (самый верхний путь после его первого хода и хода «природы»), он должен поддержать Келли, чтобы обеспечить себе победу с вероятностью 40 процентов; поддержка Руди на данном этапе означала бы для него нулевую вероятность победы. Рик может также вычислить, что, если Келли получит иммунитет (что происходит по одному разу в верхней и нижней половине дерева), она решит его поддержать по тем же причинам, и тогда вероятность его победы составит 0,6.

Каковы шансы Рика, рассчитанные в начальном узле? Если Рик выбирает в нем вариант «прекратить», у него остается только один путь к победе: Келли получает иммунитет (вероятность 0,9), после этого поддерживает Рика (вероятность 1), и жюри голосует за него (вероятность 0,6). Поскольку победа Рика зависит от совокупности этих трех событий, общая вероятность его победы представляет собой произведение трех вероятностей: 0,9 × 1 × 0,6 = 0,54[39]. Если Рик в начальном узле выбирает вариант «продолжить», это открывает ему два пути к победе. Во-первых, он победит, если выиграет испытание на получение иммунитета (вероятность 0,45), после чего устранит Руди (вероятность 1) и все же получит голоса жюри в противостоянии с Келли (вероятность 0,4); общая вероятность победы при таком развитии событий составляет 0,45 × 0,4 = 0,18. Во-вторых, он станет победителем, если Келли выиграет испытание на получение иммунитета (вероятность 0,5), затем избавится от Руди (вероятность 1), а Рику достанутся голоса жюри (вероятность 0,6); в этом случае общая вероятность составляет 0,5 × 0,6 = 0,3. Общая вероятность победы Рика при выборе варианта «продолжить» представляет собой сумму вероятностей двух путей к победе, а именно 0,18 + 0,3 = 0,48.

Теперь Рик может сравнить вероятность выигрыша миллиона долларов при выборе варианта «прекратить» (0,54) с вероятностью победы в случае выбора варианта «продолжить» (0,48). С учетом предполагаемых значений различных вероятностей на дереве игры у Рика больше шансов на победу, если он откажется от участия в испытании на получение иммунитета. Следовательно, «прекратить» — его оптимальная стратегия. Хотя этот результат основан на присвоении определенных предполагаемых значений вероятностям тех или иных событий, он остается для Рика лучшим при выполнении следующих условий: 1) Келли с большой вероятностью выиграет испытание на получение иммунитета, если Рик откажется от дальнейшего участия в нем; 2) победа Рика в последнем голосовании жюри более вероятна в случае, если Келли, а не Рик, проголосует против Руди[40].

Этот пример служит нескольким целям. Главное — он показывает, как использование анализа методом обратных рассуждений позволяет решить даже сложное дерево игры со значительной внешней неопределенностью и отсутствием информации о точных значениях вероятностей. Мы надеемся, что это придаст вам уверенности касательно применения данного метода, а также научит превращать несколько расплывчатое вербальное описание в более точную логическую аргументацию. Вы можете возразить, что Рик выполнил такой анализ без построения дерева игры. Но знание системы или общей модели существенно упрощает эту задачу даже в новых незнакомых обстоятельствах. Следовательно, приобретение системных навыков, несомненно, заслуживает потраченных усилий.

Вторая цель данного примера — проиллюстрировать на первый взгляд парадоксальную стратегию «проиграть, чтобы выиграть», еще одно применение которой можно найти в спортивных соревнованиях, проходящих в два этапа, таких как чемпионат мира по футболу. Первый этап проводится в рамках лиги в нескольких группах по четыре команды в каждой. Две лучшие команды в каждой группе участвуют во втором туре чемпионата, где каждая команда встречается с другими командами согласно заранее оговоренной схеме. Скажем, команда, занявшая первое место в группе А, играет с командой, занявшей второе место в группе B, и т. д. В такой ситуации выигрышной стратегией для команды может стать поражение в одном из матчей первого этапа, если оно позволит ей занять второе место в группе, что обеспечит возможность сыграть следующий матч против команды, вероятность победить которую гораздо выше, чем в случае, если бы команда заняла первое место на первом этапе.

Резюме

Участникам игр с последовательными ходами необходимо проанализировать последствия своих текущих ходов, прежде чем выбирать действия. Как правило, анализ чистых игр с последовательными ходами требует построения дерева игры. Такое дерево состоит из узлов и ветвей, отображающих все вероятные действия каждого игрока при каждой возможности сделать ход, а также выигрыши для всех предполагаемых исходов игры. Стратегия каждого игрока представляет собой исчерпывающий план, описывающий его действия в каждом узле принятия решений в зависимости от всех возможных комбинаций действий, предпринятых другими игроками в предыдущих узлах. В играх с последовательными ходами используется концепция равновесия обратных рассуждений, в соответствии с которой игроки определяют свои равновесные стратегии посредством прогнозного анализа последующих узлов и выполненных в них возможных действий, а также путем применения этих прогнозов для вычисления лучшего текущего действия. Этот процесс известен как «обратные рассуждения» или «обратная индукция».

Ряд типов игр предоставляет игрокам различные преимущества, такие, например, как преимущество первого хода. Наличие в игре большого количества участников или ходов приводит к росту дерева игры с последовательными ходами, но не меняет процесса ее решения. Иногда построение полного дерева игры может потребовать больше места или времени, чем это возможно на практике. Во многих случаях такие игры решаются путем простых логических размышлений или посредством определения стратегических сходных элементов различных действий, что позволяет уменьшить размер дерева игры.

При решении более крупных игр вербальные размышления могут привести к равновесию обратных рассуждений, если игра достаточно простая или ее полное дерево поддается построению и анализу. Если игра сложная, вербальные размышления слишком трудны, а полное дерево игры огромно, можно прибегнуть к помощи компьютерной программы. Игру в шашки удалось решить посредством такой программы, хотя полное решение игры в шахматы еще предположительно долго будет оставаться за пределами возможностей компьютеров. В реальных шахматных баталиях в определении ходов игроков присутствуют как элементы искусства (выявление закономерностей и возможностей в зависимости от рисков), так и науки (упреждающее вычисление вероятных исходов игры, вытекающее из результатов определенных ходов).

Проверка теории игр с последовательными ходами на первый взгляд подтверждает тот факт, что реальные игры демонстрируют иррациональность игроков или неспособность теории адекватно предсказывать их поведение. Встречный аргумент подчеркивает сложность фактических предпочтений в отношении различных возможных исходов игры, а также пользу стратегической теории для определения оптимальных действий в случаях, когда фактические предпочтения известны.

Ключевые термины

Ветвь

Дерево игры

Дерево решений

Концевой узел

Корень (дерева)

Метод обратных рассуждений

Начальный узел

Обратная индукция

Отсечение (ветвей)

Преимущество второго хода

Преимущество первого хода

Путь игры

Равновесие обратных рассуждений

Равновесный путь игры

Узел

Узел действия

Узел принятия решений

Функция промежуточной оценки

Ход

Экстенсивная форма

Упражнения с решениями

S1. Предположим, два игрока, Гензель и Гретель, участвуют в игре с последовательными ходами. Гензель ходит первым, Гретель — второй, причем каждый ходит только раз.

a) Нарисуйте дерево игры, в которой у Гензеля есть два возможных действия («вверх» или «вниз») в каждом узле, а у Гретель — три («вверх», «посредине» или «вниз»). Сколько узлов каждого типа (узлов принятия решений и концевых узлов) присутствует в дереве этой игры?

b) Нарисуйте дерево для игры, в которой у Гензеля и Гретель по три возможных действия («сидеть», стоять» и «прыгать») в каждом узле. Сколько узлов двух типов присутствует в дереве такой игры?

c) Нарисуйте дерево для игры, в которой у Гензеля четыре возможных действия («север», «юг», «восток», «запад») в каждом узле, а у Гретель — два («стоять» или «идти»). Сколько узлов двух типов присутствует в дереве такой игры?

S2. Определите, сколько чистых стратегий (исчерпывающих планов действий) находится в распоряжении каждого игрока в следующих играх. Перечислите все чистые стратегии каждого игрока.







S3. Для каждой из игр, представленных в упражнении S2, вычислите исход, полученный посредством равновесия обратных рассуждений, а также полную равновесную стратегию каждого игрока.

S4. Рассмотрим соперничество между Airbus и Boeing в сфере разработки нового коммерческого реактивного самолета. Предположим, что Boeing лидирует в этом процессе, а в Airbus размышляют, стоит ли вступать в конкурентную борьбу. В случае отказа Airbus получит нулевую прибыль, тогда как Boeing станет монополистом и заработает 1 миллиард долларов. Если Airbus решит вступить в борьбу и создать конкурентоспособный самолет, то Boeing придется решать, уладить ли разногласия с Airbus мирным путем или развязать ценовую войну. Мирная конкуренция обеспечит каждой компании прибыль в 300 миллионов долларов, а ценовая война приведет к потере каждой из них 100 миллионов долларов, поскольку цены на самолеты настолько сильно упадут, что ни одна из них не сможет возместить затрат на разработку самолета.

Нарисуйте дерево этой игры. Найдите равновесия обратных рассуждений и опишите равновесные стратегии компаний.

S5. Рассмотрим игру, в которой два игрока, Фред и Барни, по очереди извлекают спички из кучки. Изначально там находится 21 спичка, и Фред ходит первым. На каждом ходе каждый игрок может убрать одну, две, три или четыре спички. Побеждает тот, кто забрал последнюю спичку.

a) Предположим, осталось шесть спичек и пришла очередь Барни ходить. Какой ход он должен сделать, чтобы обеспечить себе победу? Объясните логику своих рассуждений.

b) Допустим, осталось 12 спичек и настала очередь Барни ходить. Какой ход он должен сделать, чтобы обеспечить себе победу? (Совет: используйте свой ответ в пункте a и примените метод обратных рассуждений.)

c) Теперь начните с исходной точки игры. Если оба игрока выберут оптимальный способ ее ведения, то кто из них победит?

d) Какие оптимальные стратегии (исчерпывающие планы действий) есть в распоряжении каждого игрока?

S6. Проанализируем игру из предыдущего упражнения. Предположим, игроки достигли того момента, когда следующим ходить должен Фред, а спичек осталось всего пять.

a) Нарисуйте дерево этой игры, начиная с пяти спичек.

b) Найдите для нее равновесие обратных рассуждений, начиная с пяти спичек.

c) Можно ли сказать, что в этой игре с пятью спичками существует преимущество первого или второго хода?

d) Объясните, почему вы нашли более одного равновесия обратных рассуждений. Как ваш ответ связан с оптимальными стратегиями, которые вы определили в пункте с предыдущего упражнения?

S7. Элрой и Джуди играют в игру, которую Элрой называет «гонка до 100». Элрой ходит первым, и игроки по очереди выбирают числа от одного до девяти, на каждом ходе прибавляя новое число к промежуточной сумме. Победителем становится тот, кто увеличит промежуточную сумму ровно до 100.

a) Если оба игрока ведут игру оптимальным способом, то кто из них выиграет? Есть ли преимущество первого хода в этой игре? Объясните логику своих рассуждений.

b) Каковы оптимальные стратегии (исчерпывающие планы действий) для каждого игрока?

S8. В римском Колизее только что бросили раба на съедение львам. Три льва посажены на цепь в ряд, причем льву 1 до раба ближе всего. Длина цепи каждого льва такова, что он может дотянуться лишь до двух находящихся рядом с ним игроков.

Игра проходит следующим образом. Сначала лев 1 решает, съесть ли ему раба. Если он съедает, тогда лев 2 решает, съесть ли ему льва 1 (который стал слишком тяжелым, чтобы защищаться). Если лев 1 не съедает раба, тогда у льва 2 не остается выбора: бесполезно пытаться съесть льва 1, поскольку в драке погибнут они оба. Точно так же, если лев 2 съедает льва 1, то лев 3 решает, съесть ли ему льва 2.

Предпочтения каждого льва вполне естественны: лучший исход игры (4) — кого-то съесть и остаться в живых; следующий приемлемый исход (3) — выжить, но остаться голодным; следующий исход (2) — съесть кого-то и быть съеденным; худший исход (1) — остаться голодным и быть съеденным.

a) Нарисуйте дерево этой игры с выигрышами для трех участников.

b) Какое равновесие обратных рассуждений имеет место в этой игре? Обязательно опишите стратегии, а не только выигрыши.

c) Есть ли в этой игре преимущество первого хода? Объясните, почему есть или почему нет.

d) Сколько полных стратегий у каждого льва? Перечислите их.

S9. Три крупных универмага (Big Giant, Titan и Frieda’s) планируют открыть филиал в одном из двух новых торговых центров в районе Бостона. Торговый центр Urban Mall не очень большой и может вместить максимум два универмага в качестве «якорей», но зато он расположен рядом с крупным богатым населенным пунктом. Торговый центр Rural Mall находится дальше, в сельской сравнительно бедной местности и может вместить три якорных магазина. Ни один из трех универмагов не хочет открывать филиалы в обоих торговых центрах, потому что их сегменты покупателей частично пересекаются, а значит, размещение филиалов в обоих торговых центрах будет означать конкуренцию с самим собой. Каждый универмаг склонен работать в торговом центре вместе с одним или несколькими универмагами, а не в одиночку, поскольку такой торговый центр привлекает намного больше покупателей, что увеличивает прибыль каждого магазина. Кроме того, каждый универмаг предпочитает Urban Mall из-за более богатого контингента покупателей. Каждый универмаг должен выбрать между попыткой получить торговую площадь в Urban Mall (зная, что в случае неудачи можно попробовать побороться за место в Rural Mall) и ее получением в Rural Mall сразу же (даже не пробуя попасть в Urban Mall).

В данном случае универмаги так ранжируют пять возможных исходов этой игры: 5 (лучший исход) — в торговом центре Urban Mall вместе с другим универмагом; 4 — в торговом центре Rural Mall вместе с еще одним или двумя универмагами; 3 — один в Urban Mall; 2 — один в Rural Mall; 1 (худший исход) — один в Rural Mall после неудачной борьбы за место в Urban Mall, тогда как другие магазины уже получили лучшие якорные места в Urban Mall.

Поскольку в этих трех магазинах различные системы управления, они с разной скоростью готовят необходимые документы для получения торговой площади в новом торговом центре. В Frieda’s с этим справляются быстрее всех, затем следует Big Giant и наконец Titan, в котором процесс подготовки плана размещения филиала наименее эффективен. После подачи ими заявок на предоставление торговой площади торговый центр решает, какие универмаги выбрать. Учитывая узнаваемость названий Big Giant и Titan среди потенциальных покупателей, торговый центр выберет либо одного из них, либо обоих, прежде чем рассматривать запрос Frieda’s. Следовательно, Frieda’s не получит одну из торговых площадей в Urban Mall, если все три универмага подадут на них заявки; так будет даже в случае, если Frieda’s первым сделает свой ход.

a) Нарисуйте дерево этой игры с размещением универмагов в торговом центре.

b) Проиллюстрируйте процесс отсечения ветвей на дереве в ходе обратных рассуждений и используйте усеченное дерево для поиска равновесия обратных рассуждений. Опишите это равновесие с помощью (полных) стратегий, применяемых всеми универмагами. Какими окажутся выигрыши каждого универмага в случае исхода, полученного в результате равновесия обратных рассуждений?

S10 (дополнительное упражнение). Рассмотрим следующую ультимативную игру с переговорами, которая изучалась в ходе лабораторных экспериментов. Игрок, делающий предложение, ходит первым и предлагает разделить сумму в 10 долларов между собой и вторым игроком. Принцип дележа может быть любым. Например, игрок может оставить себе все 10 долларов, или взять себе 9 долларов и отдать 1 доллар оппоненту, или 8 долларов себе и 2 доллара другому игроку и т. д. (Обратите внимание, что в этом случае у предлагающего игрока одиннадцать возможных вариантов выбора.) Второй игрок, получив предложение о разделении общей суммы, может либо принять, либо отвергнуть его. Если он его примет, оба игрока получат предложенную сумму. Если отвергнет, оба не получат ничего.

a) Постройте дерево этой игры.

b) Сколько полных стратегий находится в распоряжении каждого игрока?

c) В чем состоит равновесие обратных рассуждений в этой игре при условии, что игроков интересует исключительно денежный выигрыш?

d) Предположим, второй игрок, Рейчел, примет любое предложение в 3 (или больше) доллара и отклонит любое предложение в 2 (или меньше) доллара. Допустим, предлагающий игрок, Пит, знает о стратегии Рейчел и хочет получить максимальный денежный выигрыш. Какую стратегию он применит?

e) Истинный выигрыш Рейчел (ее «полезность») может не совпадать с денежным выигрышем. Какие еще аспекты игры могут представлять для нее интерес? С учетом вашего ответа составьте набор выигрышей Рейчел, который бы сделал ее стратегию оптимальной.

f) В ходе лабораторных экспериментов игроки, как правило, не придерживаются равновесия обратных рассуждений. Игроки, делающие предложение, обычно предлагают соперникам сумму от 2 до 5 долларов. А те часто отклоняют предложения 3, 2 и особенно 1 доллар. Объясните, почему, по вашему мнению, происходит именно так.

Упражнения без решений

U1. «В игре с последовательными ходами игрок, делающий ход первым, непременно выиграет». Это утверждение истинно или ложно? Обоснуйте свой ответ посредством нескольких кратких предложений и приведите пример, иллюстрирующий его.

U2. Сколько стратегий (исчерпывающих планов действий) в каждой из представленных ниже игр имеется в распоряжении каждого игрока? Перечислите все чистые стратегии каждого игрока.







U3. Определите для каждой из игр, представленных в упражнении U2, исход, полученный посредством равновесия обратных рассуждений, и полную равновесную стратегию каждого игрока.

U4. В Вашингтоне проходят дебаты по предложениям А и Б. Конгресс предпочитает предложение А, тогда как президент — предложение Б. Эти предложения не взаимоисключающие: оба могут стать законами или быть отклонены. Таким образом, существует четыре возможных исхода, имеющих следующий рейтинг (более высокий показатель означает более предпочтительный исход).



a) Ходы в этой игре выполняются по следующей схеме. Сначала Конгресс решает, принимать ли законопроект и должен ли он включать в себя предложение А, или Б, или оба. Затем президент решает, подписать ли законопроект или наложить на него вето. У Конгресса нет достаточного количества голосов для преодоления вето. Нарисуйте дерево этой игры и найдите равновесие обратных рассуждений.

b) Предположим, правила игры изменились: президент получает право постатейного вето. Таким образом, если Конгресс примет законопроект, содержащий оба предложения, президент может не только выбирать, подписать его или наложить вето, но и накладывать вето лишь на одно из предложений. Постройте новое дерево игры и найдите равновесие обратных рассуждений.

c) Объясните на интуитивном уровне, в чем разница между этими двумя равновесиями.

U5. Два игрока, Эми и Бет, играют в игру, в которой разыгрывается банка с сотней монет номиналом 1 цент. Игроки делают ходы по очереди; Эми ходит первой. Каждый раз, когда наступает очередь одной из участниц ходить, она берет из банки от 1 до 10 центов. Побеждает тот, после чьего хода банка опустеет.

a) Если игроки ведут игру оптимальным способом, то кто из них выиграет? Есть ли в этой игре преимущество первого хода? Объясните логику своих рассуждений.

b) Какие оптимальные стратегии (исчерпывающие планы действий) имеются в распоряжении каждого игрока?

U6. Рассмотрим несколько измененный вариант игры, представленной в упражнении U5. Теперь игрок, опустошивший банку, проигрывает.

a) Присутствует ли преимущество первого хода в этой игре?

b) Какие оптимальные стратегии есть в распоряжении каждого игрока?

U7. Кермит и Фоззи играют в игру с двумя банками, в каждой из которых находится по 100 одноцентовых монет. Игроки делают ходы по очереди; Кермит ходит первым. Всякий раз, когда наступает очередь игрока ходить, он берет из одной из банок от 1 до 10 центов. Побеждает тот, после чьего хода обе банки опустеют. (Обратите внимание, что, когда игрок достает оставшиеся монеты из второй банки, первая банка уже должна быть пустой в результате предыдущего хода кого-то из игроков.)

a) В этой игре имеет место преимущество первого или второго хода? Объясните, кто из игроков может обеспечить себе победу и каким образом. (Совет: упростите игру, начав с меньшего количества монет в каждой банке, и попытайтесь понять, применимы ли сделанные выводы в реальной игре.)

b) Какие оптимальные стратегии есть в распоряжении каждого игрока? (Совет: сначала проанализируйте исходную ситуацию, в которой в обеих банках одинаковое количество монет, затем когда их количество от 1 до 10 центов и наконец когда число монет свыше 10 центов.)

U8. Измените упражнение S8 таким образом, чтобы в нем было четыре льва.

a) Постройте дерево игры с выигрышами для этих четырех участников.

b) Какое равновесие обратных рассуждений имеет в ней место? Обязательно опишите стратегии, а не только выигрыши.

c) Дополнительный лев — это хорошо или плохо для раба? Обоснуйте свой ответ.

U9. Для того чтобы предоставить маме один день отдыха, отец планирует устроить своим детям, Барту и Кэсси, воскресную экскурсию. Барт предпочитает поход в парк развлечений (Р), а Кэсси — в музей науки (Н). Каждый ребенок получит 3 единицы полезности за более предпочтительное занятие и только 2 единицы — за менее предпочтительное. Отец — 2 единицы полезности за любое из занятий.

Чтобы определиться с планами на воскресенье, отец намерен сначала спросить Барта о его предпочтениях, а затем Кэсси, после того как она узнает, что выбрал Барт. Каждый ребенок может выбрать либо парк развлечений (Р), либо музей науки (Н). Если оба остановятся на одном и том же, то именно туда все и пойдут. Если возникнут разногласия, тогда отец примет окончательное решение. У него как у отца есть дополнительный вариант действий: он может предложить парк развлечений, музей науки или поход в горы, причем за поход получит 3 единицы полезности, а Барт и Кэсси по 1.

Поскольку отец хочет, чтобы его дети не конфликтовали, он получит 2 дополнительные единицы полезности, если дети выберут одно и то же занятие (не имеет значения, какое именно).

a) Постройте дерево с выигрышами для этой игры с тремя участниками.

b) Какое равновесие обратных рассуждений имеет в ней место? Обязательно опишите стратегии, а не только выигрыши.

c) Сколько разных полных стратегий находится в распоряжении Барта? Обоснуйте свой ответ.

d) Сколько разных полных стратегий у Кэсси? Обоснуйте ответ.

U10 (дополнительное, более трудное упражнение). Рассмотрим дерево игры Survivor, представленное на рис. 3.11. Мы могли не угадать точные значения, которые Рик присвоил вероятностям различных исходов, поэтому давайте обобщим это дерево, проанализировав другие возможные значения. В частности, предположим, что вероятность победы в испытании на получение иммунитета в случае, если Рик выберет вариант «продолжить», составляет x для Рика, y для Келли и 1 — x — y для Руди; точно так же вероятность победы в случае отказа Рика от дальнейшей борьбы равна z для Келли и 1 — z для Руди. Далее допустим, что шанс Рика на то, что его выберет жюри, составляет p, если он выиграет испытание на получение иммунитета и проголосует за изгнание Руди с острова, и q, если Келли выиграет испытание и проголосует за изгнание Руди с острова. Предположим также, что, если Руди выиграет испытание на получение иммунитета, он поддержит Рика с вероятностью 1 и станет победителем в игре с вероятностью 1, если войдет в число двух финалистов. Обратите внимание, что в примере, отображенном на рис. 3.11, были такие значения: x = 0,45, y = 0,5, z = 0,9, р = 0,4 и q = 0,6. (В общем случае переменные p и q необязательно должны в сумме составлять 1, хотя именно так получилось на рис. 3.11.)

a) Найдите алгебраическую формулу, выраженную через x, y, z, p, q, для определения вероятности того, что Рик выиграет миллион долларов, если выберет вариант «продолжить». (Обратите внимание: формула может включать в себя не все переменные.)

b) Найдите аналогичную алгебраическую формулу для определения вероятности того, что Рик выиграет миллион долларов, если выберет вариант «прекратить». (Опять же, формула может не включать в себя все переменные.)

c) Используйте эти результаты для поиска алгебраического неравенства, указывающего, при каких обстоятельствах Рику следует выбрать вариант «прекратить».

d) Предположим, значения всех переменных те же, что и на рис. 3.11, кроме z. Насколько высоким или низким может быть значение z, чтобы Рик по-прежнему предпочел вариант «прекратить»? Объясните на интуитивном уровне, почему при некоторых значениях z Рику лучше выбрать вариант «продолжить».

e) Допустим, значения всех переменных те же, что и на рис. 3.11, за исключением p и q. Предположим также, что, поскольку жюри с большей вероятностью выберет того, кто не станет голосовать против Руди, значения p и q должны удовлетворять условию p > 0,5 > q. При каких значениях коэффициента p/q Рику следует выбрать вариант «прекратить»? Объясните на интуитивном уровне, почему при некоторых значениях p и q для Рика предпочтительнее вариант «продолжить».

Глава 4. Игры с одновременными ходами: дискретные стратегии

* * *

Игрой с одновременными ходами, как пояснялось в главе 2, считается игра, в которой игроки делают ходы, не зная о выборе соперников. Очевидно, что такая ситуация складывается в случае, когда игроки действуют одновременно, а также когда они выбирают действия обособленно, не располагая информацией о действиях других игроков, даже если этот выбор делается в разное время. (Именно поэтому в играх с одновременными ходами имеет место несовершенная информация в том смысле, о котором мы говорили в разделе 2.Г главы 2.) Эта глава посвящена играм, в которых присутствует только одновременное взаимодействие между игроками. Мы рассмотрим различные типы игр с одновременными ходами, опишем концепцию их решения под названием «равновесие Нэша» и проанализируем игры без, с одним и несколькими равновесиями.

К категории игр с одновременными ходами можно отнести многие из знакомых вам стратегических ситуаций. Различные производители телевизоров, стереосистем или автомобилей принимают решения о дизайне и свойствах продукта, не зная о контраргументах конкурентов. Избиратели на выборах одновременно отдают свои голоса, не зная о предпочтениях других избирателей. В футболе взаимодействие между вратарем и нападающим противника во время пенальти требует одновременного решения обоих: вратарь не может себе позволить ждать удара по мячу, чтобы определить его траекторию, поскольку тогда уже будет слишком поздно.

Очевидно, что при выборе действия участник игры с одновременными ходами не располагает информацией о решениях других игроков. Кроме того, он не может предвидеть их реакцию на его выбор, так как они тоже действуют вслепую по отношению к нему. Поэтому каждый игрок должен анализировать предполагаемые шаги соперников, а те, в свою очередь, проводить аналогичный встречный анализ. Такая цикличность несколько усложняет анализ игр с одновременными ходами по сравнению с анализом игр с последовательными ходами, но выполнить его не так уж трудно. В этой главе мы сформулируем для этих игр простую концепцию равновесия, обладающую значительной пояснительной и прогностической способностью.

1. Описание игр с одновременными ходами и дискретными стратегиями

В главе 2 и главе 3 мы неоднократно подчеркивали, что стратегия — это исчерпывающий план действий. Однако в чистых играх с одновременными ходами у каждого участника есть максимум одна возможность действовать (хотя такое действие может состоять из множества компонентов), поскольку если бы их было несколько, это был бы уже элемент игры с последовательными ходами. Стало быть, в играх с одновременными ходами нет никаких реальных различий между стратегией и действием, поэтому в данном контексте эти термины часто используются как синонимы. Существует только одна сложность. Стратегия может представлять собой вероятностный выбор из первоначально оговоренных базовых действий. Например, в спорте игрок или команда могут умышленно выбирать действия в случайном порядке, чтобы соперник был вынужден угадывать. Такие вероятностные стратегии называются смешанными и рассматриваются в главе 7. Сейчас же мы ограничимся анализом базовых, первоначально оговоренных действий, обозначаемых термином чистые стратегии.

Во многих играх у каждого игрока есть конечное количество дискретных чистых стратегий, например дриблинг, пас и бросок в баскетболе, тогда как в ряде других игр чистая стратегия игрока может представлять собой любое число из непрерывного диапазона значений, скажем цену, назначаемую компанией на свой продукт[41]. Это различие никак не влияет на общую концепцию равновесия в играх с одновременными ходами, но связанные с такими играми идеи легче формулировать с помощью дискретных стратегий; решение игр с непрерывными стратегиями требует несколько более продвинутых инструментов. Поэтому в данной главе мы ограничимся анализом более простых чистых дискретных стратегий, а стратегии с непрерывными переменными рассмотрим в главе 5.

Игры с одновременными ходами и дискретными стратегиями чаще всего описывают с помощью таблицы игры (синонимы: матрица игры или таблица выигрышей), которая называется нормальной или стратегической формой игры. Таблица игры позволяет проиллюстрировать игру с любым количеством участников, однако ее размерность должна соответствовать их числу. В случае игры с двумя участниками таблица имеет два измерения, а заголовки строк и столбцов в ней — это стратегии, находящиеся в распоряжении первого и второго игроков. Следовательно, размер таблицы зависит от количества доступных игрокам стратегий[42]. В ячейках указываются выигрыши, которые получат игроки при подобающей конфигурации стратегий. Игры с тремя участниками требуют трехмерной таблицы; ее мы рассмотрим далее в этой главе.

Концепция таблицы выигрышей для простой игры приведена на рис. 4.1. Представленная на нем игра не имеет специальной интерпретации, поэтому мы можем сформулировать концепции, не отвлекаясь на ее «историю». Имена участников игры — Строка и Столбец. В распоряжении Строки находится четыре варианта выбора (стратегий или действий), обозначенных как «вверху», «высоко», «низко», «внизу», а Столбца — три варианта: «слева», «посредине» и «справа». Каждый выбор Строки и Столбца определяет возможный исход игры. Выигрыши, связанные с каждым исходом игры, показаны в ячейке, соответствующей данной строке и данному столбцу. Принято считать, что из двух чисел, отображающих выигрыши, первое число отвечает выигрышу Строки, а второе — выигрышу Столбца. Например, если Строка выберет вариант «высоко», а Столбец — «справа», выигрыши составят 6 в случае Строки и 4 в случае Столбца. Для дополнительного удобства мы выделяем все, что касается Строки (имя игрока, его стратегии и выигрыши), черным цветом, а Столбца — серым.


Рис. 4.1. Представление игры с одновременными ходами в виде таблицы


Далее рассмотрим второй пример игры с более содержательной историей. На рис. 4.2 представлена упрощенная версия одного розыгрыша в американском футболе. Нападающие пытаются продвинуть мяч вперед, чтобы повысить шансы забить филд-гол. У них есть четыре возможные стратегии: пробежка и три паса разной длины (короткий, средний и длинный). Чтобы сдерживать атаку, защитники могут использовать одну из трех стратегий: защита в случае пробежки и в случае паса и блиц против квотербека. Нападающие пытаются набрать как можно больше ярдов, тогда как защитники — помешать им это сделать. Предположим, у нас достаточно информации об основных сильных сторонах тех и других, для того чтобы оценить вероятность завершения различных розыгрышей и определить среднее количество набранных ярдов, которого можно было бы ожидать при каждой комбинации стратегий. Например, когда команда нападения выбирает стратегию «средний пас», а команда защиты отвечает стратегией «защита в случае паса», по нашим оценкам, выигрыш нападения составляет 4,5 набранных ярда, или +4,5[43]. «Выигрыш» защиты — 4,5 потерянных ярда, или −4,5. В других ячейках также показаны наши оценки количества ярдов, набранных или потерянных каждой командой.


Рис. 4.2. Один розыгрыш в американском футболе


Обратите внимание, что сумма выигрышей в каждой ячейке таблицы равна 0: когда нападающие набирают 5 ярдов, защитники теряют 5 ярдов, и наоборот: когда нападающие теряют 2 ярда, защитники набирают 2 ярда. Такая схема достаточно широко распространена в спорте, где интересы двух сторон прямо противоположны друг другу. Как отмечалось в главе 2, мы называем это игрой с нулевой (или иногда с постоянной) суммой. Вы должны помнить, что, согласно определению, игра с нулевой суммой представляет собой игру, в которой сумма выигрышей во всех ячейках постоянная величина, будь то 0, 6 или 1000. (В разделе 7 описывается игра, в которой сумма выигрышей двух игроков составляет 100.) Основная особенность игры с нулевой суммой состоит в том, что проигрыш одного игрока равен выигрышу другого.

2. Равновесие Нэша

Для анализа игр с одновременными ходами необходимо рассмотреть, как игроки выбирают действия. Вернемся к игре, представленной на рис. 4.1. Обратите внимание на тот ее исход, при котором Строка выбирает вариант «низко», а Столбец — «посредине», с выигрышами 5 для Строки и 4 для Столбца. Каждый игрок отдает предпочтение действию, которое обеспечит ему более высокий выигрыш, и при данном исходе делает такой выбор с учетом выбора соперника. Если Строка выбирает вариант «низко», может ли Столбец получить более высокий выигрыш, выбрав что-то другое, а не «посредине»? Нет, поскольку вариант «слева» обеспечивает ему выигрыш 2, а вариант «справа» — выигрыш 3 и оба не превышают выигрыш 4 в случае варианта «посредине». Стало быть, стратегия «посредине» — наилучший ответ Столбца на стратегию «низко», реализуемую Строкой. С другой стороны, если Столбец остановится на варианте «посредине», получит ли Строка более высокий выигрыш, предпочтя варианту «низко» какой-нибудь иной? И снова нет, потому что выигрыши от выбора варианта «вверху» (2), «высоко» (3) или «внизу» (4) не будут больше выигрыша Строки в случае выбора варианта «низко» (5). Следовательно, «низко» — наилучший ответ Строки на стратегию «посредине», применяемую Столбцом.

Эти два варианта выбора, «низко» для Строки и «посредине» для Столбца, представляют собой наилучший ответ игрока, сделавшего соответствующий выбор, на действие другого игрока. После такого выбора оба игрока не захотели бы по собственной инициативе переключаться на что-либо другое. Согласно определению некооперативной игры, игроки делают выбор независимо друг от друга; следовательно, такие односторонние изменения — все, что может предпринять каждый игрок. Но поскольку ни один из них к ним не склонен, было бы естественно называть данное положение вещей равновесием. В этом и состоит суть концепции равновесия Нэша.

Согласно несколько более формальной формулировке, равновесие Нэша[44] в игре представляет собой перечень стратегий (по одной на каждого участника), при котором ни один игрок не может увеличить выигрыш, выбрав другую стратегию из имеющихся в его распоряжении, если другие игроки придерживаются стратегий, оговоренных в этом перечне.

А. Дальнейшее разъяснение концепции равновесия Нэша

Для того чтобы лучше понять концепцию равновесия Нэша, давайте еще раз проанализируем игру на рис. 4.1. Возьмем какую-либо другую ячейку вместо ячеек «низко», «посредине», например ячейку, в которой Строка выбирает вариант «высоко», а Столбец — «слева». Может ли это сочетание стратегий быть равновесием Нэша? Нет, потому что, если Столбец применит стратегию «слева», Строка при выборе стратегии «внизу» вместо «высоко», которая обеспечивает выигрыш 4, получит более высокий выигрыш 5. Точно так же сочетание стратегий «внизу», «слева» не будет равновесием Нэша, поскольку Столбец может извлечь больше выгоды, перейдя на стратегию «справа» и тем самым увеличив свой выигрыш с 6 до 7.

Определение равновесия Нэша не требует, чтобы равновесные варианты выбора обязательно были лучше всех имеющихся вариантов. На рис. 4.3 отображена та же ситуация, что и на рис. 4.1, за одним исключением: выигрыш Строки от стратегий «внизу», «посредине» изменился на 5, то есть стал таким же, как и для стратегий «низко», «посредине». По-прежнему верно то, что при выборе Столбцом варианта «посредине» Строка не может добиться большего, чем в случае выбора варианта «низко». Следовательно, ни у одного игрока нет оснований для изменения действия в результате исхода «низко», «посредине», что позволяет квалифицировать данный исход как равновесие Нэша[45].


Рис. 4.3. Вариант игры, представленной на рис. 4.1, с равными выигрышами


Однако важно учесть, что равновесие Нэша не всегда оптимально для обоих игроков. На рис. 4.1 пара стратегий «внизу», «справа» обеспечивает выигрыши 9, 7, которые лучше для обоих игроков, чем выигрыши 5, 4 при равновесии Нэша. Тем не менее, играя независимо друг от друга, игроки не смогут придерживаться именно этих стратегий. Если Столбец предпочтет вариант «справа», Строка может захотеть заменить вариант «внизу» на «низко» и выиграть 12 вместо 9. Получение выигрышей 9, 7 потребует кооперативного действия, которое сделало бы такой «обман» невозможным. Мы рассмотрим данный тип поведения чуть ниже (и более подробно в главе 10), а пока просто хотим указать на тот факт, что равновесие Нэша может не соответствовать общим интересам игроков.

Чтобы закрепить понимание концепции равновесия Нэша, давайте еще раз посмотрим на рис. 4.2, отображающий игру в американский футбол. Если защита выберет стратегию «защита в случае паса», то лучший вариант для нападающих — «короткий пас» (выигрыш 5,6 против 5, 4,5 или 3). И наоборот, если команда нападения предпочтет вариант «короткий пас», то лучший вариант для защиты — «защита в случае паса», которая позволит команде нападения набрать всего 5,6 ярда, тогда как при выборе вариантов «защита в случае пробежки» и «блиц» команда защиты уступила бы 6 и 10,5 ярда соответственно. (Не забывайте, что записи в каждой ячейке таблицы игры с нулевой суммой — это выигрыши игрока под именем Строка, поэтому самый лучший вариант выбора для Столбца — тот, который обеспечивает самый низкий, а не самый высокий показатель.) В данной игре сочетание стратегий «короткий пас», «защита в случае паса» — это равновесие Нэша, а полученный выигрыш команды нападения составляет 5,6 ярда.

Как вычислить равновесие Нэша в играх? Для этого можно проверить каждую ячейку на наличие стратегий, удовлетворяющих равновесию Нэша. Такой систематический анализ надежен, но утомителен, за исключением случаев, когда он выполняется в контексте простых игр или с помощью хорошей компьютерной программы. К счастью, существуют и другие методы, применимые к особым типам игр, которые позволяют не только быстро отыскать равновесие Нэша, но и лучше понять процесс размышлений, посредством которого формируются убеждения, а затем и выбор. Мы проанализируем эти методы в следующих разделах.

Б. Равновесие Нэша как система убеждений и выбор вариантов

Прежде чем приступать к дальнейшему изучению и применению концепции равновесия Нэша, попробуем прояснить то, что, возможно, тревожит некоторых из вас. Мы сказали, что в равновесии Нэша каждый игрок выбирает свой лучший ответ на выбор другого игрока. Но выбор делается одновременно. Тогда как игрок может реагировать на то, что еще не произошло, или по крайней мере не зная, что именно произошло?

Люди постоянно играют в игры с одновременными ходами и делают свой выбор. Для этого им необходимо найти замену фактическим знаниям или наблюдениям за действиями других игроков. Игроки могут делать слепые догадки и рассчитывать на то, что они окажутся ниспосланными свыше, но, к счастью, существуют более эффективные способы выяснить, что предпринимают другие. Один из них — опыт и наблюдение: если игроки постоянно играют в данную игру или аналогичные игры с подобными игроками, у них может сформироваться неплохое представление об их предпочтениях. В этом случае не самые лучшие варианты выбора вряд ли продержатся долго. Еще один способ — логический процесс мышления через размышления других игроков. Вы ставите себя на их место и размышляете о том, о чем они думают; разумеется, они тоже ставят себя на ваше место и размышляют о том, что думаете вы. На первый взгляд такая логика кажется циклической, однако есть несколько способов вмешаться в этот цикл, и мы покажем их на конкретных примерах в следующих разделах. Равновесие Нэша можно считать кульминацией такого процесса размышлений, в ходе которого каждый игрок правильно определил выбор других игроков.

Посредством наблюдения, или логической дедукции, или какого-либо иного подхода вы как участник игры формируете некоторое представление о выборе участников игр с одновременными ходами. Найти слова для описания этого процесса или его результатов не так уж легко. Речь идет не о предвидении и не о прогнозировании, поскольку действия других игроков выполняются одновременно с вашими и не относятся к будущему. Специалисты по теории игр чаще всего используют термин убеждение. Он не идеален для обозначения происходящего, поскольку вызывает смысловые ассоциации с уверенностью или определенностью в большей степени, чем следовало бы (в главе 7 мы допустим возможность того, что убеждения могут быть сопряжены с некоторой неопределенностью), однако ввиду отсутствия более подходящего обозначения нам придется им довольствоваться.

Концепция убеждения соотносится также с описанием неопределенности, представленным в разделе 2.Г главы 2, где мы ввели понятие стратегической неопределенности. Даже в случаях, когда все правила игры (стратегии, имеющиеся в распоряжении игроков, и выигрыши каждого игрока как функция стратегий всех игроков) известны и не подвержены влиянию внешних факторов неопределенности, таких как погода, каждый игрок может испытывать неопределенность относительно действий, предпринимаемых одновременно с ним другими игроками. Точно так же, если прошлые действия не поддаются наблюдению, каждый игрок может испытывать неопределенность по поводу действий других игроков в прошлом. Как же игрокам делать выбор в условиях такой стратегической неопределенности? Они должны составить субъективное мнение или оценку действий других игроков, что, собственно, и позволяет осуществить концепция убеждения.

А теперь представьте себе равновесие Нэша в таком контексте. Мы определили его как конфигурацию стратегий, при которой стратегия каждого игрока представляет собой лучший ответ на стратегии других игроков. Если игрок не располагает информацией о фактическом выборе остальных участников игры, но имеет о нем определенные убеждения, в равновесии Нэша они должны быть правильными: фактические действия других игроков должны соответствовать вашим убеждениям. Следовательно, мы можем дать альтернативное и эквивалентное определение: равновесие Нэша — это такая совокупность стратегий (по одной на каждого игрока), при которой 1) у каждого игрока есть правильные убеждения о стратегиях других игроков; 2) стратегия каждого игрока — лучшая для него самого с учетом его убеждений относительно стратегий других игроков[46].

Данный подход к оценке равновесия Нэша имеет два преимущества. Во-первых, концепция лучшего ответа больше не содержит логического противоречия. Каждый игрок выбирает свой лучший ответ не на не поддающиеся наблюдению действия других игроков, а на собственные уже сформировавшиеся убеждения в отношении их действий. Во-вторых, как сказано в главе 7, где мы допускаем смешанные стратегии, случайность в стратегии одного игрока можно интерпретировать как неопределенность убеждений других игроков в отношении его действий. В этой главе мы будем параллельно использовать обе интерпретации равновесия Нэша.

На первый взгляд может показаться, что формирование правильных убеждений и вычисление лучших ответов — слишком сложная задача для обычного человека. Мы обсудим некоторые критические замечания такого рода, а также эмпирические и экспериментальные данные о равновесии Нэша в главе 5 в контексте чистых стратегий и в главе 7 в контексте смешанных стратегий. А пока просто напомним, что практика — критерий истины. Мы сформулируем и проиллюстрируем концепцию Нэша на примере ее применения и надеемся, что так вы лучше поймете ее достоинства и недостатки, чем в ходе абстрактного обсуждения этой темы.

3. Доминирование

Существует категория игр, в которых одна стратегия неизменно оказывается лучше или хуже другой. В таких случаях применяется один способ, позволяющий упростить поиск равновесия Нэша и его интерпретацию.

Эту концепцию отлично иллюстрирует известная игра под названием «дилемма заключенных». Рассмотрим сюжет, регулярно используемый в телесериале Law and Order («Закон и порядок»). Предположим, мужа и жену арестовали по подозрению в преступном сговоре в целях убийства молодой женщины. Детективы Грин и Лупо размещают их в разных камерах предварительного заключения и допрашивают по отдельности. Реальных улик, связывающих эту пару с убийством, очень мало, хотя есть доказательства того, что они причастны к похищению жертвы. Детективы объясняют каждому подозреваемому, что им обоим грозит тюремное заключение за похищение сроком до 3 лет, даже если ни один из них не признается. Кроме того, мужу и жене по отдельности внушают, что детективам «известны» подробности произошедшего и что один из них участвовал в совершении преступления по принуждению второго. При этом подразумевается, что тюремный срок одного признавшегося будет существенно сокращен, если все подробно изложить на бумаге. (Во многих фильмах такого рода в этот момент на стол обычно кладут стандартный блокнот с отрывными страницами из желтой линованной бумаги и карандаш.) И наконец, супругов убеждают, что, если они оба признают свою вину, можно будет говорить о снижении их тюремных сроков, но не настолько, как в случае, если бы один из них сознался, а другой отрицал свою вину.

В такой ситуации муж и жена — два участника игры с одновременными ходами, в которой каждый игрок должен сделать выбор: сознаваться в убийстве или нет. Оба знают, что в случае отказа признать свою вину каждому из них светит 3 года тюрьмы за причастность к похищению. Подозреваемые также знают, что если один из них сознается, то получит всего 1 год благодаря сотрудничеству с полицией, тогда как другой отправится в тюрьму минимум на 25 лет. Если сознаются оба, у них будет возможность договориться о сокращении тюремного срока до 10 лет для каждого.

Варианты выбора и исходы этой игры представлены в таблице игры на рис. 4.4. Стратегии «признать вину» и «отрицать вину» можно также обозначить как «отказ от сотрудничества» и «сотрудничество», поскольку это отображает роли двух игроков в отношениях между ними. Таким образом, стратегия «отказ от сотрудничества» означает нарушение любой молчаливой договоренности с супругом (супругой), а стратегия «сотрудничество» — совершение действия, которое поможет супругу (супруге), а не сотрудничество с полицейскими.


Рис. 4.4. Дилемма заключенных


Здесь выигрыши — это длительность тюремного заключения в случае каждого исхода игры, поэтому более низкие значения лучше для каждого игрока. Этим данный пример отличается от большинства анализируемых нами игр, в которых более высокий выигрыш — это хорошо, а не плохо. Так что хотим вас предупредить, что больше — не всегда лучше. Когда значения выигрышей отражают рейтинг исходов игры, лучшая альтернатива часто обозначается 1, а последовательно увеличивающиеся числа соответствуют следующим худшим альтернативам. Кроме того, в таблице игры с нулевой суммой, в которой показаны только выигрыши одного игрока, построенные по принципу «чем больше, тем лучше», меньшие числа для другого игрока будут лучше. В представленной здесь дилемме заключенных меньшие числа лучше для обоих игроков. Следовательно, если вам когда-либо придется составлять таблицу выигрышей, где большие числа — это плохо, вы должны четко предупредить об этом читателя, но и сами, если будете читать составленные кем-то примеры, не забывайте о данном нюансе.

Теперь рассмотрим игру с дилеммой заключенных на рис. 4.4 с точки зрения мужа. Он должен подумать, что предпочтет жена. Предположим, он убежден, что она сознается. Тогда его лучший выбор — тоже сознаться, поскольку так он получит 10 лет тюрьмы вместо 25 лет в случае отрицания вины. А если муж полагает, что жена не признается? Опять же, его лучший выбор — сознаться, так как это гарантирует ему всего год заключения вместо трех, которые бы ему обеспечило отрицание вины. Таким образом, в данной игре стратегия «признать вину» для мужа лучше стратегии «отрицать вину» независимо от его убеждений в отношении выбора жены. Будем говорить, что с точки зрения мужа «признать вину» — это доминирующая стратегия, а «отрицать вину» — доминируемая стратегия. Точно так же мы могли бы сказать, что стратегия «признать вину» доминирует над стратегией «отрицать вину» или что стратегия «отрицать вину» доминируется стратегией «признать вину».

Если то или иное действие явно лучшее для игрока независимо от действий других игроков, есть веские основания полагать, что рациональный игрок выберет именно его. Если то или иное действие явно худшее для игрока независимо от действий других игроков, есть не менее серьезные основания считать, что рациональный игрок будет его избегать. Следовательно, доминирование (когда оно существует) образует убедительную основу для теории решений игр с одновременными ходами.

А. Наличие доминирующих стратегий у обоих игроков

В представленной выше дилемме заключенных доминирование должно привести мужа к выбору стратегии «признать вину». Аналогичная логика применима и к выбору жены. Ее стратегия «признать вину» также доминирует над стратегией «отрицать вину», поэтому жена тоже решит сознаться. Следовательно, сочетание стратегий («признать вину», «признать вину») и есть прогнозируемый исход данной игры. Обратите внимание, что это равновесие Нэша. (На самом деле это единственное равновесие Нэша в данной игре.) Каждый игрок выбирает свою оптимальную стратегию.

В нашей игре лучший выбор каждого игрока не зависит от правильности его убеждений в отношении другого игрока (в этом и есть смысл доминирования), однако каждый игрок приписывает другому такую же рациональность, которую демонстрирует сам, поэтому оба должны быть в состоянии сформировать правильные убеждения. А фактическое действие каждого игрока будет наилучшим ответом на фактическое действие другого игрока. Обратите внимание, что факт доминирования стратегии «признать вину» над стратегией «отрицать вину» в случае обоих игроков совершенно не зависит от того, действительно ли они виновны, как во многих эпизодах телесериала «Закон и порядок», или обвинение против них сфабриковано, как в фильме L.A. Confidential («Секреты Лос-Анджелеса»). Все зависит исключительно от схемы выигрышей, определяемой продолжительностью сроков заключения.

Любая игра со схемой выигрышей как на рис. 4.4 обозначается общим названием «дилемма заключенных». А если конкретнее, то дилемме заключенных свойственны три ключевые особенности. Во-первых, в распоряжении каждого игрока есть две стратегии: сотрудничать с соперником (в нашем примере — отрицать любую причастностью к преступлению) или нет (признать вину в совершении преступления). Во-вторых, каждый игрок имеет доминирующую стратегию (признать вину или отказаться от сотрудничества). И наконец, равновесие в доминирующих стратегиях хуже для обоих игроков, чем неравновесная ситуация, при которой каждый игрок использует доминируемую стратегию (сотрудничать с соперниками).

Игры такого типа особенно важны при изучении теории игр по двум причинам. Первая — структура выигрышей, присущая дилемме заключенных, присутствует во многих стратегических ситуациях, касающихся экономической, социальной, политической и даже биологической конкуренции. Столь широкий диапазон применения дилеммы заключенных повышает важность ее изучения и понимания со стратегической точки зрения. Этой теме посвящена вся глава 10 и некоторые разделы других глав.

Вторая — несколько необычный характер равновесного исхода, достигаемого в играх с дилеммой заключенных. Оба игрока выбирают свои доминирующие стратегии, однако полученный равновесный исход обеспечивает им выигрыши ниже, чем они могли бы получить, предпочтя доминируемые стратегии. Следовательно, в дилемме заключенных равновесный исход, по сути, плохой исход для игроков. Существует иной исход, который оба бы предпочли равновесному, но проблема в том, как гарантировать, что никто из игроков не прибегнет к обману. На данной особенности дилеммы заключенных сфокусировались специалисты по теории игр и поставили вполне резонный вопрос: что могут сделать участники игры «дилемма заключенных», чтобы достичь ее лучшего исхода? Мы пока оставим его открытым и продолжим обсуждение игр с одновременными ходами, а затем вернемся к нему и проанализируем более подробно в главе 10.

Б. Наличие доминирующей стратегии у одного игрока

Если у рационального игрока есть доминирующая стратегия, он обязательно ее использует, и другой игрок может в этом не сомневаться. В дилемме заключенных это касается обоих игроков, тогда как в ряде других игр — только одного из участников. Если вы играете в игру, не имея доминирующей стратегии в отличие от соперника, можете исходить из предположения, что он применит ее, а значит, у вас есть возможность выбрать свое равновесное действие (наилучший ответ) с учетом данного факта.

Проиллюстрируем этот случай на примере игры между Конгрессом, отвечающим за фискальную политику (налоги и правительственные расходы), и Федеральной резервной системой (ФРС), осуществляющей монетарную политику[47]. В упрощенной версии, в которой представлены только самые важные аспекты такой игры, фискальная политика Конгресса может сводиться либо к сбалансированному бюджету, либо к дефициту бюджета, а ФРС может устанавливать либо высокие, либо низкие процентные ставки. В реальной жизни эту игру нельзя однозначно отнести к числу игр с одновременными ходами, поскольку даже если выбор в ней делается последовательно, не всегда бывает понятно, кто ходил первым. Мы рассмотрим здесь вариант игры с одновременными ходами, а в главе 6 проанализируем, как будут отличаться исходы при изменении правил игры.

Почти все хотят снижения налогов. При этом немало претендентов на государственное финансирование: оборона, образование, здравоохранение и т. д. Кроме того, существуют различные политически влиятельные группы (в том числе фермеры и отрасли промышленности, страдающие от иностранной конкуренции), нуждающиеся в правительственных субсидиях. Поэтому Конгресс находится под постоянным давлением в плане как снижения налогов, так и увеличения расходов. Однако такой подход становится причиной образования дефицита бюджета, что, в свою очередь, может повлечь за собой рост инфляции. Главная задача ФРС — предотвратить инфляцию. Но ФРС тоже пребывает под политическим прессингом со стороны многих заинтересованных групп, ратующих за снижение процентных ставок, особенно домовладельцев, которым выгодны более низкие ставки по ипотечным кредитам. Снижение процентных ставок приводит к повышению спроса на автомобили, жилье и капиталовложения компаний, но этот спрос может обусловить и рост инфляции. Как правило, ФРС охотно понижает процентные ставки, но только до тех пор, пока нет угрозы инфляции. А она уменьшается, если правительство поддерживает сбалансированность бюджета. С учетом всех этих условий мы построили для этой игры матрицу выигрышей, представленную на рис. 4.5.


Рис. 4.5. Игра с фискальной и монетарной политикой


Для Конгресса лучший (выигрыш 4) — исход с дефицитом бюджета и низкими процентными ставками, что удовлетворяет всех непосредственных участников политического процесса. Правда, это чревато проблемами в будущем, но в политике временные интервалы непродолжительны. По той же причине худший для Конгресса (выигрыш 1) — исход со сбалансированным бюджетом и высокими процентными ставками. Из двух других исходов Конгресс предпочитает исход со сбалансированным бюджетом и низкими процентными ставками (выигрыш 3): он отвечает интересам домовладельцев как представителей важного среднего класса, а низкие процентные ставки предполагают меньше расходов на обслуживание государственного долга, поэтому в сбалансированном бюджете остается место для многих других статей расходов или снижения налогов.

Для ФРС худший (выигрыш 1) — исход с бюджетным дефицитом и низкими процентными ставками, поскольку это сочетание самое инфляционное; лучший (выигрыш 4) — исход со сбалансированным бюджетом и низкими процентными ставками, потому что это сочетание может выдержать высокий уровень экономической активности без большого риска инфляции. Сопоставив два оставшихся исхода с высокими процентными ставками, ФРС выбирает исход со сбалансированным бюджетом, так как он снижает риск инфляции.

Теперь давайте поищем в этой игре доминирующие стратегии. ФРС добьется более высоких результатов за счет низких процентных ставок, если считает, что Конгресс выберет сбалансированный бюджет (в таком случае выигрыш ФРС составит 4, а не 3). С другой стороны, ФРС выгоднее поднять процентные ставки исходя из убеждения, что Конгресс предпочтет дефицит бюджета (тогда выигрыш ФРС составит 2, а не 1). Таким образом, у ФРС нет доминирующей стратегии, а вот у Конгресса она есть. Если он убежден, что ФРС введет низкие процентные ставки, ему выгоднее выбрать бюджетный дефицит, а не сбалансированный бюджет (при этом выигрыш Конгресса составит 4 вместо 3), как, собственно, и в случае высоких процентных ставок (выигрыш Конгресса составит 2 вместо 1). Следовательно, выбор бюджетного дефицита — доминирующая стратегия Конгресса.

Итак, выбор Конгресса очевиден. Какими бы ни были его убеждения в отношении действий ФРС, он предпочтет дефицит бюджета. ФРС же может учесть этот выбор при принятии своего решения. Федеральная резервная система должна отталкиваться от убеждения, что Конгресс применит свою доминирующую стратегию (дефицит бюджета), и исходя из этого выбрать свою лучшую стратегию, то есть высокие процентные ставки.

При таком исходе игры каждая сторона получает выигрыш 2. Однако внимательное изучение рис. 4.5 показывает, что, как и в дилемме заключенных, существует еще один исход (а именно сбалансированный бюджет и низкие процентные ставки), способный обеспечить обоим игрокам более высокие выигрыши (3 для Конгресса и 4 для ФРС). Почему же он недостижим в качестве равновесия? Проблема в том, что у Конгресса возникнет искушение отклониться от заявленной стратегии и незаметно создать дефицит бюджета. ФРС, в свою очередь, зная о подобном соблазне и во избежание худшего исхода (выигрыш 1), тоже отклонится от своей стратегии и повысит ставки. В главе 6 и главе 9 мы расскажем, как обе стороны могут преодолеть эту трудность, чтобы достичь обоюдовыгодного исхода. Но следует отметить, что в большинстве стран в разные времена эти два политических органа действительно оказывались в тупиковой ситуации, когда фискальная политика была слишком мягкой, а монетарная требовала ужесточения, чтобы сдерживать инфляцию.

В. Последовательное исключение доминируемых стратегий

До сих пор в рассмотренных нами играх в распоряжении каждого игрока было по две чистые стратегии. Если одна стратегия в таких играх доминирующая, а другая — доминируемая, то выбор первой равнозначен исключению второй. В более масштабных играх некоторые стратегии игрока могут быть доминируемыми, даже если при этом ни одна стратегия не доминирует над остальными. Если игроки оказываются в игре данного типа, у них есть шанс добиться равновесия посредством исключения доминируемых стратегий из рассмотрения в качестве возможных вариантов выбора. Такое исключение уменьшает размер игры, а в «новой» игре у того же игрока или у его соперника может быть другая доминируемая стратегия, которую тоже можно удалить. В «новой» игре у одного из участников может даже появиться доминирующая стратегия. Последовательное, или итеративное, исключение доминируемых стратегий сводится к их удалению и сокращению размера игры до тех пор, пока дальнейшее сокращение не станет невозможным. Когда этот процесс завершается уникальным исходом, говорят, что игра разрешима по доминированию. Такой исход представляет собой равновесие Нэша, а стратегии, которые его обеспечивают, — равновесные стратегии каждого игрока.

Давайте возьмем в качестве примера этого процесса игру, представленную на рис. 4.1. Рассмотрим первые стратегии Строки. Если какая-то стратегия неизменно обеспечивает этому игроку худшие выигрыши, то она является доминируемой и ее можно исключить из рассмотрения в поисках равновесного выбора Строки. В данном примере единственная доминируемая стратегия Строки — «высоко», над которой доминирует стратегия «внизу»: если Столбец выберет стратегию «слева», Строка получит выигрыш 5 за счет стратегии «внизу» и 4 — за счет стратегии «высоко»; если Столбец предпочтет стратегию «справа», Строка получит выигрыш 9, применив стратегию «внизу», и только 6 в случае «высоко». Следовательно, мы можем исключить стратегию «высоко» из рассмотрения. Теперь проанализируем варианты выбора Столбца на предмет исключения. Стратегия Столбца «слева» доминируется стратегией «справа» (что подтверждают аналогичные рассуждения: 1 < 2, 2 < 3 и 6 < 7). Обратите внимание, что мы не могли сделать такой вывод раньше, до удаления стратегии Строки «высоко»: в игре против стратегии Строки «высоко» Столбец получил бы выигрыш 5 за счет стратегии «слева» и только 4 за счет стратегии «справа». Стало быть, первый этап исключения стратегии Строки «высоко» позволяет перейти ко второму этапу, сводящемуся к удалению стратегии Столбца «слева». Таким образом, в контексте оставшегося набора стратегий («вверху», «низко» и «внизу» у Строки и «посредине» и «справа» у Столбца) стратегии Строки «вверху» и «внизу» доминируемы стратегией «низко». Когда у Строки остается только стратегия «низко», Столбец выберет свой наилучший ответ — а именно стратегию «посредине».

Следовательно, эта игра разрешима по доминированию, а ее исход — «низко»/«посредине» с выигрышами 5, 4. Мы определили его как равновесие Нэша, когда впервые иллюстрировали данную концепцию с помощью этой игры. Теперь более подробно рассмотрели процесс размышлений игроков, приводящий к формированию правильных убеждений. Рациональный игрок Строка не выберет стратегию «высоко». Рациональный игрок Столбец поймет это и, взвесив эффективность своих стратегий против оставшихся у Строки, не выберет «слева». Строка, в свою очередь, предвидя это, не выберет ни «вверху», ни «внизу». И наконец, Столбец, проанализировав все это, применит «посредине».

Другие игры могут быть не разрешимы по доминированию, а последовательное исключение доминируемых стратегий может не обеспечить уникальный исход игры. Но даже в таких случаях исключение доминируемых стратегий позволяет уменьшить размер игры и облегчить ее решение с помощью одного или более методов, описанных в следующих разделах. Стало быть, исключение доминируемых стратегий может стать полезным шагом на пути к решению большой игры с одновременными ходами, даже если не предоставляет возможности решить ее полностью.

До сих пор в процессе анализа итеративного исключения доминируемых стратегий все сравнения выигрышей носили однозначный характер. Но что если выигрыши окажутся равными? Рассмотрим вариант предыдущей игры, показанной на рис. 4.3. В этой ее версии стратегии «высоко» (у Строки) и «слева» (у Столбца) также исключаются. На следующем этапе «низко» по-прежнему доминирует над «вверху», а вот доминирование «низко» над «внизу» стало менее очевидным. Эти две стратегии обеспечивают Строке равные выигрыши в борьбе против стратегии Столбца «посредине», хотя стратегия «низко» все же гарантирует Строке более высокий выигрыш по сравнению со стратегией «внизу» при их использовании против стратегии Столбца «справа». Будем говорить, что с точки зрения Строки в данный момент стратегия «низко» слабо доминирует над стратегией «внизу». Напротив, стратегия «низко» строго доминирует над стратегией «вверху», поскольку обеспечивает более высокие выигрыши, чем стратегия «вверху», разыгранная против обеих стратегий Столбца («посредине» и «справа»), анализируемых на данном этапе.

А теперь хотим предупредить вас вот о чем: последовательное исключение слабо доминируемых стратегий может привести к потере некоторых равновесий Нэша. Рассмотрим игру, представленную на рис. 4.6, где мы вводим Ровену как игрока вместо Строки и Колина вместо Столбца[48]. В случае Ровены стратегия «вверх» слабо доминируема стратегией «вниз»; если Колин сыграет «налево», то Ровена получит лучший выигрыш, применив стратегию «вниз», а не «вверх», а если Колин сыграет «направо», то Ровена получит один и тот же выигрыш от обеих своих стратегий. Точно так же для Колина стратегия «направо» слабо доминирует над стратегией «налево». В таком случае разрешимость по доминированию говорит нам, что сочетание стратегий «вниз»/«направо» — равновесие Нэша. Это действительно так, но «вниз»/«налево» и «вверх»/«направо» — тоже равновесия Нэша. Рассмотрим сочетание «вниз»/«налево». Когда Ровена выбирает «вниз», Колин не может улучшить свой выигрыш, переключившись на стратегию «направо», а когда Колин выбирает «налево», лучший ответ Ровены — сыграть «вниз». Аналогичные рассуждения позволяют убедиться, что «вверх»/«направо» — также равновесие Нэша.


Рис. 4.6. Исключение слабо доминируемых стратегий


В связи с этим при использовании слабого доминирования для исключения некоторых стратегий целесообразно проверить, не пропустили ли вы какие-либо равновесия, с помощью других методов (таких как метод, представленный в следующем разделе). Решение по итеративному доминированию можно считать вероятным равновесием Нэша в этой игре с одновременными ходами, однако следует учитывать также важность множественности равновесий и другие равновесия сами по себе. Мы рассмотрим эти вопросы в следующих главах, проанализировав множественность равновесий в главе 5 и взаимосвязи между играми с последовательными и одновременными ходами в главе 6.

4. Анализ наилучших ответов

Во многих играх с одновременными ходами нет ни доминирующих, ни доминируемых стратегий. Другие игры могут иметь одну или несколько доминируемых стратегий, но их итеративное исключение не обеспечивает единственного исхода игры. В таких случаях необходимо выполнить следующий шаг в процессе поиска решения игры. Мы по-прежнему ищем равновесие Нэша, в котором каждый игрок предпринимает свое лучшее действие с учетом действий другого игрока (игроков), но теперь должны прибегнуть к более тонкому стратегическому мышлению, чем то, которого требует простое исключение доминируемых стратегий.

Здесь мы сформулируем еще один систематический метод поиска равновесий Нэша, который нам очень пригодится при выполнении последующего анализа. Для начала введем требование о правильности убеждений. Мы будем по очереди принимать точку зрения каждого игрока и задавать такой вопрос: какой лучший ответ данного игрока на каждый вариант выбора, который может сделать другой игрок (игроки)? Таким образом мы найдем лучшие ответы каждого игрока на все стратегии, доступные другим игрокам. В математических терминах это означает, что мы найдем стратегию лучшего ответа каждого игрока в зависимости от (или как функцию от) стратегий, находящихся в распоряжении других игроков.

Вернемся к игре, в которую играли Строка и Столбец, и представим ее на рис. 4.7. Сначала проанализируем ответы Строки. Если Столбец применит стратегию «слева», наилучший ответ Строки — «внизу», обеспечивающий выигрыш 5. Мы показываем его, выделив соответствующий выигрыш кружком в таблице игры. Если Столбец предпочтет стратегию «посредине», лучший ответ Строки — «низко» (тоже выигрыш 5). А если Столбец выберет стратегию «справа», оптимальный выбор Строки — снова «низко» (выигрыш 12). Опять же, мы показываем лучшие варианты выбора Строки, обведя кружками соответствующие выигрыши. Аналогичным образом представлены лучшие ответы Столбца, выигрыши по которым выделены кружками: 3 (стратегия «посредине» как лучший ответ на стратегию Строки «вверху»), 5 («слева» как лучший ответ на «высоко»), 4 («посредине» как лучший ответ на «низко») и 7 («справа» как лучший ответ на «внизу»)[49]. Мы видим, что в одной ячейке — а именно «низко»/«посредине» — оба выигрыша выделены кружками. Следовательно, стратегии «низко» у Строки и «посредине» у Столбца одновременно будут лучшими ответами друг на друга. Мы нашли равновесие Нэша в этой игре еще раз.


Рис. 4.7. Анализ наилучших ответов


Анализ наилучших ответов — это исчерпывающий способ обнаружения в игре всех возможных равновесий Нэша. Вам следует углубить понимание этого метода, применив его ко всем играм, описанным в данной главе. Примеры с доминированием представляют особый интерес. Если у Строки есть доминирующая стратегия, именно она будет наилучшим ответом на все стратегии Столбца; следовательно, все наилучшие ответы Строки расположены по горизонтали в одной и той же строке. Точно так же, если у Столбца есть доминирующая стратегия, то все его наилучшие ответы выстроятся по вертикали в одном и том же столбце. Вы можете сами проверить, как такой анализ позволяет определить равновесия Нэша в дилемме заключенных с участием мужа и жены, показанной на рис. 4.4, и в игре между Конгрессом и Федеральной резервной системой, отображенной на рис. 4.5.

В некоторых играх анализ наилучших ответов не позволяет найти равновесие Нэша, подобно тому как разрешимость по доминированию не всегда обеспечивает требуемый результат. Однако в данном случае мы можем сказать кое-что более конкретное, чем при неудачной попытке использовать доминирование. Когда анализ наилучших ответов в игре с дискретными стратегиями не обнаруживает равновесия Нэша, это означает, что в этой игре нет равновесия в чистых стратегиях. Мы рассмотрим игры такого типа в разделе 7 данной главы, а в главе 5 расширим область применения анализа наилучших ответов на игры, в которых стратегии представляют собой непрерывные переменные, например цены или расходы на рекламу. Кроме того, мы построим кривые наилучших ответов, что позволит нам находить равновесия Нэша, и увидим, что в подобных играх равновесие может отсутствовать с меньшей вероятностью в силу непрерывности выбора стратегий.

5. Три игрока

До сих пор мы анализировали только игры между двумя участниками. Однако все рассмотренные методы анализа применимы и для поиска равновесий Нэша в чистых стратегиях в любой игре с одновременными ходами с участием любого количества игроков. Когда в игре больше двух участников, каждому из которых доступно сравнительно небольшое количество чистых стратегий, анализ можно выполнить с помощью таблицы игры, подобно тому как мы это делали в первых четырех разделах данной главы.

В главе 3 мы рассматривали игру с тремя участницами, каждая из которых имела по две чистые стратегии. Эмили, Нине и Талии предстояло решить, вносить ли вклад в создание декоративного сада на их маленькой улице. Мы предположили, что в случае вклада всех трех участниц игры сад будет не лучше, чем при вкладе двоих девушек, а вот если вклад сделает только одна участница, сад получится настолько скудным, что уж лучше его и не высаживать вовсе. Теперь допустим, что три участницы делают выбор одновременно, а разнообразие возможных исходов и выигрышей несколько богаче. В частности, размер и пышность сада будут зависеть от точного количества инвесторов: вклад трех участниц позволит разбить самый большой и красивый сад, двух — средний сад и одной — маленький.

Предположим, Эмили анализирует вероятные исходы игры «уличный сад». Ей предстоит оценить шесть возможных вариантов. Эмили может выбирать, вносить или не вносить вклад, если и Нина, и Талия внесут свой вклад или если ни одна из них этого не сделает либо сделает только одна. С точки зрения Эмили, лучший возможный исход с рейтингом 6 — воспользоваться добротой соседок и сделать так, чтобы Нина и Талия инвестировали в создание сада, а она сама — нет. Тогда Эмили могла бы наслаждаться средним садом, не вкладывая в него заработанные тяжелым трудом деньги. Если Нина и Талия вложат средства в сад и Эмили тоже, она сможет любоваться большим прекрасным садом, но ценой собственного вклада, поэтому она присваивает этому исходу рейтинг 5.

На другом конце диапазона находятся исходы, возникающие в случае отказа Нины и Талии инвестировать в сад. При таком раскладе Эмили снова предпочтет не вносить вклад, поскольку иначе все расходы на создание общественного сада, которым будут наслаждаться все, лягут на ее плечи; уж лучше она посадит цветы у себя во дворе. Таким образом, если другие участницы игры отказываются вкладывать средства в создание сада, Эмили присваивает рейтинг 1 исходу, при котором она вносит вклад, и рейтинг 2 исходу, при котором она этого не делает.

Между крайними случаями находятся ситуации, в которых кто-то один — либо Нина, либо Талия — вносит вклад, но не сразу обе. Когда одна из них это делает, Эмили знает, что сможет наслаждаться маленьким садом, не принимая участия в его создании. Кроме того, она считает, что цена ее вклада перевешивает то, что он позволит увеличить размер сада. Поэтому Эмили присваивает рейтинг 4 исходу, при котором она не вносит вклад, но получает возможность наслаждаться маленьким садом, и рейтинг 3 исходу, при котором вносит вклад, обеспечивая создание среднего сада. Поскольку Нина и Талия придерживаются аналогичных взглядов на затраты и преимущества, каждая из них составляет такой же рейтинг вероятных исходов игры, в котором самый худший — когда каждая участница инвестирует в создание сада, а две оставшиеся этого не делают, и т. д.

Если все трое решают, вносить ли вклад в создание сада, не зная о действиях соседок, перед нами — игра с одновременными ходами с тремя игроками. Для того чтобы найти в ней равновесие Нэша, необходимо составить таблицу игры. В случае игры с тремя участниками таблица должна быть трехмерной, а стратегии третьего игрока должны соответствовать третьему измерению. Самый простой способ его прибавить к двумерной таблице игры — добавить страницы. Первая страница таблицы отображает выигрыши для первой стратегии третьего игрока, вторая страница — выигрыши для второй стратегии третьего игрока и т. д.

Мы показываем трехмерную таблицу игры «уличный сад» на рис. 4.8. В ней две строки отведены для двух стратегий Эмили, два столбца — для двух стратегий Нины и две страницы — для двух стратегий Талии. Мы разместили эти страницы рядом, чтобы вы могли видеть все одновременно. В каждой ячейке выигрыши перечислены в следующем порядке: сначала выигрыш игрока строки, затем выигрыш игрока столбца, далее выигрыш игрока страницы, то есть в данном примере: Эмили, Нина, Талия.


Рис. 4.8. Игра «уличный сад»


Прежде всего мы должны определить, есть ли доминирующие стратегии у каждой из участниц. В таблицах игр из одной страницы это было достаточно просто: мы просто сравнивали исходы, связанные с одной из стратегий игрока, с исходами другой его стратегии. На практике в случае игрока строки такое сравнение требовало простой проверки данных в столбцах одной страницы таблицы и наоборот в случае игрока столбца. Сейчас же мы должны проверить данные на обеих страницах таблицы, чтобы определить, есть ли доминирующая стратегия у какой-либо из участниц игры.

В случае Эмили мы сравниваем две строки обеих страниц таблицы и видим, что если Талия внесет вклад, то доминирующая стратегия Эмили — не вносить вклад. Следовательно, для Эмили лучше не вносить вклад в создание сада независимо от решений остальных участниц игры. Точно так же мы видим, что доминирующая стратегия Нины (на обеих страницах таблицы) — не вносить вклад. А вот при поиске доминирующей стратегии у Талии нужно быть предельно внимательными. Мы должны сравнить исходы, которые поддерживают постоянство поведения Эмили и Нины, проанализировав выигрыши Талии в случае выбора стратегии «внести вклад» в сравнении с выигрышами от выбора стратегии «не вносить вклад». Иными словами, мы должны сравнить ячейки двух страниц таблицы: верхнюю левую ячейку первой страницы (слева) с верхней левой ячейкой второй страницы (справа) и т. д. Как и для первых двух участниц игры, этот процесс показывает, что доминирующая стратегия Талии — тоже не вносить вклад.

Итак, у каждой участницы игры есть доминирующая стратегия, которая должна быть ее равновесной чистой стратегией. Равновесие Нэша в этой игре состоит в том, что все ее участницы предпочитают не вкладывать средства в создание сада и получить второй по величине выигрыш. При этом сад так и не будет посажен, а участницы игры не понесут лишних расходов.

Обратите внимание, что эта игра — еще один пример дилеммы заключенных. Существует единственное равновесие Нэша, при котором все игроки получают выигрыш 2. Однако у «уличного сада» есть еще один исход (при котором все три соседки инвестируют в сад), обеспечивающий всем трем участницам более высокие выигрыши 5. Хотя каждой из них было бы выгодно поучаствовать в создании сада, ни у кого из них нет индивидуального стимула для этого. В итоге такие сады либо вообще не сажают, либо делают это за счет налоговых поступлений, поскольку городская администрация может взыскать с жителей города такой налог. В главе 11 мы рассмотрим другие дилеммы коллективного действия и изучим некоторые методы их решения.

Равновесие Нэша в игре «уличный сад» можно также найти посредством анализа наилучших ответов, как показано на рис. 4.9. Так как доминирующая стратегия каждой участницы игры — «не вносить вклад», все наилучшие ответы Эмили находятся в ее строке «не вносить вклад», Нины — в ее колонке «не вносить вклад», а Талии — на ее странице «не вносить вклад». Ячейка в правом нижнем углу содержит три наилучших ответа, а значит, это и есть равновесие Нэша.


Рис. 4.9. Анализ наилучших ответов в игре «уличный сад»

6. Множество равновесий в чистых стратегиях

В каждой из игр, рассмотренных в предыдущих разделах, было единственное равновесие Нэша в чистых стратегиях. Однако в целом в играх необязательно должно быть единственное равновесие Нэша. Мы проиллюстрируем этот результат посредством класса игр, имеющих много областей применения, который можно обозначить как координационные игры. У их участников есть общие интересы (хотя и не всегда полностью совпадающие), но поскольку игроки действуют независимо друг от друга (в силу характера некооперативных игр), координация действий, необходимых для достижения общего предпочтительного исхода, проблематична.

А. Встретятся ли Гарри и Салли? Чистая координация

Для того чтобы проиллюстрировать эту идею, давайте представим себе двух студентов-старшекурсников, встретившихся в университетской библиотеке[50]. Они понравились друг другу и хотели бы продолжить общение, но им нужно идти в разные аудитории на лекции. Гарри и Салли договариваются вместе выпить кофе после занятий, которые заканчиваются в 16:30. Во время лекций оба осознают, что из-за волнения забыли договориться о месте встречи. Существует два возможных варианта: Starbucks и Local Latte. К сожалению, эти кафе расположены на противоположных концах большого кампуса, поэтому оказаться в обоих примерно в одно и то же время невозможно. Кроме того, Гарри и Салли не обменялись телефонными номерами, из-за чего не могут отправить друг другу сообщения. Что же нужно сделать каждому из них?

На рис. 4.10 эта ситуация представлена в виде игры с матрицей выигрышей. У каждого игрока два варианта выбора: Starbucks и Local Latte. Выигрыш для каждого равен 1, если они встретятся, и 0, если нет. Анализ наилучших ответов позволяет быстро определить, что в игре два равновесия Нэша: одно — при котором Салли и Гарри выберут Starbucks, и второе — при котором они выберут Local Latte. Для обоих важно достичь одного из этих равновесий, причем какого — не играет роли, поскольку оба равновесия обеспечивают одинаковые выигрыши. Главное, чтобы они скоординированно выбрали одно и то же действие, неважно какое. Именно поэтому такую игру называют игрой с чистой координацией.


Рис. 4.10. Чистая координация


Но смогут ли Гарри и Салли успешно скоординировать свои действия? Или в конечном счете они окажутся в разных кафе и каждый будет думать, что другой его подвел? Увы, такой риск существует. Гарри может решить, что Салли отправится в Starbucks, потому что она что-то говорила о занятиях, которые проходят на той стороне кампуса, где расположен Starbucks. Но у Салли может быть противоположное убеждение относительно того, что сделает Гарри. При наличии множества равновесий Нэша игрокам при выборе одного из них необходим какой-то способ скоординировать свои убеждения или ожидания в отношении действий друг друга.

Эта ситуация аналогична тому, что произошло с героями истории «Какая шина?», рассказанной в главе 1, где мы обозначили метод координации термином «фокальная точка». В данном контексте одно из двух кафе может быть широко известно как место встречи студентов. Однако недостаточно, чтобы Гарри просто об этом знал. Он должен знать, что Салли знает, и что она знает, что он знает, и т. д. Иными словами, их ожидания должны сходиться в фокальной точке. В противном случае Гарри может сомневаться в том, куда пойдет Салли, поскольку он не знает, что она думает о том, куда пойдет он. Подобные сомнения могут возникнуть на третьем, или четвертом, или еще более высоком уровне размышлений о размышлениях[51].

Когда один из нас (Диксит) задал этот вопрос своим студентам, большинство первокурсников выбрали Starbucks, а старшекурсники — местное кафе в студенческом центре университетского городка. Такой расклад закономерен: первокурсники, которые прожили в кампусе совсем немного времени, фокусируют свои ожидания на всем известной национальной сети кафе, тогда как старшекурсники знают местное кафе, ставшее для них самым лучшим местом встречи, и считают, что их друзья придерживаются аналогичного мнения.

Если бы одно кафе было оформлено в оранжевых тонах, а другое — в багровых, то в Принстоне первое кафе служило бы в качестве фокальной точки, поскольку оранжевый — это цвет Принстонского университета, тогда как в Гарварде по той же причине фокальной точкой было бы кафе с багровым декором. Если один человек — студент Принстона, а другой — Гарварда, они могут вообще не встретиться: либо потому, что каждый из них считает свой цвет более приоритетным, либо по той причине, что каждый думает, что другой не проявит гибкость и не пойдет на компромисс. В более общем случае способность участников координационных игр найти фокальную точку зависит от наличия такой общеизвестной точки контакта, будь то историческая, культурная или языковая.

Б. Встретятся ли Гарри и Салли? И где? Игра в доверие

Теперь давайте немного изменим выигрыши в игре. Поведение студентов старших курсов позволяет предположить, что нашей паре может быть не совсем безразлично, какое именно кафе выбирать. В одном заведении может быть лучше кофе, в другом — атмосфера. Или они могут предпочесть менее популярное место встречи студентов, чтобы избежать возможного столкновения с бывшими парнями или девушками. Предположим, Гарри и Салли остановятся на Local Latte; следовательно, выигрыш каждого из них составит 2, если они встретятся в этом кафе, и 1, если они встретятся в Starbucks. Новая матрица выигрышей показана на рис. 4.11.


Рис. 4.11. Игра в доверие


Здесь снова присутствуют два равновесия Нэша. Однако в данной версии игры каждый предпочитает равновесие, при котором оба выбирают Local Latte. К сожалению, тот факт, что обоим участникам нравится такой исход игры, его не гарантирует. Прежде всего (как и всегда в нашем анализе) выигрыши должны быть элементом общего знания, оба игрока должны знать всю матрицу выигрышей, оба должны знать, что оба знают, и т. д. Знание игры во всех подробностях было бы возможным, если бы Гарри и Салли обсудили ситуацию и сошлись во мнениях по поводу преимуществ двух кафе, но просто забыли договориться о том, что встретятся в Local Latte. Но даже в этом случае Гарри мог бы подумать, что у Салли есть какая-то иная причина для выбора Starbucks, или он может подумать, что она подумает, что он подумает, и т. д. Без истинной сходимости ожиданий в отношении действий участники игры могут выбрать худшее равновесие или, что еще печальнее, вообще не скоординировать свои действия, и тогда каждый получит нулевой выигрыш.

Повторим еще раз: участники игры, представленной на рис. 4.11, могут получить предпочтительный равновесный исход, только если каждый из них достаточно убежден в том, что другой выберет надлежащее действие. По этой причине игры такого типа называются играми в доверие[52].

Во многих подобных реальных жизненных ситуациях обрести доверие довольно легко при наличии даже минимальной коммуникации между игроками. Их интересы полностью совпадают: если один скажет «Я пойду в Local Latte», у другого нет оснований сомневаться в истинности этого утверждения, поэтому он пойдет туда же, чтобы получить предпочтительный для обоих исход. Именно поэтому нам пришлось придумать историю с двумя студентами, которые посещают разные занятия и не имеют возможности общаться друг с другом. Если интересы игроков вступают в конфликт, правдивая коммуникация становится более проблематичной. Мы углубимся в эту проблему, когда будем рассматривать стратегическое манипулирование информацией в играх в главе 8.

В более многочисленных группах коммуникацию можно обеспечить посредством планирования встреч или размещения объявлений. Но эти способы эффективны только в случае, когда все знают, что остальные обращают на них внимание, поскольку для успешной координации действий необходимо, чтобы требуемый исход был фокальной точкой. Ожидания игроков должны сходиться в этой точке: все должны знать, что каждый знает, что … каждый делает этот выбор. Именно эту функцию выполняют многие общественные институты и договоренности. Собрания, во время которых присутствующие рассаживаются по кругу и смотрят в его центр, позволяют каждому видеть, что делают остальные. Рекламные объявления во время Суперкубка, особенно когда их показывают накануне матчей в качестве основной приманки, убеждают каждого зрителя, что многие тоже их смотрят. Это делает такие рекламные объявления особенно привлекательными для компаний, выпускающих продукты, которые становятся более желанными для каждого отдельного покупателя, если их покупают многие люди; к данной категории относится продукция компьютерной отрасли, телекоммуникаций и интернет-индустрии[53].

В. Встретятся ли Гарри и Салли? И где? Битва полов

Теперь давайте еще немного усложним игру с выбором кафе. Оба игрока хотят встретиться, но предпочитают разные кафе. Таким образом, Гарри может получить выигрыш 2, а Салли — 1, если они встретятся в Starbucks, и наоборот, если встреча состоится в Local Latte. Матрица выигрышей этой игры показана на рис. 4.12.


Рис. 4.12. Битва полов


Такая игра называется битвой полов. Название происходит от истории, которую специалисты по теории игр придумали для иллюстрации этой структуры выигрышей в сексистских 1950-х годах. В этой истории мужу и жене предстоял выбор между походом на боксерский матч и балет, причем (предположительно, по эволюционно-генетическим причинам) муж должен был выбрать бокс, а жена — балет. Это название прижилось, поэтому мы будем его использовать, хотя наш пример (в котором у любого из игроков вполне могла быть причина предпочесть любое из двух кафе, не имеющая отношения к полу) ясно дает понять, что такая игра необязательно должна иметь сексистский подтекст.

Как будут развиваться события в этой игре? В ней по-прежнему присутствуют два равновесия Нэша. Если Гарри убежден, что Салли выберет Starbucks, ему лучше сделать то же самое, и наоборот. По тем же причинам Local Latte также является равновесием Нэша. Для того чтобы достичь любого из этих равновесий и избежать исходов, при которых игроки отправятся в разные кафе, им необходима фокальная точка, или сходимость ожиданий, точно так же как в игре с чистыми стратегиями и игре в доверие. Однако в битве полов риск неудачи с координацией действий выше. Игроки с самого начала находятся в достаточно симметричных ситуациях, однако каждое из двух равновесий Нэша обеспечивает им асимметричные выигрыши, а их предпочтения в отношении двух возможных исходов вступают в противоречие: Гарри ратует за встречу в Starbucks, а Салли — в Local Latte. Они должны найти способ нарушить эту симметрию.

В стремлении достичь предпочтительного для себя равновесия каждый игрок может прибегнуть к жестким действиям и стратегии, ведущей к лучшему равновесию. В главе 9 мы рассмотрим в деталях такие инструменты ведения игры, как стратегические ходы, которые участники подобных игр могут предпринять для обеспечения предпочтительного исхода. Или каждый игрок попытается угодить другому, что может обусловить досадную ситуацию, когда Гарри отправится в Local Latte, чтобы порадовать Салли, но обнаружит, что она решила доставить удовольствие ему и пошла в Starbucks (очень похоже на то, как герои рассказа О’Генри «Дары волхвов» выбирали подарки друг другу на Рождество). В качестве альтернативы в случае повторяющейся игры успешная координация действий может стать предметом переговоров и поддерживаться как равновесие. Например, Гарри и Салли могут договориться встречаться то в одном, то в другом кафе. В главе 10 мы проанализируем такое неявное сотрудничество в повторяющихся играх в контексте дилеммы заключенных.

Г. Встретятся ли Джеймс и Дин? Игра в труса

Наш последний пример в этом разделе касается координационной игры несколько иного типа. В ней игроки стремятся предотвратить (или не выбирать) одни и те же действия. Кроме того, последствия неудачной попытки координации в подобных играх куда более разрушительны, чем в других играх.

Эта история взята из игры, в которую якобы играли американские подростки в 1950-х годах. Двое подростков садятся в полночь в свои автомобили на противоположных концах улицы какого-нибудь американского городка и мчатся навстречу друг другу. Тот, кто свернет в сторону, чтобы избежать столкновения, становится «трусом», а тот, кто продолжает ехать прямо, считается победителем. Если оба подростка придерживаются прямого курса, происходит столкновение, в котором оба автомобиля получают повреждения, а оба водителя — травмы[54].

Выигрыши «труса» зависят от того, насколько негативным для себя игрок считает «плохой» исход (в данном случае это травмы водителя и повреждения автомобиля) по сравнению с перспективой прослыть трусом. Если слова задевают меньше, чем хруст металла, то таблица разумных выигрышей в варианте игры в труса 1950-х годов выглядит так, как на рис. 4.13. Каждый игрок больше всего хочет стать победителем, а не трусом, и оба одинаково не хотят столкновения автомобилей. Между этими двумя крайностями для вас предпочтительна ситуация, чтобы ваш соперник оказался трусом в игре с вами (сохранить лицо), чем самому стать трусом.


Рис. 4.13. Игра в труса


У этой истории есть четыре важных свойства, которые определяют игру в труса. Во-первых, у каждого игрока есть одна «жесткая» и одна «слабая» стратегия. Во-вторых, в игре присутствуют два равновесия Нэша в чистых стратегиях (иными словами, исходы игры, при которых один из игроков становится трусом или придерживается слабой стратегии). В-третьих, каждый игрок выбирает именно то равновесие, при котором другой игрок предпочитает стать трусом или применяет слабую стратегию. В-четвертых, когда оба придерживаются жесткой стратегии, оба получают очень плохие выигрыши. В играх такого типа реальная игра сводится к проверке ее участниками способов достижения предпочтительного для себя равновесия.

Мы вернулись к ситуации, подобной рассмотренной при обсуждении игры «битва полов». Большинство происходящих в реальной жизни игр в труса предполагают еще более ожесточенные битвы, чем битва полов: преимущества от победы повышаются, так же как и цена поражения, поэтому все проблемы, связанные с конфликтом интересов и асимметрией между игроками, усугубляются. Каждый игрок стремится повлиять на исход такой игры. Может сложиться ситуация, когда один игрок попытается создать впечатление жесткости, которое видели бы все, чтобы запугать соперников[55]. Еще один вариант — найти какой-либо другой способ убедить соперника в том, что вы не сдадитесь, взяв на себя явное и непреложное обязательство ехать прямо. (В главе 9 мы поговорим о том, как делать ходы с обязательствами.) Кроме того, оба игрока могут захотеть предотвратить неблагоприятный исход (столкновение), если это вообще возможно.

Как и в битве полов, если игра повторяется, молчаливая координация — лучший путь к решению игры. Иначе говоря, если бы подростки играли в труса в полночь каждого воскресенья, при выборе равновесных стратегий они знали бы, что у игры есть и прошлое, и будущее. В подобной ситуации они могли бы выбрать такой логически правильный путь, как чередование равновесий, и по очереди бы становились победителями раз в две недели. (Однако если кто-то узнает об этой сделке, пострадает репутация обоих игроков.)

Существует еще один, последний, момент, касающийся координационных игр, о котором следует упомянуть. Концепция равновесия Нэша требует от каждого игрока наличия правильных убеждений в отношении выбора стратегии другим игроком. При поиске равновесий Нэша в чистых стратегиях эта концепция предписывает, чтобы каждый игрок был уверен в выборе другого игрока. Но наш анализ координационных игр показывает, что в размышлениях о выборе других игроков в таких играх присутствует элемент стратегической неопределенности. Как мы можем включить ее в анализ? В главе 7 мы вводим понятие смешанной стратегии, в которой фактический выбор делается случайным образом из доступных действий. Такой подход распространяет концепцию равновесия Нэша на ситуации, когда игроки могут быть не уверены в действиях друг друга.

7. Отсутствие равновесия в чистых стратегиях

В каждой из рассмотренных выше игр было минимум одно равновесие Нэша в чистых стратегиях. В некоторых играх, таких как в разделе 6, было больше одного равновесия, тогда как в предыдущих разделах представлены игры ровно с одним. К сожалению, не все игры, анализируемые нами в процессе изучения стратегии и теории игр, будут иметь легко поддающиеся определению исходы, при которых игроки всегда выбирают одно конкретное действие в качестве равновесной стратегии. В данном разделе мы проанализируем игры, в которых отсутствует равновесие Нэша в чистых стратегиях и ни один из игроков не выбирает неизменно одну и ту же стратегию в качестве своего равновесного действия.

Простой пример такой игры — розыгрыш одного очка в теннисном матче. Представьте себе матч между двумя лучшими теннисистками всех времен — Мартиной Навратиловой и Крис Эверт[56]. Навратилова у сетки только что отправила мяч в сторону Эверт на задней линии, а Эверт вот-вот сделает обводящий удар. Она может попытаться послать мяч либо по линии (ПЛ, сильный прямой удар), либо по диагонали (ПД, более мягкий удар из одного угла корта в другой). Навратилова точно так же должна подготовиться, чтобы прикрыть какую-то одну сторону. Каждая участница игры знает, что не должна давать сопернице никаких подсказок в отношении запланированного действия, понимая, что эта информация будет использована против нее. Навратилова попыталась бы прикрыть ту сторону, в которую Эверт планирует послать мяч, а Эверт сделала бы удар в ту сторону, которую Навратилова не собирается прикрывать. Обе теннисистки должны выполнить соответствующее действие за долю секунды, и обе умеют хорошо скрывать свои намерения до последнего момента. Следовательно, их действия фактически одновременны, поэтому мы можем проанализировать этот розыгрыш очка как игру с одновременными ходами с двумя участниками.

Выигрыши в игре с розыгрышем очков в теннисе соответствуют относительному количеству случаев, когда игрок выигрывает очко в той или иной комбинации обводящего удара и прикрывающей игры. Учитывая, что обводящий удар по линии сильнее удара по диагонали и что Эверт с большей вероятностью выиграет, если Навратилова попытается прикрыть не ту сторону корта, мы можем сформировать приемлемую систему выигрышей. Предположим, Эверт добьется успеха в 80 % обводящих ударов по линии, если Навратилова прикроет корт на случай удара по диагонали, и только в 50 % обводящих ударов по линии, если Навратилова прикроет корт на случай удара по линии. Точно так же Эверт добьется успеха в 90 % ударов по диагонали, если Навратилова прикроет корт на случай удара по линии. Эта доля результативных ударов выше, чем при попытке Навратиловой прикрыть корт на случай удара по диагонали — тогда Эверт выиграет очки только в 20 % случаев.

Очевидно, что доля побед Навратиловой в игре равна разности между 100 % и долей побед Эверт. Следовательно, это игра с нулевой суммой (хотя формально сумма выигрышей двух участниц составляет 100), поэтому мы можем представить всю необходимую информацию в таблице выигрышей, отобразив в каждой ячейке только выигрыш Эверт. На рис. 4.14 показана таблица выигрышей и доля побед Эверт в розыгрышах очков против Навратиловой в каждой из четырех возможных комбинаций их выбора стратегий.


Рис. 4.14. Отсутствие равновесия в чистых стратегиях


Правила решения игр с одновременными ходами говорят нам о том, что сначала следует попытаться найти доминирующие или доминируемые стратегии, а затем использовать анализ наилучшего ответа для поиска равновесия Нэша. Это полезное упражнение позволяет убедиться, что в данной игре нет доминирующих стратегий. Выполнив анализ наилучших ответов, мы приходим к выводу, что лучший ответ Эверт на стратегию ПЛ — стратегия ПД, а на стратегию ПД — стратегия ПЛ. Напротив, наилучший ответ Навратиловой на стратегию ПЛ — стратегия ПЛ, а на стратегию ПД — стратегия ПД. Ни в одной ячейке таблицы выигрышей равновесия Нэша нет, поскольку каждая теннисистка упорно пытается изменить свою стратегию. Например, начав с верхней левой ячейки таблицы, мы обнаружим, что Эверт предпочитает перейти от стратегии ПЛ к стратегии ПД, увеличив свой выигрыш с 50 до 90 процентов. Однако в левой нижней ячейке таблицы мы видим, что Навратилова считает разумным переключиться со стратегии ПЛ на ПД, увеличив свой выигрыш с 10 до 80 процентов. Как вы можете убедиться сами, аналогичным образом Эверт стремится изменить стратегии в нижней левой ячейке, а Навратилова — в верхней правой. В каждой ячейке таблицы одна участница неизменно старается изменить игру, поэтому мы можем бесконечно перемещаться в таблице по кругу в поисках равновесия.

Отсутствие равновесия Нэша в этой и других подобных играх содержит один значимый сигнал: в играх такого типа важно не то, что игроки должны сделать, а то, чего они не должны делать. В частности, каждая участница игры не должна постоянно или систематически выбирать один и тот же удар, оказываясь в такой ситуации. Если любая из теннисисток будет придерживаться определенной линии поведения, другая может воспользоваться этим. (Например, если бы Эверт постоянно делала обводящий удар по диагонали, Навратилова бы знала, что ей каждый раз необходимо прикрывать соответствующую сторону корта, и тем самым снизила бы шансы Эверт на успешное выполнение удара по диагонали.) Самое разумное, что могут сделать участницы игры, — действовать несколько бессистемно, рассчитывая на то, что элемент неожиданности поможет победить соперницу. Асимметричный подход подразумевает выбор каждой стратегии в определенном количестве случаев. (Эверт следует использовать свой более слабый удар достаточно часто, чтобы Навратилова не могла предугадать, какой удар будет направлен в ее сторону. Однако она не должна использовать удары двух типов по установленной схеме, поскольку это также приведет к потере элемента неожиданности.) Подход, при котором игроки выбирают действия случайным образом, известный как смешивание стратегий, подробно рассматривается в главе 7. Игра, представленная на рис. 4.14, может не иметь равновесия в чистых стратегиях, но ее все же можно решить посредством поиска равновесия в смешанных стратегиях, что мы и сделаем в разделе 1 главы 7.

Резюме

Участники игр с одновременными ходами выбирают стратегии, не зная о выборе других игроков. Такие игры можно изобразить в виде таблицы игры, в ячейках которой отображены выигрыши каждого игрока, а ее размерность равна количеству игроков. Игры с нулевой суммой с двумя участниками можно представить в сокращенном виде, отобразив в каждой ячейке таблицы игры только выигрыши одного игрока.

Равновесие Нэша — концепция, используемая для решения игр с одновременными ходами. Такое равновесие состоит из совокупности стратегий (по одной на каждого игрока), где каждый игрок выбрал свой лучший ответ на выбор другого игрока. Кроме того, равновесие Нэша можно трактовать как набор стратегий, при котором у каждого игрока есть правильные убеждения относительно стратегий других игроков, а определенные стратегии являются лучшими для каждого игрока с учетом этих убеждений. Равновесия Нэша можно найти посредством поиска доминирующих стратегий, последовательного исключения доминируемых стратегий или анализа наилучших ответов.

Существует масса классов игр с одновременными ходами. Игра «дилемма заключенных» встречается во многих контекстах. В координационных играх, таких как игра в доверие, игра в труса и битва полов, — множество равновесий, и решение этих игр требует от их участников координации действий. Если в игре отсутствует равновесие в чистых стратегиях, мы должны искать его в смешанных стратегиях, анализ которых представлен в главе 7.

Ключевые термины

Анализ наилучших ответов

Битва полов

Дилемма заключенных

Доминируемая стратегия

Доминирующая стратегия

Игра в доверие

Игра в труса

Игра с чистой координацией

Итеративное исключение доминируемых стратегий

Координационная игра

Матрица игры

Наилучший ответ

Нормальная форма

Последовательное исключение доминируемых стратегий

Равновесие Нэша

Разрешимость по доминированию

Смешанная стратегия

Стратегическая форма

Сходимость ожиданий

Таблица выигрыша

Таблица игры

Убеждение

Фокальная точка

Чистая стратегия

Упражнения с решениями

S1. Найдите все равновесия Нэша в чистых стратегиях для представленных ниже игр. Сначала проверьте таблицу игры на наличие доминирующих стратегий. Если таковых нет, решите игру посредством итеративного исключения доминируемых стратегий. Объясните логику своих рассуждений.

a)

b)

c)

d)

S2. Для каждой из четырех игр, представленных в упражнении S1, определите, это игра с нулевой или с ненулевой суммой. Объясните логику своих рассуждений.

S3. Метод минимакса — еще один значимый способ решения игр с нулевой суммой, разработанный задолго до того, как Нэш сформулировал концепцию равновесия в играх с ненулевой суммой. Для того чтобы его применить, необходимо исходить из предположения, что независимо от того, какую стратегию выберет игрок, его соперник сделает такой выбор, который обеспечит этому игроку худший выигрыш от данной стратегии. В случае каждой игры с нулевой суммой, найденной в упражнении S2, используйте метод минимакса для поиска равновесных стратегий игры, выполнив следующие действия:

a) Для каждой стратегии, соответствующей строке таблицы, запишите минимальный выигрыш Ровены (худшее, что может с ней сделать Колин в данном случае). Для каждой стратегии, отображенной в столбце таблицы, запишите минимальный выигрыш Колина (худшее, что может с ним сделать Ровена в данном случае).

b) Для каждого игрока определите стратегию (или стратегии), которая обеспечивает ему лучший из этих худших выигрышей. Это и есть стратегия минимакса каждого игрока.

(Поскольку в данном случае речь идет об игре с нулевой суммой, наилучшие ответы игроков действительно подразумевают сведение выигрышей друг друга к минимуму, а значит, эти стратегии минимакса и есть равновесиями Нэша. Джон фон Нейман доказал существование минимаксного равновесия в играх с нулевой суммой в 1928 году, за двадцать лет до того, как Нэш обобщил эту теорию.)

S4. Найдите все равновесия Нэша в чистых стратегиях в следующих играх с ненулевой суммой. Опишите шаги, которые вы при этом предприняли.

a)

b)

c)

d)

S5. Проанализируйте следующую таблицу игры:



a) Есть ли доминирующая стратегия у Ровены либо у Колина? Объясните, почему есть или нет.

b) Используйте метод итеративного исключения доминируемых стратегий, чтобы как можно больше уменьшить игру. Опишите порядок выполнения такого исключения стратегий и представьте урезанную форму игры.

c) Разрешима ли эта игра по доминированию? Объясните, почему да или нет.

d) Найдите в ней равновесие (или равновесия) Нэша.

S6. «Если у игрока есть доминирующая стратегия в игре с одновременными ходами, значит, он наверняка получит самый лучший исход». Это утверждение истинно или ложно? Обоснуйте свой вывод и приведите пример игры, иллюстрирующий ваш ответ.

S7. Пожилой даме нужна помощь, чтобы перейти улицу. Для этого достаточно одного человека; не имеет смысла привлекать больше людей. Мы с вами находимся поблизости и можем помочь, причем одновременно должны решить, стоит ли это делать. Каждый из нас получит удовольствие с выигрышем 3 единицы, если все разрешится благополучно (независимо от того, кто ее переведет). Однако именно тому, кто непосредственно поможет даме, это обойдется в 1 единицу — такова ценность нашего времени, потраченного на оказание помощи. Если никто из игроков не оказывает помощь, выигрыш каждого будет равен нулю. Сформулируйте эту ситуацию в виде игры. Составьте таблицу выигрышей и найдите равновесия Нэша в чистых стратегиях.

S8. В университете решают, что построить — новую лабораторию или новый театр в кампусе. Факультет естественных наук предпочел бы новую лабораторию, а гуманитарных ратует за театр. Однако финансирование проекта (вне зависимости от того, каким он будет) возможно только в случае единодушной поддержки всего преподавательского состава университета. При возникновении разногласий ни один проект не получит дальнейшего продвижения и оба факультета останутся без нового здания и с наихудшим выигрышем. Собрания двух отдельных групп преподавателей, на которых решается вопрос о поддержке проекта, проходят одновременно, а выигрыши представлены в следующей таблице:



a) Каковы равновесия Нэша в чистых стратегиях в этой игре?

b) Какая из игр, представленных в данной главе, больше всего напоминает эту игру? Объясните логику своих рассуждений.

S9. Предположим, два участника игрового шоу, Алекс и Боб, каждый по отдельности выбирают двери с номерами 1, 2, 3. Оба игрока получают призы, если их выбор совпадает, как показано в следующей таблице:



a) Каковы равновесия Нэша в этой игре? Какое из них (при его наличии) скорее всего приведет к (фокальному) исходу игры? Обоснуйте свой вывод.

b) Рассмотрите несколько измененную игру, в которой варианты выбора — снова просто числа, но две ячейки таблицы с выигрышами 15, 15 теперь содержат выигрыши 25, 25. Какой ожидаемый (средний) выигрыш каждого игрока, если каждый из них подбросит монету, чтобы решить, выбрать вариант 2 или 3? Лучше ли это фокусировки на том, чтобы оба выбрали 1 в качестве фокального равновесия? Как вам следует учитывать риск того, что Алекс может сделать одно, а Боб — другое?

S10. У Марты три сына: Артуро, Бернардо и Карлос. Она находит разбитую лампу посреди гостиной и понимает, что это сделал кто-то из сыновей. На самом деле виновник произошедшего Карлос, но Марта об этом не знает. Она заинтересована скорее в том, чтобы выяснить истину, а не наказать ребенка, поэтому предлагает сыновьям сыграть в следующую игру.

Каждый из них напишет на листе бумаги свое имя, а также слова: «Да, это я разбил лампу» либо «Нет, я не разбивал лампу». Если хотя бы один ребенок признается, что разбил лампу, Марта даст по 2 доллара (обычную сумму карманных денег) каждому, кто скажет, что разбил лампу, и 5 долларов тому, кто будет утверждать, что не делал этого. Если все три сына откажутся сознаваться, ни один из них не получит карманных денег (то есть каждый получит 0 долларов).

a) Составьте таблицу игры. Пусть Артуро соответствует строка таблицы, Бернардо — столбец, а Карлосу — страница.

b) Найдите все равновесия Нэша в этой игре.

c) В этой игре множество равновесий Нэша. Какое из них вы назвали бы фокальной точкой?

S11. Рассмотрите игру, в которой на кону стоит приз в размере 30 долларов. В ней три участника — Ларри, Керли и Мо. Каждый из них может купить (или нет) билет стоимостью 15 или 30 долларов. Игроки делают выбор одновременно и независимо друг от друга. Затем, собрав информацию о решениях игроков по поводу покупки билетов, организатор игры присуждает приз. Если никто не купит билет, приз не присуждается. В противном случае приз вручается тому, кто купил самый дорогой билет, если такой человек всего один, и делится поровну между двумя или тремя игроками, если они купили самые дорогие билеты по одной цене. Представьте эту игру в стратегической форме, включив в нее Ларри в качестве игрока, которому соответствуют строки, Керли — столбцы, а Мо — страницы. Найдите все равновесия Нэша в чистых стратегиях.

S12. Анна и Брюс намерены взять напрокат фильм, но не могут решить, какой именно. Анна хочет комедию, в Брюс — драму. Они решают сделать выбор случайным образом, сыграв в игру «чет или нечет». На счет три каждый из них выбрасывает один или два пальца. Если сумма пальцев представляет собой четное число, побеждает Энн и они берут напрокат комедию, если нечетное, то выигрывает Брюс и они смотрят драму. Каждый игрок получает выигрыш 1 за победу и 0 за проигрыш в игре «чет или нечет».

a) Нарисуйте таблицу игры «чет или нечет».

b) Покажите, что в этой игре нет равновесия Нэша в чистых стратегиях.

S13. В фильме «Игры разума» Джон Нэш и трое его коллег по магистратуре, придя в бар, сталкиваются с дилеммой. В баре находятся четыре брюнетки и одна блондинка. Каждый молодой человек хочет подойти и привлечь внимание одной из девушек. Выигрыш каждого за блондинку составляет 10, за брюнетку — 5, а если кто-то вообще останется без девушки, то 0. Проблема в том, что, если сразу несколько парней подойдут к блондинке, она отвергнет их всех, после чего брюнетки тоже их отвергнут, поскольку не хотят быть вторыми в очереди. Таким образом, каждый игрок получит выигрыш 10 только в случае, если окажется единственным претендентом на внимание блондинки.

a) Сначала упростите ситуацию, заменив четырех парней двумя, и проанализируйте ее. (В баре две брюнетки и одна блондинка, но девушки просто реагируют на действия парней вышеописанным образом и не являются активными участницами игры.) Составьте таблицу выигрышей для этой игры и найдите все равновесия Нэша в чистых стратегиях, присутствующие в ней.

b) Теперь постройте трехмерную таблицу для случая, когда в игре участвуют три молодых человека (а также три брюнетки и одна блондинка, которые не являются активными игроками). Снова найдите в ней равновесия Нэша.

c) Не прибегая к таблице, назовите все равновесия Нэша для изначальной ситуации.

d) (дополнительное упражнение). Используйте результаты, полученные в пунктах а, b и c, чтобы обобщить анализ на ситуацию, когда в игре участвуют n молодых людей. Не пытайтесь строить n-мерную таблицу выигрышей, просто вычислите выигрыш одного игрока в случае, если k других игроков выберут блондинку и (n — k — 1) выберут брюнетку, при k = 0, 1… (n — 1). Может ли исход, указанный в фильме в качестве равновесия Нэша (когда все молодые люди подойдут к брюнеткам), быть действительно равновесием Нэша в данной игре?

Упражнения без решений

U1. Найдите все равновесия Нэша в чистых стратегиях для представленных ниже игр. Сначала проверьте таблицу игры на наличие доминирующих стратегий. Если таковых нет, решите игру посредством итеративного исключения доминируемых стратегий.

a)

b)

c)

b)

U2. Для каждой из четырех игр, представленных в упражнении U1, определите, это игра с нулевой или с ненулевой суммой. Объясните логику своих рассуждений.

U3. Как и в упражнении S3, используйте метод минимакса для поиска равновесий Нэша в играх с нулевой суммой, найденных в упражнении U2.

U4. Найдите все равновесия Нэша в чистых стратегиях в следующих играх. Опишите шаги, которые вы при этом предпринимали.

a)

b)

c)

b)

U5. Используйте метод последовательного исключения доминируемых стратегий для решения следующей игры. Опишите шаги, которые вы для этого предприняли. Покажите, что ваше решение представляет собой равновесие Нэша.



U6. Найдите все равновесия Нэша в чистых стратегиях для следующей игры. Опишите процесс, который вы при этом использовали. Объясните на примере данной игры, почему важно описывать равновесие с применением стратегий, выбранных игроками, а не только выигрышей, полученных в таком равновесии.



U7. Проанализируйте следующую таблицу игры:



a) Проставьте недостающие выигрыши в таблице таким образом, чтобы у Колина была доминирующая стратегия. Укажите, какая стратегия доминирующая, и объясните почему. (Обратите внимание: существует много в равной степени правильных ответов.)

b) Проставьте недостающие выигрыши в таблице таким образом, чтобы ни у одного игрока не было доминирующей стратегии, но при этом у каждого была доминируемая стратегия. Укажите, какие стратегии доминируемые, и объясните почему. (В этом случае тоже существует много в равной степени правильных ответов.)

U8. Битва в море Бисмарка (по названию моря в юго-западной части Тихого океана, отделяющего архипелаг Бисмарка от Папуа — Новой Гвинеи) представляла собой морское сражение между Соединенными Штатами и Японией во время Второй мировой войны. В 1943 году японский адмирал получил приказ провести конвой кораблей в Новую Гвинею. Ему предстояло сделать выбор между дождливым северным маршрутом и более солнечным южным, каждый из которых требовал трех дней плавания. Американцы знали об отплытии конвоя и хотели послать вслед за ним бомбардировщики, но им не было известно, по какому пути отправится конвой. Американцам пришлось послать самолеты-разведчики на поиски конвоя, но их хватало только на изучение одного маршрута за один раз. И американцам, и японцам приходилось принимать решения, не имея никакой информации о планах другой стороны.

Если бы конвой оказался на маршруте, который американцы исследовали первым, они сразу же послали бы туда бомбардировщики, в противном случае они потеряли бы день. Кроме того, плохая погода на северном маршруте тоже затрудняла бомбардировку. Если бы американцы изучили северный маршрут и сразу же обнаружили японцев, они могли бы рассчитывать только на два (из трех) благоприятных дня для бомбардировки; если бы при изучении северного маршрута они обнаружили, что японцы ушли на юг, они тоже могли бы рассчитывать на два дня бомбардировки. Если бы американцы решили сначала исследовать южный маршрут, они могли бы рассчитывать на три полных благоприятных дня для бомбардировки, если бы обнаружили японцев сразу же, и только на один день, если бы увидели, что японцы предпочли северный маршрут.

a) Представьте эту игру в виде таблицы игры.

b) Определите в ней все доминирующие стратегии и вычислите равновесие Нэша.

U9. Двух игроков, Джека и Джилл, поместили в разные комнаты. Затем каждому из них объяснили правила игры. Каждый должен выбрать одну из шести букв: G, K, L, Q, R и W. Если случится так, что оба выберут одну и ту же букву, они получат призы по следующей схеме.



При выборе разных букв каждый игрок получит 0. Всю эту схему доводят до сведения игроков, и обоим говорят, что они оба знают эту схему.

a) Составьте таблицу этой игры. Каковы равновесия Нэша в чистых стратегиях?

b) Может ли одно из равновесий быть фокальной точкой? Какое? Почему?

U10. Три подруги (Джулия, Кристин и Лариса) независимо друг от друга идут покупать платья для выпускного бала. В магазине каждая девушка видит только три платья, которые достойны внимания: черное, бледно-лиловое и желтое. Более того, каждая девушка готова утверждать, что двух ее подруг тоже заинтересовал бы именно этот набор платьев, поскольку у всех троих примерно одинаковые вкусы.

Каждая девушка хотела бы надеть на выпускной бал единственное в своем роде платье, поэтому для нее полезность платья равна 0, если она купит одинаковое платье с кем-то из подруг. Все трое знают, что Джулия однозначно отдаст предпочтение черному перед бледно-лиловым и желтым цветом, поэтому она получила бы полезность 3, если бы была единственной девушкой в черном платье, и полезность 1, если бы только у нее было платье бледно-лилового или желтого цвета. Точно так же все трое знают, что Кристин нравится бледно-лиловый цвет и только во вторую очередь желтый, поэтому ее полезность составила бы 3, если бы только она надела бледно-лиловое платье, 2 — желтое и 1 — черное. И наконец, всем известно, что Лариса обожает желтый, а затем черный, поэтому она получила бы 3, если бы выбрала желтое платье, 2 — черное и 1 — бледно-лиловое.

a) Составьте таблицу для этой игры с участием трех игроков. Пусть Джулии соответствуют строки таблицы, Кристин — столбцы, Ларисе — страницы.

b) Определите все доминируемые стратегии в игре или объясните причину их отсутствия.

c) Каковы равновесия Нэша в чистых стратегиях в этой игре?

U11. Брюс, Колин и Дэвид собираются в доме Дэвида в пятницу вечером, чтобы поиграть в «Монополию». Все трое любят есть суши во время игры. По предыдущему опыту они знают, что двух порций суши вполне достаточно, чтобы утолить голод. Если они закажут меньше двух порций, то останутся голодными и не получат удовольствия от вечера, заказывать больше двух порций тоже не имеет смысла, поскольку они столько не съедят и третья порция испортится. Их любимый ресторан Fishes in the Raw упаковывает суши в такие большие контейнеры, что один человек может купить максимум одну порцию. Ресторан Fishes in the Raw предлагает суши навынос, но, к сожалению, не осуществляет доставку.

Предположим, полезность достаточного количества суши составляет для каждого игрока 20 долларов, а недостаточного — 0 долларов. Каждому игроку, который забирает заказ суши, это обходится в 10 долларов.

К сожалению, друзья забыли договориться о том, кто будет покупать суши в эту пятницу, и у них нет мобильных телефонов, поэтому они должны независимо друг от друга решить, покупать суши (П) или нет (Н).

a) Опишите эту игру в стратегической форме.

b) Найдите все равновесия Нэша в чистых стратегиях.

c) Какое равновесие вы назвали бы фокальной точкой? Объясните логику своих рассуждений.

U12. Роксанна, Сара и Тед очень любят печенье, но в упаковке осталось только одно. Никто не хочет делить его на части, поэтому Сара предлагает сыграть в следующий вариант игры «чет или нечет» (см. упражнение S12), для того чтобы определить, кто съест печенье. На счет три каждый игрок выбрасывает один или два пальца, затем игроки их суммируют и делят сумму на 3. Если остаток 0, печенье достается Роксанне, если 1, то Саре, а если 2, то Теду. Каждый из игроков получает выигрыш 1, если победит (и съест печенье), и 0 в противном случае.

a) Представьте эту игру с тремя участниками в форме таблицы, где Роксанне соответствуют строки, Саре — столбцы, Теду — страницы.

b) Найдите все равновесия Нэша в чистых стратегиях. Можно ли назвать эту игру справедливым способом поделить печенье? Объясните, почему да или нет.

U13 (дополнительное упражнение). Постройте матрицу выигрышей для игры с двумя участниками, удовлетворяющей следующим требованиям. Во-первых, у каждого игрока должно быть три стратегии. Во-вторых, в игре не должны отсутствовать доминирующие стратегии. В-третьих, игра не должна быть разрешима методом минимакса. В-четвертых, в игре должно быть ровно два равновесия Нэша в чистых стратегиях. Составьте матрицу игры, а затем продемонстрируйте, что все перечисленные выше условия соблюдены.

Глава 5. Игры с одновременными ходами: непрерывные стратегии, анализ и обсуждения

* * *

В главе 4 обсуждение фокусировалось на играх с одновременными ходами, в которых каждый игрок мог делать выбор из дискретного множества действий. К дискретным стратегическим играм данного типа относятся спортивные соревнования, позволяющие использовать только небольшое количество вариантов игры в заданной ситуации, скажем пенальти в футболе, когда игрок может выбирать, куда послать мяч: высоко или низко, в угол или в центр ворот. Другие примеры включают в себя координационные игры и игры под общим названием «дилемма заключенных», в которых в распоряжении игроков только две или три стратегии. Такие игры можно проанализировать с помощью таблицы игры, по крайней мере в ситуациях с приемлемым количеством участников и доступных действий.

Однако многие игры с одновременными ходами отличаются от тех, которые мы рассматривали до сих пор, тем, что их участникам приходится выбирать стратегии из широкого диапазона возможных вариантов. Игры, в которых производители выбирают цены на свои продукты, благотворители — суммы пожертвований, а подрядчики — размер заявки на участие в проекте, — все это примеры игр, в которых участники имеют практически бесконечное множество вариантов выбора. Сугубо формально цены и другие суммы в долларах все же можно выразить в минимальных единицах, таких как цент, а значит, на самом деле речь идет о конечном и дискретном множестве стратегий ценообразования. Однако на практике эта единица настолько мала, что, если бы мы допустили подобную дискретность, каждому игроку пришлось бы иметь дело с таким большим количеством дискретных стратегий, что это сделало бы таблицу игры нереально огромной. Поэтому гораздо проще и эффективнее рассматривать эти варианты выбора как непрерывно меняющиеся действительные числа. Когда у игроков столь широкий диапазон доступных действий, таблицы игр становятся фактически бесполезны в качестве инструмента анализа, оказываясь слишком громоздкими для практического применения. Для таких игр нужен иной метод решения. В первой части данной главы мы представим аналитические инструменты для решения игр с непрерывными стратегиями.

В этой главе также рассматриваются некоторые более широкие вопросы, связанные с поведением в играх с одновременными ходами и концепцией равновесия Нэша. В частности, эмпирические данные о ведении игр в соответствии с равновесием Нэша, собранные в ходе как лабораторных экспериментов, так и наблюдений за реальными жизненными ситуациями. Кроме того, представлен ряд теоретических критических замечаний в отношении концепции равновесия Нэша, а также приведены аргументы против подобной критики. Еще вы увидите, что прогнозы, составленные на основе теории игр, во многих случаях целесообразно (с некоторыми оговорками) использовать в качестве отправной точки для понимания фактического поведения.

1. Чистые стратегии, представляющие собой непрерывные переменные

В главе 4 мы сформулировали метод анализа наилучших ответов для поиска всех равновесий Нэша в чистых стратегиях в играх с одновременными ходами. Теперь расширим его на игры, в которых у каждого игрока — непрерывный диапазон вариантов выбора, например при установлении компанией цен на свою продукцию. Чтобы вычислить наилучшие ответы в игре такого типа, мы должны найти для каждого возможного значения цены одной компании значение цены другой компании, которое будет для нее лучшим (максимизирует ее прибыль). Непрерывность множества стратегий позволяет нам использовать алгебраические формулы для того, чтобы продемонстрировать, как стратегии обеспечивают выигрыши, а также показать наилучшие ответы в виде линий на графике, где на осях координат отображена цена (или любая другая непрерывная стратегия) каждого из игроков. При таком способе представления игры равновесие Нэша находится в месте пересечения линий на графике. Мы разовьем эту идею и метод на примере двух историй.

А. Ценовая конкуренция

Наша первая история происходит в маленьком городке под названием Яппи-Хейвен, в котором есть два ресторана: Xavier’s Tapas Bar и Yvonne’s Bistro. Чтобы упростить ситуацию, будем исходить из предположения, что в каждом ресторане используется стандартное меню. Владельцы Xavier’s и Yvonne’s должны установить цены на блюда в своих меню; при этом цель каждого из них, чтобы эти цены обеспечивали максимальную прибыль (выигрыш в этой игре). Мы также полагаем, что рестораны печатают меню порознь, не зная о ценах друг друга, стало быть, это игра с одновременными ходами[57]. Поскольку цены могут принимать любое значение в пределах (почти) бесконечного диапазона, начнем с введения общих или алгебраических обозначений, затем найдем правила наилучших ответов и используем их для решения игры и определения равновесных цен. Обозначим цену ресторана Xavier’s как Px а Yvonne’s как Py.

При определении цены каждый ресторан должен просчитать последствия с точки зрения прибыли. Для того чтобы упростить задачу, мы ставим два ресторана в условия симметричной зависимости, но читатели с развитыми математическими навыками могут выполнить аналогичный анализ, воспользовавшись более общими величинами или даже алгебраическими символами. Допустим, обслуживание одного клиента обходится каждому ресторатору в 8 долларов. Предположим также, что опыт или исследования рынка показывают, что, если цена ресторана Xavier’s Px, а Yvonne’s Py, количество клиентов, Qx и Qy соответственно (в сотнях клиентов в месяц) задается уравнениями[58]

Qx = 44 — 2Px + Py,

Qy = 44 — 2Py + Px.

Основная идея этих уравнений состоит в том, что, если один ресторан повысит цену на 1 доллар (скажем, Yvonne’s повысит Py на один доллар), его объем продаж сократится на 200 в месяц (Qy уменьшится на 2), а объем продаж другого ресторана увеличится на 100 в месяц (Qx увеличится на 1). Можно предположить, что 100 клиентов ресторана Yvonne’s перейдут к Xavier’s, а еще 100 останутся дома.

Обозначим прибыль ресторана Xavier’s за неделю (в сотнях долларов в неделю) символом πх (греческая буква π [ «пи»] — традиционный экономический символ для обозначения прибыли). Эта прибыль рассчитывается как произведение чистого дохода на одного клиента (цена за вычетом затрат на обслуживание, или Рх — 8) и количества обслуженных клиентов:

πx = (Px — 8)Qx = (Px — 8) (44 — 2Px + Py).

Умножив и перегруппировав члены в правой части предыдущего выражения, можем записать прибыль как функцию повышающихся степеней Рх:

πx = — 8(44 + Py) + (16 + 44 + Py) Px — 2(Px)2 = — 8(44 + Py) + (60 + Py) Px — 2(Px)2.

Xavier’s устанавливает цену Рх, чтобы максимально увеличить свой выигрыш. Делая это для каждого возможного уровня цены ресторана Yvonne’s Py, мы получим правило наилучших ответов ресторана Xavier’s, которое можно отобразить на графике.

В такой форме можно представить многие простые иллюстративные примеры, в которых одно действительное число (такое как цена) выбирается для максимального увеличения другого, зависимого от него действительного числа (например, прибыль или выигрыш). В приложении к этой главе описан простой общий метод выполнения операции максимизации; вы найдете немало случаев его применения. Здесь же мы просто приводим формулу.

Функция, которую мы хотим максимизировать, задается следующим общим уравнением:

Y = A + BX–CX2.

Мы использовали обозначение Y для величины, которую нужно максимизировать, и X для величины, которую хотим выбрать, чтобы максимизировать Y. В нашем конкретном примере прибыль πx будет представлена в виде Y, а цена Pх в виде X. Точно так же, хотя в любой конкретной задаче члены приведенного выше уравнения А, В и С были бы известны, мы обозначили их общими алгебраическими символами, с тем чтобы наша формула была применима ко множеству аналогичных задач. (Формальный термин, которым обозначаются члены А, В и С, — параметры, или алгебраические константы.) Поскольку большинство случаев практического применения подразумевают наличие неотрицательных значений X, таких как цены, а также максимизацию значения Y, необходимо, чтобы выполнялось условие В > 0 и С > 0. Тогда формула, позволяющая выбрать X для максимизации Y с учетом известных значений А, В и С, будет выглядеть так: Х = В/2С. Обратите внимание, что А в ней отсутствует, хотя это, безусловно, влияет на полученное в результате значение Y.

Сравнив общую функцию в уравнении выше и конкретный пример функции прибыли в игре в ценообразование на предыдущей странице, получим[59]

В = 60 + Py и С = 2.

Следовательно, цена, которую выберет ресторан Xavier’s для максимального увеличения прибыли, будет удовлетворять формуле В/2С и составит

Pх = 15 + 0,25 Py.

Это уравнение определяет значение Pх, при котором прибыль ресторана Xavier’s будет максимальной при соответствующем значении цены ресторана Yvonne’s Py. Иными словами, это и есть то, что нам нужно: правило наилучшего ответа ресторана Xavier’s.

Правило наилучшего ответа ресторана Yvonne’s можно найти аналогичным способом. Поскольку затраты на обслуживание клиентов и объемы продаж двух ресторанов полностью симметричны, очевидно, что это уравнение будет иметь такой вид:

Pу = 15 + 0,25 Pх.

Оба правила используются одним и тем же способом для построения графиков наилучших ответов. Например, если Xavier’s назначит цену 16, то Yvonne’s введет это значение в свое правило наилучшего ответа, чтобы найти Pу = 15 + 0,25 (16) = 19; точно так же наилучший ответ ресторана Xavier’s на значение цены ресторана Yvonne’s Pу = 16 составляет Pх = 19, наилучший ответ каждого ресторана на цену другого 4 равен 16, на цену 8 — 17 и т. д.

На рис. 5.1 приведены графики этих двух правил наилучшего ответа. В силу особенностей нашего примера (линейная зависимость между объемом продаж и назначенными ценами, а также постоянные издержки на приготовление каждого блюда) оба графика наилучших ответов представляют собой прямые линии. При других характеристиках спроса и затрат они могут не быть прямыми линиями, но метод их построения тот же, а именно: сначала зафиксировать цену одного ресторана (скажем, Pу), а затем найти значение цены другого ресторана (например, Pх), которая максимизирует прибыль второго ресторана, и наоборот.


Рис. 5.1. Графики наилучших ответов и равновесия в игре «ценообразование в ресторанах»


Точка пересечения двух графиков наилучшего ответа — это равновесие Нэша в игре в ценообразование между двумя ресторанами. Она представляет пару цен (по одной на каждую компанию), которые являются наилучшими ответами друг на друга. Конкретные значения для равновесной стратегии ценообразования каждого ресторана можно вычислить алгебраически, решив два правила наилучших ответов относительно Px и Py. Мы намеренно выбрали такой пример, чтобы уравнения были линейными и легко решаемыми. В данном случае мы просто подставим формулу для Px в формулу для Py и получим следующее уравнение:

Py = 15 + 0,25Pх = 15 + 0,25(15 + 0,25Py) = 18,75 + 0,0625Py.

Последнее уравнение можно упростить до Py = 20. Ввиду симметричности задачи не составит труда найти, что Px = 20[60]. Таким образом, в равновесном состоянии каждый ресторан назначит цену 20 долларов на блюда в своем меню и получит 12 долларов прибыли на каждых 2400 клиентов (2400 = (44 — 2 × 20 + 20) × 100), которых обслуживает за месяц, что обеспечит общий объем прибыли 28 800 долларов в месяц.

Б. Некоторые экономические аспекты олигополии

Мы привели пример с ценообразованием в ресторанах, чтобы показать, как найти равновесие Нэша в игре, где стратегии представляют собой непрерывные переменные, такие как цены. Однако эту ситуацию целесообразно проанализировать более детально и объяснить кое-какие экономические аспекты стратегий ценообразования и прибыли при конкуренции между небольшим количеством компаний (в данном случае двух). На языке экономики такую конкуренцию называют «олигополия», от греческих слов, означающих «малое количество продавцов».

Для начала обратите внимание, что график наилучшего ответа каждой компании наклонен вверх. В частности, если один ресторан поднимает цену на 1 доллар, наилучший ответ другого ресторана — поднять цену на 0,25 доллара, или 25 центов. Когда один ресторан повышает цену, некоторые его клиенты переходят в другой ресторан, а это означает, что его конкурент может получить прибыль за счет новых клиентов посредством частичного повышения цены. Таким образом, ресторан, поднимающий цену, помогает конкуренту увеличить прибыль. В случае равновесия Нэша, при котором каждый ресторан назначает цену независимо от другого и исходя исключительно из собственной прибыли, он не учитывает дополнительное преимущество, которое создает для другого ресторана. Могут ли они объединить усилия и договориться о повышении цен, тем самым увеличив свою прибыль? Да. Предположим, два ресторана установили цены по 24 доллара каждый; стало быть, каждый из них получит 16 долларов прибыли на каждого из 2000 клиентов (2000 = (44 — 2 × 24 + 24) × 100), которых ресторан обслуживает за месяц, следовательно, общий объем прибыли составит 32 000 долларов в месяц.

Эта игра в ценообразование в точности такая же, как и дилемма заключенных, рассмотренная в главе 4, но теперь стратегии носят непрерывный характер. В истории из главы 4 у мужа и жены было искушение предать друг друга и признаться в совершении преступления в полиции, однако, сделав это, оба бы получили более длинные тюремные сроки (худшие исходы игры). Аналогично более прибыльная цена 24 доллара не является равновесием Нэша. Каждый из ресторанов, произведя расчеты, попытается предложить клиентам более низкую цену. Предположим, Yvonne’s начнет с цены 24 доллара. Воспользовавшись формулой наилучших ответов, можно определить, что Xavier’s при этом установит цену 15 + 0,25 × 24 = 21. Далее Yvonne’s отреагирует своим наилучшим ответом: 15 + 0,25 × 21 = 20,25. В случае продолжения этого процесса цены обоих ресторанов сведутся к равновесию Нэша, то есть к 20 долларам.

Но какая цена выгоднее для обоих ресторанов? При наличии симметрии допустим, что оба заведения назначат одну и ту же цену Р. Тогда прибыль каждого ресторана равна:

πx = πy = (P — 8) (44 — 2P + P) = (P — 8) (44 — P) = — 352 + 52P — P2.

Оба могут выбрать Р для максимизации формулы. Воспользовавшись уравнением, представленным в разделе 1.А, мы видим, что решение: Р = 52/2 = 26. Полученная в результате прибыль каждого ресторана составит 32 400 долларов в месяц.

На языке экономики соглашение о повышении цен до уровня, оптимального для обеих сторон, называется картелем. Высокие цены наносят ущерб потребителям, поэтому органы государственного регулирования США обычно пытаются предотвратить образование картелей и заставить компании конкурировать друг с другом. Явный сговор по поводу цен находится вне закона, но негласный сговор все же может иметь место в повторяющейся дилемме заключенных (мы проанализируем повторяющиеся игры такого рода в главе 10)[61].

Сговор необязательно приводит к повышению цен. В нашем примере, если один ресторан снизит цену, его объем продаж увеличится отчасти потому, что он переманит некоторых клиентов от конкурента, поскольку продукты (блюда) двух ресторанов взаимозаменяемы. В других контекстах две компании могут продавать взаимодополняющие продукты, скажем программное и аппаратное обеспечение. В этом случае, если одна из них снижает цену, объем продаж в обеих компаниях возрастает. При равновесии Нэша, когда две фирмы действуют независимо друг от друга, они не учитывают выгоду, которую принесло бы обеим снижение цен. Следовательно, они поддерживают цены на более высоком уровне, чем если бы координировали свои действия. Сотрудничество между такими компаниями привело бы к снижению цен, что было бы выгодно и клиентам.

Конкуренция не всегда подразумевает использование цен в качестве стратегических переменных. Например, рыболовные флотилии могут конкурировать за более крупный улов. В таком случае имеет место конкуренция по количеству, а не по цене, рассмотренная в данном разделе. Мы опишем конкуренцию по количеству чуть ниже, а также в нескольких упражнениях, размещенных в конце главы.

В. Политическая реклама

Наш второй пример взят из политики. Он требует немного больше математических выкладок, чем мы обычно используем, но мы объясним интуитивные идеи, лежащие в их основе, с помощью слов и графиков.

Рассмотрим выборы с участием двух партий или двух кандидатов. Каждая сторона пытается отнять голоса избирателей у другой стороны посредством рекламы — либо позитивных рекламных объявлений, подчеркивающих достоинства самой партии или кандидата, либо негативной рекламы, сфокусированной на недостатках соперника. Для простоты будем исходить из предположения, что изначально избиратели не владеют никакой информацией и не отдают предпочтения ни одной из партий, поэтому формируют свое мнение исключительно под влиянием рекламы. (Многие сказали бы, что это точное описание американской политики, но более продвинутые исследования в области политологии подтверждают тот факт, что информированные, стратегически мыслящие избиратели все же существуют. Мы проанализируем их поведение более подробно в главе 15.) Для того чтобы упростить ситуацию еще больше, допустим, что доля избирателей, голосующих за партию, равна доле партии в общей сумме расходов на рекламу избирательной кампании. Назовем партии или кандидатов Л и П; если Л тратит на рекламу x миллионов долларов, а П — y миллионов долларов, то Л получит долю x / (x + y) голосов, а П — у / (x + y) голосов. Читатели, заинтересовавшиеся этой областью практического применения теории игр, найдут более общее описание соответствующих методов в специальной литературе по политологии.

Сбор средств на оплату такой рекламы требует определенных затрат; к их числу относятся деньги на рассылку писем и телефонные звонки; время и труд кандидатов, партийных лидеров и активистов; будущее политическое вознаграждение для лиц, сделавших крупные пожертвования, а также возможные политические издержки в случае, если такое вознаграждение станет достоянием гласности и повлечет за собой скандал. Для простоты анализа предположим, что все эти затраты пропорциональны прямым затратам на проведение кампании х и у. В частности, допустим, что выигрыш партии Л оценивается как процент голосов за вычетом расходов на рекламу: 100x (x + y) — x. Аналогичным образом выигрыш партии П составляет: 100у / (x + y) — у.

Теперь можем определить наилучшие ответы. Поскольку это нельзя сделать без вычислений, выведем математическую формулу, а затем объясним ее общий смысл на интуитивном уровне. Для заданной стратегии х партии Л партия П выбирает стратегию у, чтобы максимизировать свой выигрыш. Условие первого порядка можно найти, зафиксировав значение х и приравняв производную от 100у / (x + y) — у по у к нулю. В итоге получим уравнение 100x / (x + y)2 — 1 = 0, или . На рис. 5.2 показан график этой функции, а также аналогичный график функции наилучшего ответа партии Л, а именно .


Рис. 5.2. Наилучшие ответы и равновесие Нэша в игре «политическая реклама»


Посмотрите на кривую наилучших ответов партии П. По мере роста значения переменной x партии Л значение переменной у партии П сначала немного повышается, а затем снижается. Если другая партия размещает мало рекламных материалов, то реклама первой партии обеспечит высокую отдачу в виде голосов избирателей, поэтому на незначительное увеличение расходов другой партии на рекламу целесообразно ответить еще более существенным увеличением собственных расходов на рекламу в целях усиления конкуренции. Однако если другая партия уже вкладывает в рекламу солидные средства, то реклама первой партии обеспечит мизерную отдачу по отношению к затратам на нее, поэтому лучше ответить на повышение рекламных расходов другой партии сокращением собственных расходов.

Оказывается, кривые наилучших ответов двух партий пересекаются в точках максимума. Опять же, некоторые алгебраические манипуляции с уравнениями этих двух кривых позволяют получить точные величины равновесных значений x и y. Вы можете убедиться, что в данном случае значение каждой из переменных x и y равно 25, или 25 миллионов долларов. (Предполагается, что речь идет о выборах в Конгресс; выборы в Сенат и президентские выборы обходятся в наши дни гораздо дороже.)

Как и в игре в ценообразование, здесь мы имеем дело с дилеммой заключенных. Если обе партии сократят расходы на рекламу в равной пропорции, это никак не повлияет на долю голосов избирателей, но при этом обе партии сэкономят на расходах, а значит, получат более крупный выигрыш. В отличие от картеля производителей взаимозаменяемых продуктов (который поддерживает высокие цены и наносит ущерб потребителям), соглашение между политиками о сокращении объема рекламы, по всей вероятности, принесло бы пользу избирателям и обществу в целом, подобно тому как картель производителей взаимодополняющих продуктов привел бы к снижению цен и выгоде потребителей. Из решения данной дилеммы заключенных извлекли бы пользу все. В действительности Конгресс уже несколько лет пытается это сделать и даже ввел частичные ограничения, однако политическая конкуренция слишком ожесточенная для того, чтобы обеспечить полное или длительное разрешение этой дилеммы.

Но что если партии находятся в несимметричных ситуациях? Тогда может возникнуть асимметрия двух типов. Одна партия (скажем, П) может иметь возможность размещать рекламу по более низкой цене, поскольку у нее есть доступ к средствам массовой информации. Или рекламные расходы партии П могут быть эффективнее, чем у партии Л, — например, доля голосов Л может составлять x / (x + 2y), тогда как доля голосов П — 2y / (x + 2y).

В первом случае партия П использует свой более дешевый доступ к рекламе, выбирая более высокий уровень расходов y для любого заданного значения x партии Л; иными словами, кривая наилучших ответов на рис. 5.2 смещается вверх. Равновесие Нэша смещается вверх и направо вдоль неизменной кривой наилучших ответов партии Л. Таким образом, в итоге партия П потратит на рекламу больше, а партия Л меньше, чем раньше. Это сродни ситуации, когда побеждающая сторона как будто «играет мускулами», а проигрывающая как будто сдается перед таким натиском.

Во втором случае кривые наилучших ответов обеих партий смещаются в соответствии с более сложной схемой. В итоге обе несут равные расходы на рекламу, но меньше 25, как в симметричной ситуации. В нашем примере, где эффективность рекламных расходов партии П в два раза превышает эффективность расходов партии Л, это приводит к тому, что объем расходов каждой партии составляет 200 / 9 = 22,2 < 25. (Следовательно, именно в симметричной ситуации наблюдается самая острая конкуренция.) Если рекламные расходы партии П более эффективны, верно также и то, что в связи с характером асимметричности кривых наилучших ответов новое равновесие Нэша вместо точек максимума этих двух кривых расположено на нисходящей части кривой наилучших ответов партии Л и восходящей части кривой наилучших ответов партии П. Иными словами, хотя обе партии тратят на рекламу одинаковую сумму, объем рекламных расходов партии П, находящейся в более благоприятных условиях, превышает сумму, вызывающую максимальный ответ партии Л, а объем рекламных расходов более слабой партии Л меньше суммы, способной вызвать максимальный ответ партии П. В конце данной главы приведено дополнительное упражнение (U12), которое позволит студентам с более высоким уровнем математических знаний вывести эти результаты.

Г. Общий метод поиска равновесий Нэша

Хотя стратегии (цены или расходы на политическую рекламу) и выигрыши (прибыль и доля голосов избирателей) в предыдущих двух примерах связаны с конкуренцией между компаниями или политическими партиями, данный метод поиска равновесия Нэша в игре с непрерывными стратегиями абсолютно универсален и вы можете использовать его для решения других подобных игр.

Предположим, игроки следуют под номерами 1, 2, 3, …. Обозначим их стратегии как х, у, z, … в этом порядке, а выигрыши — соответствующими заглавными буквами X, Y, Z, …. В общем случае выигрыш каждого игрока является функцией выбора всех игроков; отметим соответствующие функции как F, G, H, … На основании этой информации об игре составим выигрыши и запишем их так:

X = F (x, y, z, …), Y = G (x, y, z, …), Z = H (x, y, z, …).

Если использовать этот общий формат для описания нашего примера с ценовой конкуренцией между двумя игроками (компаниями), то стратегии x и y становятся ценами Px и Py. Выигрыши X и Y — это прибыль πx и πy. Функции F и G — квадратичные функции вида

πx = –8(44 + Py) + (16 + 44 + Py) Px — 2(Px)2.

Аналогичная формула есть для πy.

Согласно общему подходу, игрок 1 рассматривает стратегии игроков 2, 3, … как не поддающиеся его контролю и выбирает свою стратегию так, чтобы максимально увеличить собственный выигрыш. Следовательно, для каждого заданного множества значений y, z, … выбор игроком 1 значения х максимизирует X = F (x, y, z, …). При использовании дифференциального исчисления условие такой максимизации состоит в том, что производная от X по х при постоянном значении y, z, … (это частная производная) равна нулю. Для особых функций существуют простые формулы, подобные приведенной выше и использованной для квадратичной функции. И даже если алгебраические формулировки или исчисление слишком сложны, есть немало компьютерных программ, которые составят для вас таблицы или построят графики наилучших ответов. Какой бы метод вы ни применили, вы можете найти уравнение оптимального выбора игроком 1 значения x при заданных значениях y, z, …, описывающее функцию наилучшего ответа игрока 1. Аналогичным способом можно найти функции наилучших ответов всех остальных игроков.

Функции наилучших ответов соответствуют числу стратегий в игре и могут быть решены одновременно при условии, что стратегические переменные рассматриваются как неизвестные величины. Это решение и есть равновесие Нэша, которое мы ищем. В одних играх может быть множество решений, обеспечивающих множество равновесий Нэша, в других решение может отсутствовать, что требует дальнейшего анализа, например включения смешанных стратегий.

2. Критический анализ концепции равновесия Нэша

Хотя равновесие Нэша — важнейшая концепция решения игр с одновременными ходами, оно стало объектом ряда теоретических критических замечаний. В данном разделе мы кратко рассмотрим некоторые из них, а также приведем контраргументы, подкрепляя каждый примером[62]. Отдельные критические замечания противоречат друг другу; есть и подлежащие опровержению при более тщательном анализе игр. Некоторые утверждают, что сама концепция равновесия Нэша неполная, и предлагают дополненные или расширенные концепции с более эффективными свойствами. Мы сформулируем в данном разделе одну из таких альтернатив и укажем еще на несколько в последующих главах. Мы убеждены, что наши объяснения помогут вам заново обрести, хотя и с оговорками, уверенность в целесообразности применения концепции равновесия Нэша. Однако определенные серьезные сомнения остаются неразрешенными, и это говорит о том, что теорию игр пока еще нельзя назвать окончательно сформировавшейся наукой. Но даже этот факт должен воодушевить начинающих специалистов по теории игр, поскольку открывает перед ними широкое поле для новых идей и исследований. Неразвивающаяся наука — мертвая наука.

Давайте начнем с анализа основного фактора привлекательности концепции равновесия Нэша. Большинство игр в этой книге относятся к категории некооперативных, то есть тех, в которых игроки действуют независимо друг от друга. Следовательно, было бы естественно предположить, что если действие игрока нельзя назвать лучшим согласно его системе ценностей (шкале выигрышей) в контексте действий других игроков, то он изменит его. Иными словами, весьма заманчиво предположить, что действие каждого игрока будет представлять собой наилучший ответ на действия остальных игроков. Равновесие Нэша обладает именно таким свойством «одновременных наилучших ответов»; собственно говоря, это и есть его определение. При любом предполагаемом исходе, не являющемся равновесием Нэша, минимум один игрок мог бы добиться более выгодных для себя результатов, переключившись на другое действие.

Такие соображения заставили нобелевского лауреата Роджера Майерсона возразить против критических замечаний в адрес равновесия Нэша, основанных на интуитивной привлекательности использования другой стратегии. В качестве контрдовода Майерсон просто переложил бремя доказывания на критика. «Когда меня спрашивают, почему участники игры должны вести себя так, как предписывает равновесие Нэша, — сказал он, — мой любимый ответ — спросить “Почему бы нет?” и предоставить сомневающемуся возможность предложить свой вариант того, что, по его мнению, должны делать игроки. Если этот вариант не является равновесием Нэша, тогда… мы можем продемонстрировать, что он бы свел к нулю собственную обоснованность, если бы игроки считали его точным описанием поведения друг друга»[63].

А. Решение проблемы риска в равновесии Нэша

Некоторые критики утверждают, что концепция равновесия Нэша не уделяет должного внимания риску. В ряде игр можно найти стратегии, отличающиеся от стратегий равновесия Нэша тем, что они более безопасны, а значит, было бы целесообразнее выбрать именно их. Мы предлагаем два примера игр такого типа. Автор первого — профессор экономики Калифорнийского университета в Беркли Джон Морган; таблица этой игры представлена на рис. 5.3.


Рис. 5.3. Игра со спорным равновесием Нэша


Анализ наилучших ответов позволяет быстро определить, что в этой игре есть единственное равновесие Нэша, а именно сочетание стратегий А, А, обеспечивающее выигрыши 2, 2. Но вы, как и многие другие участники экспериментов, проведенных Морганом, можете подумать, что стратегия С весьма привлекательна по двум причинам. Во-первых, она гарантирует тот же выигрыш, что и при равновесии Нэша, то есть 2, тогда как, выбрав стратегию из равновесия Нэша А, вы получите выигрыш 2, только если другой игрок тоже выберет А. Зачем же идти на такой риск? Более того, если вы считаете, что другой игрок также может прибегнуть к подобному логическому обоснованию целесообразности выбора стратегии С, то вы совершили бы серьезную ошибку, предпочтя стратегию А, поскольку в таком случае вы получите выигрыш 0, тогда как могли бы получить 2, применив стратегию С.

Майерсон ответил на это так: «Не спешите. Если вы действительно считаете, что другой игрок рассуждает подобным образом и выберет стратегию С, то вам следует применить стратегию В, чтобы получить выигрыш 3. А если вы думаете, что другой игрок тоже так думает и выберет стратегию В, тогда вашим наилучшим ответом на стратегию В была бы стратегия А. А если вы полагаете, что другой игрок также это поймет, вы должны выбрать свой наилучший ответ на А, то есть стратегию А. Вот мы и вернулись к равновесию Нэша!» Как видите, критика в адрес равновесия Нэша и аргументы против нее — уже сами по себе нечто вроде интеллектуальной игры, причем довольно интересной.

Второй, еще более впечатляющий пример сформулировал экономист Стэнфордской бизнес-школы Дэвид Крепс. Таблица игры приведена на рис. 5.4. Прежде чем приступить к ее теоретическому анализу, вы должны представить, что действительно играете в нее в качестве игрока А. Какое из двух действий вы выбрали бы?


Рис. 5.4. Катастрофическое равновесие Нэша?


Запомните свой ответ на заданный выше вопрос, и продолжим анализ игры. Начав с поиска доминирующих стратегий, мы увидим, что у игрока А их нет, а у игрока Б есть. Выбор стратегии «налево» гарантирует игроку Б выигрыш 10, что бы ни сделал игрок А, тогда как в случае выбора стратегии «направо» (также при любых действиях игрока А) он получит выигрыш 9,9. Следовательно, игрок Б должен играть «налево». При условии, что игрок Б предпочтет «налево», игроку А лучше выбрать «вниз». Единственное равновесие Нэша в чистых стратегиях в этой игре — «вниз»/«налево», при таком ее исходе каждый участник получит выигрыш 10.

Проблема здесь в том, что многие (хотя и не все) люди, играющие роль игрока А, не выбирают стратегию «вниз». (А что выбрали вы?) Так поступают как те, кто много лет изучает теорию игр, так и те, кто никогда не слышал об этом предмете. Если у игрока А есть какие-либо сомнения по поводу выигрыша игрока Б или его рациональности, то для него гораздо безопаснее выбрать стратегию «вверх», чем равновесную стратегию «вниз». Но что если бы игрок А считал, что выигрыши совпадают с тем, что показано на рис. 5.4, а в действительности выигрыши игрока Б были бы совсем другими: выигрыш 9,9 соответствовал бы стратегии «налево», а выигрыш 10 — стратегии «направо»? Что если бы значение 9,9 было приближенным, а на самом деле точный выигрыш составлял бы 10,1? Что если бы у Б была совсем иная система ценностей или на самом деле он не относится к числу рациональных игроков и мог бы выбрать «неправильное» действие просто ради забавы? Очевидно, что наши исходные предположения о совершенной информации и рациональности действительно могут играть важную роль в процессе анализа, используемого нами при изучении стратегии. Колебания относительно игроков могут изменить те равновесия, наличие которых мы предсказали бы при обычных условиях, а также поставить под сомнение корректность концепции равновесия Нэша.

Однако реальная проблема со многими такого рода примерами не в том, что концепция равновесия Нэша неприемлема, а в том, что эти примеры иллюстрируют ее неподобающе упрощенным способом. Если в приведенном выше примере есть какие-то сомнения в выигрышах игрока Б, то этот факт должен стать неотъемлемой частью анализа. Если игрок А не знает выигрышей игрока Б, значит, это игра с асимметричной информацией (мы ее сможем обсудить только в главе 8). Но в данном примере представлена сравнительно простая игра такого типа, и мы можем без особого труда проанализировать ее равновесие.

Предположим, игрок А полагает, что существует вероятность p того, что выигрыши игрока Б при выборе стратегий «налево» и «направо» противоположны выигрышам, представленным на рис. 5.4; следовательно, (1 — p) — это вероятность того, что выигрыши игрока Б соответствуют информации на рисунке. Поскольку игрок А вынужден действовать, не зная фактических выигрышей игрока Б, он должен применить свою стратегию как «наилучшую в среднем». В данном примере расчеты достаточно просты, так как в каждом случае у игрока Б есть доминирующая стратегия; единственная проблема для игрока А — то, что в двух разных случаях у игрока Б разные доминирующие стратегии. С вероятностью (1 — p) доминирующая стратегия игрока Б — «налево» (случай, показанный на рисунке), а с вероятностью p его доминирующая стратегия — «направо» (противоположный случай). Таким образом, если игрок А выберет «вверх», то с вероятностью (1 — p) он будет играть против Б, применившего «налево», а значит, получит выигрыш 9; с вероятностью p игроку А предстоит вступить в игру с игроком Б, выбравшим «справа», и, стало быть, он получит выигрыш 8. Итак, статистическое, или взвешенное по вероятности среднее значение выигрыша игрока А при выборе стратегии «вверх» составляет 9(1 — p) + 8p. Аналогично статистическое, или взвешенное по вероятности, среднее значение выигрыша игрока А при использовании стратегии «вниз» равно 10(1 — p) — 1000p. Следовательно, для игрока А предпочтительнее стратегия «вверх», если

9(1 — p) + 8p > 10(1 — p) — 1000p, или p > 1 / 1009.

Таким образом, при наличии даже малейшей вероятности того, что выигрыши игрока Б противоположны выигрышам на рис. 5.4, игроку А лучше выбрать стратегию «вверх». В данном случае правильно выполненный анализ, основанный на рациональном поведении, не противоречит ни интуитивным догадкам, ни экспериментальным данным.

При выполнении этих вычислений мы исходили из предположения, что, столкнувшись с неопределенностью в отношении выигрышей, игрок А рассчитает их статистическое среднее значение в случае различных действий и выберет действие, обеспечивающее самое высокое среднестатистическое значение выигрыша. Это неявное допущение хотя и соответствует цели данного примера, но сопряжено с определенными проблемами. Например, оно подразумевает, что человек, столкнувшийся с двумя ситуациями, в одной из которых он выиграет или проиграет 10 долларов с вероятностью 50 на 50, а в другой выиграет 10 001 доллар и проиграет 10 000 долларов с той же вероятностью, должен выбрать вторую ситуацию, поскольку она обеспечивает среднестатистический выигрыш в размере 50 центов (1/2 × 10 001 — 1/2 × 10 000), тогда как первая принесет нулевой выигрыш (1/2 × 10 — 1/2 × 10). Однако многие сочли бы, что вторая ситуация гораздо рискованнее, а потому предпочли бы первую. Решить эту проблему достаточно легко. В приложении к главе 7 показано, как создание нелинейной шкалы выигрышей, соответствующих денежным суммам, позволяет человеку, принимающему решение, предусмотреть как риск, так и прибыль. А в главе 8 продемонстрировано, как можно использовать эту концепцию для того, чтобы понять, как люди реагируют на риск в своей жизни — например, разделяют его с другими или покупают страховку.

Б. Множественность равновесий Нэша

Еще одно критическое замечание в адрес концепции равновесия Нэша строится на наблюдении, что во многих играх присутствует множество равновесий Нэша, а значит, данная концепция неспособна определить исходы игры достаточно точно для того, чтобы давать однозначные прогнозы. Данный аргумент не требует от нас отказа от концепции равновесия Нэша, а скорее подразумевает, что при необходимости получить однозначный прогноз на основании нашей гипотезы мы должны включить некий критерий, который поможет нам решить, какое именно из множества равновесий Нэша выбрать.

В главе 4 мы изучили много координационных игр со множеством равновесий. Из всех этих равновесий игроки могут выбрать одно в качестве фокальной точки при наличии у них общих социальных, культурных или исторических знаний. Рассмотрим координационную игру, в которую сыграли студенты Стэнфордского университета. За одним игроком закрепили Бостон, за другим — Сан-Франциско. Затем каждому студенту вручили список из девяти американских городов (Атланта, Чикаго, Даллас, Денвер, Хьюстон, Лос-Анджелес, Нью-Йорк, Филадельфия и Сиэтл) и попросили выбрать подмножество городов. Оба делали выбор одновременно и независимо друг от друга и могли получить приз только при условии, что их выбор приведет к формированию двух непересекающихся подмножеств городов. Несмотря на наличие 512 других равновесий Нэша, если оба студента были американцами или гражданами США, довольно долго прожившими в стране, более чем в 80 процентах случаев они выбирали единственное равновесие по географическому принципу. Студент, за которым был закреплен Бостон, указывал все города к востоку от Миссисипи, а студент, которому соответствовал Сан-Франциско, — все города к западу от Миссисипи. Вероятность такой координации существенно снижалась, когда один или оба студента не были гражданами США. Тогда выбор порой делался в алфавитном порядке, но с гораздо меньшим уровнем координации по той же точке раздела[64].

Характеристики самой игры в сочетании с общим культурным опытом могут способствовать сходимости ожиданий. В качестве еще одного примера множественности равновесий рассмотрим игру, в которой два игрока одновременно и независимо друг от друга записывают, какую долю от 100 долларов каждый из них хотел бы получить. Если сумма указанных ими чисел не превышает 100 долларов, каждый игрок получает то, что записал, если превышает, оба ничего не получают. Равновесие Нэша наблюдается в случае, если при любом значении x один игрок напишет x, а другой — (100 — x). Следовательно, в этой игре есть практически бесконечный диапазон равновесий Нэша. Однако на практике фокальной точкой чаще всего становится вариант 50 на 50. Данная социальная норма равенства или справедливости, кажется, насколько глубоко укоренилась, что стала почти инстинктивной: игроки, выбирающие 50 долларов, утверждают, что это очевидный ответ. Для того чтобы это действительно была фокальная точка, это не только должно быть очевидно для всех, но каждый должен знать, что это очевидно для всех, и все должны знать, что… Иными словами, такая очевидность должна быть общим знанием. Но так бывает далеко не всегда, что подтверждает ситуация, в которой один игрок — женщина из просвещенного, эгалитарного общества, считающая очевидным разделение 50 на 50, а другой — мужчина из патриархального общества, убежденный, что о каком бы дележе ни шла речь, мужчина должен получить в три раза больше женщины. В этом случае оба сделают то, что очевидно для нее и для него, и останутся ни с чем, поскольку очевидное решение для каждого из них не будет очевидным в качестве общего знания для обоих.

Фокальная точка часто возникает в результате случайного стечения обстоятельств, а создание фокальных точек там, где их на самом деле нет, — своего рода искусство, требующее пристального внимания к историческому и культурному контексту игры, а не просто ее математического описания. Это беспокоит многих специалистов по теории игр, которые предпочли бы, чтобы исход игры зависел исключительно от ее абстрактного описания: игроки и их стратегии должны быть определены числами безо всяких внешних ассоциаций. Мы с этим не согласны. На наш взгляд, исторический и культурный контекст так же важен для игры, как и ее сугубо математическое описание, и если он помогает выбрать уникальный исход игры из множества равновесий Нэша, то это, безусловно, плюс.

В главе 6 мы покажем, что игры с последовательными ходами могут иметь множество равновесий Нэша. Там же введем условие о достоверности, позволяющее выбрать конкретное равновесие; как оказалось, в его качестве выступает, по сути, равновесие обратных рассуждений, о котором рассказывалось в главе 3. В более сложных играх с асимметричностью информации или иными трудностями вводятся другие ограничения под названием уточнения, позволяющие идентифицировать и исключить из рассмотрения в некотором роде бессмысленные равновесия Нэша. В главе 8 мы рассмотрим один процесс подобного уточнения, выбирающий исход под названием совершенное байесовское равновесие. Обоснование такого уточнения зачастую имеет свою специфику в играх определенного типа; оно оговаривает, как игроки должны обновлять свою информацию, наблюдая за действиями других игроков. Каждая такая оговорка чаще всего абсолютно уместна в своем контексте, поэтому во многих играх не так уж трудно исключить большинство равновесий Нэша, а значит, и снизить неоднозначность прогнозирования.

Тогда как в одних играх может быть слишком много равновесий Нэша, в других они могут отсутствовать вообще. Мы приводили пример подобной игры в разделе 7 главы 4, а также уточнили, что равновесие Нэша можно восстановить, расширив концепцию стратегии на случайные комбинации стратегий. В главе 7 мы объясним и проанализируем равновесия Нэша в смешанных стратегиях. На более высоких уровнях теории игр существуют и более сложные примеры игр, в которых равновесия Нэша нет и в смешанных стратегиях. Однако такая дополнительная сложность не имеет отношения к рассматриваемым в данной книге типам анализа и областям применения, поэтому мы не будем затрагивать здесь эту тему.

В. Требования рациональности в равновесии Нэша

Как вы уже знаете, равновесие Нэша можно рассматривать как систему стратегических вариантов выбора каждого игрока, а также его убеждений в отношении выбора других игроков. В случае равновесия 1) выбор каждого игрока должен обеспечивать ему лучший выигрыш с учетом его убеждения в отношении выбора других игроков; 2) убеждение каждого игрока должно быть правильным, то есть его фактический выбор должен быть именно таким, каким он должен быть, по его твердому убеждению. Такова естественная интерпретация требований о взаимной согласованности рационального выбора отдельных игроков. Если у всех игроков есть общее знание того, что они рациональны, то как может один из них иметь рациональные убеждения в отношении выбора других игроков, не соответствующие рациональной реакции на его собственные действия?

Для того чтобы изучить этот вопрос, рассмотрим игру три на три, представленную на рис. 5.5. Анализ наилучших ответов позволяет быстро определить, что в ней всего одно равновесие Нэша, а именно R2, C2, обеспечивающее выигрыш 3, 3. В этом равновесии Строка выбирает вариант R2, исходя из убеждения, что Столбец сыграет C2. Почему Строка в этом убеждена? Потому что она знает Столбца как рационального игрока, но в то же время она должна считать, что Столбец убежден в ее выборе варианта R2 по той причине, что вариант С2 не будет его наилучшим выбором, если бы он полагал, что Строка сыграет либо R1, либо R3. Таким образом, суть этого утверждения состоит в том, что убеждения, полученные в результате рационального процесса формирования, должны быть правильными.


Рис. 5.5. Обоснование выбора посредством цепочки убеждений и ответных действий


Проблема такой аргументации состоит в том, что она ограничена одним циклом рассуждений об убеждениях. Продолжив их, мы можем обосновать и другие комбинации вариантов выбора. Например, можно рационально обосновать выбор Строкой варианта R1. Для этого отметим, что R1 — лучший выбор Строки в случае, если она убеждена, что Столбец сыграет С3. Почему Строка в этом убеждена? Потому что уверена, что Столбец убежден в том, что она выберет R3. Строка обосновывает это убеждение, считая, что Столбец убежден в том, что Строка убеждена в том, что Столбец сыграет С1, будучи убежденным в том, что Строка предпочтет вариант R1, будучи, в свою очередь, убежденной в том, что… Каждое звено этой цепочки убеждений абсолютно рационально.

Таким образом, рациональность сама по себе не объясняет равновесия Нэша. Существуют более сложные доводы такого рода, действительно позволяющие обосновать особый вид равновесия Нэша, при котором игроки могут поставить свои стратегии в зависимость от поддающегося наблюдению инструмента рандомизации (случайного выбора). Однако мы оставим эту тему для более углубленного изучения и сформулируем в следующем разделе более простую концепцию, отражающую то, что логически вытекает из общего знания игроков только об их рациональности.

3. Рационализация

Какие стратегические варианты выбора в играх можно обосновать, исходя исключительно из рациональности? В матрице игры на рис. 5.5 мы можем объяснить любую пару стратегий, по одной на каждого игрока, посредством применения той же логики, что и в разделе 2.В. Иными словами, можем обосновать любую из девяти возможных комбинаций. Следовательно, рациональность в чистом виде не позволяет нам сократить совокупность вероятных исходов игры или вообще спрогнозировать их. Присуще ли это всем играм? Нет. Например, если стратегия доминируемая, ее можно исключить из рассмотрения на основе одной только рациональности. А когда игроки осознают, что их соперники, будучи рациональными, не выберут доминируемые стратегии, исходя из такого общего знания можно выполнить итеративное исключение доминируемых стратегий. Лучшее ли это из доступных действий? Нет. Можно продолжить дальнейшее исключение стратегий, воспользовавшись несколько более сильным свойством, чем доминируемость в чистых стратегиях. Оно определяет стратегии, которые не могут быть наилучшим ответом. Стратегии, оставшиеся после такой процедуры исключения, называются рационализируемыми, а сама концепция — рационализацией.

Зачем вводить эту дополнительную концепцию, и что она нам дает? Что касается первого вопроса, полезно знать, насколько можно сузить совокупность возможных исходов игры на основании одной лишь рациональности игроков, не прибегая к правильности ожиданий относительно фактического выбора игрока. Иногда можно определить, что игрок не выберет то или иное действие или действия, даже если нельзя вычислить, какое именно действие он все же выберет. Ответ на второй вопрос зависит от контекста. Порой рационализация вообще не позволяет сократить совокупность исходов игры. Именно так было в примере три на три, представленном на рис. 5.5. Подчас рационализация позволяет это сделать только до определенной степени, но не до равновесия Нэша, если оно в игре всего одно, или не до совокупности равновесий Нэша, если их в игре несколько. Примером такой ситуации может служить расширенный до матрицы четыре на четыре предыдущий пример, который рассматривается в разделе 3.А ниже. Иногда сокращение совокупности возможных исходов игры приводит к определению единственного равновесия Нэша, причем в подобных случаях мы имеем его более веское обоснование, опирающееся исключительно на рациональность, без предположений о правильности ожиданий. Ниже в разделе 3.Б представлен пример игры с конкуренцией по количеству, в котором аргументация на основе концепции рационализации позволяет найти в ней единственное равновесие Нэша.

А. Применение концепции рационализации

Рассмотрим игру на рис. 5.6, аналогичную той, что приведена на рис. 5.5, но с дополнительной стратегией на каждого игрока[65]. Как отмечалось выше, девять комбинаций стратегий, в которые входит одна из первых трех стратегий для каждого из игроков, можно обосновать посредством цепочки убеждений игроков в отношении убеждений друг друга. Это верно и в увеличенной матрице. Но подходит ли такой способ для стратегий R4 и C4?


Рис. 5.6. Рационализируемые стратегии


Может ли Строка исходить из убеждения, что Столбец выберет стратегию C4? В его основе должны лежать убеждения Столбца в отношении выбора Строки. Могут ли они сделать стратегию С4 наилучшим ответом Столбца? Нет. Если Столбец полагает, что Строка сыграет R2, его наилучший ответ С2. Если Столбец считает, что Строка предпочтет R3, то его наилучший ответ С3. А если Столбец убежден, что Строка выберет R4, тогда его наилучший ответ либо С1, либо С3. Следовательно, С4 не может быть наилучшим ответом Столбца[66]. Это означает, что Строка, зная о рациональности Столбца, ни в коем случае не припишет ему выбор стратегии С4. Стало быть, Строка не должна исходить из убеждения, что Столбец сыграет С4.

Обратите внимание, что хотя стратегия С4 не может быть наилучшим ответом, она не является доминируемой по отношению к стратегиям С1, С2 и С3. Для Столбца она предпочтительнее стратегии С1 против стратегии Строки R3, предпочтительнее стратегии С2 против стратегии Строки R4 и предпочтительнее стратегии С3 против стратегии Строки R1. Если стратегия все же доминируемая, она тоже не может быть наилучшим ответом. Таким образом, «стратегия, которая не может быть наилучшим ответом», — более общая концепция, чем «доминируемая стратегия». Исключение таких стратегий возможно даже тогда, когда исключение доминируемых стратегий невозможно. Следовательно, исключение стратегий, которые не могут быть наилучшим ответом, способно сузить совокупность вероятных исходов игры в большей степени, чем исключение доминируемых стратегий[67].

Исключение стратегий, которые не могут быть наилучшим ответом, также можно выполнять в итеративном режиме. Поскольку рациональный игрок Строка не может исходить из убеждения, что рациональный игрок Столбец выберет стратегию С4, рациональный игрок Столбец должен это предвидеть. Учитывая, что R4 — наилучший ответ Строки только на стратегию С4, Столбец не должен думать, что Строка сыграет R4. Следовательно, R4 и С4 не могут входить в набор рационализируемых стратегий. Концепция рационализации действительно позволяет сократить совокупность возможных исходов данной игры.

Если в игре есть равновесие Нэша, оно будет рационализируемым и его можно подтвердить посредством простой системы убеждений, состоящей из одного цикла, как в представленном выше разделе 2.В. Но в более общем плане, даже если в игре нет равновесия Нэша, она может иметь рационализируемые исходы. Возьмем в качестве примера игру два на два, полученную из игры на рис. 5.5 или рис. 5.6, в которой оставлены только стратегии R1 и R3 для Строки и С1 и С3 для Столбца. Легко увидеть, что в этой игре нет равновесия Нэша в чистых стратегиях. Однако все четыре ее исхода рационализируемы посредством такой же цепочки убеждений, как выстроенная выше и охватывающая эти стратегии.

Таким образом, концепция рационализации представляет собой возможный способ решения игр с отсутствием равновесия Нэша. Что еще более важно, эта концепция подсказывает нам, как сократить совокупность вероятных исходов игры исключительно на основании рациональности.

Б. Рационализация может привести к равновесию Нэша

В некоторых играх итеративное исключение стратегий, которые не могут быть наилучшим ответом, может сократить всю совокупность возможных исходов до равновесия Нэша. Обратите внимание, что мы сказали «может», а не «должно». Но если подобное все же происходит, это очень полезно, поскольку позволяет подкрепить доводы в пользу равновесия Нэша путем утверждения, что оно следует исключительно из рациональных мнений игроков о рассуждениях друг друга. Интересно, что один класс игр, решаемых таким способом, играет важную роль в экономике. К нему относится конкуренция между компаниями при определении количества производимой продукции, когда они знают, что от ее общего объема на рынке зависит цена.

Мы проиллюстрируем игру такого типа в контексте небольшого прибрежного городка. В нем две некие рыбацкие лодки каждый вечер уходят в море, а утром возвращаются с уловом и выставляют его на рынок. Игра разыгрывается во времена, когда еще не было современного холодильного оборудования, поэтому вся рыба должна быть продана и съедена в тот же день. В океане неподалеку от города полно рыбы, поэтому владелец каждой лодки может решать, сколько рыбы поймать за ночь. Но каждый из них также знает, что избыток рыбы на рынке приведет к снижению цен и прибыли.

Предположим, что если одна лодка выставит на рынок R бочек рыбы, а другая S бочек, то цена P (в дукатах за бочку) будет равна P = 60 — (R + S). Допустим также, что две лодки и их команды несколько отличаются по эффективности рыбной ловли: затраты первой лодки на ловлю рыбы составляют 30 дукатов на одну бочку, тогда как второй — 36 дукатов на бочку.

Теперь мы можем записать формулы определения прибыли двух владельцев лодок U и V с учетом их стратегий R и S.

U = [(60 — R — S) — 30]R = (30 — S)R — R2,

V = [(60 — R — S) — 36]S = (24 — R)S — S2.

На основании этих формул выигрышей можно построить кривые наилучших ответов и найти равновесие Нэша. Как и в примере игры с ценовой конкуренцией из раздела 1, выигрыш каждого игрока представляет собой квадратичную функцию его собственной стратегии при условии неизменности стратегии другого игрока. Следовательно, в данном случае можно применить математические методы, изложенные в разделе 1 данной главы и в приложении к ней.

Наилучший ответ первой лодки R должен максимизировать значение U для каждого заданного значения S другой лодки. При использовании дифференциального исчисления это означает, что мы должны продифференцировать U по R при фиксированном значении S и приравнять производную к нулю, что дает следующее уравнение:

(30 — S) — 2R = 0; R = 15 — S / 2.

Подход без дифференциального исчисления использует результат, согласно которому значение R, максимизирующее значение U, равно R = B / (2C), где B = 30 — S, а C = 1. Это дает R = (30 — S) / 2, или R = 15 — S / 2.

Аналогичным образом уравнение наилучшего ответа второй лодки можно найти, выбрав значение S, максимизирующее значение V при каждом фиксированном значении R, что дает следующее значение:



Равновесие Нэша можно найти посредством совместного решения двух уравнений наилучших ответов для R и S, что не так уж трудно сделать[68], поэтому мы просто приведем результаты. Количество: R = 12, S = 6; цена: P = 42; прибыль: U = 144, V = 36.

На рис. 5.7 представлены графики наилучших ответов двух рыбаков (обозначенные как BR1 и BR2 с указанием соответствующих уравнений), а также равновесие Нэша (обозначенное как N с указанием координат) на пересечении двух линий. Кроме того, на рис. 5.7 также показано, как сократить совокупность убеждений игроков в отношении выбора друг друга посредством итеративного исключения стратегий, которые не могут быть наилучшим ответом.


Рис. 5.7. Поиск равновесия Нэша с помощью рационализации


Какие значения S, по рациональному убеждению владельца первой лодки, выберет владелец второй лодки? Это зависит от того, какой улов, по мнению владельца второй лодки, получит владелец первой лодки. Но каким бы ни был этот улов, наилучшие ответы владельца второй лодки находятся в диапазоне от 0 до 12 бочек. Следовательно, владелец первой лодки не может рационально считать, что владелец второй лодки выберет что-то другое: все отрицательные варианты выбора (что очевидно) и все значения S, превышающие 12 бочек (что менее очевидно), исключаются. Точно так же владелец второй лодки не может рационально считать, что владелец первой лодки выловит рыбы меньше 0 или больше 15 бочек.

Теперь перейдем ко второму циклу рассуждений. Когда владелец первой лодки ограничит варианты выбора значений S владельцем второй лодки диапазоном от 0 до 12 бочек, его собственные варианты выбора значений R будут ограничены диапазоном наилучших ответов на диапазон значений S. Наилучший ответ на S = 0 — это R = 15, а наилучший ответ на S = 12 — это R = 15–12 / 2 = 9. Поскольку график BR1 наклонен вниз, все значения R, допустимые на данном этапе рассуждений, лежат в диапазоне от 9 до 15. Точно так же выбор владельцем второй лодки значений S ограничен диапазоном наилучших ответов на R от 0 до 15, точнее говоря, значениями от S = 12 до S = 12–15 / 2 = 4,5. Эти ограниченные диапазоны значений показаны на рис. 5.7 на осях координат.

Третий цикл рассуждений сужает диапазоны значений еще больше. Поскольку значение R должно составлять минимум 9, а график BR2 имеет отрицательный наклон, S может быть не более чем наилучшим ответом на 9; в частности, S = 12 — 9 / 2 = 7,5. В ходе второго цикла рассуждений уже было показано, что значение S должно быть как минимум 4,5. Следовательно, теперь значения S ограничены диапазоном от 4,5 до 7,5. Кроме того, так как значение S должно быть не менее 4,5, значение R может составлять не более 15 — 4,5 / 2 = 12,75. Во втором цикле рассуждений мы узнали, что значение R должно равняться минимум 9, а значит, теперь оно ограничено диапазоном от 9 до 12,75.

Эту последовательность циклов рассуждений можно продолжать сколько угодно, но уже сейчас очевидно, что последовательное сужение диапазонов значений двух показателей сводит эти значения к равновесию Нэша, R = 12 и S = 6. Таким образом, равновесие Нэша — единственный исход игры, остающийся после итеративного исключения стратегий, которые не могут быть наилучшим ответом[69]. Мы знаем, что в общем аргументация на основе концепции рационализации не обязательно должна сводить исходы игры к равновесиям Нэша, а значит, это особое свойство данного примера. В действительности этот процесс применим к целому классу игр и позволяет решить любую игру, имеющую единственное равновесие Нэша на пересечении нисходящих кривых наилучших ответов[70].

Эту аргументацию следует отличать от прежней, основанной на последовательности наилучших ответов. Тогда ход рассуждений выглядел следующим образом. Начнем с любой стратегии одного из игроков, скажем R = 18. В этом случае наилучший ответ другого игрока S = 12–18/2 = 3. Наилучший ответ R на S = 3 — это R = 15 — 3/2 = 13,5. В свою очередь, наилучший ответ S на R =13,5 — 12–13,5/2 = 5,25. Тогда наилучший ответ R против этого значения S составляет R = 15 — 5,25/2 = 12,375. И так далее.

Цепочка рассуждений в прежней аргументации также сходится к равновесию Нэша, но в ней есть один недостаток. Речь идет об игре с одновременными ходами, разыгрываемой только раз. В такой ситуации невозможно, чтобы один игрок отреагировал на выбор другого игрока, после чего первый игрок снова предпринял ответное действие и т. д. Если бы такая динамика игры допускалась, разве игроки не предвидели бы реакцию друг друга и не предприняли бы совсем другие действия?

Аргументация на основе концепции рационализации представляет собой нечто иное. В ней четко учитывается тот факт, что игра проходит только раз и сводится к одновременному выполнению ходов. Все размышления относительно цепочки наилучших ответов выполняются с опережением событий, а все последующие циклы рассуждений и ответных действий носят сугубо концептуальный характер. Игроки реагируют не на фактический выбор, а лишь на расчетные значения того выбора, который так и не будет сделан. Весь процесс протекает исключительно в головах игроков.

4. Эмпирические данные о равновесии Нэша

В главе 3, посвященной анализу эмпирических данных об играх с последовательными ходами и методу обратных рассуждений, мы представили данные, полученные в ходе наблюдений за играми, происходящими в реальной жизни, и играми, специально разработанными для проверки теории в лабораторных условиях. Там же мы выделили различные достоинства и недостатки двух методов оценки достоверности прогнозов, полученных посредством поиска равновесия методом обратных рассуждений. Аналогичные вопросы возникают и в связи с получением и интерпретацией эмпирических данных относительно равновесия Нэша в играх с одновременными ходами.

В реальных играх делаются крупные ставки, и в основном в них участвуют опытные игроки, обладающие знаниями и стимулами для применения эффективных стратегий. Но в таких ситуациях присутствует много факторов, выходящих за рамки того, что изучает теория. Например, в реальных играх трудно отслеживать количественные выигрыши, которые получили бы игроки при всех возможных комбинациях стратегий. Поэтому, если их поведение не подтверждает теоретические прогнозы, невозможно определить, обусловлено ли это ошибочностью теории или тем, что какие-то иные факторы превосходят стратегические соображения.

В ходе лабораторных экспериментов эти факторы пытаются учитывать, чтобы обеспечить более точную проверку теории. Но организаторы экспериментов зачастую привлекают неопытных игроков и предоставляют им слишком мало времени и относительно слабые стимулы для изучения игры. Столкнувшись с новой игрой, большинство из нас поначалу с трудом ориентируется в ней и пробует играть бессистемно. По этой причине несколько ее первых раундов в условиях эксперимента могут представлять собой этап обучения, а не равновесие, которое нашел бы в игре опытный игрок. Обычно такую неопытность и обучение учитывают, исключая из рассмотрения данные первых нескольких раундов игры, однако этап обучения может длиться дольше, чем одно утро или вторая половина дня, что зачастую составляет предельную продолжительность лабораторных сеансов.

А. Лабораторные эксперименты

За три прошедших десятилетия ученые провели множество лабораторных исследований в целях проверки поведения людей в определенных интерактивных стратегических ситуациях. В частности, исследователи пытаются найти ответ на вопрос: «Выбирают ли участники игры стратегии равновесия Нэша?» Проанализировав эту работу, Дуглас Дэвис и Чарльз Холт пришли к выводу, что в относительно простых одноходовых играх с единственным равновесием Нэша оно «обретает значительную притягательную силу… после нескольких повторений игры с разными партнерами»[71]. Однако успех этой теории носит переменный характер в более сложных ситуациях, например при наличии множества равновесий Нэша, когда эмоциональные факторы выводят выигрыши за пределы оговоренных денежных сумм, когда для поиска равновесия Нэша требуются более сложные расчеты или когда игра повторно проводится с одними и теми же партнерами. Ниже представлен краткий анализ эффективности равновесия Нэша в нескольких подобных ситуациях.


I. Выбор из множества равновесий Нэша. В разделе 2.Б приведено несколько примеров, показывающих, что иногда фокальные точки помогают игрокам выбрать из множества равновесий Нэша одно. Игрокам не удается скоординировать свои действия в 100 процентах случаев, однако обстоятельства зачастую позволяют им добиться гораздо большей координации действий, чем при случайном выборе из всей совокупности возможных равновесных стратегий. Ниже мы представляем координационную игру с одним интересным свойством: равновесие, обеспечивающее самый высокий выигрыш всем ее участникам, при этом и самое рискованное в том смысле, о котором шла речь выше в разделе 2.А.

Джон Ван Хайк, Реймонд Батталио и Ричард Бейл описывают игру с участием 16 игроков, в которой каждый из них одновременно выбирает уровень «усилий» от 1 до 7. Индивидуальные выигрыши зависят от «результата» всей группы, который является функцией от минимального уровня усилий, выбранного любым ее членом, за вычетом затрат на эти усилия. В игре ровно семь равновесий Нэша в чистых стратегиях: любой исход, при котором все игроки выбирают один и тот же уровень усилий, представляет собой равновесие. Максимальный выигрыш (1,30 доллара на одного игрока) будет получен в случае, если все участники игры выберут уровень усилий 7, тогда как минимальный (0,70 доллара на одного игрока) — при выборе всеми игроками уровня усилий 1. Равновесие, обеспечивающее самый высокий выигрыш, — естественный кандидат на роль фокальной точки, но при этом существует риск выбрать самый высокий уровень усилий: если хотя бы один игрок выберет уровень усилий ниже вашего, то ваши дополнительные усилия будут потрачены зря. Например, если вы предпочтете вариант 7 и минимум один игрок вариант 1, вы выиграете всего 0,10 доллара — гораздо меньше, чем в случае наихудшего равновесного выигрыша в размере 0,70 доллара. Это заставляет игроков волноваться по поводу того, выберут ли другие участники игры максимальный уровень усилий; в итоге большим группам, как правило, не удается скоординировать свои действия так, чтобы обеспечить самое выгодное равновесие. Несколько игроков неизбежно выбирают более низкий уровень усилий, и в последующих раундах игра сводится к равновесию с самым низким уровнем усилий[72].


II. Эмоции и социальные нормы. В главе 3 в процессе анализа игр с последовательными ходами мы привели несколько примеров более щедрого отношения игроков друг к другу, чем можно было ожидать согласно равновесию Нэша. Подобные наблюдения можно сделать и в играх с одновременными ходами, таких как дилемма заключенных. Одна из причин состоит в том, что выигрыши игроков могут отличаться от тех, из которых исходит экспериментатор: помимо денег, участники игры могут относить к числу выигрышей испытываемые в ходе игры эмоции, такие как сопереживание, гнев или чувство вины. Иными словами, в системе ценностей игроков могли проявиться некоторые социальные критерии, например доброта и справедливость, которые доказали свою значимость в более широком социальном контексте и в силу этого распространяются на их поведение и в экспериментальной игре[73]. С этой точки зрения подобные наблюдения не вскрывают недостатков самой концепции равновесия Нэша, а предостерегают против ее использования при наивных или ошибочных исходных предположениях о том, какие выигрыши важны для людей. Например, было бы ошибкой полагать, что игроки всегда движимы в своих действиях эгоистичной погоней за деньгами.


III. Когнитивные ошибки. Как мы убедились в случае экспериментальных данных по равновесию обратных рассуждений в главе 3, игроки не всегда предварительно продумывают всю игру, как и не всегда ожидают этого от других игроков. Поведение участников игры, известной как дилемма путешественников, иллюстрирует подобную ограниченность равновесия Нэша в играх с одновременными ходами. В этой игре оба путешественника во время отпуска покупают одинаковые сувениры, а на обратном пути авиакомпания теряет их багаж. Она сообщает, что намерена возместить им убытки, но ей неизвестна точная сумма ущерба. Авиаперевозчик знает, что правильная сумма должна находиться в пределах от 80 до 200 долларов на человека, поэтому проводит игру по следующей схеме. Каждый игрок может потребовать возмещения убытков в размере от 80 до 200 долларов. Авиакомпания возместит обоим игрокам сумму, которая окажется меньшей из двух заявленных. Кроме того, если они будут разниться, авиакомпания выплатит 5 долларов вознаграждения тому, кто потребовал меньше, и оштрафует на 5 долларов того, кто запросил больше.

При таких правилах игры, независимо от фактической стоимости утерянного багажа, каждый игрок заинтересован назвать более низкую сумму возмещения убытков, чем другой игрок. На самом деле единственное равновесие Нэша и единственный рационализируемый исход этой игры сводится к тому, чтобы оба указали минимальную сумму возмещения — 80 долларов. Однако в условиях эксперимента игроки редко называют 80 долларов, вместо этого требуя возмещения сумм, которые гораздо ближе к 200 долларам. (Как правило, в лаборатории реальные выигрыши исчисляются в центах, а не в долларах.) Интересно, что если размер «штрафвознаграждения» увеличивается в 10 раз, с 5 до 50 долларов, то поведение игроков существенно приближается к равновесию Нэша, а указанная ими сумма ущерба чаще всего составляет около 80 долларов. Таким образом, поведение участников эксперимента в значительной мере зависит от показателя, никак не влияющего на равновесие Нэша: единственное равновесие — это 80 долларов, независимо от суммы штрафа или вознаграждения.

Для объяснения результатов, полученных в лаборатории, Моника Капра и ее коллеги использовали теоретическую модель под названием равновесие квантильных откликов (или просто «квантильное равновесие»), первоначально предложенную Ричардом Маккелви и Томасом Палфри. Математическое описание этой модели выходит за рамки данной книги, но ее основная идея состоит в том, что она допускает возможность совершения ошибок игроками, причем вероятность определенной ошибки гораздо ниже в случае более дорогостоящих ошибок, чем в случае ошибок, незначительно уменьшающих выигрыш. Более того, в этой модели игроки ожидают друг от друга таких ошибок. Как оказалось, анализ квантильных откликов позволяет объяснить приведенные выше данные. Указание большей суммы возмещения убытков обойдется не так уж дорого при размере штрафа 5 долларов, поэтому игроки чаще называют сумму, близкую к 200 долларам, — особенно если знают, что соперники, по всей вероятности, поступят так же, а значит, выигрыш при этом может быть достаточно высоким. С другой стороны, если штраф или вознаграждение составляет 50 долларов вместо пяти, предъявление завышенных требований о возмещения ущерба может обернуться значительными потерями, поэтому игроки вряд ли будут ожидать друг от друга подобных действий. Это ожидание склоняет их в сторону равновесия Нэша, то есть 80 долларов. Благодаря такому успеху квантильное равновесие стало темой активных исследований в области теории игр[74].


IV. Общее знание о рациональности. Как мы только что увидели, чтобы лучше объяснить результаты экспериментов, модель квантильного равновесия допускает вероятность того, что игроки могут не считать других участников игры в высшей степени рациональными игроками. Еще один способ объяснить данные экспериментов — предположить, что разные игроки строят свои рассуждения на разных уровнях. В стратегической игре на угадывание, часто используемой в аудиториях или лабораториях, каждому участнику предлагают выбрать число от 0 до 100. Как правило, игрокам выдают карточки, на которых они должны написать свое имя и выбранное число, поэтому данная игра относится к категории игр с одновременными ходами. После сбора карточек вычисляется среднее значение указанных чисел. Побеждает тот, чье число окажется ближе всего к оговоренной доле (например, двум третям) от среднего значения. Правила игры (вся описанная выше процедура) объявляются заранее.

Равновесие Нэша в этой игре сводится к выбору каждым игроком числа 0. В действительности игра разрешима по доминированию. Даже если каждый ее участник укажет 100, половина от среднего значения не может превысить 67, поэтому для каждого игрока выбор числа больше 67 доминируемый по отношению к выбору числа 67[75]. Однако это должно быть понятно всем рационально рассуждающим игрокам, а значит, среднее значение не может превышать 67, а две трети от него — 44, поэтому любой выбор числа больше 44 будет доминируемым по отношению к выбору числа 44. Данный процесс итеративного удаления доминируемых стратегий продолжается до тех пор, пока не останется только число 0.

Тем не менее когда группа играет в такую игру впервые, побеждает не тот, кто выбрал число 0. Как правило, выигрышное число попадает в диапазон от 15 до 20. Чаще всего игроки указывают числа 33 и 22, из чего можно сделать вывод, что многие из них выполняют всего один-два цикла итеративного доминирования, не продолжая этот процесс дальше. Иначе говоря, игроки «уровня 1» считают, что все остальные участники игры будут выбирать числа случайным образом, со средним значением 50, поэтому в качестве наилучшего ответа указывают две трети от этого числа, то есть 33. Точно так же игроки «уровня 2» предполагают, что все остальные игроки рассуждают на «уровне 1», поэтому в качестве наилучшего ответа выбирают две трети от 33, или 22. Обратите внимание, что все эти варианты далеки от равновесия Нэша, числа 0. Создается впечатление, что многие игроки иногда выполняют ограниченное количество шагов итеративного исключения доминируемых стратегий по той причине, что ожидают от других игроков ограниченного количества циклов рассуждений[76].


V. Обучение и движение в сторону равновесия. Что происходит при повторном разыгрывании стратегической игры на угадывание в одной и той же группе игроков? Аудиторные эксперименты показывают, что в ходе каждого очередного раунда выигрышное число может легко уменьшиться на 50 процентов, поскольку студенты ожидают, что все их одногруппники выберут число, не превышающее победившее в предыдущем раунде. Как правило, в третьем раунде выгрышные числа не больше (а то и меньше) 5.

Как следует интерпретировать этот результат? Критики бы заявили, что, если в игре не достигнуто точное равновесие Нэша, это опровергает теорию. Они бы утверждали, что в действительности, если у вас есть все основания полагать, что другие игроки не используют стратегии равновесия Нэша, ваш лучший выбор также не должен быть стратегией равновесия Нэша. Если вы можете определить, как другие игроки будут отклоняться от стратегий равновесия Нэша, то должны выбрать свой наилучший ответ на то, что они, по вашему мнению, предпочтут. Другие бы сказали, что в социальных науках теория не может претендовать на такой же уровень точности прогнозов, что и в таких науках, как физика и химия. Если наблюдаемые исходы игры близки к равновесию Нэша, это и есть подтверждение теории. В данном случае эксперимент не только обеспечивает это подтверждение, но и иллюстрирует процесс, посредством которого люди накапливают опыт и учатся применять стратегии, близкие к равновесию Нэша. Мы склонны согласиться с данной точкой зрения.

Примечательно одно наше наблюдение: люди учатся немного быстрее, следя за игрой со стороны, чем принимая в ней непосредственное участие. Это можно объяснить тем, что как наблюдатели они могут сфокусироваться на игре в целом и использовать аналитическое мышление. А поскольку мозг игроков занят решением задачи собственного выбора, они в меньшей степени способны увидеть более широкую картину.

Мы должны внести ясность в концепцию накопления опыта посредством участия в играх. В цитате Дэвиса и Холта в начале данного раздела говорится о повторении игры с разными партнерами. Иными словами, опыт игры следует накапливать посредством многократного участия в ней, но всякий раз с разными соперниками. Однако для того, чтобы такой процесс обучения обеспечивал исходы игры, максимально приближающиеся к равновесию Нэша, вся совокупность обучающихся игроков должна оставаться неизменной. Если в игре постоянно будут появляться новички, применяющие новые экспериментальные стратегии, исходная группа рискует утратить знания, накопленные в процессе игры друг против друга.

Если игра повторно проводится между двумя игроками или среди небольшой группы одних и тех же игроков, то два любых игрока с большой вероятностью могут неоднократно играть друг с другом. В такой ситуации повторяющаяся игра в целом сама по себе становится игрой. Равновесия Нэша в ней могут отличаться от тех, которые просто дублируют равновесие Нэша в одном раунде игры. Например, в повторяющихся дилеммах заключенных молчаливое сотрудничество может сформироваться как следствие ожиданий того, что любая временная выгода от обмана будет полностью сведена на нет последующей потерей доверия. Если игры повторяются таким способом, то процесс обучения должен включать в себя многократное участие в полных множествах таких повторений, каждый раз против других партнеров.

Б. Реальные игры

В играх, разыгрываемых в естественных условиях, нет стольких возможностей для прямых наблюдений, как в ходе лабораторных экспериментов, но тем не менее наблюдения за пределами лабораторий также позволяют получить ценные доказательства значимости равновесия Нэша. В свою очередь оно зачастую становится для социологов ценной отправной точкой для осмысления реального мира.


I. Области применения равновесия Нэша. Одной из первых областей применения концепции равновесия Нэша по отношению к поведению субъектов реального мира стала сфера международных отношений. Томас Шеллинг первым использовал теорию игр для объяснения таких феноменов, как эскалация гонки вооружений (даже между странами, не имеющими намерения нападать друг на друга) и достоверность сдерживающих угроз. Впоследствии концепцию равновесия Нэша начали применять в этой сфере для решения вопросов о том, когда и как страна может подать достоверный сигнал о своих намерениях в ходе дипломатических переговоров или перед лицом возможной войны. В середине 1970-х теорию игр начали систематически использовать в сфере экономики и бизнеса, и количество областей применения продолжает расти[77].

Как мы уже говорили в данной главе, ценовая конкуренция — одна из важных областей применения равновесия Нэша. К числу других областей, в которых компаниям приходится делать стратегический выбор, относится качество продукции, инвестиции, научные исследования и разработки и т. д. Кроме того, теория игр помогла нам понять, как и когда компании, присутствующие в отрасли много лет, могут взять на себя достоверные обязательства по сдерживанию новых конкурентов — например, посредством ведения губительной ценовой войны против нового участника рынка. Теоретико-игровые модели, построенные на концепции равновесия Нэша и ее динамических обобщениях, достаточно эффективно обеспечивают необходимыми данными многие крупные отрасли промышленности, в частности автомобилестроение. Кроме того, такие модели позволяют лучше понять основные факторы конкуренции по сравнению с более старыми моделями, исходящими из совершенной конкуренции и оценочных кривых спроса и предложения[78].

Профессор бизнес-школы IESE в Барселоне Панкадж Гемават представил ряд исследований отдельных компаний или отраслей, подкрепив их статистическим анализом данных. Его теоретико-игровые модели чрезвычайно эффективно улучшают наше понимание нескольких на первый взгляд озадачивающих бизнес-решений по таким вопросам, как ценообразование, производственные мощности, инновации и т. д. Например, в 1970-х компания DuPont нарастила огромный объем производственных мощностей по выпуску диоксида титана. Их избыток превышал прогнозируемый рост мирового спроса на этот продукт на протяжении следующего десятилетия. Поначалу этот выбор казался ужасной стратегией, поскольку избыток мощностей мог повлечь за собой снижение рыночных цен на данный товар. Однако в DuPont с успехом предвидели, что наличие в резерве дополнительных производственных мощностей позволит компании наказывать конкурентов, занижающих цены, увеличивая объем производства и снижая цены еще больше. Это сделало DuPont ценовым лидером в своей отрасли и позволило обеспечить высокую рентабельность. Стратегия оказалась весьма эффективной, и даже 40 лет спустя компания DuPont сохраняет мировое лидерство по производству диоксида титана[79].

В последнее время теория игр стала самым предпочтительным инструментом изучения политических систем и институтов. Как мы увидим в главе 15, она показала, как в погоне за чьими-то целями могут осуществляться стратегические манипуляции в ходе голосования и определения повестки дня в комитетах и на выборах. В четвертой части книги представлены примеры практического применения равновесия Нэша при проведении аукционов, голосований и переговоров. Кроме того, в главе 14 мы приводим свой учебный пример, посвященный Карибскому ракетному кризису.

Некоторые критики не признают ценности концепции равновесия Нэша, заявляя, что аналогичное объяснение тех же явлений можно получить с помощью уже известных общих экономических принципов, политологии и т. д. Отчасти они правы. Ряд подобных аналитических инструментов существовал еще до появления данной концепции. Например, равновесие во взаимодействии между двумя компаниями, устанавливающими цены, о котором шла речь в разделе 1 данной главы, известно в экономике уже более 100 лет. Равновесие Нэша можно считать общей формулировкой концепции равновесия, применимой ко всем играм. Некоторые теории стратегического голосования сформулированы еще в XVIII столетии, а представления о достоверности можно найти в «Истории Пелопонесской войны» Фукидида. Однако равновесие Нэша позволяет унифицировать все эти области применения, а значит, способствует формированию новых областей.

Кроме того, развитие теории игр обусловило появление огромного количества новых идей и областей применения, не существовавших ранее, например: как возможность нанести второй удар уменьшает страх перед внезапным нападением; как разные правила проведения аукционов влияют на характер предложения цены и доход продавца; как правительства могут успешно манипулировать фискальной и монетарной политикой с тем, чтобы добиться переизбрания даже тогда, когда опытные избиратели знают об этих попытках, и т. д. Если бы все эти задачи можно было решить с помощью ранее известных подходов, это бы уже давно было сделано.


II. Реальные примеры обучения. Напоследок предлагаем вашему вниманию интересный пример равновесия и процесса обучения в реальной игре Главная лига бейсбола. В ней очень высокие ставки, а игроки участвуют более чем в 100 матчах в год, что создает сильную мотивацию и благоприятные возможности для обучения. Стивен Гулд обнаружил следующий замечательный пример[80]. На протяжении большей части XX столетия максимальное значение средних коэффициентов результативности отбивания, зафиксированных на протяжении бейсбольного сезона, неизменно снижалось. Скажем, в прошлом игроки обеспечивали средний коэффициент результативности отбивания 0,400 гораздо чаще, чем сейчас. Почитатели истории бейсбола часто объясняют такое снижение, с ностальгией восклицая: «В те времена были выдающиеся игроки!» Если на секунду задуматься, сразу же возникает вопрос: почему тогда не было выдающихся питчеров, способных удерживать средний коэффициент результативности отбивания на низком уровне? Однако Гулд опровергает подобные доводы посредством более системного подхода, указывая на то, что следует анализировать все значения среднего коэффициента результативности отбивания, а не только самые высокие. В настоящее время худшие показатели далеко не такие низкие, как раньше; кроме того, сейчас в командах Главной лиги гораздо меньше хиттеров со средним коэффициентом результативности отбивания 0,150, чем раньше. Гулд утверждает, что общее сокращение разброса — следствие стандартизации или стабилизации.

Когда бейсбол был очень молодым, методы игры еще не стандартизировались настолько, чтобы это могло помешать проделкам лучших игроков. Вилли Килер мог «бить туда, где никого нет» (и набрать средний коэффициент 0,432 в 1897 году), потому что филдеры еще не знали, где им следует находиться. Постепенно игроки осваивали оптимальные методы расстановки на поле, перемещения по нему, подачи и отбивания мяча — и разброс неизбежно сокращался. Сегодня лучшие игроки столкнулись с настолько отточенным под их собственное совершенство противодействием, что это делает невозможным достижение тех высоких результатов, которые были характерны для времен более бессистемной игры. [Выделено автором.]

Иными словами, посредством непрерывной корректировки стратегий в их противостоянии друг с другом система пришла к своему равновесию (Нэша).

Гулд проанализировал статистику хиттинга за десятилетия, чтобы доказать, что сокращение разброса действительно происходит, за исключением единичных «выбросов». В действительности такие «выбросы» подтверждают эту гипотезу, поскольку происходят вскоре после нарушения равновесия под влиянием внешних изменений. Каждый раз при изменении правил игры (зона страйка увеличивается или уменьшается, уменьшается высота питчерской горки или увеличивается количество команд) или технологии (используется более упругий мяч или наконец разрешат алюминиевые биты) сложившаяся система взаимных наилучших ответов выходит из равновесия. И на какое-то время, пока игроки экспериментируют, разброс значений их показателей увеличивается и некоторые из них добиваются успеха, тогда как другие терпят неудачу. В конечном счете равновесие восстанавливается, а разброс снова сокращается. Именно этого и следует ожидать в рамках обучения и корректировки в сторону равновесия Нэша.

В книге Майкла Льюиса Moneyball[81] (по которой впоследствии был снят фильм «Человек, который изменил все» с Брэдом Питтом в главной роли) приведен похожий пример движения к равновесию в бейсболе, однако вместо акцента на стратегиях отдельных игроков он сосредоточен на административных стратегиях команды в отношении найма игроков. В книге рассказывается о решении главного менеджера команды Oakland Athletics использовать при найме игроков так называемую саберметрику, то есть уделять пристальное внимание бейсбольной статистике, основанной на теории максимизации засчитанных очков за пробежки и минимизации очков, проигранных сопернику. Такие решения подразумевали необходимость обращать больше внимания на недооцененную на рынке способность игроков зарабатывать очки. Считается, что именно эти решения сделали Oakland Athletics очень сильной командой, вышедшей в плей-офф в пяти из семи сезонов, несмотря на то что фонд ее заработной платы был меньше половины фонда заработной платы более богатых команд, таких как New York Yankees. Инновационные стратегии найма игроков и формирования фонда заработной платы впоследствии взяли на вооружение другие команды, в частности Boston Red Sox, которая под руководством Тео Эпштейна разрушила «проклятие Бамбино» в 2004 году, выиграв Мировую серию впервые за 86 лет. На протяжении десятилетия почти в дюжине команд было решено нанять специалиста по саберметрике на полную ставку. В сентябре 2011 года Билли Бин посетовал, что ему снова приходится бороться в невыгодных условиях против более крупных команд, научившихся находить наилучшие ответы на его стратегии. В реальных играх часто внедряются инновации, за которыми следует постепенное схождение к равновесию. Приведенные выше примеры из бейсбола подтверждают этот факт, хотя порой на полное схождение к равновесию могут уйти годы, а то и десятилетия[82].

Мы рассмотрим дополнительные сведения о других прогнозах, основанных на теории игр, в соответствующих разделах следующих глав. К настоящему моменту представленные выше экспериментальные и эмпирические данные должны выработать у вас осторожный оптимизм по отношению к использованию равновесия Нэша, особенно в качестве первого подхода. В целом мы убеждены, что вы сможете достаточно уверенно применять концепцию равновесия Нэша в случаях многократного проведения игры между игроками, составляющими достаточно устойчивую совокупность, при относительно неизменных правилах и условиях. В случае новой игры или игры, разыгрываемой только один раз, с неопытными игроками, концепцию равновесия следует использовать более осмотрительно; при этом для вас не должен стать неожиданностью тот факт, что исход игры окажется не тем равновесием, на которое вы рассчитали. Но даже тогда вашим первым шагом в процессе анализа игры должен быть поиск равновесия Нэша. Это позволит определить, возможен ли такой исход игры, и если нет, выполнить следующий шаг — выяснить причину[83]. Зачастую она кроется в вашем неправильном понимании целей игроков, а не в их неспособности вести игру правильно с учетом своих истинных целей.

Резюме

Когда участники игры с одновременными ходами могут делать выбор из непрерывного диапазона возможных действий, анализ наилучших ответов приводит к формированию правил наилучших ответов, одновременное решение которых позволит определить стратегии равновесия Нэша. Правила наилучших ответов можно отобразить на графике, на котором пересечение двух линий представляет собой равновесие Нэша. Компании, выбирающие цены или количество из большого диапазона возможных значений, или политические партии, выбирающие объемы рекламных расходов, — примеры игр с непрерывными стратегиями.

Теоретические замечания в адрес концепции равновесия Нэша гласят, что она неадекватно учитывает риск, что от нее мало пользы, поскольку во многих играх присутствует множество равновесий Нэша, и что ее невозможно обосновать только рациональностью. Во многих случаях более полное описание игры и ее структуры выигрышей или уточнение самой концепции равновесия Нэша может привести к составлению более точных прогнозов или уменьшению количества возможных равновесий. Концепция рационализации основана на исключении стратегий, которые не могут быть наилучшим ответом, для получения совокупности рационализируемых исходов. Когда в игре есть равновесие Нэша, этот исход будет рационализируемым, однако рационализация позволяет спрогнозировать равновесные исходы и в играх, где равновесие Нэша отсутствует.

Согласно результатам лабораторных экспериментов с концепцией равновесия Нэша, координация в играх со множеством равновесий Нэша в значительной мере зависит от наличия общего культурного опыта. Повторное проведение некоторых игр показывает, что игроки учатся в процессе накопления опыта и со временем начинают выбирать стратегии, максимально близкие к равновесию Нэша. Кроме того, прогнозы равновесий точны только в случае, если исходные предположения экспериментатора соответствуют истинным предпочтениям игроков. Практическое применение теории игр помогло экономистам и политологам понять ряд важных аспектов поведения потребителей, компаний, избирателей, а также законодательных и правительственных органов.

Ключевые термины

График наилучших ответов

Непрерывные стратегии

Правила наилучших ответов

Равновесие квантильных откликов

Рационализация

Рационализируемые стратегии

Стратегии, которые не могут быть наилучшим ответом

Уточнения

Упражнения с решениями

S1. В игре с политической рекламой, о которой шла речь в разделе 1.Б, партия Л выбирает рекламный бюджет в размере x (миллионов долларов), а партия П — в размере y (миллионов долларов). Мы показали, что правила наилучших ответов в этой игре таковы: для партии П и для партии Л.

a) Каким будет наилучший ответ партии П, если партия Л потратит на рекламу 16 миллионов долларов?

Используйте указанные выше правила наилучших ответов для подтверждения того, что рекламные бюджеты, обеспечивающие равновесие Нэша, составляют: x = y = 25, или 25 миллионов долларов.

S2. В игре с ценообразованием в ресторанах, представленной на рис. 5.1, функции потребительского спроса на блюда в ресторанах Xavier’s (Qx) и Yvonne’s (Qy) определены как Qx = 44 — 2Px + Py и Qy = 44 — 2Py + Px. Кроме того, прибыль каждого ресторана зависит от затрат на обслуживание каждого клиента. Предположим, ресторану Yvonne’s удастся их сократить до 2 долларов на одного клиента, полностью отказавшись от официантов (клиенты сами выбирают блюда у стойки, а несколько оставшихся работников убирают посуду со столов). Ресторан Xavier’s по-прежнему несет расходы в размере 8 долларов на одного клиента.

a) Вычислите заново правила наилучших ответов и цены в соответствии с равновесием Нэша для этих двух ресторанов с учетом изменения объема затрат.

b) Постройте график двух кривых наилучших ответов и опишите различия между ним и графиком, представленным на рис. 5.1. В частности, какая линия сместилась, куда и насколько? Объясните почему.

S3. В Яппи-Тауне два продуктовых магазина: La Boulangerie, который продает хлеб, и La Fromagerie, который торгует сыром. Производство буханки хлеба обходится в 1 доллар, а фунта сыра — в 2 доллара. Если цена La Boulangerie составляет P1 долларов за буханку хлеба, а La Fromagerie — P2 доллара за фунт сыра, то их недельные объемы продаж, Q1 буханок хлеба и Q2 фунтов сыра, описываются следующими уравнениями:

Q1 = 14 — P1 — 0,5P2, Q2 = 9–0,5P1 — P2.

a) Запишите прибыль каждого магазина как функцию P1 и P2 (в следующих упражнениях мы для краткости будем называть ее функцией прибыли). Затем установите соответствующие правила наилучших ответов. Постройте график кривых наилучших ответов и определите цены, соответствующие равновесию Нэша в этой игре.

b) Предположим, оба магазина вступят в сговор и совместно установят цены, позволяющие максимизировать общую сумму своих прибылей. Определите эти цены.

c) Дайте короткое интуитивное объяснение различий между ценами в случае равновесия Нэша и ценами, максимизирующими общую прибыль. Почему максимизация общей прибыли не является равновесием Нэша?

d) В данной задаче хлеб и сыр — взаимодополняющие продукты. Их часто потребляют вместе; именно поэтому снижение цены одного продукта приводит к увеличению объема продаж другого. В ресторанах из примера, приведенного в разделе 1.А, используются взаимозаменяющие продукты. Как это различие объясняет разницу между вашими выводами в отношении правил наилучших ответов, цен в равновесии Нэша и цен, максимизирующих общую прибыль?

S4. В игре на рис. 5.3 есть единственное равновесие Нэша в чистых стратегиях. Тем не менее все девять ее исходов будут рационализируемыми. Обоснуйте это утверждение, объясняя логику своих рассуждений по каждому исходу.

S5. Перечислите рационализруемые стратегии каждого игрока в игре, представленной в упражнении S5 главы 4. Объясните логику своих рассуждений.

S6. В разделе 3.Б данной главы анализируется игра в рыбную ловлю, разыгрываемая в небольшом прибрежном городке. После определения правил наилучших ответов двух лодок можно использовать концепцию рационализации для обоснования равновесия Нэша в данной игре. В ее описании процесс сокращения количества стратегий, которые не могут быть наилучшим ответом, сводится к трем циклам. К третьему циклу мы знаем, что R (количество бочек рыбы, выловленной лодкой 1) должно составлять минимум 9, а S (количество бочек рыбы, выловленной лодкой 2) — минимум 4,5. Процесс сокращения в ходе этого цикла ограничил значения R диапазоном от 9 до 12,75, а значения S — диапазоном от 4,5 до 7,5. Выполните еще один (четвертый) цикл сокращений и покажите полученные к его концу диапазоны значений R и S.

S7. Две тележки для торговли кокосовым молоком (из кокосового ореха) находятся в местах 0 и 1 в одной миле друг от друга на пляже в Рио-де-Жанейро. (На этом пляже кокосовое молоко продают только эти две тележки.) Тележки 0 и 1 назначают цену за каждый кокос p0 и p1 соответственно. Кокосовое молоко покупает тысяча отдыхающих, равномерно распределенных вдоль пляжа между тележками 0 и 1. В течение одного дня, проведенного на пляже, один отдыхающий покупает одну порцию кокосового молока. Помимо цены каждый отдыхающий несет транспортные издержки в размере 0,5 × d2 где d — расстояние (в милях) от его пляжного места до кокосовой тележки. В данной системе тележка 0 продает кокосовое молоко всем отдыхающим, находящимся между точками 0 и x, а тележка 1 — всем отдыхающим между точками x и 1, где x — это местоположение отдыхающего, который платит одну и ту же общую цену, куда бы он ни отправился — к тележке 0 или к тележке 1. В таком случае местоположение точки x описывает следующая формула:

p0 + 0,5x2 = p1 + 0,5(1 — x)2.

Две тележки установят цены таким образом, чтобы максимизировать свои показатели чистой прибыли B; прибыль зависит от дохода (цена, установленная тележкой, умноженная на количество покупателей) и издержек (каждая тележка несет издержки в размере 0,25 доллара на один кокос, умноженные на количество проданных кокосов).

a) Выведите для каждой тележки формулу, описывающую количество обслуженных покупателей как функцию от p0 и p1. (Помните, что тележка 0 обслуживает покупателей, находящихся между точками 0 и x, то есть просто x, а тележка 1 обслуживает покупателей между точками x и 1, или 1 — x. Иными словами, тележка 0 продает кокосовое молоко x покупателям, а тележка 1 (1 — x) покупателям, где x и (1 − х) исчисляются в тысячах.)

b) Запишите функции прибыли для двух тележек. Определите правила наилучших ответов для обеих тележек как функцию от цены конкурента.

c) Постройте график правил наилучших ответов, а затем вычислите (и покажите на графике) соответствующий равновесию Нэша уровень цен на кокосовое молоко, продающееся на пляже.

S8. Нефть транспортируется по всему миру в танкерах класса VLCC (водоизмещением свыше 160 тысяч тонн). По состоянию на 2001 год более 92 процентов всех танкеров класса VLCC были построены в Южной Корее и Японии. Допустим, цена новых танкеров VLCC (в миллионах долларов) определяется функцией P = 180 — Q, где Q — количество построенных танкеров, Q = qКорея + qЯпония. (То есть будем исходить из того, что такие танкеры выпускают только в Японии и Корее, стало быть, они образуют дуополию.) Предположим, затраты на строительство каждого танкера составляют 30 миллионов долларов как в Корее, так и в Японии. Иначе говоря, cКорея = cЯпония = 30, где затраты на один танкер измеряются в миллионах долларов.

a) Запишите функции прибыли для каждой из двух стран, выраженные через qКорея и qЯпония, а также либо cКорея, либо cЯпония. Найдите функцию наилучшего ответа каждой страны.

b) С помощью функций наилучших ответов, вычисленных в пункте а, отыщите соответствующее равновесию Нэша количество танкеров класса VLCC, выпускаемых каждой страной в год. Какова цена танкера VLCC? Какую прибыль получает каждая страна?

c) Затраты на оплату труда на корейских верфях существенно ниже, чем на японских. Теперь предположим, что стоимость строительства одного танкера в Японии составляет 40 миллионов долларов, а в Корее — всего 20 миллионов долларов. Если cКорея = 20, а cЯпония = 40, какова рыночная доля каждой страны (то есть процент танкеров, которые продает каждая страна, от общего количества проданных танкеров)? Какова прибыль каждой страны?

S9. Расширим предыдущую задачу. Предположим, на рынок строительства танкеров класса VLCC решит выйти Китай. Дуополия, соответственно, превратится в триополию, а значит, хотя цена по-прежнему рассчитывается как P = 180 — Q, количество построенных танкеров описывается формулой Q = qКорея + qЯпония + qКитай. Допустим, во всех странах объем затрат на строительство одного танкера составляет 30 миллионов долларов: cКорея = cЯпония = сКитай = 30.

a) Запишите функции прибыли для каждой из трех стран, выраженные через qКорея, qЯпония и qКитай, а также через cКорея, cЯпония или сКитай. Вычислите функцию наилучшего ответа каждой страны.

b) Воспользовавшись решением, полученным в пункте а, определите количество выпущенных танкеров, рыночную долю (см. упражнение S8, пункт с) и прибыль каждой страны. Это потребует решения трех уравнений с тремя неизвестными.

c) Как изменится цена одного танкера VLCC в новой триополии по сравнению с дуополией, представленной в пункте b упражнения S8? Почему?

S10. Моника и Нэнси создали деловое товарищество в целях предоставления консультационных услуг в гольф-индустрии. Каждой из них предстоит решить, сколько усилий вкладывать в этот бизнес. Пусть m — это количество усилий, вкладываемых Моникой, а n — Нэнси.

Общая прибыль товарищества рассчитывается по формуле 4m + 4n + mn и исчисляется в десятках тысяч долларов, а партнеры делят ее поровну. Однако партнеры должны по отдельности нести затраты, связанные с вложением усилий; объем этих затрат в случае Моники составляет m2, а в случае Нэнси — n2 (также исчисляются в десятках тысяч долларов). Каждая участница товарищества должна принять решение о количестве усилий, не зная о решении коллеги.

a) Если Моника и Нэнси вложат в бизнес усилия m = n = 1, какой выигрыш получит каждая из них?

b) Если Моника вложит усилия m = 1, каким должен быть наилучший ответ Нэнси?

c) Каково равновесие Нэша в этой игре?

S11. Равновесие Нэша можно получить посредством рационализации в играх с кривыми наилучших ответов, направленными вверх, если циклы исключения стратегий, которые не могут быть наилучшими ответами, начинаются с минимально возможных значений. Рассмотрим игру в ценообразование между ресторанами Xavier’s Tapas Bar и Yvonne’s Bistro, представленную на рис. 5.1. Используйте рис. 5.1 и правила наилучших ответов, на основании которых он получен, чтобы приступить к рационализации равновесия Нэша в этой игре. Начните с самых низких цен в двух ресторанах и опишите (минимум) два цикла сужения совокупности рационализируемых цен до равновесия Нэша.

S12. Профессор предлагает Эльзе и ее 49 однокурсникам сыграть в следующую игру. Все студенты одновременно и втайне друг от друга записывают на листках бумаги число от 0 до 100, после чего сдают листки профессору. Тот подсчитывает Х — среднее чисел, выбранных студентами. Студент, число которого окажется наиболее близким к половине от Х, получает 50 долларов. Если такое число выберут несколько студентов, они делят приз поровну.

a) Докажите, что выбор числа 80 — доминируемая стратегия.

b) Какой была бы совокупность наилучших ответов для Эльзы, если бы она знала, что все однокурсники выберут число 40? То есть каков диапазон чисел, в котором каждое число ближе к выигрышному числу, чем 40?

c) Какой была бы совокупность наилучших ответов для Эльзы, если бы она знала, что все ее однокурсники выберут число 10?

d) Найдите симметричное равновесие Нэша в этой игре. Иными словами, какое число будет наилучшим ответом на выбор всеми остальными игроками одного и того же числа?

e) Какие стратегии в этой игре будут рационализируемыми?

Упражнения без решений

U1. Diamond Trading Company (DTC), дочерняя компания De Beers, — основной поставщик высококачественных алмазов на оптовый рынок. Для простоты предположим, что DTC имеет монополию на оптовую торговлю алмазами. Следовательно, их оптовая цена напрямую зависит от количества алмазов, которое решает продать компания DTC. Пусть оптовую цену алмазов (в сотнях долларов) описывает следующая функция обратного спроса: P = 120 — QDTC , где QDTC — количество продаваемых алмазов. Допустим, DTC несет издержки в размере 12 (сотен долларов) на один алмаз высокого качества.

a) Запишите функцию прибыли DTC, выраженную через QDTC , и вычислите объем поставок алмазов, обеспечивающий DTC максимальную прибыль. Какой будет оптовая цена алмазов при таком объеме поставок? Какова прибыль DTC?

Возмущенные монополией DTC, несколько компаний по добыче алмазов и крупных ретейлеров создали совместное предприятие под названием Adamantia в качестве конкурента DTC на оптовом рынке алмазов. Теперь оптовая цена алмазов определяется по формуле P = 120 — QDTC — QADA. Предположим, Adamantia несет издержки в размере 12 (сотен долларов) на один алмаз высокого качества.

b) Запишите функцию прибыли компаний DTC и Adamantia. Какое количество алмазов поставляет на оптовый рынок каждая из них в случае равновесия? Какую оптовую цену алмазов подразумевает такое количество? Какую прибыль получит каждый поставщик в такой дуополии?

c) Опишите различия между ситуацией на оптовом рынке алмазов в случае дуополии с участием DTC и Adamantia и монополии DTC. Что произойдет с объемом поставок алмазов на рынок и рыночной ценой в связи с выходом на него Adamantia? Что произойдет с совокупной прибылью компаний DTC и Adamantia?

U2. В городе Харкинсвилль есть два кинотеатра: Modern Multiplex, осуществляющий премьерные показы, и Sticky Shoe, демонстрирующий фильмы, вышедшие в прокат ранее, по более низкой цене. Спрос на фильмы в Modern Multiplex описывается формулой QMM = 14 — PMM + PSS, а в Sticky Shoe — формулой QSS = 8–2PSS + PMM, где цены измеряются в долларах, а количество — в сотнях кинозрителей. В кинотеатре Modern Multiplex объем затрат на одного зрителя составляет 4 доллара, а в Sticky Shoe — всего 2 доллара.

a) На основании уравнений спроса определите, какие услуги предоставляют кинотеатры Modern Multiplex и Sticky Shoe — взаимозаменяющие или взаимодополняющие.

b) Запишите функцию прибыли каждого кинотеатра, выраженную через PSS и PMM. Определите правило наилучших ответов для каждого кинотеатра.

c) Определите цену, количество и прибыль каждого кинотеатра в соответствии с равновесием Нэша.

d) Какими бы были значения цены и количества для каждого кинотеатра, если бы они вступили в сговор в целях максимизации общей прибыли на этом рынке? Почему исход, основанный на сговоре, не будет равновесием Нэша?

U3. Перенесемся на десять лет в будущее в ситуации, представленной в упражнении S3. Спрос на хлеб и сыр в Яппи-Тауне снизился, и два магазина, La Boulangerie и La Fromagerie, выкупила третья компания — L’Épicerie. Производство буханки хлеба по-прежнему обходится в 1 доллар, а фунта сыра — в 2 доллара, однако количество продаваемого хлеба и сыра (Q1 и Q2 соответственно, в тысячах) теперь описывается следующими уравнениями:

Q1 = 8 — P1 — 0,5P2, Q2 = 16 — 0,5P1 — P2.

Как и прежде, P1 — это цена буханки хлеба в долларах, а P2 — цена фунта сыра в долларах.

a) Поначалу компания L’Épicerie управляет магазинами La Boulangerie и La Fromagerie так, будто это две отдельные компании с независимыми управляющими, каждый из которых пытается максимизировать прибыль своего магазина. Определите количество, цену и прибыль этих двух подразделений L’Épicerie в соответствии с равновесием Нэша с учетом новых уравнений количества продаваемого хлеба и сыра.

b) Владельцы L’Épicerie считают, что могут получить более высокую общую прибыль посредством координации стратегий ценообразования в подразделениях своей компании в Яппи-Тауне. Какова цена хлеба и сыра, максимизирующая общую прибыль, при условии такого сговора? Какое количество каждого продукта продают магазины La Boulangerie и La Fromagerie, и какую прибыль получает каждый из них в отдельности?

c) Почему компании порой продают часть своей продукции по цене ниже себестоимости? Дайте логическое обоснование продажи продукции с убытком, воспользовавшись своим ответом из пункта b в качестве иллюстрации.

U4. Тележки для торговли кокосовым молоком из упражнения S7 снова установили на следующий день. Почти все условия прежние: тележки находятся в тех же местах; количество и распределение отдыхающих такое же; спрос тоже не изменился — одна порция кокосового молока. Единственное отличие — это неимоверно жаркий день, поэтому каждый отдыхающий несет более высокие транспортные издержки в размере 0,6 × d2. Как и прежде, тележка 0 продает кокосовое молоко всем отдыхающим, находящимся между точками 0 и x, а тележка 1 — всем отдыхающим между точками x и 1, где x — это местоположение отдыхающего, который платит одну и ту же общую цену, куда бы он ни отправился — к тележке 0 или 1. Однако теперь местоположение точки x определяется выражением

p0 + 0,6x2 = p1 + 0,6(1 — x)2.

Каждая тележка продолжает нести издержки в размере 0,25 доллара на один проданный кокос.

a) Для каждой тележки выведите формулу, описывающую количество обслуженных покупателей как функцию от p0 и p1. (Не забывайте, что тележка 0 обслуживает покупателей, находящихся между точками 0 и x, то есть просто x, а тележка 1 — между точками x и 1, или 1 — x. Иными словами, тележка 0 продает кокосовое молоко x покупателям, а тележка 1 — (1 — x) покупателям, где x и (1 — х) исчисляются в тысячах.)

b) Запишите функции прибыли для двух тележек и определите для них правила наилучших ответов.

c) Вычислите соответствующий равновесию Нэша уровень цен на кокосовое молоко, продающееся на пляже. Как эта цена отличается от цены, рассчитанной в упражнении S7? Почему?

U5. В игре, представленной на рис. 5.4, есть единственное равновесие Нэша в чистых стратегиях. Найдите его и покажите, что оно будет также рационализируемым исходом данной игры.

U6. Найдите рационализируемые стратегии игры «чет или нечет» из упражнения S12 в главе 4.

U7. В игре с рыболовными лодками в разделе 3.Б мы показали, как может сложиться ситуация, когда единственный рационализируемый исход в непрерывных стратегиях представляет собой также и равновесие Нэша. Тем не менее так бывает не всегда: может существовать множество рационализируемых стратегий, и не все из них обязательно будут частью равновесия Нэша.

Вернувшись к игре в политическую рекламу из упражнения S1, найдите совокупность рационализируемых стратегий для партии Л. (Учитывая симметричные выигрыши двух партий, совокупность рационализируемых стратегий будет такой же и для партии П.)

U8. Компании Intel и AMD, основные производители центральных процессоров, конкурируют друг с другом в категории микросхем (чипов) средней производительности (среди прочих категорий). Предположим, что мировой спрос на такие чипы зависит от их количества, выпускаемого двумя компаниями, а значит цена (в долларах) микросхем средней производительности определяется по формуле P = 210 — Q, где Q = qIntel + qAMD — количество микросхем, исчисляемое в миллионах. Производство каждого чипа обходится Intel в 60 долларов. В AMD процесс производства организован лучше, поэтому ей производство каждой микросхемы обходится в 48 долларов.

a) Запишите функцию прибыли каждой компании, выраженную через qIntel и qAMD. Определите правило наилучших ответов каждой компании.

b) Вычислите цену, количество и прибыль каждой компании в соответствии с равновесием Нэша.

c) (дополнительное упражнение). Предположим, Intel приобрела AMD и теперь имеет два подразделения с разными производственными затратами. Компания, образовавшаяся в результате поглощения, стремится максимизировать общую прибыль двух подразделений. Сколько микросхем должно производить каждое подразделение? (Подсказка: возможно, вам придется хорошенько поразмышлять над этой задачей, а не слепо применять математические методы.) Какова рыночная цена и совокупная прибыль компании?

U9. Вернемся к игре с триополией на рынке танкеров класса VLCC из упражнения S9. В действительности у этих стран не одинаковые издержки производства. Китай постепенно, в течение нескольких лет, выходит на этот рынок, и из-за отсутствия опыта его издержки производства с самого начала были достаточно высокими.

a) Определите количество, рыночную цену и прибыль участников триополии в случае, когда затраты на один танкер составляют 20 миллионов долларов в Корее, 40 миллионов долларов в Японии и 60 миллионов долларов в Китае (cКорея = 20, cЯпония = 40, cКитай = 60).

После того как Китай накопит больше опыта и увеличит производственные мощности, его издержки производства существенно сократятся. Поскольку в Китае рабочая сила еще дешевле, чем в Корее, в конечном счете затраты на строительство одного танкера станут в Китае даже меньше, чем в Корее.

b) Выполните то же задание, что и в пункте а, но с условием, что затраты Китая на один танкер составляют 16 миллионов долларов (cКорея = 20, cЯпония = 40, cКитай = 16).

U10. Вернемся к истории Моники и Нэнси из упражнения S10. После дополнительной профессиональной подготовки Моника более эффективно выполняет работу, поэтому теперь общая прибыль их компании рассчитывается по формуле 5m + 4n + mn в десятках тысяч долларов. Как и прежде, m — количество усилий, вкладываемых в бизнес Моникой, а n — Нэнси; затраты обеих составляют m2 и n2 соответственно (в тысячах долларов).

Условия партнерства по-прежнему требуют разделения прибыли поровну, несмотря на то, что Моника более продуктивна. Предположим, Моника и Нэнси принимают решения о вложении усилий одновременно.

a) Каким должен быть наилучший ответ Моники в случае, если, по ее оценкам, Нэнси будет вкладывать усилия в размере n = 4/3?

b) Найдите равновесие Нэша в этой игре.

c) По сравнению с равновесием Нэша, найденным в пункте c упражнения S10, Моника вкладывает больше, меньше или столько же усилий? Что можно сказать о Нэнси?

d) Каковы итоговые выигрыши Моники и Нэнси в новом равновесии Нэша (после разделения общей прибыли с учетом затрат на вложенные усилия)? Как они отличаются от выигрышей обеих при прежнем равновесии Нэша? Кто в конечном счете получает большую выгоду от дополнительной подготовки Моники?

U11. Профессор предлагает Эльзе и ее 49 однокурсникам сыграть в новую игру. Как и прежде, все студенты одновременно и втайне друг от друга записывают на листках бумаги число от 0 до 100, после чего профессор вычисляет среднее выбранных чисел и обозначает его символом X. На этот раз студент, число которого окажется наиболее близким к 2/3 × (X + 9), получит 50 долларов. Если такое число выберут несколько студентов, они разделят приз поровну.

a) Найдите симметричное равновесие Нэша в этой игре. То есть какое число станет наилучшим ответом на выбор всеми остальными игроками одного и того же числа?

b) Докажите, что выбор числа 5 — это доминируемая стратегия. (Подсказка: каким должно быть среднее значение X для всей группы, чтобы ожидаемое число было равно 5?)

c) Докажите, что выбор числа 90 — это доминируемая стратегия.

d) Определите все доминируемые стратегии.

e) Предположим, Эльза убеждена, что никто из ее однокурсников не выберет доминируемые стратегии, найденные в пункте d. Учитывая эти убеждения, какие стратегии не могут быть наилучшими ответами для Эльзы?

f) Какие стратегии в этой игре рационализируемые? Объясните логику ваших рассуждений.

U12 (дополнительное упражнение, требующее вычислений). Вспомните игру с политической рекламной кампанией партий Л и П из раздела 1.В. В ней, когда партия Л тратит на рекламу x миллионов долларов, а партия R — y миллионов долларов, Л получает долю голосов x / (x + y), а П — y / (x + y). Мы также упоминали, что в такой модели может возникнуть два типа асимметрий между партиями. У одной партии (скажем, П) может быть возможность размещать рекламу по более низкой цене, или рекламный бюджет партии П может оказаться более эффективным с точки зрения привлечения голосов избирателей по сравнению с бюджетом партии Л. Для того чтобы учесть обе возможности, мы можем записать функции выигрышей двух партий следующим образом:



Эти функции выигрышей показывают, что у партии П есть преимущество в плане относительной эффективности ее рекламы при высоком значении k и при низком значении c.

a) Используйте эти функции выигрышей для получения функций наилучших ответов для партии П (которая выбирает y) и Л (которая выбирает x).

b) С помощью калькулятора или компьютера постройте график этих функций наилучших ответов при k = 1 и c = 1. Какой результат обеспечивает преимущество в отношении затрат на рекламу?

c) Сравните график из пункта b при k = 1 и c = 1 с графиком при k = 2 и c = 1. Какой результат обеспечивает преимущество в плане эффективности рекламного бюджета?

d) Найдите решения по функциям наилучших ответов, которые вы определили в пункте а, для x и y, чтобы показать, что расходы на рекламные кампании в случае равновесия Нэша составляют



e) Пусть k = 1 в равновесных уравнениях уровней расходов. Покажите, как эти два равновесных уровня расходов меняются в зависимости от значения c (то есть объясните знаки dx / dc и dy / dc). Тогда пусть c = 1; покажите, как эти два равновесных уровня расходов меняются в зависимости от значения k (то есть объясните знаки dx / dk и dy / dk). Подтверждают ли ваши ответы результаты, полученные вами в пунктах b и c данного упражнения?

Приложение. Поиск значения, максимизирующего функцию

В данном приложении представлен простой метод выбора переменной X для получения максимального значения переменной, которое является ее функцией, скажем Y = F(X). В наших примерах практического применения теории игр эта функция в большинстве случаев будет квадратичной, а именно Y = A + BX + CX2. Для таких функций мы выведем формулу X = B / (2C), используемую в данной главе. Мы сформулируем общую идею с помощью дифференциального исчисления, а затем предложим альтернативный подход, в котором это исчисление не применяется и который опирается исключительно на квадратичную функцию[84].

Метод дифференциального исчисления проверяет значение X на оптимальность посредством анализа того, что произойдет со значением функции в случае других значений по любую сторону от X. Если на самом деле X не максимизирует Y = F(X), то результатом увеличения или уменьшения X должно быть уменьшение значения Y. Исчисление предоставляет нам возможность быстро выполнить такую проверку.

Рисунок 5П.1 иллюстрирует основную идею. На нем представлен график функции Y = F(X), для которого мы использовали функцию, подходящую для наших примеров практического применения теории игр, хотя сама идея носит абсолютно универсальный характер. Начнем с любой точки P с координатами (X, Y) на этом графике. Рассмотрим несколько отличающееся значение X, скажем (X + h). Пусть k — это итоговое изменение Y = F(X), то есть точка Q с координатами (X + h, Y + k) также находится на графике. Наклон хорды, соединяющей точки P и Q, — коэффициент k / h. Если значение этого коэффициента положительное, то h и k имеют одинаковый знак: при увеличении X увеличивается и Y. Если значение коэффициента отрицательное, то h и k имеют противоположные знаки, и в случае увеличения X значение Y уменьшается.


Рис. 5П.1. Иллюстрация к производной функции


Если теперь мы проанализируем все меньшие изменения h значения X и все меньшие изменения k значения Y, хорда PQ будет приближаться к касательной к данному графику в точке P. Наклон этой касательной — и есть предельное значение k/h, называемое производной функцией Y = F(X) в точке X. Символически эта производная записывается как F´(X) или dY / dX.

Для нашей квадратичной функции имеем

Y = A + BX + CX2 и Y + k = A + B(X + h) — C(X + h)2.

Мы можем найти формулу для k следующим образом:

k = [A + B(X + h) — C(X + h)2] — (A + BX–CX2) =

Bh — C[(X + h)2X2] =

Bh — C(X2 + 2Xh + h2X2) =

(B — 2CX)h — Ch2.

Тогда k / h = (B — 2CX) — Ch. В пределе, когда значение h стремится к нулю, k/h = (B — 2CX). Последнее выражение и есть производная нашей функции.

Теперь используем эту производную для проверки на оптимальность. На рис. 5П.2 проиллюстрирована эта идея. Точка M дает самое высокое значение Y = F(X). Функция возрастает по мере приближения к точке M слева (точка L) и убывает после удаления от точки M направо (точка R). Следовательно, производная F´(X) должна быть положительной при значениях X меньше M и отрицательной при значениях X больше M. По условию непрерывности производная в точке M должна равняться нулю. На обычном языке это означает, что график функции должен быть плоским в точке максимума, точнее, касательная в этой точке должна быть горизонтальной.


Рис. 5П.2. Оптимум функции


В нашем примере с квадратичной функцией производная равна F´(X) = B — 2CX. Проверка оптимальности подразумевает, что функция имеет оптимум в точке, значение производной в которой равно 0, то есть в точке X = B/2C. Это и есть та формула, которая приведена в данной главе.

Необходимо выполнить еще одну дополнительную проверку. Если перевернуть график функции, то точка M станет минимальным значением перевернутой функции и в этой самой нижней точке график также будет плоским. Таким образом, для общей функции F(X) установление значения F´(X) равным 0 позволяет получить значение X, которое обеспечивает как минимум, так и максимум. Как же провести различие между этими двумя возможностями?

В точке максимума функция возрастает слева и убывает справа. Следовательно, производная будет положительной при значениях X меньше предполагаемого максимума и отрицательной при значениях X больше предполагаемого максимума. Иными словами, производная, которая рассматривается как функция от X, убывает в этой точке. Убывающая функция имеет отрицательную производную. Стало быть, производная производной, которая называется второй производной исходной функции и записывается как F´(X) или d2Y / dX2, должна иметь отрицательное значение в точке максимума. Согласно той же логике вторая производная должна иметь положительное значение в точке минимума — именно это и отличает два случая.

Что касается производной F´(X) = B — 2CX в нашем примере с квадратичной функцией, то применение той же процедуры с h, k по отношению к F´(X), что и в случае F(X), показывает, что F˝(X) = — 2C. Значение этой производной будет отрицательным при положительном значении C; именно из такого предположения мы исходили, формулируя задачу в данной главе. Проверка F´(X) = 0 называется условием максимизации первого порядка функции F(X), а F˝(X) < 0 — условием второго порядка.

Для того чтобы закрепить эту идею, применим ее в конкретном примере с наилучшим ответом Xavier’s, который мы рассматривали в данной главе. У нас была такая формула:

Пx = — 8(44 + Py) + (16 + 44 + Py) Px — 2(Px)2.

Это квадратичная функция от Px (при неизменном значении цены другого ресторана Py). Наш метод позволяет получить ее производную:



Условие первого порядка для Px для максимизации Пx состоит в том, что эта производная должна быть равной нулю. Установив такое значение производной и определив ее значение относительно Px, получим то же уравнение, что и в разделе 1.П. (Условие второго порядка: d2Пx / dPx2 < 0, и оно удовлетворено, поскольку вторая производная равна −4.)

Мы надеемся, что метод с применением дифференциального исчисления покажется вам достаточно простым и вы сможете использовать его в нескольких местах книги, например в главе 11, посвященной коллективному действию. Однако если вы находите его слишком сложным, предлагаем альтернативный метод без исчисления, который работает в случае квадратичных функций. Перегруппируем члены уравнения, описывающего эту функцию, таким образом:

Y = A + BX–CX2 =




В окончательном варианте формулы X присутствует только в последнем члене, где содержащий это значение квадрат вычитается (помните, что C > 0). Все выражение максимизируется в случае, если его вычитаемый член становится минимальным, что и происходит, если X = B / 2C. Что и требовалось доказать!

Такой метод дополнения до полного квадрата работает для квадратичных функций, поэтому применим к большинству примеров, рассматриваемых в книге. Однако мы должны признать, что в нем присутствует некий элемент магии. Метод с использованием дифференциального исчисления носит более общий методологический характер, так что изучение основ дифференциального исчисления окупится сторицей.

Глава 6. Сочетание последовательных и одновременных ходов

* * *

В главе 3 мы рассматривали игры исключительно с последовательными ходами, а глава 4 и глава 5 посвящены играм только с одновременными ходами. Мы сформулировали концепции и методы анализа, применимые к чистым типам игр, такие как дерево игры и равновесие обратных рассуждений для игр с последовательными ходами, и таблицы выигрышей и равновесие Нэша в играх с одновременными ходами. Однако в реальной жизни многие стратегические ситуации содержат элементы взаимодействия обоих типов игр. Кроме того, хотя мы использовали дерево игры (экстенсивную форму) в качестве единственного метода иллюстрации игр с последовательными ходами и таблицу игры (стратегическую форму) как единственный метод иллюстрации игр с одновременными ходами, каждая из этих форм представления применима к играм любого типа.

В данной главе мы проанализируем многие из этих возможностей. Сначала покажем, как игры, сочетающие последовательные и одновременные ходы, решаются с помощью комбинации деревьев игр и таблицы выигрышей, а также подходящего объединения анализа равновесия обратных рассуждений и равновесия Нэша, затем рассмотрим последствия изменения характера взаимодействия в конкретной игре. В частности, проанализируем результат изменения правил игры в целях преобразования игры с последовательными ходами в игру с одновременными ходами и наоборот и изменения порядка ходов в игре с последовательными ходами. Эта тема позволяет сравнить равновесия, найденные посредством концепции обратных рассуждений в игре с последовательными ходами, с равновесиями, найденными с помощью концепции равновесия Нэша в одновременной версии той же игры. На основании такого сравнения мы расширим концепцию равновесий Нэша на игры с последовательными ходами. Оказывается, равновесие обратных рассуждений — частный случай равновесия Нэша, обычно называемый уточнением.

1. Игры с одновременными и последовательными ходами

Как уже неоднократно отмечалось ранее, большинство реальных игр, с которыми вы столкнетесь, будут состоять из множества более мелких компонентов, причем каждый может подразумевать игру либо с одновременными, либо с последовательными ходами, поэтому игра в целом потребует от вас знания обоих типов. Самый очевидный пример стратегического взаимодействия, содержащего как последовательную, так и одновременную составляющую, — это игры между двумя (или более) игроками, продолжающиеся на протяжении длительного периода. За год совместного проживания в комнате вы можете сыграть с соседом в ряд разных игр с одновременными ходами: ваши действия в любой из них зависят от истории вашего общения до нынешнего момента и ваших ожиданий в отношении дальнейших коммуникаций. Кроме того, любые спортивные соревнования, взаимодействие между конкурирующими компаниями в отрасли и политические отношения — все это последовательно связанные серии игр с одновременными ходами. Анализ таких игр подразумевает использование набора инструментов, представленных в главе 3 (дерево игры и равновесие обратных рассуждений), главе 4 и главе 5 (таблица выигрышей и равновесие Нэша)[85]. Единственное различие состоит в том, что фактический анализ усложняется по мере увеличения количества ходов и взаимодействий.

А. Двухэтапные игры и подыгры

Наш основной иллюстративный пример таких ситуаций касается двух вымышленных крупных телекоммуникационных компаний CrossTalk и GlobalDialog. Каждая из них решает, стоит ли инвестировать 10 миллиардов долларов в покупку волоконно-оптической сети; решение обеими принимается одновременно. Если ни одна не выберет инвестиции, это конец игры. Если одна сделает инвестиции, а другая нет, то компания-инвестор должна установить цены на телекоммуникационные услуги. Она может назначить либо высокую цену, позволяющую привлечь 60 миллионов клиентов, каждый из которых принесет компании операционную прибыль в размере 400 долларов, либо низкую цену, позволяющую привлечь 80 миллионов клиентов, каждый из которых обеспечит компании операционную прибыль в размере 200 долларов. Если обе компании купят волоконно-оптические сети и выйдут на рынок, то ценообразование станет второй игрой с одновременными ходами. Каждая компания может установить либо высокую, либо низкую цену. Если обе предпочтут высокую цену, они разделят рынок поровну и каждая получит 30 миллионов клиентов и операционную прибыль 400 долларов на одного клиента. Если обе выберут низкую цену, они тоже разделят рынок поровну и каждая получит 40 миллионов клиентов и операционную прибыль 200 долларов на одного клиента. Если одна компания установит высокую цену, а другая низкую, то компания с низкой ценой получит все 80 миллионов клиентов, а компания с высокой ценой не получит ничего.

Взаимодействие между CrossTalk и GlobalDialog представляет собой двухэтапную игру. Из четырех возможных комбинаций вариантов выбора в случае игры с одновременными ходами на первом (инвестиционном) этапе одна комбинация завершает игру, две приводят к принятию решения только одним игроком на втором этапе (ценообразования), а четвертая сводится к игре с одновременными ходами (игре в ценообразование) на втором этапе. Игра в графическом виде представлена на рис. 6.1.


Рис. 6.1. Двухэтапная игра, состоящая из последовательных и одновременных ходов


В целом рис. 6.1 иллюстрирует дерево игры, но более сложное, чем в главе 3. Его можно представить как своего рода «дом на дереве» с несколькими уровнями, показанными в разных частях одного двумерного рисунка, как будто вы смотрите на него с вертолета, зависшего непосредственно над ним.

Первый этап игры отображен в виде таблицы выигрышей в верхнем левом квадранте рис. 6.1. Вообразите его как первый этаж дома на дереве, на котором находятся четыре «комнаты». Комната, расположенная в северо-западном углу, соответствует ходам «не инвестировать», которые делают на первом этапе обе компании. Если принятые решения приводят компанию в эту комнату, дальше у нее нет никаких вариантов выбора, а значит, можно ассоциировать эту комнату с концевым узлом дерева из главы 3 и показать выигрыши в ячейке таблицы (в данном случае для обеих компаний он составляет 0). Тем не менее все остальные комбинации действий двух компаний ведут в другие комнаты, в которых компании делают дальнейший выбор, поэтому мы еще не можем показать выигрыши в этих ячейках. Вместо этого мы показываем ветви, ведущие на второй этаж. В комнатах, расположенных в северо-восточном и юго-западном углах, отображены только выигрыши компании, решившей не инвестировать; ветви, исходящие из каждой из этих комнат, приводят нас к решениям соответствующей компании на втором этапе. Комната в юго-восточном углу приводит к многокомнатной структуре второго этажа дома на дереве, которая представляет игру в ценообразование второго этапа, разыгрываемую лишь в случае, если обе компании инвестировали на первом этапе. Эта структура второго этажа состоит из четырех комнат, соответствующих четырем комбинациям ходов двух компаний в игре в ценообразование.

Все ветви и комнаты второго этажа подобны концевым узлам дерева игры, а значит, мы можем показать выигрыши в каждом из этих случаев. Выражены они в виде операционной прибыли каждой компании за вычетом предшествующих инвестиционных затрат и исчисляются в миллиардах долларов.

Рассмотрим ветвь, ведущую в юго-западный угол на рис. 6.1. Игра перемещается в этот угол, только если CrossTalk решит инвестировать в покупку волоконно-оптической сети. Тогда при выборе высокой цены операционная прибыль CrossTalk составит 400 долларов × 60 миллионов = 24 миллиарда долларов, и после вычитания 10 миллиардов инвестиционных затрат будет получен ее выигрыш — 14 миллиардов долларов, что мы записываем как выигрыш 14. В том же углу при выборе CrossTalk низкой цены ее операционная прибыль составит 200 долларов × 80 миллионов = 16 миллиардов долларов, что после вычитания первоначальных инвестиций даст выигрыш в размере 6 миллиардов долларов. В этой ситуации выигрыш GlobalDialog равен 0, как отображено в юго-западном углу рис. 6.1; выигрыш 0 компании CrossTalk при аналогичных расчетах для GlobalDialog показан в северо-восточной комнате таблицы игры, соответствующей первому этапу.

Если обе компании решат инвестировать, обе перейдут к игре в ценообразование, отображенной в юго-восточном углу рисунка. Если обе компании предпочтут высокую цену на втором этапе, каждая получит операционную прибыль 400 долларов × 30 миллионов (половина рынка), или 12 миллиардов долларов; после вычитания 10 миллиардов долларов инвестиционных затрат у каждой компании останется по 2 миллиарда долларов чистой прибыли, или выигрыш 2. Если обе компании выберут низкую цену на втором этапе, каждая получит операционную прибыль 200 долларов × 40 миллионов = 8 миллиардов долларов и после вычитания 10 миллиардов долларов инвестиционных затрат останется с чистым убытком в размере 2 миллиардов долларов, или выигрышем −2. И наконец, если одна компания установит высокую цену, а другая низкую, то вторая получит прибыль 200 долларов × 80 миллионов = 16 миллиардов долларов, что обеспечит ей выигрыш 6, тогда как первая вообще не получит операционной прибыли и просто потеряет вложенные 10 миллиардов долларов с выигрышем −10.

Как и в любой многоэтапной игре, представленной в главе 3, мы должны решить эту игру в обратном порядке, начиная с игры второго этапа. В двух задачах с принятием решений о ценообразовании каждой компанией мы сразу же видим, что выбор высокой цены приносит более крупный выигрыш. Мы фиксируем это, выделив данный выигрыш более крупным шрифтом.

Игру в ценообразование, разыгрываемую на втором этапе, необходимо решать с помощью методов, представленных в главе 4. Несложно заметить, что она относится к категории «дилемма заключенных». «Низкая цена» — это доминирующая стратегия для каждой компании; следовательно, исход игры — комната в юго-восточном углу таблицы игры второго этажа: каждая компания получает выигрыш −2[86].

Обратные рассуждения показывают, что на первом этапе следует оценивать каждую конфигурацию ходов, сначала проанализировав равновесие в игре второго этапа (или оптимальное решение на втором этапе) и полученные в результате выигрыши. Это позволит подставить только что рассчитанные выигрыши в ранее незаполненные или частично заполненные комнаты на первом этаже дома на дереве. Такая подстановка дает нам первый этаж с известными выигрышами, представленный на рис. 6.2.


Рис. 6.2. Инвестиционная игра первого этапа (после подстановки выигрышей, полученных методом обратных рассуждений на основании равновесия на втором этапе)


Теперь можем использовать методы из главы 4 для решения этой игры с одновременными ходами. Вы должны сразу же распознать игру, представленную на рис. 6.2, как игру в труса. В ней два равновесия Нэша, каждое из которых сводится к выбору одной компанией стратегии «инвестировать», а другой — «не инвестировать». Компания-инвестор получит огромную прибыль, поэтому каждая компания предпочтет то равновесие, в котором она будет инвестором, а другая компания — нет. В главе 4 мы кратко описали способы, позволяющие выбрать одно из двух равновесий, и указали на то, что каждая компания может попытаться получить предпочтительный исход, но это приведет к тому, что обе решат инвестировать и обе понесут убытки. На самом деле именно это и произошло в реальной игре такого рода. В главе 7 мы проанализируем данный тип игр более подробно и покажем, что они имеют третье равновесие Нэша — в смешанных стратегиях.

Исходя из анализа рис. 6.2, в нашем примере в игре первого этапа нет единственного равновесия Нэша. Это не особо серьезная проблема, поскольку мы можем оставить решение неоднозначным в той степени, в которой это было сделано выше. Было бы гораздо хуже, если бы единственное равновесие Нэша отсутствовало в игре второго этапа. Тогда было бы очень важно указать точный принцип выбора исхода игры с тем, чтобы определить выигрыши на втором этапе и использовать их в процессе обратных рассуждений в отношении первого этапа.

Игра в ценообразование второго этапа, показанная в нижней правой ячейке таблицы на рис. 6.1, — одна часть полной двухэтапной игры. При этом она представляет собой полноценную игру с полностью заданной системой игроков, стратегий и выигрышей. Для того чтобы точнее описать двойственную природу этой игры, ее называют подыгрой полной игры.

В более общем смысле подыгра — это часть многоходовой игры, которая начинается в определенном узле исходной игры. При этом дерево подыгры — просто часть дерева полной игры, в котором этот узел выступает в качестве корня, или начального узла. В многоходовой игре столько подыгр, сколько и узлов принятия решений.

Б. Конфигурации многоэтапных игр

В многоуровневой игре, представленной на рис. 6.1, каждый этап включает игру с одновременными ходами. Однако так бывает не всегда. Элементы игр с одновременными и последовательными ходами могут смешиваться и сочетаться друг с другом в любой комбинации. Мы приведем еще два примера, чтобы внести ясность в этот вопрос и закрепить идеи, рассмотренные в предыдущем разделе.

Первый пример — несколько измененный вариант игры между компаниями CrossTalk и GlobalDialog. Предположим, одна из них (скажем, GlobalDialog) уже инвестировала 10 миллиардов долларов в покупку волоконно-оптической сети. CrossTalk знает об этом и теперь должна решить, делать ли тоже такую инвестицию. Если CrossTalk откажется, то GlobalDialog останется только определиться с ценой. Если CrossTalk решит инвестировать, то две компании сыграют в описанную выше игру в ценообразование второго этапа. Дерево такой многоэтапной игры содержит условные ветви в начальном узле, а также подыгру с одновременными ходами в одном из узлов, к которому ведут эти исходные ветви. Полное дерево игры представлено на рис. 6.3.


Рис. 6.3. Двухэтапная игра в случае, когда одна компания уже сделала инвестиции


После построения дерева проанализировать игру не составит труда. На рис. 6.3 анализ методом обратных рассуждений показан посредством использования крупного шрифта для равновесных выигрышей, вытекающих из игры или решения на втором этапе, а также жирных линий для выбора CrossTalk на первом этапе. Иными словами, CrossTalk приходит к выводу, что инвестиции приведут ее к дилемме заключенных, которая оставит компанию с выигрышем −2, тогда как отказ от инвестиций обеспечит выигрыш 0. В итоге CrossTalk предпочитает второе. GlobalDialog получит выигрыш 14 вместо −2, который бы она получила в случае выбора CrossTalk стратегии «инвестировать», но CrossTalk интересует максимизация собственного выигрыша, а не намеренное уничтожение компании GlobalDialog.

Однако этот анализ показывает, что GlobalDialog может попытаться оперативно инвестировать средства в покупку волоконно-оптической сети, прежде чем CrossTalk примет решение, гарантирующее ей самый предпочтительный исход всей игры. А CrossTalk может попробовать обойти GlobalDialog аналогичным образом. В главе 9 мы проанализируем некоторые методы под названием «стратегические ходы», позволяющие игрокам обеспечить подобные преимущества.

Наш второй пример связан с футболом. Накануне каждого матча тренер команды нападающих выбирает игру, которую они будут вести; в то же время тренер команды защиты дает игрокам инструкции в отношении их размещения на поле, чтобы противостоять нападению. Следовательно, перед нами игра с одновременными ходами. Предположим, у команды нападения всего две альтернативы — безопасная и рискованная игра, а команда защиты может подготовиться к ответу на любой из вариантов. Если команда нападения настроена на рискованную игру и квотербек видит расстановку игроков защиты, позволяющую противодействовать такой игре, он может изменить игру у линии розыгрыша мяча. А команда защиты, в свою очередь, может отреагировать изменением своей расстановки. Таким образом, мы имеем игры с одновременными ходами на первом этапе, а одна из комбинаций вариантов выбора ходов на данном этапе приводит к подыгре с последовательными ходами. На рис. 6.4 показано полное дерево этой игры.


Рис. 6.4. Игра с одновременными ходами на первом этапе, за которым идут последовательные ходы


Это игра с нулевой суммой, в которой выигрыши команды нападения исчисляются в количестве ярдов, которое она рассчитывает получить, а выигрыши команды защиты прямо противоположны и исчисляются в количестве ярдов, которые она намерена уступить. Безопасная игра команды нападения обеспечивает ей 2 ярда, даже если команда защиты готова к такой игре; если не готова, игра будет ненамного успешнее и обеспечит 6 ярдов. Рискованная игра, в случае если команда защиты к ней не готова, принесет команде нападения 30 ярдов. Однако если команда защиты к ней готова, нападающие потеряют 10 ярдов. Эта совокупность выигрышей, −10 у команды нападения и 10 у команды защиты, показана в концевом узле, в случае если нападение не изменит игру. Если же изменит (вернется к безопасной игре), выигрыши составят 2, −2, если команда защиты отреагирует, и 6, −6 — если не отреагирует. Эти же выигрыши получат команды, если команда нападения изначально запланирует безопасную игру.

На рис. 6.4 ветви, выбранные в последовательной подыгре, представлены жирными линиями. Нетрудно увидеть, что, если команда нападения изменит игру, команда защиты отреагирует на это, чтобы обеспечить выигрыш −2, а не −6, и что команда нападения изменит игру, чтобы получить выигрыш 2 вместо −10. В ходе обратных рассуждений мы должны разместить полученную совокупность выигрышей 2, −2 в правой нижней ячейке таблицы выигрышей игры с одновременными ходами, протекающей на первом этапе. Далее мы увидим, что в этой игре отсутствует равновесие Нэша в чистых стратегиях. Причина та же, что и в игре в теннис из раздела 7 главы 4: один игрок (команда защиты) стремится согласовать ходы (выбрать расстановку, позволяющую противостоять игре команды нападения), тогда как другой (команда нападения) старается их рассогласовать (поймать команду защиты на неправильной расстановке). В главе 7 мы покажем, как вычислить равновесие в смешанных стратегиях в этой игре. Получается, что команда нападения должна выбирать рискованную стратегию с вероятностью 1/8, или 12,5 процента.

2. Изменение порядка выполнения ходов

Игры, рассмотренные в предыдущих главах, были представлены либо как последовательные, либо как одновременные по своему характеру. Мы использовали соответствующие инструменты анализа для прогнозирования равновесий в играх каждого типа. В разделе 1 данной главы мы обсуждали игры с элементами как последовательного, так и одновременного выполнения ходов. Для поиска решений таких игр понадобятся оба набора инструментов. А как на счет игр, которые можно вести либо последовательно, либо одновременно? Как изменение хода конкретной игры, а значит, и соответствующих инструментов анализа может повлиять на ожидаемые исходы?

Задача превращения игры с последовательными ходами в игру с одновременными ходами требует только изменения момента выполнения ходов или наблюдаемости, при которой игроки делают выбор. Игры с последовательными ходами становятся играми с одновременными ходами, если игроки не могут видеть ходы, сделанные соперниками, до того, как походят сами. В таком случае мы бы проанализировали игру скорее посредством поиска равновесия Нэша, а не равновесия обратных рассуждений. С другой стороны, игра с одновременными ходами могла бы стать игрой с последовательными ходами, если бы один игрок мог наблюдать за действиями другого игрока до выбора своего хода.

Любые изменения правил игры способны изменить ее исходы. Ниже мы проиллюстрируем ряд возможностей, возникающих вследствие изменений в играх разных типов.

А. Превращение игр с одновременными ходами в игры с последовательными ходами

I. Преимущество первого хода. Преимущество первого хода может возникнуть вследствие изменений правил игры с одновременного на последовательное выполнение ходов. Если в версии игры с одновременными ходами множество равновесий, версия с последовательными ходами как минимум позволяет игроку, который ходит первым, выбрать предпочтительный исход игры. Мы проиллюстрируем такую ситуацию на примере игры в труса, когда два подростка мчатся на автомобилях навстречу друг другу, решительно настроенные не сворачивать. На рис. 6.5a воспроизведена стратегическая форма, представленная на рис. 4.14 в главе 4, а на рис. 6.5б и 6.5в отображены две экстенсивные формы, по одной на каждый возможный порядок выполнения ходов в игре.






Рис. 6.5. Версии игры в труса с одновременным и последовательным выполнением ходов


При одновременном выполнении ходов два исхода игры, при которых один игрок сворачивает («трус»), а другой едет прямо («храбрец»), — это равновесия Нэша в чистых стратегиях. Без исторического, культурного или любого другого соглашения ни один из этих исходов не может стать фокальной точкой. Анализ в главе 4 показал, что координация действий могла бы помочь участникам этой игры, например посредством договоренности чередовать два равновесия.

Если мы изменим правила игры таким образом, чтобы предоставить одному из игроков возможность ходить первым, двух равновесий больше не будет. Скорее, мы увидим, что равновесная стратегия игрока, делающего ход вторым, сводится к выбору действия, противоположного действию игрока, который ходил первым. Далее анализ методом обратных рассуждений показывает, что равновесная стратегия игрока, ходившего первым, — «ехать прямо». На рис. 6.5б и рис. 6.5в мы видим, что предоставление одному игроку возможности сделать ход первым, причем так, чтобы другой игрок видел, как он это делает, в итоге приводит к единственному равновесию обратных рассуждений, в котором игрок, сделавший первый ход, получает выигрыш 1, тогда как второй игрок — выигрыш −1. При таких правилах фактическое ведение игры не имеет никакого значения, поэтому ее последовательная версия может не представлять интереса для многих наблюдателей. Хотя подростки, скорее всего, не захотели бы играть в эту игру по измененным правилам, стратегические последствия изменения правил весьма существенны.


II. Преимущество второго хода. Преимущество второго хода может возникнуть в играх, когда одновременное выполнение ходов меняется на последовательное. Это можно проиллюстрировать на примере игры в теннис, о которой рассказывалось в главе 4. Напомним, что в этой игре Эверт планирует место возврата подачи, тогда как Навратилова решает, где обеспечивать прикрытие. В рассмотренной ранее версии игры предполагалось, что каждая ее участница умеет маскировать предстоящие ходы до самого последнего момента, поэтому, по сути, они делали их одновременно. Однако если движения Эверт перед ударом по мячу каким-то образом раскроют ее намерения, Навратилова может отреагировать и сделать второй ход в игре. Точно так же, если Навратилова наклонится в ту сторону, которую планирует прикрывать, до того как Эверт фактически выполнит возврат подачи, то Эверт становится игроком, делающим второй ход.

В этой версии игры с одновременными ходами нет равновесия в чистых стратегиях. Тем не менее при каждом порядке выполнения ходов в последовательной версии существует исход в виде единственного равновесия обратных рассуждений, причем характер этого равновесия зависит от того, кто ходит первым. Если это Эверт, то Навратилова решит прикрывать то направление, которое выбрала Эверт для удара по линии. При таком равновесии каждая теннисистка должна выигрывать очко в половине случаев. Если порядок выполнения ходов обратный, Эверт решает послать мяч в направлении, противоположном тому, которое прикрывает Навратилова; следовательно, Навратилова должна двигаться так, чтобы прикрыть удар по диагонали. В такой ситуации Эверт должна выигрывать в 80 процентах случаев. Участница игры, делающая второй ход, добивается более весомых результатов, поскольку может оптимально реагировать на ход соперницы. Для иллюстрации таких исходов вы уже умеете строить деревья игры наподобие показанных на рис. 6.5б и рис. 6.5в.

Мы вернемся к версии этой игры с одновременными ходами в главе 7 и докажем, что в ней есть равновесие Нэша в смешанных стратегиях. При этом равновесии Эверт добивается успеха в 62 процентах случаев. Следовательно, в двух версиях игры с последовательными ходами показатель результативности Эверт при равновесии в смешанных стратегиях в одновременной игре выше 50 процентов, которые она получит, делая ход первой, но ниже 80 процентов, если она будет ходить второй.


III. Оба игрока могут добиться большего. То, что в игре может быть преимущество первого или второго хода, которое блокируется при одновременном выполнении ходов, вполне понятно на интуитивном уровне. Куда больше удивляет вероятность того, что оба игрока могут добиться большего при том или ином наборе правил выполнения ходов. Мы проиллюстрируем это на примере игры с монетарной и фискальной политикой между Федеральной резервной системой и Конгрессом. В главе 4 мы анализировали эту игру с одновременными ходами; таблица выигрышей (рис. 4.5) воспроизводится на рис. 6.6a, а две версии игры с последовательными ходами представлены на рис. 6.6б и рис. 6.6 в. Для краткости обозначим стратегии Конгресса как «баланс» и «дефицит» вместо «сбалансированный бюджет» и «дефицит бюджета», а стратегии ФРС как «высокие ставки» и «низкие ставки» вместо «высокие процентные ставки» и «низкие процентные ставки».






Рис. 6.6. Три версии игры с монетарной и фискальной политикой


В версии этой игры с одновременными ходами доминирующая стратегия Конгресса — «дефицит», и ФРС, зная об этом, выбирает стратегию «высокие ставки», что обеспечивает обоим выигрыши 2. Почти то же самое происходит в версии игры с последовательными ходами, где первой ходит ФРС. Предвидя, что на каждый сделанный ею ход Конгресс ответит стратегией «дефицит», ФРС должна выбирать стратегию «высокие ставки», обеспечивающую выигрыш 2 вместо 1.

Однако версия с последовательными ходами, в которой Конгресс ходит первым, отличается от предыдущей. Теперь Конгресс предвидит, что на выбор им стратегии «дефицит» ФРС ответит стратегией «высокие ставки», тогда как в случае выбора им стратегии «баланс» ФРС предпочтет «низкие ставки». Из этих двух вариантов развития событий Конгресс выберет второй, поскольку он обеспечит ему выигрыш 3 вместо 2. Следовательно, равновесие обратных рассуждений при таком порядке выполнения ходов состоит в том, чтобы Конгресс выбрал сбалансированный бюджет, а Федеральная резервная система — низкие процентные ставки. В итоге Конгресс получит выигрыш 3, а ФРС — 4, что лучше для обоих игроков, чем в случае двух других версий игры.

Различие между этими двумя исходами еще более парадоксально, потому что лучший исход, полученный на рис. 6.6в, будет в случае выбора Конгрессом стратегии «баланс», доминируемой на рис. 6.6a. Для устранения кажущегося парадокса необходимо глубже понять смысл доминирования. Чтобы стратегия «дефицит» была доминирующей, с точки зрения Конгресса она должна быть лучше стратегии «баланс» при каждом конкретном выборе ФРС. Такое сравнение стратегий «дефицит» и «баланс» уместно в игре с одновременными ходами, поскольку в ней Конгресс вынужден принимать решение, не зная о выборе ФРС. Он должен проанализировать или сформулировать убеждение в отношении действия ФРС и выбрать свой наилучший ответ на это действие. В нашем примере наилучший ответ Конгресса — стратегия «дефицит». Концепция доминирования уместна также и в игре с последовательными ходами, если Конгресс ходит вторым, поскольку тогда он знает, что уже сделала ФРС, и просто выбирает свой наилучший ответ, который всегда «дефицит». С другой стороны, если Конгресс ходит первым, он не может воспринимать выбор ФРС как данность и вместо этого должен понять, как его первый ход повлияет на второй ход ФРС. В нашем примере Конгресс знает, что ФРС ответит на стратегию «дефицит» стратегией «высокие ставки», а на стратегию «баланс» — стратегией «низкие ставки». В таком случае ему ничего не остается, как выбирать из этих двух вариантов; самый предпочтительный для Конгресса исход («дефицит», «низкие ставки») становится неактуальным, поскольку ответ ФРС делает его невозможным.

Мысль о том, что доминирование может утратить статус значимой концепции для игрока, делающего первый ход, мы продолжим в главе 9. Там же мы проанализируем вероятность того, что игрок может намеренно изменить правила игры, чтобы получить право первого хода. Это позволяет игрокам менять исход игры в свою пользу.

Предположим, два игрока в нашем примере могут выбирать порядок выполнения ходов в игре. В этом случае они согласились бы с тем, что Конгресс должен ходить первым. В действительности, когда возникает угроза дефицита бюджета и инфляции, во время слушаний в различных комитетах Конгресса члены совета управляющих ФРС часто предлагают именно такие сделки: они обещают отреагировать на сокращение расходов бюджета снижением процентных ставок. Но зачастую просто устной договоренности с другим игроком недостаточно. Необходимо, чтобы при этом были выполнены формальные требования к первому ходу, а именно — чтобы он поддавался наблюдению и не менялся в дальнейшем. В контексте макроэкономической политики очень выигрышно выглядит то, что законодательный процесс фискальной политики в Соединенных Штатах весьма прозрачен и протекает достаточно медленно, тогда как монетарную политику можно быстро изменить на заседании совета управляющих ФРС. Стало быть, игра с последовательными ходами, в которой Конгресс ходит первым, а ФРС — второй, вполне реалистична.


IV. Исход игры не меняется. До сих пор мы рассматривали только игры, в которых последовательное выполнение ходов вместо одновременных обеспечивает другой исход. Однако определенные игры имеют один и тот же исход в обоих случаях, независимо от порядка выполнения ходов. Как правило, такой результат наблюдается при наличии у обоих (или у всех) игроков доминирующих стратегий. Мы продемонстрируем, как это происходит, на примере дилеммы заключенных.

Рассмотрим игру с дилеммой заключенных из главы 4, в которой мужа и жену подозревают в причастности к совершению преступления. Равновесие Нэша в этой игре с одновременными ходами состоит в признании каждым игроком своей вины (или предательстве другого игрока и отказе от сотрудничества с ним). Но как бы проходила игра, если бы один из супругов сделал наблюдаемый выбор еще до выбора второго игрока? Применение метода обратных рассуждений к дереву игры, подобному изображенному на рис. 6.5б (которое вы можете нарисовать сами для проверки наших результатов анализа), показывает, что второму игроку выгоднее признать свою вину, если первый уже признался в совершении преступления (10 лет тюрьмы вместо 25 лет) и если первый отрицает свою вину (1 год тюрьмы вместо 3 лет). С учетом такого выбора второго игрока первому игроку лучше признать свою вину (10 лет тюрьмы вместо 25 лет). Следовательно, равновесие подразумевает тюремное заключение длительностью 10 лет для обоих супругов, независимо от того, кто будет ходить первым. Таким образом, во всех трех версиях этой игры одно и то же равновесие!

Б. Другие изменения в порядке выполнения ходов

В предыдущем разделе представлены различные примеры игр, в которых правила были изменены с одновременного на последовательное выполнение ходов. Мы видели, как и почему такие изменения влияют на исход игры. Те же примеры служат и для иллюстрации того, что происходит в случае изменения правил в противоположном направлении, то есть с последовательного на одновременное выполнение ходов. Таким образом, если в игре с последовательными ходами есть преимущество первого или второго хода, оно может быть утрачено при одновременном выполнении ходов. А если определенный порядок ходов приносит выгоду обоим игрокам, то его нарушение способно навредить обоим.

Те же примеры показывают, что произойдет, если правила игры меняются, чтобы изменить ее порядок, сохранив при этом неизменным ее последовательный характер. Если в игре присутствует преимущество первого или второго хода, то игрок, который вместо первого хода делает второй, может остаться в выигрыше или в проигрыше соответственно, с противоположными изменениями в случае другого игрока. А если определенный порядок отвечает интересам обоих игроков, то навязанное извне изменение порядка игры может либо принести выгоду, либо навредить им обоим.

3. Изменение в методе анализа

Дерево игры — естественный способ отображения игр с последовательными ходами, а таблица выигрышей — естественный способ представления игр с одновременными ходами. Однако каждый из этих методов можно адаптировать к другому типу игр. Ниже мы покажем, как преобразовать одну форму представления информации в другую, и при этом сформулируем ряд новых идей, которые пригодятся для последующего анализа игр.

А. Представление игр с одновременными ходами с помощью дерева игры

Рассмотрим игру с обводящим ударом в теннисе, описанную в главе 4, в которой действия выполняются настолько быстро, что ходы, по сути, будут одновременными, как показано на рис. 6.5a. Однако предположим, что мы хотим представить эту игру в экстенсивной форме, то есть с помощью дерева игры, а не таблицы выигрышей, как на рис. 4.14. На рис. 6.7 показано, как это сделать.


Рис. 6.7. Игра в теннис с одновременными ходами, представленная в экстенсивной форме


Для того чтобы нарисовать дерево этой игры, необходимо выбрать одну ее участницу, например Эверт, которая будет делать выбор в начальном узле дерева. Ветви дерева, соответствующие двум вариантам выбора — ПЛ («по линии») и ПД («по диагонали»), заканчиваются в двух узлах, в каждом из которых делает выбор Навратилова. Однако поскольку на самом деле ходы в этой игре фактически одновременные, Навратилова должна сделать выбор, не зная, что выбрала Эверт. То есть Навратилова должна делать выбор, не зная, в каком узле она находится, — в том, к которому ведет ветвь Эверт ПЛ, или в том, к которому ведет ветвь ПД. Наша древовидная схема должна каким-то образом отображать эту нехватку информации у Навратиловой.

Мы проиллюстрируем стратегическую неопределенность Навратиловой в отношении узла, в котором она должна принимать решение, нарисовав овал, вмещающий в себя два соответствующих узла. (В качестве альтернативы можно соединить их пунктирной линией; она используется для того, чтобы отличить ее от сплошных линий, которые представляют ветви дерева.) Узлы, находящиеся в пределах этого овала или круга, называются информационным множеством игрока, делающего в них ходы. Такое множество указывает на наличие у этого игрока несовершенной информации: он не может провести различие между узлами множества на основании имеющейся информации (поскольку не может видеть ход другого игрока до того, как сделает свой ход). В соответствии с этим стратегический выбор, делаемый игроком в пределах одного информационного множества, должен подразумевать один и тот же ход во всех узлах, входящих в это множество. Иными словами, Навратилова должна выбрать либо ПЛ, либо ПД в обоих узлах данного информационного множества. Она не может выбрать ПЛ в одном узле и ПД в другом, как на рис. 6.5б, где представлена игра с последовательными ходами и Навратилова ходила второй.

В связи с этим мы должны внести коррективы в наше определение стратегии. В главе 3 мы определили ее как исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом узле, в котором наступает его очередь ходить в соответствии с правилами игры. Теперь мы должны более точно определить стратегию как исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом информационном множестве, в узлах которого наступает его очередь ходить в соответствии с правилами игры.

Концепция информационного множества также актуальна, когда игрок сталкивается с внешней неопределенностью в отношении некоторых условий, влияющих на его решение, а не ходов другого игрока. Например, фермер, сажающий ту или иную культуру, не знает, какая будет погода в период ее вегетации, хотя на основании своего опыта или метеорологических прогнозов может определить вероятность альтернативных возможностей. Мы можем рассматривать погоду как случайный выбор, который делает внешний игрок по имени «природа», не получающий никаких выигрышей, а просто выбирающий исходя из общеизвестных вероятностей[87]. В таком случае мы можем включить различные узлы, соответствующие ходам природы, в информационное множество фермера, ограничивающее его выбор одним и тем же действием во всех узлах. Эта ситуация проиллюстрирована на рис. 6.8.


Рис. 6.8. Природа и информационное множество


С помощью понятия информационного множества мы можем формализовать концепции совершенной и несовершенной информации в игре, которые ввели в главе 2 (раздел 2.Г). В игре присутствует совершенная информация, если в ней нет ни стратегической, ни внешней неопределенности, что происходит в случае отсутствия в игре информационных множеств, содержащих два или более узла. Иными словами, в игре имеется совершенная информация, если все ее информационные множества содержат единичные узлы.

Хотя с концептуальной точки зрения это достаточно простое представление, оно не упрощает способа решения игры. По этой причине мы используем его только тогда, когда оно позволяет проще передать ту или иную мысль. В главе 8 и главе 14 приведено несколько примеров представления игр с помощью информационных множеств.

Б. Представление и анализ игр с последовательными ходами в стратегической форме

Рассмотрим игру (рис. 6.6в) с последовательными ходами в монетарную и фискальную политику, в которой Конгресс ходит первым. Допустим, нам нужно представить эту игру в нормальной или стратегической форме, то есть в виде таблицы выигрышей, строки и столбцы которой — стратегии двух игроков. Следовательно, мы должны начать с определения стратегий.

Для Конгресса, делающего первый ход, перечислить стратегии не составит труда. Существует только два хода, «баланс» и «дефицит», они же являются стратегиями. Что касается игрока, делающего второй ход, то здесь все гораздо сложнее. Не забывайте, что стратегия — это исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом узле, в котором наступает его очередь ходить. Поскольку ФРС получает право сделать ход в двух узлах (а также потому, что, согласно нашему предположению, ходы в этой игре действительно выполняются последовательно, а значит, эти два узла не объединяются в информационное множество) и может выбрать либо стратегию «низкие ставки», либо «высокие ставки» в каждом из узлов, существует четыре комбинации ее вариантов выбора: 1) «низкие ставки», если «баланс»; «высокие ставки», если «дефицит» (в сокращенном виде «Н, если Б; В, если Д»); 2) «высокие ставки», если «баланс»; «низкие ставки», если «дефицит» (сокращенно «В, если Б; Н, если Д»); 3) «низкие ставки» всегда; 4) «высокие ставки» всегда.

Полученная в результате матрица выигрышей два на четыре представлена на рис. 6.9. Последние два столбца не отличаются от тех, которые были в матрице выигрышей два на два, составленной для игры, в которой ходы выполнялись одновременно (рис. 6.6a). Это объясняется тем, что если ФРС выберет стратегию, согласно которой она делает одни и те же ходы всегда, то это равносильно тому, что ФРС делала бы свои ходы без учета того, что сделал Конгресс, то есть их ходы были бы как будто одновременными. Однако вычисление выигрышей в первых двух столбцах, где ход ФРС зависит от первого хода Конгресса, требует более пристального внимания.


Рис. 6.9. Игра с последовательными ходами с фискальной и монетарной политикой, представленная в стратегической форме


Для иллюстрации рассмотрим ячейку на пересечении первой строки и второго столбца. Здесь Конгресс выбирает «баланс», а ФРС — «В, если Б; Н, если Д». Учитывая выбор Конгресса, фактическим выбором ФРС в рамках этой стратегии будет стратегия «высокие ставки». В таком случае выигрыши здесь те же, что и в сочетании стратегий «баланс» и «высокие ставки», а именно 1 для Конгресса и 3 для ФРС.

Анализ наилучших ответов позволяет быстро определить, что в этой игре есть два равновесия Нэша в чистых стратегиях, что мы показываем, выделив соответствующие ячейки серым цветом. Одно отображено в верхней левой ячейке, в которой стратегия Конгресса — «баланс», а ФРС — «Н, если Б; В, если Д», а значит, фактический выбор ФРС — «низкие ставки». Этот исход представляет собой равновесие обратных рассуждений в игре с последовательными ходами. Однако есть еще одно равновесие Нэша в правой нижней ячейке, где Конгресс выбирает стратегию «дефицит», а ФРС — «высокие ставки». Как обычно в случае равновесия Нэша, ни у одного игрока нет явных оснований отклоняться от стратегий, приведших к данному исходу. Конгресс только ухудшил бы ситуацию, переключившись на стратегию «баланс», а ФРС не извлекла бы никакой пользы из перехода к любой из трех оставшихся стратегий, хотя при выборе стратегии «Н, если Б; В, если Д» был бы получен равноценный результат.

Анализ игры с последовательными ходами в ее экстенсивной форме обеспечивает только одно равновесие обратных рассуждений. Но если проанализировать эту же игру в нормальной или стратегической форме, в ней оказывается два равновесия Нэша. Что происходит?

Ответ на этот вопрос кроется в разном характере логики анализа равновесия Нэша и равновесия обратных рассуждений. Равновесие Нэша требует, чтобы ни у одного из игроков не было причины отклоняться от выбранной стратегии с учетом стратегии другого игрока. Однако в случае равновесия обратных рассуждений стратегии игроков, делающих ходы на более поздних этапах, не воспринимаются как данность. Вместо этого ставится вопрос о том, какое действие будет оптимальным в случае, если у игрока действительно появится возможность сделать ход.

В нашем примере стратегия ФРС «высокие ставки всегда» не удовлетворяет критерию оптимальности в случае появления возможности сделать ход. Если бы Конгресс выбрал стратегию «дефицит», то стратегия «высокие ставки» действительно была бы оптимальным ответом ФРС. Однако если бы Конгресс выбрал стратегию «баланс», а ФРС пришлось бы делать ответный ход, ей следовало бы применить стратегию «низкие ставки», а не «высокие». Стало быть, стратегия «высокие ставки всегда» не будет оптимальным ответным ходом ФРС во всех возможных конфигурациях игры и не может быть равновесием обратных рассуждений. Но логика равновесия Нэша не требует такой проверки; вместо этого стратегию ФРС «высокие ставки всегда» Конгресс мог бы обоснованно рассматривать как данность. И если он действительно сделает это, то стратегия «дефицит» — его наилучший ответ. Напротив, «высокие ставки всегда» — один наилучший ответ ФРС на стратегию Конгресса «дефицит» (хотя он и связан с условием «Н, если Б; В, если Д»). Следовательно, пара стратегий «дефицит» и «высокие ставки всегда» — обоюдно наилучшие ответы, входящие в состав равновесия Нэша, хотя они и не образуют равновесия обратных рассуждений.

Таким образом, мы можем считать равновесие обратных рассуждений добавочным критерием, который дополняет равновесие Нэша и помогает выбрать одно из множества равновесий Нэша, присутствующих в стратегической форме. Другими словами, это уточнение концепции равновесия Нэша. Чтобы сформулировать эту идею несколько более точно, вспомним понятие подыгры. По мере того как игроки по очереди делают свой выбор, игра проходит по непрерывной последовательности узлов, и каждый ход можно рассматривать как начало подыгры. Равновесие, полученное посредством метода обратных рассуждений, соответствует одной конкретной последовательности вариантов выбора в каждой подыгре и создает один конкретный путь игры. Безусловно, другие ее пути также согласуются с правилами игры. Мы называем такие пути неравновесными путями игры, а подыгры, разворачивающиеся на них, неравновесными подыграми.

Вооружившись этими терминами, мы теперь можем сказать, что равновесный путь игры сам по себе определяется ожиданиями игроков в отношении того, что бы произошло, если бы они выбрали другое действие, то есть если бы переместили игру на неравновесный путь и начали неравновесную подыгру. Равновесие обратных рассуждений требует от игроков делать свой наилучший выбор в каждой подыгре более крупной игры, независимо от того, находится ли эта подыгра на пути к конечному равновесному исходу.

Стратегии — это исчерпывающие планы действий. Следовательно, стратегия игрока должна определять, что он будет делать в каждом предполагаемом случае или в каждом узле игры (будь то на ее равновесном или неравновесном пути), в котором наступает его очередь ходить. Когда игра достигает одного такого узла, применим только тот план действий, который начинается в этом узле, а именно та часть полной стратегии, которая относится к подыгре, стартующей в данном узле. Эта часть называется продолжением стратегии в этой подыгре. Согласно равновесию обратных рассуждений, равновесная стратегия должна быть такой, чтобы ее продолжение в каждой подыгре было оптимальным для каждого игрока, который должен ходить в этом узле, независимо от того, лежат ли этот узел и подыгра на равновесном пути игры.

Вернемся к игре с монетарной политикой, в которой Конгресс делает первый ход, и рассмотрим второе равновесие Нэша, возникающее при представлении игры в стратегической форме. Здесь путь игры Конгресса состоит в выборе стратегии «дефицит», а ФРС — стратегии «высокие ставки». На равновесном пути стратегия «высокие ставки» — действительно лучший ответ ФРС на стратегию «дефицит». Выбор Конгрессом стратегии «баланс» был бы началом неравновесного пути. Он ведет к узлу, в котором разыгрывается довольно простая подыгра, а именно решение принимает ФРС. Предполагаемая равновесная стратегия ФРС «высокие ставки всегда» подразумевает, что ФРС в этой подыгре применит стратегию «высокие ставки». Однако это неоптимально: второе равновесие определяет неоптимальный выбор в случае неравновесной подыгры.

Напротив, равновесный путь в равновесии Нэша в левом верхнем углу рис. 6.9 состоит в выборе Конгрессом стратегии «баланс», а ФРС — «низкие ставки». ФРС выбирает оптимальный ответ на равновесном пути. Неравновесный путь состоял бы в выборе Конгрессом стратегии «дефицит», а ФРС с учетом своей стратегии «Н, если Б; В, если Д» применила бы стратегию «высокие ставки». Для ФРС выбор стратегии «высокие ставки» в ответ на стратегию Конгресса «дефицит» оптимален, а значит, эта стратегия остается оптимальной и на неравновесном пути игры.

Требование о том, что продолжение стратегии должно оставаться оптимальным при любых обстоятельствах, действительно важно, поскольку сам равновесный путь — это результат стратегических рассуждений игроков о том, что бы произошло, если бы они сделали нечто иное. Игрок, которому предстоит ходить следующим, может попробовать обеспечить предпочтительный для себя исход, пригрозив игроку, делающему первый ход, что его определенные действия встретят серьезный отпор, или, наоборот, пообещав, что определенные действия получат одобрение. Однако игрок, делающий первый ход, скептически отнесется к достоверности таких угроз и обещаний. Единственный способ развеять сомнения — проверить, действительно ли заявленные ответные действия будут оптимальны в случае, если в них возникнет необходимость. Если они неоптимальны, то угрозы и обещания недостоверны, а соответствующие ответные ходы не будут присутствовать на равновесном пути игры.

Равновесие, найденное методом обратных рассуждений, называется совершенным равновесием подыгры и представляет собой совокупность стратегий (исчерпывающих планов действий), по одной на каждого игрока, при которой в каждом узле дерева игры, независимо от того, лежит ли он на ее равновесном пути, продолжение одной и той же стратегии в подыгре, начинающейся в данном узле, будет оптимальным для игрока, совершающего там действие. Проще говоря, совершенное равновесие подыгры требует, чтобы игроки использовали стратегии, образующие равновесие Нэша в каждой подыгре более крупной игры.

Как правило, в играх с конечными деревьями и совершенной информацией, в которых участники могут наблюдать все предыдущие действия, предпринятые всеми игроками, а значит, нет нескольких узлов, входящих в одно информационное множество, анализ методом обратных рассуждений позволяет найти единственное (за исключением элементарных и уникальных случаев равного распределения выигрышей) совершенное равновесие подыгры. Подумайте вот о чем: если проанализировать любую подыгру, которая начинается в последнем узле принятия решений последним игроком, делающим ход, то его наилучший выбор — стратегия, обеспечивающая ему самый высокий выигрыш. Но это и есть действие, выбранное в ходе обратных рассуждений. По мере перемещения игроков по дереву игры в обратном направлении обратные рассуждения исключают все нецелесообразные стратегии, в том числе недостоверные угрозы или обещания, в результате чего совокупность действий, предпринятых в конечном счете, представляет собой совершенное равновесие подыгры. Следовательно, в контексте данной книги совершенное равновесие подыгры — это просто еще одно замысловатое название равновесия обратных рассуждений. На более продвинутых уровнях теории игр, где игры включают в себя сложные структуры данных и информационные множества, совершенное равновесие подыгры имеет более глубокий смысл.

4. Игры с тремя участниками

До сих пор мы обсуждали в данной главе только игры с двумя участниками, каждый из которых делает по два хода. Однако эти же методы применимы и к более крупным и общим играм. Мы проиллюстрируем это на примере игры «уличный сад» из главы 3. В частности, 1) изменим правила игры с последовательного на одновременное выполнение ходов, а также 2) сохраним последовательные ходы, но покажем и проанализируем игру в стратегической форме. Сначала мы воспроизведем дерево игры с последовательными ходами (рис. 3.6) на рис. 6.10 и напомним вам о равновесии обратных рассуждений.


Рис. 6.10. Игра «уличный сад» с последовательными ходами


Равновесная стратегия Эмили, делающей первый ход, — просто «не вносить вклад». Участница игры, которая ходит второй, выбирает из четырех возможных стратегий (выбор из двух ответных ходов в двух узлах) и останавливается на стратегии «не вносить вклад» (Н), если Эмили выбрала стратегию «внести вклад», и на стратегии «внести вклад» (В), если Эмили выбрала стратегию «не вносить вклад», или в сокращенном виде «Н, если В; В, если Н», или даже просто «НВ». В распоряжении Талии 16 возможных стратегий (выбор из двух ответных ходов в каждом из четырех узлов), а ее равновесная стратегия — «Н после В Эмили и Н Нины, Н после их ВН, Н после их НВ и Н после их НН», или сокращенно «НВВН».

Не забывайте о причине такого выбора. У участницы игры, делающей ход первой, есть возможность выбрать вариант «не вносить вклад», зная, что две другие участницы поймут, что без их вклада сада не будет, а они хотят его достаточно сильно для того, чтобы инвестировать в его создание.

Теперь давайте изменим правила игры таким образом, чтобы сделать ее игрой с одновременными ходами. (В главе 4 мы решили версию этой игры с одновременными ходами, получив несколько иные выигрыши; здесь мы используем выигрыши из главы 3.) Матрица выигрышей представлена на рис. 6.11. Анализ наилучших ответов позволяет без труда определить, что в этой игре четыре равновесия Нэша.


Рис. 6.11. Игра «уличный сад» с одновременными ходами


В трех равновесиях Нэша игры с одновременными ходами две ее участницы вносят вклад, тогда как третья нет. Эти равновесия аналогичны равновесию обратных рассуждений в игре с последовательными ходами. По существу, каждое из них соответствует равновесию обратных рассуждений в последовательной игре с определенным порядком выполнения ходов. Кроме того, любой заданный порядок ходов в последовательной версии игры дает одну и ту же таблицу выигрышей игры с одновременными ходами.

Но в данном случае есть и четвертое равновесие Нэша, при котором ни одна из участниц игры не вносит вклад в создание сада. Принимая во внимание выбор двух других участниц игры (а именно — «не вносить вклад»), один игрок не в силах создать красивый сад и по этой причине тоже останавливается на варианте «не вносить вклад». Таким образом, при переходе от последовательных к одновременным ходам преимущество первого хода утрачивается. При этом возникают несколько равновесий, но лишь в одном из них сохраняется высокий выигрыш участницы игры, сделавшей первый ход в самом начале.

Далее мы вернемся к версии игры с последовательными ходами (первой ходит Эмили, второй Нина, третьей Талия), но представим ее в нормальной или стратегической форме. В игре с последовательными ходами у Эмили две чистые стратегии, у Нины 4, а у Талии 16; это подразумевает построение таблицы выигрышей 2 на 4 на 16. При использовании тех же соглашений, что и при построении таблиц для игры с тремя участниками в главе 4, для отображения данной игры понадобилась бы таблица с 16 «страницами» таблиц выигрышей два на четыре. Это слишком громоздко, поэтому мы предпочли переставить участниц игры. Пусть Талии соответствуют строки, Нине столбцы, а Эмили страницы. Тогда все, что нужно для представления данной игры, — это таблица 16 на 4 на 2, показанная на рис. 6.12. Порядок отображения выигрышей по-прежнему соответствует нашему прежнему соглашению об их перечислении в таком порядке: строка, столбец, страница; то есть в нашем примере Талия, Нина, Эмили.


Рис. 6.12. Игра «уличный сад» в стратегической форме


Как и в игре с монетарно-фискальной политикой между ФРС и Конгрессом, в игре «уличный сад» с одновременными ходами множество равновесий Нэша (в упражнении S8 мы предложим вам их найти) и только одно совершенное равновесие подыгры, соответствующее равновесию обратных рассуждений, найденное на рис. 6.11. Хотя анализ наилучших ответов действительно позволяет отыскать все равновесия Нэша, итеративное исключение доминируемых стратегий может сократить совокупность равновесий до разумного количества, необходимого в данном случае. Такой процесс эффективен, поскольку позволяет определить стратегии, включающие недостоверные элементы (такие как «высокие ставки всегда» в случае ФРС в разделе 3.Б). Оказывается, исключение стратегий способно в итоге привести к получению единственного совершенного равновесия подыгры.

На рис. 6.12 мы начинаем с Талии и исключаем все ее (слабо) доминируемые стратегии. В результате остается только указанная в одиннадцатой строке таблицы, НВВН, которую мы уже вычислили как равновесную, полученную методом обратных рассуждений. Далее мы можем перейти к исключению стратегий Нины, для чего понадобится сравнить исходы, полученные в ходе выбора стратегий, на обеих страницах таблицы. Например, для того чтобы сравнить стратегии Нины ВВ и ВН, необходимо посмотреть на выигрыши, связанные с ВВ на обеих страницах таблицы, и сравнить их с найденными аналогичным способом выигрышами от стратегии ВН. В случае Нины процесс исключения стратегий оставляет ей только стратегию НВ, она и есть равновесная, полученная методом обратных рассуждений выше. И наконец, Эмили нужно всего лишь сравнить две оставшиеся ячейки, связанные с ее выбором «не вносить вклад» и «внести вклад». Эмили получит самый высокий выигрыш, сыграв вариант «не вносить вклад», что она и делает. Как и раньше, мы нашли равновесную стратегию методом обратных рассуждений.

Таким образом, единственный исход в виде совершенного равновесия подыгры соответствует той ячейке таблицы игры на рис. 6.12, которая связана со стратегиями равновесия обратных рассуждений каждого игрока. Обратите внимание, что процесс итеративного исключения стратегий, приводящий нас к совершенному равновесию подыгры, выполняется посредством анализа действий игроков в обратном порядке по сравнению с фактическим ходом игры. Этот порядок соответствует тому, в котором действия игроков анализируются в ходе применения метода обратных рассуждений, что позволяет нам исключать именно те стратегии каждого игрока, которые не согласуются с равновесием обратных рассуждений. При этом мы исключаем из рассмотрения все равновесия Нэша, не являющиеся совершенными равновесиями подыгры.

Резюме

Многие игры включают в себя множество различных элементов, одни подразумевают одновременное выполнение ходов, тогда как другие сводятся к их последовательному выполнению. Для иллюстрации двухэтапных (и многоэтапных) игр можно использовать своего рода «дом на дереве»: такая схема позволяет идентифицировать различные этапы игры и связи между ними. Полноценные игры, возникающие на более поздних этапах игры, называются подыграми полной игры.

Изменение правил игры в целях изменения времени выполнения ходов может повлиять (или нет) на равновесный исход игры. Игры с одновременными ходами, преобразованные таким образом, чтобы ходы выполнялись последовательно, могут иметь такой же исход (при наличии у обоих игроков доминирующих стратегий), преимущество первого или второго хода, и обеспечивать более благоприятный исход для обоих игроков. Как правило, в последовательной версии игры с одновременными ходами есть единственное равновесие обратных рассуждений, даже если в ее одновременной версии равновесий нет вообще или, наоборот, их множество. Точно так же в игре с последовательными ходами, имеющей единственное равновесие обратных рассуждений, может быть несколько равновесий Нэша, когда правила игры меняются таким образом, чтобы превратить ее в игру с одновременными ходами.

Игры с одновременными ходами можно представить в виде дерева игры, собрав узлы принятия решений в информационные множества, когда игроки принимают решения, не зная о том, в каком именно узле они окажутся. Точно так же игры с последовательными ходами можно проиллюстрировать с помощью таблицы игры, но при этом необходимо точно определить всю совокупность стратегий, имеющихся в распоряжении каждого игрока. В процессе решения игры с последовательными ходами, представленной в стратегической форме, можно найти множество равновесий Нэша. Их количество можно сократить, воспользовавшись критерием достоверности для исключения некоторых стратегий как потенциально равновесных. Данный процесс позволяет отыскать совершенное равновесие подыгры в игре с последовательными ходами. Все эти процедуры поиска решения применимы и к играм с участием большего количества игроков.

Ключевые термины

Достоверность

Информационное множество

Неравновесные подыгры

Неравновесные пути игры

Подыгра

Продолжение стратегии

Совершенное равновесие подыгры

Упражнения с решениями

S1. Рассмотрите игру с одновременными ходами с участием двух игроков, в которой нет равновесия Нэша в чистых стратегиях, представленную на рис. 4.13 в главе 4. Если бы эта игра была преобразована в игру с последовательными ходами, вы бы ожидали появления в ней преимущества первого и второго хода или ни одного из них? Объясните логику своих рассуждений.

S2. Рассмотрите игру, представленную в виде дерева игры ниже. Игрок, делающий ход первым (Игрок 1), может выбрать ход либо «вверх», либо «вниз», после чего Игрок 2 может выбрать «налево» или «направо». Выигрыши в случае возможных исходов указаны в концевых узлах дерева. Изобразите эту игру в стратегической форме (в виде таблицы). Найдите все равновесия Нэша в чистых стратегиях. Если их несколько, укажите, какое из них представляет собой совершенное равновесие подыгры. Для равновесий, не являющихся таковыми, определите причину (источник отсутствия достоверности).



S3. Рассмотрите игру между Airbus и Boeing, описанную в упражнении S4 в главе 3. Представьте ее в стратегической форме и определите все равновесия Нэша. Какое из них представляет собой совершенное равновесие подыгры? Для равновесий, не являющихся таковыми, определите источник отсутствия достоверности.

S4. Вернитесь к дереву игры с двумя участниками, приведенному в пункте а упражнения S2 в главе 3.

a) Изобразите эту игру в стратегической форме, где Страшиле соответствуют строки, а Железному Дровосеку — столбцы.

b) Найдите равновесие Нэша.

S5. Вернитесь к дереву игры с двумя участниками, приведенному в пункте b упражнения S2 в главе 3.

a) Представьте эту игру в стратегической форме. (Подсказка: используйте решение упражнения S2 в главе 3.) Найдите все равновесия Нэша (их будет много).

b) Для равновесий, найденных в пункте а, которые не являются совершенными равновесиями подыгры, определите проблемы с достоверностью.

S6. Вернитесь к дереву игры с тремя участниками, приведенному в пункте с упражнения S2 в главе 3.

a) Составьте таблицу этой игры. Сделайте Страшилу игроком, которому соответствуют строки, Железному Дровосеку — столбцы, а Льву — страницы. (Подсказка: используйте решение упражнения S2 в главе 3.) Найдите все равновесия Нэша (их будет много).

b) Определите проблемы с достоверностью для равновесий, найденных в пункте а, которые не являются совершенными равновесиями подыгры.

S7. Рассмотрим упрощенную версию игры в бейсбол между питчером и бэттером[88]. Питчер выбирает между такими типами подач, как фастбол (прямая подача с большой скоростью полета мяча) и керв (более медленная подача с сильным вращением), тогда как бэттер решает, какой подачи питчера ему следует ожидать. У бэттера есть преимущество, если он правильно определит тип подачи. В этой игре с нулевой суммой выигрыш бэттера — вероятность того, что он получит хит и достигнет первой базы. Выигрыш питчера — вероятность того, что бэттеру не удастся получить хит и добежать до базы, что равно единице минус выигрыш бэттера. Вот четыре возможных исхода игры:

3. Если питчер бросает фастбол, а бэттер ожидает фастбол, вероятность хита 0,300.

4. Если питчер бросает фастбол, а бэттер ожидает керв, вероятность хита 0,200.

5. Если питчер бросает керв, а бэттер ожидает керв, вероятность хита 0,350.

6. Если питчер бросит керв, а бэттер ожидает фастбол, вероятность хита 0,150.


Предположим, питчер «делает подсказки» относительно своих подач, то есть держит мяч, занимает позицию или что-то еще выполняет так, чтобы сообщить бэттеру, какую подачу он собирается сделать. В нашем контексте это означает, что игра между питчером и бэттером — это игра с последовательными ходами, в которой питчер объявляет о своем выборе подачи до выбора бэттером стратегии.

a) Представьте эту ситуацию в виде дерева игры.

b) Предположим, питчер знает, что делает подсказки по поводу подач, но не может удержаться от таких действий. Следовательно, питчер и бэттер играют в игру, дерево которой вы только что нарисовали. Найдите в ней равновесие обратных рассуждений.

c) Теперь измените время выполнения ходов в игре так, чтобы уже бэттеру пришлось раскрывать свои действия (возможно, меняя свою позицию отбивания), прежде чем питчер выберет тип подачи. Нарисуйте дерево игры для этой ситуации и найдите равновесие обратных рассуждений.

Теперь допустим, что каждый игрок делает подсказки настолько быстро, что ни один из них не успевает на них отреагировать, а значит, фактически это игра с одновременными ходами.

d) Нарисуйте дерево игры, представляющее ее как одновременную, отметив информационные множества там, где необходимо.

e) Составьте таблицу этой игры с одновременными ходами. Есть ли в ней равновесие Нэша в чистых стратегиях? Если да, назовите его.

S8. Игру «уличный сад», проанализированную в разделе 4 данной главы, можно отобразить в виде таблицы игры 16 на 4 на 2, если версия игры с последовательным выполнением ходов представлена в стратегической форме, как на рис. 6.12. В этой таблице много равновесий Нэша.

a) Используйте анализ наилучших ответов, чтобы найти все равновесия Нэша в таблице игры на рис. 6.12.

b) Определите совершенное равновесие подыгры во всей совокупности равновесий Нэша. Другие равновесные исходы игры напоминают совершенное равновесие подыгры (поскольку обеспечивают каждой из трех участниц игры те же выигрыши), однако появляются после различных комбинаций стратегий. Объясните, почему так происходит. Опишите проблемы с достоверностью, возникающие в случае равновесий, не являющихся совершенными равновесиями подыгры.

S9. На рис. 6.1 двухэтапная игра между компаниями CrossTalk и GlobalDialog представлена в виде сочетания таблиц и деревьев. Изобразите всю эту двухэтапную игру в виде одного большого дерева игры. Не забудьте указать, какой игрок в каждом узле принимает решение, и нарисуйте информационные множества между узлами там, где это необходимо.

S10. Вспомните последовательную игру с тремя участниками о размещении магазинов в торговых центрах, описанную в упражнении S9 в главе 3. Ее дерево напоминает дерево игры «уличный сад», показанное на рис. 6.10.

a) Нарисуйте дерево игры с размещением магазинов в торговых центрах. Сколько стратегий есть в распоряжении каждого магазина?

b) Проиллюстрируйте игру в стратегической форме и найдите в ней все равновесия Нэша в чистых стратегиях.

c) Используйте итеративное доминирование для поиска совершенного равновесия подыгры. (Подсказка: перечитайте два последних абзаца раздела 4.)

S11. Согласно правилам игры с размещением магазинов в торговых центрах, проанализированной в упражнении S10, когда все три магазина запрашивают торговую площадь в торговом центре Urban Mall, два самых крупных (и самых престижных) из них получают ее. Кроме того, в исходной версии игры предусматривается, что компании, пытающиеся получить торговую площадь в торговых центрах, ходят последовательно.

a) Допустим, три компании подают запросы на предоставление торговой площади одновременно. Составьте таблицу выигрышей для этой версии игры и найдите все равновесия Нэша. Какие из них, по вашему мнению, скорее всего будут выбраны на практике? Обоснуйте свой вывод.

Теперь предположим, что все три магазина одновременно отправляют запрос в Urban Mall, а два имеющихся помещения распределяются посредством лотереи, что дает каждому магазину равные шансы на получение торговой площади в Urban Mall. При такой схеме вероятность каждого магазина попасть в Urban Mall составляла бы две трети (или 66,67 процента), если бы все три магазина отправили запросы, а вероятность оказаться в одиночестве в Rural Mall — одну треть (33,33 процента).

b) Постройте таблицу новой версии одновременной игры с размещением магазинов в торговых центрах. Найдите в ней все равновесия Нэша. Какие из них, по вашему мнению, будут выбраны на практике с наибольшей вероятностью? Обоснуйте свой вывод.

c) Сравните и проведите различие между равновесиями, найденными в пункте b и а. Вы получили одни и те же равновесия Нэша? Почему да или почему нет?

S12. Вернитесь к игре между Моникой и Нэнси из упражнения S10 в главе 5. Допустим, они выбирают количество усилий последовательно, а не одновременно. Моника делает выбор первой, а Нэнси, узнав об этом, также делает выбор.

a) Найдите совершенное равновесие подыгры, при котором общая прибыль определяется по формуле 4m + 4n + mn, затраты Моники и Нэнси, связанные с вложением усилий, составляют m2 и n2 соответственно, и Моника принимает решение о количестве усилий первой.

b) Сравните выигрыши Моники и Нэнси с выигрышами, вычисленными в упражнении S10 в главе 5. В этой игре присутствует преимущество первого или второго хода? Обоснуйте свой ответ.

S13. В расширенном варианте упражнения S12 Монике и Нэнси необходимо решить, кто из них выберет количество усилий в первую очередь. Для этого каждая из них пишет на листке бумаги, будет ли она делать это первой. Если обе напишут «да» или «нет», значит, им предстоит выбирать количество усилий одновременно, как в упражнении S10 в главе 5. Если Моника напишет «да», а Нэнси «нет», то Моника будет первой принимать решение о количестве усилий, как в упражнении S12. Если Моника напишет «нет», а Нэнси «да», тогда Нэнси первой примет решение.

a) На основании выигрышей Моники и Нэнси, полученных в упражнении S12 выше, а также в упражнении S10 в главе 5, постройте таблицу для первого этапа игры в принятие решений. (Подсказка: обратите внимание на симметричность игры.)

b) Найдите равновесия Нэша в чистых стратегиях на первом этапе игры.

Упражнения без решений

U1. Рассмотрим игру с участием двух игроков, А и Б. Игрок А ходит первым и выбирает либо «вверх», либо «вниз». Если игрок А выберет «вверх», игра завершится и каждый получит выигрыш 2. Если игрок А сыграет «вниз», наступит очередь игрока Б делать ход, выбрав один из двух вариантов — «налево» или «направо». Если Б выберет «налево», оба игрока получат выигрыш 0, если «направо», игрок А получит выигрыш 3, а игрок Б — выигрыш 1.

a) Нарисуйте дерево этой игры и найдите совершенное равновесие подыгры.

b) Представьте эту игру с последовательными ходами в стратегической форме и отыщите все равновесия Нэша. Какое из них будет совершенным равновесием подыгры? Если таковых нет, объясните почему.

c) Какой метод решения можно было бы использовать для поиска совершенного равновесия подыгры на основании стратегической формы игры? (Подсказка: перечитайте два последних абзаца раздела 4.)

U2. Вернитесь к дереву игры с двумя участниками в пункте а упражнения U2 в главе 3.

a) Опишите игру в стратегической форме, где Альбусу соответствуют строки, а Минерве — столбцы. Найдите все равновесия Нэша.

b) Выявите проблемы с достоверностью для равновесий, найденных в пункте а данного упражнения, которые не будут совершенными равновесиями подыгры.

U3. Вернитесь к дереву игры с двумя участниками в пункте b упражнения U2 в главе 3.

a) Опишите игру в стратегической форме. Найдите все равновесия Нэша.

b) Выявите проблемы с достоверностью для равновесий, найденных в пункте а данного упражнения, которые не будут совершенными равновесиями подыгры.

U4. Вернитесь к дереву игры с двумя участниками в пункте а упражнения U2 в главе 3.

a) Составьте таблицу этой игры, в которой Альбусу соответствуют строки, Минерве — столбцы, а Северусу — страницы. Найдите все равновесия Нэша.

b) Выявите проблемы с достоверностью для равновесий, найденных в пункте а, которые не будут совершенными равновесиями подыгры.

U5. Рассмотрим отрасль по производству колы, в которой Coke и Pepsi — две ведущие компании (для простоты анализа просто забудем об остальных). Объем рынка составляет 8 миллиардов долларов. Каждая компания решает, рекламировать ли ей свою продукцию; если да, то реклама обойдется в 1 миллиард долларов. Если одна компания будет размещать рекламу, а другая нет, то первая компания захватит весь рынок. Если обе компании будут рекламировать свою продукцию, они разделят рынок поровну и понесут расходы на рекламу. Если обе компании не будут размещать рекламу, они разделят рынок поровну без расходов на рекламу.

a) Составьте таблицу выигрышей для этой игры и найдите равновесие в случае, если обе компании ходят одновременно.

b) Постройте дерево игры исходя их предположения, что ходы в ней выполняются последовательно: первой ходит Coke, а затем Pepsi.

c) Будет ли любое из равновесий, найденных в пунктах а и b, более выгодным по сравнению с общей перспективой для Coke и Pepsi? Как обе компании могли бы добиться большего?

U6. На участке вдоль пляжа отдыхают 500 детей, разделенных на пять кластеров, по 100 детей в каждом. (Обозначим их А, Б, В, Г, Д.) Два торговца мороженым одновременно решают, где разместить свои торговые точки по его продаже. Они должны выбрать точное местоположение одного из кластеров.

Если в одном кластере есть один торговец, мороженое купят все 100 детей, входящие в состав этого кластера. Для кластеров без торговца мороженым 50 из 100 детей захотят пойти к торговой точке, находящейся на расстоянии в один кластер, 20 детей захотят пойти к точке, расположенной на расстоянии в два кластера, и никто не пожелает преодолевать ради мороженого расстояние в три и более кластеров. Мороженое быстро тает, поэтому дети, которые все же отправятся за ним, не смогут купить его и для тех, кто остался на месте.

Если оба торговца мороженым выберут один и тот же кластер, каждый получит 50 процентов доли от общего спроса на мороженое. Если они предпочтут разные кластеры, то те дети (остающиеся на месте или ушедшие за мороженым), к которым один торговец находится ближе, чем к другим, отправятся к нему, а дети, находящиеся на равном расстоянии от двух торговцев, разделятся между ними поровну. Каждый торговец стремится максимально увеличить объем продаж.

a) Составьте таблицу выигрышей пять на пять для игры в местоположение торговцев мороженым; приведенные ниже исходные данные помогут вам начать и проверить правильность своих расчетов:

• если оба торговца решают разместить свои торговые точки в кластере А, каждый из них продаст 85 единиц продукции;

• если первый торговец выберет кластер Б, а второй кластер В, первый продаст 150, а второй 170 единиц продукции;

• если первый торговец выберет кластер Д, а второй кластер Б, первый продаст 150, а второй 200 единиц продукции.

b) Исключите как можно больше доминируемых стратегий.

c) В оставшихся ячейках таблицы найдите все равновесия Нэша в чистых стратегиях.

d) Если преобразовать эту игру в игру с последовательными ходами, в которой первый торговец выбирает место первым, а второй вторым, то каким будет местоположение торговых точек и какой объем продаж будет получен в результате совершенного равновесия подыгры? Как изменение времени выполнения ходов помогает участникам игры решить проблему координации, о которой идет речь в пункте с?

U7. Вернитесь к игре между тремя львами в римском Колизее, представленной в упражнении S8 в главе 3.

a) Опишите ее в стратегической форме, где льву 1 соответствуют строки, льву 2 столбцы, а льву 3 страницы.

b) Найдите равновесия Нэша в этой игре. Сколько их вы нашли?

c) Вы должны были обнаружить равновесия Нэша, которые не будут совершенными равновесиями подыгры. Какой лев представляет недостоверные угрозы в случае каждого из этих равновесий? Объясните свою точку зрения.

U8. Предположим, что в игре с размещением магазинов в торговых центрах (из упражнения S9 главы 3 и упражнения S10 в данной главе) ходы выполняются последовательно, но в другом порядке: Big Giant, затем Titan, а затем Frieda’s.

a) Нарисуйте новое дерево игры.

b) Найдите совершенное равновесие подыгры этой игры. Чем оно отличается от совершенного равновесия подыгры, полученного в упражнении S9 в главе 3?

c) Опишите новую версию игры в стратегической форме.

d) Найдите все равновесия Нэша в этой игре. Сколько их? Как это соотносится с количеством равновесий, найденных в упражнении S10 в данной главе?

U9. Вернитесь к игре между Моникой и Нэнси из упражнения U10 в главе 5. Допустим, они выбирают количество усилий последовательно, а не одновременно. Моника делает это первой, а Нэнси, узнав об этом решении, также выбирает количество усилий.

a) Найдите совершенное равновесие подыгры, при котором общая прибыль определяется по формуле 5m + 4n + mn, затраты Моники и Нэнси, связанные с вложением усилий, составляют m2 и n2 соответственно и Моника принимает решение о количестве усилий первой.

b) Сравните выигрыши Моники и Нэнси с выигрышами, вычисленными в упражнении S10 в главе 5. В этой игре есть преимущество первого или второго хода?

c) Воспользовавшись той же функцией общей прибыли, что и в пункте а, найдите совершенное равновесие подыгры для игры, в которой Нэнси первой принимает решение о количестве усилий.

U10. В расширенном варианте упражнения U9 Монике и Нэнси необходимо решить, кто из них выберет количество усилий в первую очередь. Для этого каждая пишет на листке бумаги, будет ли она принимать решение первой. Если обе напишут «да» или «нет», им предстоит выбирать количество усилий одновременно, как в упражнении U10 в главе 5. Если Моника напишет «да», а Нэнси «нет», то они сыграют в игру, представленную в пункте а упражнения U9. Если Моника напишет «нет», а Нэнси «да», то они сыграют в игру из пункта c.

a) На основании выигрышей Моники и Нэнси, полученных в упражнении U9 выше, а также в упражнении U10 в главе 5, составьте таблицу для первого этапа игры в принятие решений.

b) Найдите равновесия Нэша в чистых стратегиях на первом этапе игры.

U11. В отдаленном городке Сент-Джеймс две компании, Bilge и Chem, конкурируют на рынке безалкогольных напитков (Coke и Pepsi пока на этом рынке нет). Bilge и Chem продают идентичную продукцию, а так как их продукт — жидкость, у них есть возможность выпускать его в более мелких емкостях. Поскольку на данном рынке представлены только эти две компании, цена товара P (в долларах) определяется по формуле P = (30 — QB — QC), где QB — количество продукции, выпускаемой Bilge, а QC — количество продукции Chem (в обоих случаях оно измеряется в литрах). В настоящее время обе компании рассматривают возможность инвестиций в новое оборудование для разлива напитков в бутылки, которое позволит сократить переменные издержки.

a) Если компания j решит не инвестировать, ее затраты составят Cj = Q2j / 2, где j обозначает либо B (Bilge), либо C (Chem).

b) Если компания j решит инвестировать, ее затраты составят Cj = 20 + Q2j / 6, где j обозначает либо B (Bilge), либо C (Chem). Эта новая функция издержек отображает фиксированную стоимость оборудования (20), а также более низкие переменные издержки.

Две компании принимают решения об инвестициях одновременно, но выигрыш в этой игре в инвестиции будет зависеть от игр в дуополию, которые возникнут впоследствии. Следовательно, игра состоит из двух этапов: сначала принять решение об инвестициях, а затем играть в дуополию.

a) Предположим, обе компании решают инвестировать. Запишите функции их прибыли, выраженные через QB и QC, и найдите с их помощью равновесия Нэша в игре с определением количества. Чему равны количество и прибыль обеих компаний при таком равновесии? Какова рыночная цена?

b) Допустим, обе компании решают не инвестировать. Чему равно количество продукции и прибыль обеих компаний при таком равновесии? Какова рыночная цена?

c) Теперь предположим, что компания Bilge решает инвестировать, а Chem — нет. Чему равно количество продукции и прибыль обеих компаний при таком равновесии? Какова рыночная цена?

d) Составьте таблицу два на два для игры в инвестиции между этими компаниями. В распоряжении каждой из них есть две стратегии: «инвестировать» и «не инвестировать». Выигрыши компаний — их прибыль, вычисленная в пунктах а, b и с. (Подсказка: обратите внимание на симметричность игры.)

e) Есть ли совершенное равновесие подыгры в этой двухэтапной игре в целом?

U12. Два французских аристократа, шевалье Шагрин и маркиз де Ренар, дерутся на дуэли. У каждого пистолет заряжен одной пулей. Находясь на расстоянии 10 шагов, они начинают идти навстречу друг другу, перемещаясь с одинаковой скоростью, по 1 шагу за один раз. После каждого шага один из них может выстрелить. Когда один из дуэлянтов стреляет, вероятность попасть в цель зависит от расстояния. После k шагов она составляет k/5, а значит, повышается с 0,2 после первого шага до 1 (определенность) после 5 шагов, когда соперники находятся напротив друг друга. Если один игрок выстрелит и промахнется, тогда как другому еще предстоит сделать выстрел, оба должны продолжать движение даже несмотря на то, что того, кто уже не может стрелять, ждет неминуемая смерть, — таковы правила кодекса чести аристократии. Каждый игрок получает выигрыш −1, если он сам будет убит, и 1, если будет убит его соперник. Если оба останутся живы или оба будут убиты, каждый получит выигрыш 0.

Это игра с пятью последовательными шагами и одновременными ходами (стрелять или не стрелять) на каждом шаге. Найдите совершенное равновесие подыгры в этой игре.

Подсказка: начните с шага 5, когда дуэлянты стоят прямо напротив друг друга. Составьте таблицу два на два для игры с одновременными ходами на этом этапе и найдите равновесие Нэша. Теперь перейдите к шагу 4, где вероятность попасть в цель составляет 4/5, или 0,8 для каждого игрока. Составьте таблицу два на два для игры с одновременными ходами на этом этапе, правильно указав в соответствующей ячейке, что произойдет в дальнейшем. Например, если один игрок стреляет и промахивается, а другой не стреляет, то другой подождет, пока сможет сделать пятый шаг, и точно попадет в цель. Если ни один из игроков не стреляет, тогда игра перейдет на следующий этап, по которому вы уже нашли равновесие. С помощью всей этой информации определите выигрыши в таблице два на два на шаге 4 и найдите равновесие Нэша на этом этапе. Для поиска равновесных стратегий всей игры проанализируйте оставшиеся шаги в обратном порядке.

U13. Опишите пример конкуренции между компаниями, аналогичный по своей структуре дуэли из упражнения U12.

Глава 7. Игры с одновременными ходами: смешанные стратегии

* * *

В ходе анализа игр с одновременными ходами в главе 4 мы столкнулись с целым классом игр, нерешаемых посредством описанных там методов. Дело в том, что в играх этого класса нет равновесий Нэша в чистых стратегиях, и для того чтобы определить исход таких игр, необходимо расширить концепции стратегии и равновесий. Это можно сделать с помощью рандомизации ходов, которая и будет в центре внимания в данной главе.

Рассмотрим игру в розыгрыш очка в теннисе, описанную в конце главы 4. Это игра с нулевой суммой, в которой интересы двух теннисисток прямо противоположны. Эверт стремится направить обводящий удар в любую сторону — по линии (ПЛ) или по диагонали (ПД), — не прикрытую Навратиловой, тогда как Навратилова старается прикрыть именно ту сторону, в которую Эверт сделает удар. В главе 4 мы отметили, что в такой ситуации Навратилова сможет использовать любой системный выбор Эверт себе на пользу, а значит, во вред Эверт. Со своей стороны, Эверт может использовать любой системный выбор Навратиловой. Для того чтобы этого избежать, каждая теннисистка пытается держать соперницу в неведении с помощью бессистемных или случайных действий.

Однако хаотичность действий не означает выбора каждого типа удара в половине случаев или их чередование. Чередование ударов уже само по себе было бы системным действием, которое можно использовать, поэтому случайная комбинация действий в соотношении 60 на 40 или 75 на 25 (в зависимости от ситуации) может быть лучше, чем 50 на 50. В данной главе мы рассмотрим методы расчета наилучшей комбинации ходов, а также обсудим, как эта теория поможет нам понять фактический ход таких игр.

Наш метод вычисления лучшей комбинации применим также к играм с ненулевой суммой. Однако в них интересы игроков частично совпадают, поэтому когда игрок Б использует системный выбор игрока А с выгодой для себя, это не всегда вредит игроку А. Следовательно, в играх с ненулевой суммой логика действий, согласно которой другого игрока следует держать в неведении, более слабая или вообще отсутствует. Мы поговорим о том, имеют ли равновесия в смешанных стратегиях смысл в таких играх и когда именно это происходит.

Начнем главу с анализа смешивания стратегий в играх два на два, а также с самого прямого метода поиска наилучших ответов и равновесия в смешанных стратегиях. Многие концепции и методы, которые мы сформулируем в разделе 2, сохранят свою актуальность и в более общих играх, а в разделе 6 и разделе 7 их область применения распространится на игры, участники которых могут иметь свыше двух чистых стратегий. В конце мы выскажем ряд общих наблюдений по поводу смешивания стратегий на практике, а также приведем некоторые эмпирические данные о том, присутствует ли такое смешивание стратегий в реальной жизни.

1. Что такое смешанная стратегия

Когда игроки предпочитают действовать бессистемно, они делают случайный выбор из имеющихся чистых стратегий. В игре в розыгрыш очка в теннисе Навратилова и Эверт выбирают одну из двух заданных чистых стратегий, ПЛ или ПД. Мы называем случайную комбинацию этих двух стратегий смешанной стратегией.

Такие смешанные стратегии охватывают целый диапазон непрерывных значений. На одном его конце вариант ПЛ может быть выбран с вероятностью 1 (гарантированно), тогда как вариант ПД не будет выбран никогда (вероятность 0); эта комбинация представляет собой чистую стратегию ПЛ. На другом конце диапазона вариант ПЛ может быть выбран с вероятностью 0, а ПД — с вероятностью 1; данная комбинация представляет собой чистую стратегию ПД. В промежутке между ними находится целое множество возможностей: ПЛ выбирается с вероятностью 75 % (0,75), а ПД — 25 % (0,25); или оба варианта выбираются с вероятностью 50 % (0,5) каждый; или вариант ПЛ выбирается с вероятностью 1/3 (33,33…%), а ПД — 2/3 (66,66…%) и т. д.[89]

Выигрыши, полученные в результате применения смешанной стратегии, определяются как соответствующие значения взвешенного по вероятности среднего выигрышей от чистых стратегий, входящих в состав данной смешанной стратегии. Например, в игре в теннис из раздела 7 главы 4 (против стратегии ПЛ Навратиловой) выигрыш Эверт от стратегии ПЛ равен 50, а от стратегии ПД 90. Следовательно, ее выигрыш от смешанной стратегии (0,75 ПЛ, 0,25 ПД) в игре против стратегии ПЛ Навратиловой составит 0,75 × 50 + 0,25 × 90 = 37,5 + 22,5 = 60. Это и есть ожидаемый выигрыш Эверт от данной смешанной стратегии[90].

Вероятность выбора той или иной чистой стратегии — это непрерывная переменная с диапазоном значений от 0 до 1. Стало быть, смешанные стратегии — просто особый тип непрерывно меняющихся стратегий наподобие тех, которые мы изучали в главе 5. Каждая чистая стратегия — это предельный частный случай, в котором вероятность ее выбора равна 1.

Понятие равновесия Нэша также можно расширить, включив в него смешанные стратегии. Равновесие Нэша определяется как совокупность стратегий (по одной на каждого игрока), при которой выбор каждого игрока для него наилучший с точки зрения обеспечения его максимального ожидаемого выигрыша с учетом смешанных стратегий других игроков. Допустимость использования в игре смешанных стратегий автоматически и практически полностью решает проблему возможного отсутствия равновесия Нэша, с которой мы столкнулись в случае чистых стратегий. Знаменитая теорема Нэша показывает, что при самых общих условиях (достаточно широких, чтобы охватывать все игры, рассматриваемые в данной книге, и многие другие) равновесие Нэша в смешанных стратегиях существует всегда.

Таким образом, на самом обобщенном уровне включение смешанных стратегий в наш анализ не подразумевает ничего выходящего за пределы общей теории непрерывных стратегий, сформулированной в главе 5. Тем не менее частный случай смешанных стратегий действительно поднимает ряд особых концептуальных и методологических вопросов, поэтому заслуживает специального изучения.

2. Смешивание ходов

Начнем с примера игры в теннис из раздела 7 главы 4, в которой не было равновесия Нэша в чистых стратегиях, и покажем, как расширение этой концепции на смешанные стратегии позволяет устранить данный недостаток, а также объясним полученное в итоге равновесие как равновесие, при котором каждый игрок держит соперника в неведении.

А. Преимущество смешивания ходов

На рис. 7.1 воспроизведена матрица выигрышей, представленная на рис. 4.14. В этой игре, если Эверт будет всегда выбирать удар по линии (ПЛ), Навратилова будет прикрывать ПЛ и удерживать выигрыш Эверт на уровне 50. Точно так же, если Эверт будет всегда выбирать удар по диагонали (ПД), Навратилова будет удерживать выигрыш Эверт на уровне 20. Если Эверт может выбирать только одну из двух базовых (чистых) стратегий, а Навратилова — спрогнозировать ее выбор, то более подходящая (или менее неподходящая) стратегия Эверт — ПЛ, обеспечивающая ей выигрыш 50.


Рис. 7.1. Отсутствие равновесия в чистых стратегиях


Но допустим, Эверт не ограничена выбором только чистых стратегий и может применить смешанную стратегию, возможно, именно ту, в соответствии с которой вероятность того, что она выберет ПЛ в каком бы то ни было случае, составляет 75 %, или 0,75, что означает, что вероятность того, что она выберет ПД, равна 25 %, или 0,25. С помощью метода, представленного в разделе 1, можно рассчитать ожидаемый выигрыш Навратиловой при выборе Эверт такой комбинации стратегий. Он составляет:

0,75 × 50 + 0,25 × 10 = 37,5 + 2,5 = 40, если она прикроет ПЛ,

0,75 × 20 + 0,25 × 80 = 15 + 20 = 35, если она прикроет ПД.

Если Эверт выберет комбинацию стратегий 75 на 25, ожидаемые выигрыши показывают, что Навратилова может использовать эту комбинацию с максимальной выгодой для себя, прикрыв удар ПЛ.

Когда Навратилова выбирает ПЛ, чтобы наилучшим образом использовать комбинацию Эверт 75 на 25, это наносит Эверт ущерб, поскольку перед нами игра с нулевой суммой. Ожидаемые выигрыши Эверт составляют:

0,75 × 50 + 0,25 × 90 = 37,5 + 22,5 = 60, если Навратилова прикроет ПЛ,

0,75 × 80 + 0,25 × 20 = 60 + 5 = 65, если Навратилова прикроет ПД.

Выбрав ПЛ, Навратилова удержит выигрыш Эверт на уровне 60, а не 65. Но заметьте, что выигрыш Эверт при такой комбинации стратегий все равно лучше выигрыша 50 в случае использования чистой стратегии ПЛ или 20 при выборе чистой стратегии ПД[91].

Комбинация стратегий в соотношении 75 на 25 позволяет Эверт повысить выигрыш по сравнению с выигрышем в чистых стратегиях, однако все же оставляет стратегию Эверт в какой-то степени открытой для того, чтобы Навратилова использовала ее с выгодой для себя. Решив прикрывать удар ПЛ, она может добиться того, что Эверт получит более низкий выигрыш, чем при выборе стратегии ПД. Эверт хотела бы найти комбинацию стратегий, защищенную от использования, то есть такую, при которой у Навратиловой не было бы очевидного варианта чистой стратегии, которую можно было бы применить против данной стратегии Эверт. Комбинация стратегий Эверт, защищенная от использования, должна обладать свойством, обеспечивающим Навратиловой один и тот же ожидаемый выигрыш, какой бы удар она ни прикрывала, ПЛ или ПД: Навратиловой должно быть безразлично, какую из двух имеющихся чистых стратегий выбрать. Мы называем это свойством безразличия соперника, и, как мы увидим ниже в данной главе, это ключ к равновесиям в смешанных стратегиях в ненулевых играх.

Для поиска комбинации стратегий, защищенной от использования соперником, необходимо применить более общий подход к описанию смешанной стратегии Эверт, чтобы алгебраическим путем рассчитать вероятности чистых стратегий, входящих в соответствующую смешанную стратегию. Обозначим вероятность выбора Эверт ПЛ алгебраическим символом p, тогда вероятность выбора ПД будет 1 — p. Для краткости назовем такую совокупность p-комбинацией.

Если Эверт выберет р-комбинацию, ожидаемые выигрыши Навратиловой составят:

50p + 10(1 — p), если она прикроет ПЛ,

20p + 80(1 — p), если она прикроет ПД.

Для стратегии Эверт, чтобы ее р-комбинация была защищена от использования, два выигрыша Навратиловой должны быть равны, то есть 50p + 10(1 — p) = 20p + 80(1 — p), или 30p = 70(1 — p), или 100p = 70, или p = 0,7. Таким образом, в комбинации стратегий Эверт, защищенной от использования, стратегия ПЛ применяется в 70 % случаев, а ПД — в 30 % случаев. При таких вероятностях, заданных смешанной стратегией, Навратилова получит один и тот же ожидаемый выигрыш за счет каждой из своих чистых стратегий, а значит, не сможет использовать ни одну из них с выгодой для себя (или в ущерб Эверт в игре с нулевой суммой). Ожидаемый выигрыш Эверт от смешанной стратегии составит:

50 × 0,7 + 90 × 0,3 = 35 + 27 = 62, если Навратилова прикроет ПЛ,

80 × 0,7 + 20 × 0,3 = 56 + 6 = 62, если Навратилова прикроет ПД.

Этот ожидаемый выигрыш лучше выигрыша 50, который Эверт получила бы при использовании чистой стратегии ПЛ, и выигрыша 60, полученного в случае комбинации 75 на 25. Теперь мы знаем, что эта смешанная стратегия защищена от использования, но является ли она оптимальной или равновесной стратегией Эверт?

Б. Наилучшие ответы и равновесие

Для того чтобы найти равновесную комбинацию стратегий в этой игре, вернемся к методу анализа наилучших ответов, описанному в главе 4, и расширим его на игры с непрерывными стратегиями наподобие тех, которые представлены в главе 5. Наша первоочередная задача — определить наилучший ответ Эверт (ее наилучший выбор вероятности p) на каждую из возможных стратегий Навратиловой. Поскольку эти стратегии также могут быть смешанными, их можно описать посредством вероятности того, что она прикроет ПЛ. Обозначим эту вероятность как q; тогда 1 — q — вероятность того, что Навратилова прикроет ПД. Назовем смешанную стратегию Навратиловой «q-комбинация» и попытаемся найти наилучший ответ Эверт p в случае выбора Навратиловой каждого возможного значения q.

Из таблицы выигрышей на рис. 7.1 следует, что р-комбинация Эверт обеспечивает ей такой ожидаемый выигрыш:

50p + 90(1 — p), если Навратилова выберет ПЛ,

80p + 20(1 — p), если Навратилова выберет ПД.

Стало быть, в случае q-комбинации Навратиловой ожидаемый выигрыш Эверт составит:

[50p + 90(1 — p)]q + [80p + 20(1 — p)](1 — q).

Перегруппировав члены выражения, получаем следующую формулу вычисления ожидаемого выигрыша Эверт:

[50q + 80(1 — q)]p + [90q + 20(1 — q)] (1 — p) = [90q + 20(1 — q)] + [50q + 80(1 — q) — 90q — 20(1 — q)]p = [20 + 70q] + [60 — 100q]p.

Используем этот ожидаемый выигрыш для поиска значений наилучших ответов p Эверт.

Мы пытаемся определить значение p, максимизирующее выигрыш Эверт при каждом значении q, поэтому основной вопрос состоит в том, как формула расчета ожидаемого выигрыша зависит от p. Здесь важную роль играет коэффициент перед p: [60 –100 q]. В частности, имеет значение положительный он (тогда ожидаемый выигрыш Эверт увеличивается по мере увеличения p) или отрицательный (тогда ожидаемый выигрыш Эверт уменьшается по мере увеличения p). Очевидно, что знак этого коэффициента зависит от значения q, причем q имеет критическое значение в случае, когда 60 — 100q = 0; то есть q равно 0,6.

Когда при q < 0,6 Навратиловой коэффициент [60 — 100q] имеет положительное значение, ожидаемый выигрыш Эверт увеличивается по мере повышения значения p и ее наилучший выбор p = 1, или чистая стратегия ПЛ. Аналогичным образом при q > 0,6 Навратиловой наилучший выбор Эверт — p = 0, или чистая стратегия ПД. Если q = 0,6, Эверт получит один и тот же ожидаемый выигрыш независимо от значения p; при этом любая комбинация стратегий ПЛ и ПД так же эффективна, как и любая другая: любое значение p в диапазоне от 0 до 1 может быть наилучшим ответом. Кратко сформулируем эти выводы, для того чтобы использовать их в будущем.

Если q < 0,6, наилучший ответ p = 1 (чистая стратегия ПЛ).

Если q = 0,6, любая p-комбинация будет наилучшим ответом.

Если q > 0,6, наилучший ответ p = 0 (чистая стратегия ПД).

Для быстрого подтверждения этих интуитивных выводов заметим, что при низком значении q (Навратилова с достаточно низкой вероятностью будет прикрывать удар ПЛ) Эверт следует выбрать ПЛ, а при высоком значении q (Навратилова с достаточно высокой вероятностью будет прикрывать удар ПЛ) — ПД. Точное значение этой «достаточности», а значит, и точка перехода на другую стратегию q = 0,6 зависят от конкретных выигрышей в данном примере[92].

Мы уже говорили о том, что смешанные стратегии — это просто особый тип непрерывной стратегии, в которой вероятность играет роль непрерывной переменной. Теперь мы нашли наилучшее значение p Эверт, соответствующее каждому значению q, выбранному Навратиловой. Иными словами, определили правило наилучших ответов Эверт, которое можно отобразить на графике так же, как мы это делали в главе 5.

Этот график расположен в левом фрагменте рисунка 7.2, где значения q показаны на горизонтальной оси, а значения p — на вертикальной. Обе вероятности ограничены диапазоном от 0 до 1. Если q меньше 0,6, p имеет максимальное значение 1; если q больше 0,6, p имеет минимальное значение 0. При q = 0,6 все значения p от 0 до 1 в равной степени наилучшие для Эверт, поэтому наилучший ответ — вертикальная линия, находящаяся между 0 и 1. Этому графику наилучших ответов присуща своя особенность: в отличие от непрерывно восходящих или нисходящих прямых или кривых линий в главе 5, данный график плоский в двух интервалах значений q и опускается за один шаг в точке сопряжения этих интервалов. Тем не менее в концептуальном смысле он ничем не отличается от любого другого графика наилучших ответов.


Рис. 7.2. Наилучшие ответы и равновесие в игре в теннис


Аналогичным образом можно вычислить правило наилучших ответов Навратиловой (ее наилучшую q-комбинацию, соответствующую каждой из p-комбинаций Эверт). Мы предлагаем вам сделать это самостоятельно, чтобы закрепить понимание самой концепции и алгебраических вычислений. Кроме того, вы должны проверить правильность интуитивных выводов в отношении выбора Навратиловой так, как мы это делали для Эверт. Мы же просто приведем здесь полученный результат.

Если p < 0,7, наилучший ответ q = 0 (чистая стратегия ПД).

Если p = 0,7, любая q-комбинация будет наилучшим ответом.

Если p > 0,7, наилучший ответ q = 1 (чистая стратегия ПЛ).

График этого правила наилучших ответов Навратиловой расположен в среднем фрагменте рис. 7.2.

В правом фрагменте рис. 7.2 объединены графики из двух соседних фрагментов, причем левый график отражен по диагонали (линия p = q) с тем, чтобы значения p оказались на горизонтальной оси, а значения q — на вертикальной, после чего совмещен со средним графиком. Теперь серые и черные линии пересекаются в одной точке, где p = 0,7, а q = 0,6. В этой точке выбор смешанной стратегии каждым игроком будет наилучшим ответом на выбор другого игрока, поэтому данная пара образует равновесие Нэша в смешанных стратегиях.

В таком представлении правил наилучших ответов чистые стратегии — особые случаи, соответствующие предельным значениям переменных p и q. Как видим, графики наилучших ответов не имеют общих точек на любой из сторон квадрата, где каждое значение p и q равно либо 0, либо 1. Это говорит об отсутствии в игре равновесий в чистых стратегиях, как и было показано в разделе 7 главы 4. В этом примере равновесие в смешанных стратегиях — единственное равновесие Нэша в данной игре.

С помощью метода, примененного нами в разделе 2.А для поиска защищенного от использования значения p для Эверт, вы также можете вычислить выбор Навратиловой значения q, защищенного от использования. Выполнив соответствующие расчеты, получите значение q = 0,6. Таким образом, две выбранные участницами игры смешанные стратегии, защищенные от использования, на самом деле и наилучшие ответы друг на друга, которые представляют собой смешанные стратегии двух игроков, образующие равновесие Нэша.

В действительности, чтобы найти равновесие в смешанных стратегиях в игре с нулевой суммой, каждый участник которой располагает двумя чистыми стратегиями, не нужно проходить весь процесс определения правил наилучших ответов, построения соответствующих графиков и поиска точки их пересечения. Вы можете просто записать уравнения защищенности от использования из раздела 2.А по комбинации каждого игрока, а затем решить их. Если в полученном решении обе вероятности попадают в диапазон от 0 до 1, вы нашли то, что нужно. Если одна из вероятностей имеет отрицательное значение или значение больше 1, значит, в данной игре нет равновесия в смешанных стратегиях и вам необходимо снова поискать его в чистых стратегиях. В разделе 6 и разделе 7 представлен анализ методов решения игр, участники которых имеют более двух чистых стратегий.

3. Равновесие Нэша как система убеждений и ответов

При одновременном выполнении ходов ни один из игроков не может отреагировать на фактический выбор другого игрока. Вместо этого каждый участник игры предпринимает свое наилучшее действие, исходя из представлений о том, какой именно ход выбирает в данный момент соперник. В главе 4 мы назвали такие представления убеждениями игрока относительно выбора стратегии другим игроком, затем интерпретировали равновесие Нэша как конфигурацию стратегий, при которой эти убеждения верны, а значит, каждый игрок выбирает свой наилучший ответ на фактические действия другого игрока. Эта концепция оказалась весьма полезной для понимания структуры и исхода многих важных типов игр, особенно таких, как дилемма заключенных, координационные игры и игра в труса.

Однако в главе 4 мы рассматривали исключительно равновесия Нэша в чистых стратегиях. По этой причине осталось почти незамеченным одно скрытое предположение: каждый игрок твердо убежден, что другой игрок выберет определенную чистую стратегию. Теперь, когда мы анализируем более общие смешанные стратегии, концепция убеждения требует новой интерпретации.

Порой игроки не уверены в предполагаемых действиях других участников игры. Так, в координационной игре из главы 4, в которой Гарри хочет встретиться с Салли, Гарри не уверен в том, куда отправится Салли — в Starbucks или Local Latte, и его убеждение может сводиться к тому, что она окажется в любом из этих кафе с вероятностью 50 на 50. А в примере с игрой в теннис Эверт могла осознавать, что Навратилова пытается держать ее в неведении, а значит, она (Эверт) не может быть уверена в том, какое из доступных действий выберет Навратилова. В разделе 4 главы 2 мы обозначили такую ситуацию термином «стратегическая неопределенность», а в главе 4 указали, что такая неопределенность приводит к формированию равновесий в смешанных стратегиях. Теперь же рассмотрим эту идею более подробно.

Однако важно различать неуверенность и неправильные убеждения. Скажем, в примере с игрой в теннис Навратилова не может быть уверена в том, что выберет Эверт в каждом конкретном случае. Тем не менее у нее могут быть правильные убеждения относительно комбинации стратегий Эверт, а именно вероятности, с которой она выбирает между своими двумя чистыми стратегиями. Наличие правильных убеждений по поводу смешанных действий означает знание, или вычисление, или догадки в отношении правильных вероятностей, с которыми другой игрок делает выбор между своими базовыми или чистыми стратегиями. Что касается равновесия в нашем примере, оказалось, что равновесная комбинация стратегий Эверт составила 70 % для ПЛ и 30 % для ПД. Если Навратилова убеждена в том, что Эверт выберет ПЛ с вероятностью 70 % и ПД с вероятностью 30 %, то ее убеждения в данном равновесии будут правильными, хотя и неопределенными.

Таким образом, у нас есть альтернативный и математически эквивалентный способ определения равновесия Нэша в категориях убеждений: каждый игрок формирует убеждения о вероятностях в той комбинации стратегий, которую применяет другой игрок, и выбирает на нее собственный наилучший ответ. Равновесие Нэша в смешанных стратегиях наблюдается в случае правильности этих убеждений в указанном нами смысле.

В следующем разделе мы рассмотрим смешанные стратегии и соответствующие равновесия Нэша в играх с ненулевой суммой. В таких играх нет общих оснований для того, чтобы стремление другого игрока удовлетворить собственные интересы противоречило вашим интересам. Следовательно, в таких играх вам далеко не всегда нужно скрывать свои намерения от другого игрока, а также нет причин держать его в неведении. Тем не менее из-за одновременного выполнения ходов каждый игрок может испытывать субъективную неуверенность относительно действий другого игрока, поэтому у него могут быть неопределенные убеждения, вынуждающие его сомневаться в целесообразности собственных действий. Все это может привести к формированию равновесий в смешанных стратегиях, а их интерпретация в категориях субъективно неопределенных, но правильных убеждений играет особенно важную роль.

4. Смешивание стратегий в играх с ненулевой суммой

Методы поиска равновесий в смешанных стратегиях в играх с нулевой суммой (такие как защищенность от использования соперником или свойство безразличия соперника) применимы и к играм с ненулевой суммой, причем в некоторых из них действительно позволяют найти равновесия в смешанных стратегиях. Однако в таких играх интересы игроков могут в определенной степени совпадать. Следовательно, тот факт, что другой игрок использует ваш системный выбор стратегий с выгодой для себя, необязательно означает, что это нанесет ущерб вам, как в случае игр с нулевой суммой. Например, в координационной игре, которую мы анализировали в главе 4, игроки способны лучше координировать свои действия, если каждый из них может полагаться на системные действия другого, поскольку случайный выбор действий только повышает риск неудачи с их координацией. Именно поэтому в играх с ненулевой суммой равновесия в смешанных стратегиях имеют слабое логическое обоснование или не имеют его вообще. Ниже мы проанализируем равновесия в смешанных стратегиях в контексте некоторых известных игр с ненулевой суммой, а также обсудим их значимость или отсутствие таковой.

А. Встретятся ли Гарри и Салли? Доверие, чистая координация и битва полов

Проиллюстрируем смешивание стратегий в играх с ненулевой суммой на примере игры «встреча», основанной на игре в доверие. Для вашего удобства мы воспроизводим таблицу этой игры (см. рис. 4.11) на рис. 7.3. Сначала проанализируем игру с точки зрения Салли. Если она уверена в том, что Гарри отправится в Starbucks, ей тоже следует туда пойти. Если она уверена, что Гарри выберет Local Latte, то же самое нужно сделать и ей. Но если Салли сомневается в выборе Гарри, то каким должен быть ее наилучший выбор?


Рис. 7.3. Игра в доверие


Чтобы ответить на этот вопрос, мы должны дать более четкую трактовку неопределенности в понимании Салли. (В теории вероятностей и статистике есть специальный термин для обозначения такой неопределенности — субъективная неопределенность. В контексте неопределенности относительно действий другого игрока это стратегическая неопределенность; вспомните о различиях, которые мы анализировали в разделе 2.Г главы 2). Для большей точности укажем, с какой вероятностью Гарри выберет то или иное кафе, по мнению Салли. Вероятность того, что это будет Local Latte, может быть выражена любым вещественным числом от 0 до 1 (то есть от 0 % до 100 %). Мы охватим все возможные варианты с помощью алгебраических формул, обозначив символом p вероятность того, что Гарри (по мнению Салли) выберет Starbucks; переменная p может иметь любое вещественное значение в диапазоне от 0 до 1. Тогда (1 — p) — это вероятность (снова по мнению Салли) того, что Гарри предпочтет Local Latte. Иными словами, мы описываем стратегическую неопределенность Салли следующим образом: она считает, что Гарри использует смешанную стратегию, применив совокупность двух чистых стратегий (Starbucks и Local Latte) в пропорциях или с вероятностью p и (1 — p) соответственно. Назовем эту смешанную стратегию p-комбинацией Гарри, хотя на данный момент это всего лишь идея, существующая в сознании Салли.

С учетом этой неопределенности Салли может вычислить ожидаемые выигрыши от своих действий, предпринятых на основании убежденности в отношении р-комбинации Гарри. Если Салли выберет Starbucks, это даст ей 1 × p + 0 × (1 — p) = p, если Local Latte, это даст 0 × p + 2 × (1 — p) = 2 × (1 — p). Когда p имеет высокое значение, p > 2(1 — p), то есть Салли достаточно уверена в том, что Гарри отправится в Starbucks, ей лучше пойти туда же. Точно так же, когда p имеет низкое значение, p < 2(1 — p), а значит, Салли достаточно уверена в том, что Гарри отправится в Local Latte, ей тоже нужно пойти в это кафе. При p = 2(1 — p), или 3p = 2, или p = 2/3 эти два варианта выбора обеспечивают Салли один и тот же выигрыш. Следовательно, если она убеждена в том, что p = 2/3, она может быть не уверена в собственном выборе и колебаться между этими двумя вариантами.

Понимание этого факта может вызвать у Гарри неуверенность в выборе Салли. Следовательно, Гарри также испытывает субъективную стратегическую неопределенность. Предположим, он считает, что Салли выберет Starbucks с вероятностью q, а Local Latte с вероятностью (1 — q). Аналогичные рассуждения показывают, что Гарри следует выбрать Starbucks, если q > 2/3, и Local Latte, если q < 2/3. В случае если q = 2/3, ему будет безразлично, какое из этих двух действий предпринять, и у него возникнет неуверенность в собственном выборе.

Теперь у нас есть основа для равновесия в смешанных стратегиях с p = 2/3 и q = 2/3. При таком равновесии данные значения p и q одновременно являются и фактическими вероятностями чистых стратегий, входящих в соответствующую смешанную стратегию, и субъективными убеждениями каждого игрока относительно вероятностей чистых стратегий в смешанной стратегии другого игрока. Правильность этих убеждений поддерживает собственное безразличие каждого игрока в отношении выбора между двумя чистыми стратегиями, а значит, и готовность каждого смешать их. Это полностью соответствует концепции равновесия Нэша как системы самоисполняющихся убеждений и ответных действий, описанной в разделе 3.

Ключ к поиску равновесия в смешанных стратегиях состоит в том, что Салли готова смешать две чистые стратегии только тогда, когда ее субъективная неопределенность в отношении выбора Гарри правильна, то есть если правильно значение р в р-комбинации Гарри. Алгебраически это утверждение можно обосновать посредством вычисления равновесного значения р с помощью уравнения р = 2(1 — р), которое гарантирует, что Салли получит такой же ожидаемый выигрыш от двух своих чистых стратегий при сопоставлении каждой из них с р-комбинацией Гарри. Если данное равенство справедливо в случае равновесия, вероятности чистых стратегий в смешанной стратегии Гарри как будто поддерживают безразличие Салли. Мы особо подчеркиваем сочетание «как будто», поскольку в этой игре у Гарри нет причин поддерживать безразличие Салли, поэтому полученный результат — просто свойство данного равновесия. Тем не менее общая идея такова: в равновесии Нэша в смешанных стратегиях вероятности чистых стратегий, входящих в смешанную стратегию каждого игрока, поддерживают безразличие другого игрока в отношении выбора между его чистыми стратегиями. Мы вывели свойство безразличия соперника выше в ходе обсуждения игр с нулевой суммой, а теперь видим, что оно актуально и для игр с ненулевой суммой.

Однако в игре в доверие равновесие в смешанных стратегиях имеет ряд весьма нежелательных свойств. Во-первых, оно обеспечивает обоим игрокам достаточно низкие ожидаемые выигрыши. Формулы расчета ожидаемых выигрышей Салли от двух ее действий, р и 2 (1 — р), в обоих случаях равны 2/3 при р = 2/3. Точно так же ожидаемые выигрыши Гарри в случае равновесной q-комбинации Салли при q = 2/3 также одинаковы и составляют 2/3. Следовательно, при равновесии в смешанных стратегиях каждый игрок получает выигрыш 2/3. В главе 4 мы нашли в этой игре два равновесия в чистых стратегиях, причем даже худшее из них (оба выбирают Starbucks) обеспечивает каждому игроку выигрыш 1, а лучшее (оба выбирают Local Latte) — выигрыш 2.

Причина, по которой в случае равновесия в смешанных стратегиях два игрока получают такие плохие результаты, состоит в следующем: при выборе игроками своих действий независимо и бессистемно достаточно высока вероятность того, что они отправятся в разные места и в результате не встретятся и оба получат выигрыш 0. Гарри и Салли не увидятся, если один из них пойдет в Starbucks, а другой в Local Latte или наоборот. Вероятность такого развития событий при использовании обоими равновесных комбинаций составляет 2 × (2/3) × (1/3) = 4/9[93]. Аналогичная проблема наблюдается в равновесиях в смешанных стратегиях в большинстве игр с ненулевой суммой.

Второе нежелательное свойство равновесия в смешанных стратегиях — его неустойчивость. Если любой из игроков хотя бы немного отклонится от точных значений р = 2/3 или q = 2/3, наилучшим выбором другого игрока станет одна из чистых стратегий. И как только он ее применит, другой игрок получит более высокий выигрыш при выборе той же чистой стратегии, а значит, в игре наступит одно из двух равновесий в чистых стратегиях. Такая неустойчивость равновесий в смешанных стратегиях присуща многим играм с ненулевой суммой. Тем не менее в некоторых играх с ненулевой суммой все же есть более устойчивые равновесия в смешанных стратегиях. Один из примеров, описанный ниже в данной главе и в главе 12, — это равновесие в смешанных стратегиях в игре в труса, в отношении которой существует интересная эволюционная интерпретация.

С учетом результатов анализа равновесия в смешанных стратегиях в версии игры во встречу, основанной на игре в доверие, вы, по всей вероятности, теперь можете оценить равновесия в смешанных стратегиях в других вариантах игры во встречу с ненулевой суммой. В ее версии, построенной на чистой координации (см. рис. 4.10), выигрыш от встречи в двух кафе один и тот же, а значит, в равновесии в смешанных стратегиях значения p и q будут такими: p = 1/2 и q = 1/2. В варианте этой игры, представляющем собой битву полов (см. рис. 4.12), Салли предпочитает встретиться с Гарри в Local Latte, поскольку так она получит выигрыш 2 вместо 1 в случае встречи в Starbucks. Решение Салли зависит от того, больше или меньше 2/3 ее субъективная вероятность, что Гарри отправится в Starbucks. (В этом случае выигрыши Салли аналогичны выигрышам в версии игры в доверие, поэтому критическое значение p не меняется.) Гарри предпочитает встретиться в Starbucks, поэтому его решение зависит от того, больше или меньше 1/3 его субъективная вероятность, что Салли пойдет в Starbucks. Таким образом, при равновесии Нэша в смешанных стратегиях p = 2/3, а q = 1/3.

Б. Встретит ли Джеймс Дина? Игра в труса

В игре в труса с ненулевой суммой также существует равновесие в смешанных стратегиях, которое можно найти с помощью описанных выше методов, хотя у этой игры несколько иная интерпретация. Если вы помните, ее участники — Джеймс и Дин, пытающиеся избежать встречи. Таблица игры, первоначально представленная на рис. 4.13, воспроизведена здесь на рис. 7.4.


Рис. 7.4. Игра в труса


Если применить в этой игре смешанные стратегии, то в p-комбинации Джеймса вероятность того, что он свернет в сторону, будет равна p, а вероятность того, что он поедет прямо, составит 1 — p. При такой p-комбинации Дин получит выигрыш 0 × p — 1 × (1 — p) = p — 1, выбрав вариант «свернуть», и 1 × p — 2 × (1 — p) = 3p — 2, предпочтя вариант «ехать прямо». При сравнении этих уравнений видно, что Дин получит более высокий выигрыш при выборе «свернуть», когда p — 1 > 3p — 2, или когда 2p < 1, или когда p < 1/2 — иными словами, когда p имеет малое значение и Джеймс с большей вероятностью выберет «ехать прямо». Напротив, когда у p высокое значение и Джеймс с большей вероятностью выберет «свернуть», Дину лучше «ехать прямо». Если в p-комбинации Джеймса значение p в точности равно 1/2, то Дину безразлично, какую из двух чистых стратегий применить; следовательно, он в равной мере готов их смешивать. Аналогичный анализ игры с точки зрения Джеймса в плане оценки его вариантов в игре против q-комбинации Дина дает те же результаты. Таким образом, p = 1/2 и q = 1/2 и есть равновесие в смешанных стратегиях в этой игре.

В свойствах этого равновесия присутствуют общие черты и различия с равновесиями в смешанных стратегиях в игре «встреча». Здесь ожидаемый выигрыш каждого игрока достаточно низкий: (−1/2). Это плохо, как и в случае игры во встречу, но в отличие от нее выигрыш при равновесии в смешанных стратегиях не хуже для обоих игроков, чем выигрыш при двух равновесиях в чистых стратегиях. В действительности, поскольку в данной игре интересы игроков в какой-то степени противоположны, каждый непременно получит более высокий выигрыш от равновесия в смешанных стратегиях, чем от равновесия в чистых стратегиях, подразумевающего выбор варианта «свернуть».

Однако такое равновесие в смешанных стратегиях тоже неустойчиво. Если Джеймс повысит вероятность применения варианта «ехать прямо» до значения чуть больше 1/2, это приведет к выбору Дином чистой стратегии «свернуть». В результате сочетание стратегий «ехать прямо» / «свернуть» становится равновесием в чистых стратегиях. Если Джеймс, наоборот, снизит вероятность выбора варианта «ехать прямо» до значения чуть меньше 1/2, Дин выберет вариант «ехать прямо» и игра снова перейдет к другому равновесию в чистых стратегиях[94].

В данном разделе мы нашли равновесия в смешанных стратегиях в нескольких играх с ненулевой суммой путем решения уравнений, вытекающих из свойства безразличия соперника. Из главы 4 мы уже знаем, что в таких играх есть и равновесия в чистых стратегиях. Кривые наилучших ответов позволяют составить исчерпывающую картину, отобразив все равновесия Нэша одновременно. Поскольку вы уже ознакомились с ними в двух отдельных фрагментах книги, мы не будем тратить время и место на построение графиков, а просто подчеркнем, что при наличии двух равновесий в чистых стратегиях и одного в смешанных стратегиях (как в приведенных выше примерах) кривые наилучших ответов пересекаются в трех разных местах, по одному на каждое равновесие Нэша. В конце этой главы мы предложим вам самостоятельно построить графики наилучших ответов для аналогичных игр.

5. Общий анализ равновесий в смешанных стратегиях

Теперь, узнав, как найти равновесия в смешанных стратегиях в играх с нулевой и ненулевой суммой, целесообразно проанализировать дополнительные свойства этих равновесий. В частности, в данном разделе мы отметим ряд общих свойств равновесий в смешанных стратегиях, а также ознакомим вас с некоторыми результатами, которые поначалу покажутся вам парадоксальными, но лишь до тех пор, пока вы полностью не проанализируете рассматриваемую игру.

А. Равновесие в слабом смысле

Свойство безразличия соперника, о котором шла речь в разделе 2, подразумевает, что в случае равновесия в смешанных стратегиях каждый игрок получает один и тот же ожидаемый выигрыш от каждой из двух своих чистых стратегий, а значит, получит один и тот же ожидаемый выигрыш и от любой их комбинации. Следовательно, равновесия в смешанных стратегиях — это равновесия Нэша только в слабом смысле. Когда один игрок выбирает свою равновесную комбинацию стратегий, у другого нет явных оснований отступать от своей равновесной комбинации. С другой стороны, этот игрок ничего бы не потерял, выбрав другую смешанную стратегию или даже одну из своих чистых стратегий. Каждому игроку безразлично, какую из чистых стратегий или их комбинацию выбрать, до тех пор, пока другой игрок разыгрывает свою правильную (равновесную) комбинацию.

На первый взгляд это сводит на нет принцип использования равновесия Нэша в смешанных стратегиях в качестве концепции решения игр. Зачем игроку выбирать соответствующую комбинацию стратегий, когда другой игрок применяет свою комбинацию? Почему бы не поступить проще, выбрав одну из чистых стратегий? Ведь ожидаемый выигрыш в обоих случаях тот же. Ответ состоит в том, что это не будет равновесием Нэша; такой исход игры не будет устойчивым, поскольку тогда другой игрок отклонится от своей комбинации стратегий. Предположим, Эверт говорит себе: «Когда Навратилова применит свою наилучшую комбинацию (q = 0,6), я получу один и тот же выигрыш от ПЛ, ПД или их любого сочетания. Так зачем же их смешивать? Почему бы просто не использовать ПЛ?» В таком случае Навратиловой выгоднее перейти к чистой стратегии прикрытия удара ПЛ. Аналогичным образом, если Гарри выберет чистую стратегию Starbucks в игре во встречу, основанной на доверии, то Салли может получить более высокий выигрыш в равновесии 1 вместо 2/3 благодаря переходу с комбинации 50 на 50 на чистую стратегию Starbucks.

Б. Парадоксальное изменение вероятностей чистых стратегий в смешанной стратегии в играх с нулевой суммой

Игры с равновесиями в смешанных стратегиях порой демонстрируют свойства, которые на первый взгляд могут казаться противоречащими здравому смыслу. Самое интересное из них — это изменение вероятностей чистых стратегий в равновесной смешанной стратегии, приводящее к изменению структуры выигрышей в соответствующей игре. Чтобы проиллюстрировать это, вернемся к Эверт и Навратиловой и их игре с розыгрышем очка в теннисе.

Предположим, Навратилова усовершенствует навыки прикрытия удара по линии до уровня, при котором результативность Эверт в использовании стратегии ПЛ против стратегии Навратиловой по прикрытию ПЛ сокращается с 50 до 30 %. Такое улучшение мастерства Навратиловой обусловливает изменение таблицы выигрышей, в том числе смешанных стратегий каждой участницы игры, представленной на рис. 7.1. Новая таблица игры отображена на рис. 7.5.


Рис. 7.5. Измененные выигрыши в игре в теннис


Единственное отличие от таблицы на рис. 7.1 наблюдается в верхней левой ячейке, где выигрыш Эверт 50 теперь составляет 30, а выигрыш Навратиловой 50 равен 70. Это изменение не приводит к игре с равновесием в чистых стратегиях, поскольку у ее участниц по-прежнему противоположные интересы: Навратилова все так же хочет, чтобы их выбор совпадал, а Эверт все так же необходимо, чтобы их выбор отличался. Так что мы все еще имеем игру, подразумевающую смешивание стратегий.

Но чем эти равновесные комбинации стратегий отличаются от рассчитанных в разделе 2? Многие могли бы заявить, что теперь, научившись очень хорошо прикрывать ПЛ, Навратилова должна делать это чаще. В основе таких рассуждений лежит предположение о том, что равновесная q-комбинация Навратиловой должна быть в большей степени смещена в сторону ПЛ, а ее равновесное значение q должно превышать рассчитанное значение 0,6.

Но при вычислении q-комбинации Навратиловой на основании условия о безразличии Эверт в отношении выбора между двумя чистыми стратегиями мы получим 30q + 80(1 — q) = 90q + 20(1 — q), или q = 0,5. Фактическое равновесное значение q (50 %) связано с исходным значением q (60 %) в прямо противоположном смысле по сравнению с интуитивными прогнозами многих людей.

Хотя на первый взгляд подобные интуитивные выводы кажутся вполне обоснованными, в них упущен один важный аспект теории стратегий: взаимодействие между двумя игроками. После изменения выигрышей Эверт также будет пересматривать свою равновесную комбинацию, а Навратилова должна учитывать как новую структуру выигрышей, так и поведение Эверт при определении своей новой комбинации стратегий. В частности, поскольку теперь Навратилова гораздо лучше прикрывает ПЛ, Эверт в своей смешанной стратегии чаще использует ПД. И чтобы противодействовать этому, Навратилова тоже чаще прикрывает ПД.

Это станет более очевидным после того, как мы вычислим новую комбинацию Эверт. Ее равновесное значение p должно обеспечивать равенство между ожидаемым выигрышем Навратиловой от прикрытия ПЛ, 30p + 90(1 — p), и ее ожидаемым выигрышем от прикрытия ПД, 80р + 20(1 — p). Таким образом, мы имеем уравнение 30p + 90(1 — p) = 80p + 20(1 — p), или 90–60p = 20 + 60p, или 120p = 70. Следовательно, значение p Эверт должно составлять 7/12, или 0,583 (58,3 %). Сравнение этого нового равновесного значения p с рассчитанным в разделе 2 первоначальным значением 70 % показывает, что Эверт существенно сократила количество использования ПЛ в ответ на повышение мастерства Навратиловой. С учетом такого поведения Эверт Навратиловой также лучше сократить частоту применения стратегии ПЛ. Теперь Эверт будет использовать с выгодой для себя любой другой выбор комбинации стратегий Навратиловой, особенно той, в которой предпочтительна стратегия ПЛ.

Означает ли это, что Навратилова совершенствовала навыки зря? Нет, но мы должны судить об этом не по частоте применения той или иной стратегии, а по итоговым выигрышам. Когда Навратилова использует свою новую равновесную комбинацию с q = 0,5, процент успеха Эверт при выборе любой из ее чистых стратегий составляет (30 × 0,5) + (80 × 0,5) = (90 × 0,5) + (20 × 0,5) = 55. Это меньше, чем процент успеха Эверт 62 в исходном примере. Следовательно, средний выигрыш Навратиловой также возрастает с 38 до 45, а значит, улучшение навыков прикрытия удара ПЛ действительно принесло ей пользу.

В отличие от парадоксального результата, который мы наблюдали при анализе стратегического ответа Навратиловой на изменение в структуре выигрышей, здесь мы видим, что этот ответ полностью соответствует интуитивным представлениям, если рассматривать его в свете ожидаемого выигрыша Навратиловой. На самом деле с точки зрения ожидаемых выигрышей ответы игроков на изменение структуры выигрышей просто не могут противоречить здравому смыслу, хотя стратегические ответы, как мы уже убедились, могут[95]. Самый интересный аспект такого парадоксального результата стратегических ответов игроков — это сигнал, который он подает теннисистам и, в более общем плане, участникам стратегических игр. Этот результат эквивалентен утверждению, что Навратилова должна усовершенствовать навыки прикрытия удара по линии с тем, чтобы ей не пришлось использовать такое прикрытие слишком часто.

Далее мы представим еще более общий и неожиданный результат, обусловленный изменениями вероятностей применения чистых стратегий в смешанной стратегии. Условие безразличия соперника означает, что равновесные вероятности чистых стратегий в смешанной стратегии каждого игрока зависят исключительно от выигрышей другого игрока, а не от его собственных. Рассмотрим игру в доверие на рис. 7.3. Предположим, выигрыш Салли от встречи в Local Latte увеличивается с 2 до 3, тогда как все остальные выигрыши не меняются. Теперь в случае p-комбинации Гарри Салли получит выигрыш 1 × p + 0 × (1 — p) = p, если выберет Starbucks, и 0 × p + 3 × (1 — p) = 3–3p, если Local Latte. Условие безразличия Салли выглядит так: p = 3–3p, или 4p = 3, или p = 3/4 по сравнению со значением 2/3, вычисленным нами выше для p-комбинации Гарри в исходной игре. Расчет условия безразличия Гарри остается прежним и дает результат q = 2/3 в случае равновесной стратегии Салли. Изменение выигрышей Салли меняет вероятности применения чистых стратегий в смешанной стратегии Гарри, а не Салли! В упражнении S13 у вас будет возможность доказать истинность этого вывода в общей формулировке: доли чистых стратегий в равновесной смешанной стратегии игрока меняются не вследствие изменения его выигрышей, а только в случае изменения выигрышей его соперника.

В. Рискованный и безопасный выбор в играх с нулевой суммой

В спорте некоторые стратегии сравнительно безопасны; они не приводят к полной катастрофе, даже если соперник предвидит такой выбор, но и не позволяют добиться сверхрезультатов, если оказываются неожиданными для соперника. Другие стратегии достаточно рискованны; они обеспечивают блестящие результаты, если другая сторона к ним не готова, но терпят полное поражение, когда другая сторона готова. В американском футболе на третьем дауне, когда остается пройти один ярд, пробежка на середину поля — это безопасная стратегия, а длинный пас — рискованная. Здесь возникает интересный вопрос, поскольку порой в ситуациях «третий даун, один ярд» на кону стоит больше, чем в других подобных ситуациях. Например, начало игры с 10-ярдовой линии соперника гораздо сильнее влияет на возможное количество заработанных очков, чем ее старт с вашей собственной 20-ярдовой линии. Вопрос в том, следует ли вам чаще или реже прибегать к рискованным стратегиям в случае более высоких ставок, чем низких.

Для того чтобы представить это в более конкретном виде, проанализируйте вероятности успеха, представленные на рис. 7.6. (Обратите внимание, что тогда как в теннисе мы использовали проценты от 0 до 100, здесь мы используем вероятности от 0 до 1.) Безопасная игра команды нападения — пробежка; вероятность успешного первого дауна составляет 60 %, если команда защиты ожидает пробежки, и 70 %, если защита полагает, что будет пас. Рискованная игра команды нападения — пас, поскольку вероятность успеха в куда большей степени зависит от действий команды защиты; вероятность успеха равна 80 %, если защита ожидает пробежки, и всего 30 %, если защита рассчитывает на пас.


Рис. 7.6. Вероятность успеха команды нападения в игре «третий даун, один ярд»


Допустим, в случае успешной игры команда защиты получает выигрыш, равный V, а неудачной — выигрыш 0. Выигрыш V может представлять собой то или иное количество очков, скажем, три очка за гол в ворота или семь очков за тачдаун. Кроме того, выигрыш V может отображать определенный уровень статуса или количество денег, заработанных командой; например, V = 100 за успешную игру в обычном матче или V = 1 000 000 за победу в Суперкубке по американскому футболу[96].

В фактической таблице игры между командами нападения и защиты, представленной на рис. 7.7, отображены ожидаемые выигрыши каждой команды. Они представляют собой среднее между выигрышем V при успешной игре и 0 при неудачной. Например, ожидаемый выигрыш команды нападения, использующей стратегию «пробежка» в случае, если команда защиты ожидает стратегии «пробежка», составляет 0,6 × V + 0,4 × 0 = 0,6V. Поскольку данная игра относится к категории игр с нулевой суммой, выигрыш команды защиты в этой ячейке равен –0,6V. Аналогичным образом вы можете рассчитать выигрыши во всех остальных ячейках таблицы, чтобы убедиться, что значения, приведенные ниже, правильные.


Рис. 7.7. Игра «третий даун, один ярд»


При равновесии в смешанных стратегиях вероятность p того, что команда нападения выберет стратегию «пробежка», определяется свойством безразличия соперника. Стало быть, правильное значение p удовлетворяет следующему условию:

p[–0,6V] + (1 — p)[–0,8V] = p[–0,7V] + (1 — p)[–0,3V].

Обратите внимание, что мы можем разделить обе стороны этого равенства на V, чтобы полностью исключить V из процесса вычисления p[97]. Тогда упрощенное уравнение будет выглядеть так: –0,6p — 0,8(1 — p) = –0,7p — 0,3(1 — p), или 0,1p = 0,5(1 — p). Решив его, получим p = 5/6; следовательно, команда нападения с высокой вероятностью применит стратегию «пробежка» в своей комбинации стратегий. Такую безопасную игру часто называют «процентной игрой», потому что это нормальный ход игры в подобных ситуациях. Рискованная игра (стратегия «пас») разыгрывается лишь изредка, чтобы держать соперника в неведении или, говоря на языке футбольных комментаторов, «не давать защите расслабиться».

Интересный аспект этого результата состоит в том, что выражение для вычисления p совершенно не зависит от V. То есть, согласно теории, процентную и рискованную игру следует смешивать в равных пропорциях как в очень важных, так и во второстепенных ситуациях. Но этот результат противоречит интуитивным выводам многих людей, которые считают, что в более важных ситуациях рисковать следует реже. Длинный пас на третьем дауне с одним оставшимся ярдом приемлем в обычный октябрьский воскресный день, но делать такой пас во время Суперкубка слишком рискованно.

Так кто же прав: теория или интуиция? По всей вероятности, мнения читателей по этому вопросу разделятся. Некоторые будут утверждать, что спортивные комментаторы ошибаются, и с радостью обнаружат, что теоретические аргументы опровергают их заявления. Другие примут сторону комментаторов и будут доказывать, что важные матчи требуют более безопасной игры. Есть и те, кто считает, что ради более крупных призов следует больше рисковать, однако даже они не находят поддержки данной идеи в теории, а это говорит о том, что размер приза или ущерба вряд ли оказывает какое-либо влияние на вероятности чистых стратегий в смешанной стратегии.

Во многих предыдущих случаях возникновения расхождений между теорией и интуицией мы утверждали, что они кажущиеся и являются результатом неспособности сделать теорию настолько общей или глубокой, чтобы она охватывала все аспекты ситуации, в отношении которой делаются интуитивные выводы, и что улучшение теории позволяет устранить такие расхождения. В данном случае ситуация иная: проблема имеет фундаментальное значение для вычисления выигрышей от смешанных стратегий как взвешенных по вероятности средних значений, или ожидаемых выигрышей. И это отправная точка почти всех научных работ в современной теории игр[98].

6. Смешивание стратегий при наличии трех или более чистых стратегий у одного игрока

Наше обсуждение игр со смешанными стратегиями до сих пор ограничивалось только играми, в которых у каждого участника было по две чистые стратегии, а также их комбинации. Однако во многих стратегических ситуациях каждый игрок располагает большим количеством чистых стратегий, поэтому мы должны подготовиться к вычислению равновесных смешанных стратегий и в подобных случаях. Но уровень сложности таких расчетов стремительно повышается. В поистине сложных играх для поиска равновесия в смешанных стратегиях нам пришлось бы прибегнуть к помощи компьютера. Тем не менее в некоторых небольших играх найти такое равновесие вручную не составит труда. И этот процесс вычислений позволит лучше понять, как работает равновесие, чем при анализе решения, сгенерированного компьютером. По этой причине в данном и следующем разделах мы поищем решение более крупных игр.

В этом разделе мы остановимся на играх с нулевой суммой, в которых у одного из игроков всего две чистые стратегии, тогда как у другого — больше. Как мы заметили, в таких играх игрок, имеющий три (или более) чистые стратегии, как правило, использует в равновесии только две. Остальные просто не входят в эту комбинацию стратегий, то есть вероятность их применения равна нулю. Мы должны лишь определить, какие стратегии используются в равновесии, а какие нет[99].

В качестве примера рассмотрим игру в розыгрыш очка в теннисе, включив в число стратегий Эверт третий тип возврата подачи. Помимо удара по линии и удара по диагонали теперь она может использовать свечу (более медленный, но и более высокий и длинный удар). Равновесие зависит от выигрышей в случае применения свечи против каждой из двух оборонительных стратегий Навратиловой. Начнем с самого вероятного случая, а затем перейдем к анализу особого случая.

А. Общий случай

Теперь в распоряжении Эверт три чистые стратегии: ПЛ (по линии), ПД (по диагонали) и СВ (свеча), а у Навратиловой только две: прикрывать удар ПЛ или прикрывать удар ПД. Таблица выигрышей этой новой игры представлена на рис. 7.8. Мы исходили из предположения, что выигрыши Эверт от стратегии СВ находятся в диапазоне между максимальным и минимальным выигрышами, которые она может получить от стратегий ПЛ и ПД, а также что они не слишком отличаются в случаях, когда Навратилова прикрывает ПЛ или ПД. В таблице отображены выигрыши не только от чистых стратегий, но и от трех чистых стратегий Эверт против q-комбинации Навратиловой. (Мы не показываем строку для p-комбинации Эверт, поскольку в этом нет необходимости. Для этого понадобились бы две вероятности, скажем, p1 в случае стратегии ПЛ и p2 в случае стратегии ПД; тогда вероятность стратегии СВ составила бы (1 — p1p2). В следующем разделе мы расскажем, как найти равновесные комбинации стратегий такого типа.)


Рис. 7.8. Таблица выигрышей в игре с розыгрышем очка с использованием стратегии «свеча»


Строго говоря, прежде чем приступать к поиску равновесия в смешанных стратегиях, мы должны убедиться в том, что в игре отсутствует равновесие в чистых стратегиях. Однако сделать это достаточно легко, поэтому оставляем эту задачу вам и переходим к смешанным стратегиям.

Мы проанализируем оптимальный выбор q Навратиловой с помощью логики наилучших ответов. На рис. 7.9 показаны ожидаемые выигрыши Эверт (проценты успеха) в случае выбора каждой из чистых стратегий — ПЛ, ПД и СВ, тогда как значение q в q-комбинации Навратиловой меняется в интервале от 0 до 1. На данном рисунке изображены графики формул расчета выигрышей, представленных в правом столбце таблицы на рис. 7.8. По каждому значению q при выборе Навратиловой данной q-комбинации в равновесии наилучшим ответом Эверт был бы выбор стратегии, обеспечивающей ей (Эверт) самый высокий выигрыш. На рис. 7.9 совокупность наилучших исходов для Эверт выделена более жирной линией, называемой на языке математики верхней огибающей трех линий выигрышей. Навратилова стремится выбрать свое наилучшее значение q, которое бы позволило ей получить как можно более высокий выигрыш (тем самым понизив выигрыш Эверт, насколько возможно) из этой совокупности наилучших ответов Эверт.


Рис. 7.9. Поиск q-комбинации Навратиловой графическим способом


Для более точного определения оптимального выбора q Навратиловой мы должны вычислить координаты точек излома линии, соответствующей ее наихудшему исходу (и наилучшему исходу для Эверт). Значение q в крайней левой точке излома линии означает безразличие Эверт в отношении выбора между ПЛ и СВ. Это значение q должно равняться двум выигрышам от использования стратегий ПЛ и СВ против данной q-комбинации. Приравняв эти два выражения, получим 50q + 80(1 — q) = 70q + 60(1 — q), или q = 20/40 = 1/2 = 50 %. Ожидаемый выигрыш Эверт в этой точке составит 50 × 0,5 + 80 × 0,5 = 70 × 0,5 + 60 × 0,5 = 65. Во второй (крайней правой) точке излома Эверт безразлично, какую стратегию выбрать, ПД или СВ. Таким образом, значение q в этой точке приравнивает выражения для вычисления выигрышей от стратегий ПД и СВ. Установив равенство 90q + 20(1 — q) = 70q + 60(1 — q), находим значение q = 40/60 = 2/3 = 66,7 %. В этом случае ожидаемый выигрыш Эверт составляет 90 × 0,667 + 20 × 0,333 = 70 × 0,667 + 60 × 0,333 = 66,67. Следовательно, наилучший (или наименее неблагоприятный) выбор q Навратиловой находится в крайней левой точке излома, то есть q = 0,5. При этом ожидаемый выигрыш Эверт равен 65, а Навратиловой, соответственно, 35.

Когда Навратилова выбирает q = 0,5, Эверт безразлично, какую стратегию применить, ПЛ или СВ, а значит, выбор любой из них обеспечивает ей более высокий выигрыш, чем стратегия ПД. Поэтому Эверт не станет включать стратегию ПД в равновесие, и она станет неиспользуемой в равновесной комбинации стратегий Эверт.

Теперь продолжим анализ равновесия так, как если бы это была игра с двумя чистыми стратегиями у каждой из ее участницы: ПЛ и ПД у Навратиловой и ПЛ и СВ у Эверт. Итак, мы вернулись на знакомую почву, поэтому предоставляем вам возможность выполнить необходимые расчеты самостоятельно и приводим здесь только результат. Оптимальная комбинация стратегий Эверт в данной игре подразумевает выбор стратегии ПЛ с вероятностью 0,25 и стратегии СВ с вероятностью 0,75. Ожидаемый выигрыш Эверт от этой комбинации стратегий, использованных в игре против ПЛ и ПД Навратиловой соответственно, составляет 50 × 0,25 + 70 × 0,75 = 80 × 0,25 + 60 × 0,75 = 65, как, разумеется, и должно быть.

Мы не могли начать этот анализ с игры два на два, поскольку не знали заранее, какую из трех стратегий Эверт не будет использовать. Однако мы не сомневаемся, что в общем случае обязательно будет одна такая стратегия. Когда три линии ожидаемых выигрышей занимают самые общие положения, они пересекаются попарно, а не все в одной точке. При этом верхняя огибающая имеет форму как на рис. 7.9. Самая нижняя точка огибающей задается пересечением линий выигрышей, соответствующих двум из трех стратегий. Выигрыш от третьей стратегии находится ниже пересечения в этой точке, а значит, игрок, выбирающий между тремя стратегиями, не будет использовать именно третью стратегию.

Б. Особые случаи

Положения и пересечения трех линий на рис. 7.9 зависят от выигрышей, указанных для чистых стратегий. Для данной игры мы выбирали выигрыши, позволяющие проиллюстрировать общую конфигурацию линий. Однако, если выигрыши находятся в весьма своеобразной зависимости друг от друга, мы можем получить особые конфигурации с различными результатами. Мы проанализируем здесь такие варианты, а возможность построить новые графики для этих случаев предоставляем вам.

Во-первых, если выигрыши от стратегии СВ, применяемой Эверт против стратегий ПЛ и ПД Навратиловой, равны, прямая СВ будет горизонтальной; при этом весь диапазон значений q делает комбинацию стратегий Навратиловой защищенной от использования. Например, если каждый из двух выигрышей в строке СВ таблицы на рис. 7.8 равен 70, то нетрудно определить, что левая точка излома на обновленном рис. 7.9 находилась бы в точке, соответствующей значению q = 1/3, а правая точка излома — в точке q = 5/7. При любом значении q в диапазоне от 1/3 до 5/7 наилучший ответ Эверт — СВ, а значит, мы получаем необычное равновесие, в котором Эверт выбирает чистую стратегию, а Навратилова чистые стратегии смешивает. Более того, вероятности чистых стратегий в равновесной смешанной стратегии Навратиловой имеют неопределенное значение в диапазоне от q = 1/3 до q = 5/7.

Во-вторых, если выигрыши Эверт при использовании стратегии СВ против стратегий ПЛ и ПД Навратиловой на определенную величину ниже выигрышей, представленных в таблице на рис. 7.8 (или если выигрыши от оставшихся двух стратегий на определенную величину выше указанных в таблице), все три прямые могут пересекаться в одной точке. Например, если выигрыши Эверт от стратегии СВ против стратегий ПЛ и ПД Навратиловой составляют не 70 и 60, а 66 и 56 соответственно, то при q = 0,6 ожидаемый выигрыш Эверт от стратегии СВ равен 66 × 0,6 + 56 × 0,4 = 39,6 + 22,6 = 62, то есть такой же, как и выигрыш от стратегий ПЛ и ПД при q = 0,6. В таком случае Эверт безразлично, какую из трех имеющихся стратегий выбрать при q = 0,6, и она готова смешивать все три.

В этом особом случае вероятности чистых стратегий в равновесной комбинации стратегий Эверт не могут быть полностью определенными. Напротив, целый диапазон комбинаций (в том числе и использующих все три стратегии) может выполнять задачу по поддержанию безразличия Навратиловой в отношении выбора между стратегиями ПЛ и ПД, а значит, и готовности их смешивать. Тем не менее Навратилова должна применить комбинацию со значением q = 0,6. Если она этого не сделает, наилучшим ответом Эверт будет переход к одной из чистых стратегий в ущерб Навратиловой. Мы не станем подробно останавливаться на определении точного диапазона, в котором могут меняться равновесные смешанные стратегии Эверт, поскольку такая ситуация может сложиться лишь при особых комбинациях выигрышей и, стало быть, это не столь важно.

Обратите внимание, что выигрыши Эверт от использования стратегии СВ против стратегий ПЛ и ПД Навратиловой могут быть даже ниже значения, при котором все три прямые пересекаются в одной точке (например, если бы выигрыши от СВ равнялись 75 и 30 вместо 70 и 60, как на рис. 7.8). Тогда стратегия СВ не может быть наилучшим ответом Эверт, хотя она не является ни доминируемой стратегией ПЛ, ни доминируемой стратегией ПД. Случай, когда стратегия СВ доминируема по отношению к комбинации стратегий ПЛ и ПД, рассматривается в онлайн-приложении в данной главе.

7. Смешивание стратегий при наличии трех стратегий у обоих игроков

При рассмотрении игр, в которых у обоих игроков есть по три чистые стратегии с возможностью смешивания всех трех, необходимы две переменные, чтобы задать каждую комбинацию стратегий[100]. В комбинации игрока, данные которого отображаются в строках, его первой чистой стратегии соответствует вероятность p1, а второй — вероятность p2. Тогда вероятность использования третьей чистой стратегии должна составлять 1 минус сумма вероятностей остальных двух стратегий. То же самое касается комбинации игрока, которому соответствуют столбцы. Таким образом, когда каждый игрок имеет по три чистые стратегии, найти равновесие в смешанных стратегиях без выполнения алгебраических операций с двумя переменными нельзя. Тем не менее зачастую такие алгебраические расчеты вполне выполнимы.

А. Полная комбинация всех стратегий

Рассмотрим упрощенное представление пенальти в футболе. Предположим, выполняющий его игрок, бьющий правой ногой, имеет три чистые стратегии: удар влево, вправо или в центр (налево или направо по отношению к вратарю; для игрока-правши было бы логично отправить мяч направо от вратаря), и может смешивать их с вероятностями, обозначенными как pл, pп, pц соответственно. Любые две из этих вероятностей можно принять как независимые переменные, а третью выразить через них. Если pл и pп — независимые переменные, то pц = 1 — pлpп. Вратарь также располагает тремя чистыми стратегиями, а именно двигаться налево от бьющего игрока (направо от самого вратаря), направо от бьющего игрока (налево от вратаря) или оставаться в центре. Кроме того, вратарь может их смешивать с вероятностями qл, qп, qц, две из которых могут быть выбраны в качестве независимых переменных.

Как и в разделе 6.А, график наилучших ответов для этой игры потребовал бы более двух размерностей. (Точнее говоря, четыре. Вратарь выбрал бы свои две независимые переменные, скажем (qл, qп), как свой наилучший ответ на две независимые переменные игрока, выполняющего пенальти (pл, pп), и наоборот.) Вместо этого мы снова воспользуемся свойством безразличия соперника, чтобы сфокусироваться на вероятностях чистых стратегий в смешанной стратегии по одному игроку за один раз. В случае каждого игрока вероятности должны быть такими, чтобы другому игроку было безразлично, какую стратегию из имеющихся в его комбинации стратегий выбрать. Это дает нам систему уравнений, которая позволит найти вероятности применения чистых стратегий в смешанной стратегии. В примере с футболом переменные (pл, pп) удовлетворяли бы двум уравнениям, выражающим требование о том, что ожидаемый выигрыш вратаря от использования стратегии «налево» должен быть равен ожидаемому выигрышу от применения стратегии «направо», а также что ожидаемый выигрыш вратаря от выбора стратегии «направо» должен равняться ожидаемому выигрышу от выбора стратегии «в центре». (В таком случае равенство ожидаемых выигрышей от применения стратегий «налево» и «в центре» определяется автоматически и не требует отдельного уравнения.) При большем количестве стратегий число вероятностей, подлежащих вычислению, и уравнений, которым они должны удовлетворять, тоже увеличивается.

На рис. 7.10 показана таблица взаимодействия между игроком, выполняющим пенальти, и вратарем, где в качестве выигрышей каждого игрока указаны проценты успешных действий. (В этой таблице для упрощения расчетов приведены не фактические данные европейского футбола, представленные чуть ниже, а аналогичные округленные числа.) Поскольку игрок, бьющий пенальти, хочет максимально увеличить выраженную в процентах вероятность того, что он забьет гол, а вратарь стремится минимизировать вероятность того, что он его пропустит, мы имеем дело с игрой с нулевой суммой. Например, в ситуации, когда бьющий игрок отправит мяч налево от себя, а вратарь сделает движение налево от бьющего игрока (ячейка в верхнем левом углу), мы исходим из предположения, что бьющему игроку все равно удастся забить гол в 45 % случаев, стало быть, вратарь сможет отразить удар в 55 % случаев. Однако если бьющий игрок отправит мяч направо от себя, а вратарь сделает движение налево от него, то у бьющего есть возможность забить гол с вероятностью 90 %; мы исходим из того, что он с вероятностью 10 % может ударить мимо или выше ворот, а значит, вратарь может добиться успеха в 10 % случаев. Вы можете поэкспериментировать с другими, более приемлемыми, на ваш взгляд, значениями выигрышей.


Рис. 7.10. Игра в пенальти в футболе


Легко убедиться, что в этой игре нет равновесия в чистых стратегиях. Поэтому допустимя, что игрок, выполняющий пенальти, смешивает стратегии с вероятностями pл, pп и pц = 1 — pлpп. По каждой чистой стратегии вратаря эта комбинация обеспечивает ему следующие выигрыши:

«Налево»: 55pл + 15pц + 5pп = 55pл + 15(1 — pлpп) + 5pп.

«В центр»: 10pл + 100pц + 5pп = 10pл + 100(1 — pлpп) + 5pп.

«Направо»: 10pл + 15pц + 40pп = 10pл + 15(1 — pлpп) + 40pп.

Правило безразличия соперника гласит, что бьющий игрок должен выбрать pл и pп, с тем чтобы в равновесии все три выражения были эквивалентны.

Приравняв выражения, соответствующие стратегиям «налево» и «направо», и упростив полученное равенство, имеем 45pл = 35pп, или pп = (9/7)pл. Далее приравниваем выражения, соответствующие стратегиям «в центре» и «направо», и упрощаем полученное равенство с помощью только что выведенного соотношения между pп. Это дает 10pл + 100[1 — pл — (9pл / 7)] + 5(9pл / 7) = 10pл + 15[1 — pл — (9pл / 7)] + 40 (9pл / 7), или [85 + 120(9/7)] pл = 85, что дает pл = 0,355. Далее получаем pп = 0,355(9/7) = 0,457 и, наконец, pц = 1–0,355 — 0,457 = 0,188. Затем вычисляем с помощью представленных выше трех строк выигрышей выигрыш вратаря от любой из его трех стратегий против этой комбинации стратегий; результат — 24,6.

Вероятности чистых стратегий в смешанной стратегии вратаря можно определить, записав и решив уравнения безразличия бьющего игрока в отношении его выбора из трех чистых стратегий в игре против комбинации стратегий вратаря. Мы будем это делать в ходе анализа несколько измененного варианта этой игры в разделе 7.Б, поэтому здесь опускаем детали и просто приводим полученный результат: qл = 0,325, qп = 0,561 и qц = 0,113. Выигрыш бьющего игрока от любой из его чистых стратегий в игре против равновесной комбинации стратегий вратаря составляет 75,4. Разумеется, он согласуется с выигрышем вратаря 24,6, который мы вычислили выше.

Теперь можем разъяснить эти выводы. Игрок, выполняющий пенальти, получит более высокий выигрыш от своей чистой стратегии «направо», чем от чистой стратегии «налево», как в случае, если вратарь правильно угадает его ход (60 > 45), так и если он ошибется (95 > 90). (Предположительно игрок будет бить левой, а значит, может сделать более сильный удар направо.) Таким образом, бьющий игрок выберет с самой высокой вероятностью стратегию «направо», и чтобы противостоять этому, вратарь также с высокой вероятностью выберет стратегию «направо»; однако при таком раскладе выигрыш бьющего в итоге составит всего 60, то есть меньше выигрыша 75,4, который он получит при равновесии в смешанных стратегиях.

Б. Равновесные комбинации, в которых используются не все стратегии

В равновесии из предыдущего примера вероятность применения стратегии «в центре» в смешанной стратегии достаточно низкая для каждого игрока. Комбинация «в центр» / «в центре» привела бы к гарантированному отражению пенальти, и бьющий игрок получил бы поистине низкий выигрыш, то есть ноль. В связи с чем данный игрок присваивает этому выбору низкую вероятность. Но тогда вратарь также должен присвоить выбору этой стратегии низкую вероятность, сосредоточившись на противодействии более вероятным стратегиям бьющего игрока. Но если последний получит достаточно высокий выигрыш от выбора стратегии «в центр», когда вратарь применит «налево» или «направо», то он будет выбирать «в центр» с определенной положительной вероятностью. Если бы выигрыши бьющего игрока в строке, соответствующей стратегии «в центр», были ниже, то он мог бы использовать стратегию «в центр» с нулевой вероятностью; тогда вратарь также присвоил бы нулевую вероятность стратегии «в центре». При таком развитии событий данная игра превратилась бы в игру с двумя базовыми чистыми стратегиями, «налево» и «направо», находящимися в распоряжении каждого игрока.

Этот вариант игры в футбол показан на рис. 7.11. Единственное различие между выигрышами в данной и первоначальной версии игры (рис. 7.10) состоит в том, что выигрыши бьющего игрока от комбинации стратегий «в центр» / «слева» и «в центр» / «справа» сократились еще больше, с 85 до 70. Это могло произойти потому, что бьющему игроку свойственно посылать мяч слишком высоко, а значит, он часто промахивается, целясь в центр. Попробуем вычислить равновесие в этой игре, воспользовавшись тем же методом, что и в разделе 7.А. На этот раз сделаем это с позиции вратаря, попытавшись найти вероятности применения чистых стратегий qл, qп и qц в смешанной стратегии с помощью условия безразличия бьющего игрока в отношении выбора между тремя чистыми стратегиями в игре против данной комбинации стратегий.


Рис. 7.11. Вариант игры в пенальти в футболе


Выигрыши бьющего игрока от его чистых стратегий составляют:

«Налево»: 45qл + 90qц + 90qп = 45qл + 90(1 — qлqп) + 90qп = 45qл + 90(1 — qл).

«В центре»: 70qл + 0qц + 70qп = 70qл + 70qп.

«Направо»: 95qл + 95qц + 60qп = 95qл + 95(1 — qлqп) + 60qп = 95(1 — qл) + 60qп.

Приравняв выражения, соответствующие стратегиям «налево» и «направо», и упростив полученное равенство, имеем 90–45qл = 95–35qп, или 35qп = 5 + 45qл. Далее приравниваем выражения, соответствующие стратегиям «налево» и «в центр», и упрощаем их, что дает 90–45qл = 70qл + 70qп, или 115qл + 70qп = 90. Подставив qп из первого уравнения (сначала умножив все члены уравнения на 2, чтобы вышло 70qп = 10 + 90qл) во второе, получаем 205qл = 80, или qл = 0,390. Затем, подставив это значение qл в любое из уравнений, получим qп = 0,644. И наконец, используем эти оба значения, чтобы получить qц = 1–0,390 — 0,644 = –0,034. Поскольку значение вероятности не может быть отрицательным, что-то явно пошло не так.

Чтобы понять, что происходит в данном примере, для начала обратите внимание на то, что теперь для бьющего пенальти игрока стратегия «в центр» хуже этой же стратегии в первоначальной версии игры, где вероятность ее выбора уже была достаточно низкой. Однако логика безразличия соперника, выраженная в виде уравнений, приведших к данному решению, означает, что бьющий игрок должен быть готов использовать эту плохую стратегию. Это может произойти только тогда, когда вратарь достаточно редко применяет свою наилучшую стратегию противодействия стратегии бьющего игрока «в центр», а именно стратегию «в центре». В данном примере такую логику рассуждений необходимо продолжать до тех пор, пока вероятность применения вратарем стратегии «в центре» не станет отрицательной.

С сугубо алгебраической точки зрения полученное решение вполне приемлемо, однако оно нарушает требование теории вероятностей и свойственной реальной жизни рандомизации в отношении того, что значение вероятности не может быть отрицательным. Лучшее, что здесь можно сделать, — снизить вероятность выбора вратарем стратегии «в центре» до минимального значения, то есть до нуля. Но в этом случае бьющий игрок не склонен к выбору стратегии «в центр». Иными словами, мы получаем ситуацию, в которой каждый игрок не использует одну из своих чистых стратегий в смешанной стратегии или использует ее с нулевой вероятностью.

Но тогда может ли существовать равновесие, в котором каждый игрок смешивает две оставшиеся стратегии — «налево» и «направо»? Если рассматривать эту сокращенную игру два на два саму по себе, можно без труда найти ее равновесие в смешанных стратегиях. Учитывая, что к настоящему моменту вы уже накопили достаточно большой опыт, мы оставляем детали поиска равновесия вам и приводим только полученный результат.

Вероятности применения чистых стратегий в смешанной стратегии бьющего игрока: pл = 0,4375, pл = 0,5625.

Вероятности применения чистых стратегий в смешанной стратегии вратаря: qл = 0,3750, qп = 0,6250.

Ожидаемый выигрыш бьющего игрока (процент успеха): 73,13.

Ожидаемый выигрыш вратаря (процент успеха): 26,87.

Мы получили этот результат, просто исключив стратегии двух игроков «в центр» и «в центре», руководствуясь интуицией. Но мы должны проверить, действительно ли это равновесие будет таковым в полной игре три на три, то есть должны убедиться, что ни один игрок не сочтет нужным применить третью стратегию в случае комбинации двух стратегий, выбранных другим игроком.

При выборе вратарем той или иной комбинации стратегий выигрыш бьющего игрока от применения чистой стратегии «в центр» составляет 0,375 × 70 + 0,625 × 70 = 70, что меньше выигрыша 73,13, который он получит от любой из своих чистых стратегий «налево» и «направо» или от любой их комбинации, а значит, бьющему игроку нет необходимости применять стратегию «в центр». Когда бьющий игрок выбирает комбинацию из двух стратегий с указанными выше вероятностями, выигрыш вратаря от использования чистой стратегии «в центре» составляет 0,4375 × 10 + 0,5625 × 50 = 7,2. И он существенно ниже выигрыша 26,87, который вратарь получил бы в случае применения любой из своих чистых стратегий «налево» и «направо» или от любой их комбинации. Таким образом, вратарю также не имеет смысла применять стратегию «в центре». Следовательно, равновесие, которое мы нашли для игры два на два, актуально и для игры три на три.

Чтобы предусмотреть вероятность того, что некоторые стратегии могут остаться незадействованными в равновесной комбинации стратегий, следует уточнить или расширить принцип безразличия соперника. Равновесная комбинация каждого игрока должна быть такой, чтобы другому игроку было безразлично, какую именно стратегию выбрать из тех, которые действительно используются в его равновесной комбинации, то есть другому игроку не безразличен выбор между ними и неиспользованными стратегиями и он отдает предпочтение выбранным стратегиям перед невыбранными. Иными словами, в игре против равновесной комбинации соперника все стратегии, вошедшие в состав вашей равновесной комбинации, должны обеспечивать вам один и тот же ожидаемый выигрыш, а он, в свою очередь, должен превышать выигрыш, который бы вы получили от любой из неиспользованных стратегий.

Какие именно стратегии останутся неиспользованными в равновесии? Ответ на этот вопрос требует применения метода проб и ошибок, как в приведенных выше вычислениях, либо выполнения соответствующих расчетов с помощью компьютерной программы. Как только вы поймете саму концепцию, можете приступать ко второму. Описание общей теории равновесий в смешанных стратегиях в случаях, когда в распоряжении игроков есть любое количество возможных стратегий, ищите в онлайн-приложении к данной главе.

8. Как использовать смешанные стратегии на практике

При поиске или выборе смешанной стратегии в игре с нулевой суммой следует помнить о нескольких важных моментах. Во-первых, для эффективного использования смешанной стратегии в такой игре ее участникам нужно сделать нечто большее, чем просто вычислить выраженные в процентах равновесные вероятности применения каждого из своих действий. На самом деле в игре с розыгрышем очка в теннисе Эверт не может просто выбирать стратегию ПЛ в семи из десяти случаев и стратегию ПД в трех из десяти случаев, механически чередуя семь ударов по линии и три удара по диагонали. Почему? Потому что смешивание стратегий должно помочь вам в полной мере воспользоваться элементом неожиданности в игре против соперника. Если вы задействуете узнаваемую схему игры, соперник наверняка это выявит и обернет себе на пользу.

Отсутствие закономерности означает, что после любой последовательности выбранных стратегий вероятность выбора стратегии ПЛ или ПД в следующий раз остается такой же, как всегда. Скажем, если стратегия ПЛ случайно используется несколько раз подряд, это отнюдь не означает, что ее «обязательно» должна сменить стратегия ПД. На практике многие ошибочно рассуждают совсем иначе, поэтому слишком часто чередуют варианты выбора по сравнению с тем, какой была бы их истинная случайная последовательность, и крайне редко используют несколько идентичных вариантов подряд. Тем не менее обнаружение закономерности в наблюдаемых действиях требует сложных статистических расчетов, которые соперники зачастую не в состоянии выполнять во время игры. Как мы увидим в разделе 9, анализ результатов финальных матчей турниров Большого шлема привел к выводу, что подающие игроки слишком часто чередовали свои подачи, но принимающие не смогли обнаружить и воспользоваться этим отклонением от истинного вероятностного выбора действий.

Важность предотвращения предсказуемости наиболее очевидна в случае непрерывного взаимодействия в играх с нулевой суммой. Поскольку в таких играх интересы игроков диаметрально противоположны, ваш соперник всегда стремится использовать ваш выбор действий с максимальной выгодой для себя. Таким образом, если вы регулярно ведете против друг друга одну и ту же игру, соперник будет постоянно искать способ взломать код, используемый вами для рандомизации своих ходов. И если ему это удастся, у него появится шанс увеличить свой выигрыш в следующих раундах игры. Однако даже в случае однократных игр с нулевой суммой смешивание стратегий приносит пользу благодаря тактической неожиданности.

Победитель Мировой серии покера Дэниел Харрингтон, написавший в соавторстве с Биллом Роберти ряд замечательных книг об игре в разновидность покера под названием «техасский холдем», отмечает важность рандомизации стратегии в покере, позволяющей помешать сопернику угадать, какие карты у вас на руках, и использовать ваше поведение с выгодой для себя[101]. Поскольку людям зачастую трудно вести себя непредсказуемо, Харрингтон дает следующий совет относительно того, как применять комбинацию таких чистых стратегий, «поднять ставку» и «ответить»:

Очень трудно точно вспомнить, что ты делал в последних четырех или пяти случаях при возникновении похожей ситуации. К счастью, это и не надо. Просто используй тот маленький генератор случайных чисел, который ты носишь в течение дня с собой. Что это? Ты и не знаешь, что у тебя такое есть? Да это секундная стрелка на твоих часах. Если ты знаешь, что в ранней позиции и при наличии на руках старшей пары ты должен повышать ставку в 80 % случаев и отвечать в остальных 20 %, то просто посмотри на часы и обрати внимание на положение секундной стрелки. Поскольку 80 % от 60 составляют 48, ты должен повышать ставку, если секундная стрелка находится между делениями от 0 до 48, и только отвечать, если между 48 и 60. Этот метод хорош тем, что даже если бы кто-то точно знал, что ты делаешь, он бы все равно не смог предсказать твоих дальнейших действий![102]

Безусловно, при использовании секундной стрелки часов для реализации смешанной стратегии важно, чтобы ваши часы не были слишком точными, иначе соперник сможет использовать такие же часы и предугадает ваши намерения!

До сих пор мы исходили из предположения, что вы заинтересованы в применении смешанной стратегии, чтобы предотвратить возможное использование соперником ваших действий в своих интересах. Однако если он не придерживается равновесной стратегии, вы можете попытаться воспользоваться его ошибкой. В качестве иллюстрации приведем пример из эпизода мультсериала «Симпсоны», в котором Барт и Лиза играют друг с другом в игру «камень, ножницы, бумага». (В упражнении S10 дано полное описание этой игры три на три; вам предстоит вычислить равновесную комбинацию стратегий каждого игрока.) Перед выбором стратегий Барт думает: «Конечно, камень. Он самый сильный». В то же время Лиза думает: «Бедный предсказуемый Барт. Он всегда выбирает камень». Как и следовало ожидать, наилучший ответ Лизы — стратегия «бумага» против своего незадачливого соперника; ей нет необходимости применять равновесную комбинацию стратегий.

Более тонкий пример использования действий соперника в своих интересах можно наблюдать в разыгрываемой парами студентов версии игры в теннис под названием «лучший из 100». Как и профессиональные теннисисты, наши студенты слишком часто переключаются с одной стратегии на другую, по всей видимости, считая, что выбор ПЛ пять раз подряд выглядит не таким уж «случайным». Для того чтобы извлечь из этого поведения выгоду для себя, игрок в роли Навратиловой смог предвидеть, что после выбора стратегии ПЛ три раза подряд игрок в роли Эверт, по всей вероятности, перейдет к стратегии ПД, и это можно обернуть себе на пользу, также переключившись на стратегию ПД. Этому игроку следовало бы поступать так чаще, чем в случае рандомизации каждого раунда игры в отдельности, но в идеале не так часто для того, чтобы игрок в роли Эверт заметил это и не научился повторять одну и ту же стратегию большее количество раз.

И наконец, игроки должны понять и принять тот факт, что применение смешанных стратегий защищает вас от использования соперником ваших действий в своих интересах и обеспечивает вам максимально возможный ожидаемый выигрыш в игре с соперником, который делает свой лучший выбор, но это не более чем математическое ожидание. В особых случаях игра может закончиться для вас неблагоприятным исходом. Например, длинный пас на третьем дауне с одним оставшимся ярдом, сделанный, чтобы держать защиту в напряжении, может завершиться неудачей в любом конкретном случае. Если вы выбираете смешанную стратегию в ситуации, за которою несете ответственность перед руководством, вы должны предусмотреть такой вариант. Вам следует заранее объяснить целесообразность использования вашей стратегии, скажем, своему тренеру или боссу. Они должны понять, почему вы ее выбрали и почему считаете, что она обеспечит вам наилучший выигрыш в среднем, хотя иногда и чревата достаточно низким выигрышем. Однако даже такое заблаговременное планирование не всегда способно защитить вашу «репутацию», поэтому вы должны быть готовы к критике при нежелательном исходе игры.

9. Эмпирические данные о смешивании стратегий

А. Игры с нулевой суммой

Первые исследователи, проводившие лабораторные эксперименты в области теории игр, как правило, пренебрегали смешанными стратегиями. Дуглас Дэвис и Чарльз Холт сказали по этому поводу следующее: «Участников экспериментов редко (если вообще когда-либо) можно было увидеть за подбрасыванием монеты, а когда впоследствии им говорили, что равновесие подразумевает рандомизацию, это вызывало у них удивление и скептицизм»[103]. Когда ожидаемое равновесие подразумевает смешивание двух или более чистых стратегий, результаты экспериментов показывают, что некоторые участники группы придерживаются одной чистой стратегии, тогда как остальные — другой, но это не истинное смешивание стратегий одним игроком. При многократной игре участников эксперимента в игры с нулевой суммой отдельные игроки часто со временем выбирают другие чистые стратегии. Тем не менее создается впечатление, что они ошибочно принимают чередование за случайный выбор, то есть переключаются между стратегиями чаще, чем того требует истинная рандомизация.

В ходе последующих исследований были получены несколько более достоверные данные в пользу смешивания в играх с нулевой суммой. Когда участники лабораторных экспериментов имеют возможность накопить большой опыт, они действительно осваивают навыки смешивания стратегий в играх с нулевой суммой. Тем не менее отклонения от равновесных прогнозов остаются весьма существенными. Усредненные по всем участникам эксперимента эмпирические вероятности, как правило, достаточно близки к вероятностям, рассчитанным посредством равновесия, но многие игроки все же выбирают стратегии в пропорциях, далеких от предсказанных равновесием. Колин Камерер сказал об этом следующее: «Общая картина такова, что смешанные равновесия в среднем не приводят к неверным догадкам в отношении поведения людей»[104].

Один случай практического применения рандомизации произошел в Малайе в конце 1940-х годов[105]. Британская армия сопровождала продовольственные конвои, чтобы защитить их от нападений коммунистов-террористов. Последние могли либо организовать масштабное нападение, либо провести мелкий снайперский обстрел, чтобы напугать водителей грузовиков, дабы те отказались от выполнения такой работы в следующий раз. Британское сопровождение могло либо группироваться в одном месте, либо рассредоточиться по всему конвою. Для армии сосредоточение позволяло эффективнее противостоять масштабной атаке, а рассредоточение было действенно против снайперов. Для террористов масштабное нападение было лучше при рассредоточенном сопровождении, а снайперский обстрел — при концентрации военных. В этой игре с нулевой суммой есть только одно равновесие в смешанных стратегиях. Командир отряда сопровождения, даже не слышавший о теории игр, решил проблему следующим образом. Каждое утро во время формирования конвоя он брал травинку в одну из рук и прятал руки за спиной, предлагая солдатам угадать, в какой руке травинка. В зависимости от ответа солдата командир выбирал тот или иной тип сопровождения конвоя. Хотя о точных показателях выигрышей в этой игре судить трудно, поэтому мы не можем сказать, было ли верным смешивание стратегий в соотношении 50 на 50, этот офицер правильно оценил необходимость рандомизации и важности использования новой процедуры рандомизации каждый день, чтобы избежать формирования закономерности или слишком частого чередования вариантов выбора.

Самые убедительные данные в поддержку смешанных стратегий в играх с нулевой суммой связаны со спортом, особенно его профессиональными видами, в которых игроки накапливают большой опыт, а присущее им стремление к победе подкрепляет крупное материальное вознаграждение при ее достижении.

Марк Уокер и Джон Вудерс проанализировали игру «подача — возврат подачи» между теннисистами высшего уровня во время матчей Уимблдонского турнира[106] и представили это взаимодействие как игру с двумя участниками (подающим и принимающим), в которой каждый игрок имеет две чистые стратегии. Подающий может делать подачу под правую или левую руку принимающего, а принимающий может делать предположения о том, в какую сторону отправит подачу подающий, и двигаться именно туда. Поскольку во время турниров высшего уровня в мужском одиночном разряде подачи выполняются очень быстро, принимающий не может предпринять ответное действие после того, как увидит фактическое направление подачи, поэтому ему приходится двигаться в соответствии со своей оценкой возможного направления. Таким образом, это игра с одновременными ходами. Кроме того, так как принимающий стремится правильно угадать действия подающего, а подающий старается ввести в заблуждение принимающего, в этой игре мы видим равновесие в смешанных стратегиях. Отследить стратегию принимающего на видеозаписи невозможно (разве можно увидеть, на какую ногу он переносит вес?), поэтому полную матрицу выигрышей для проверки, смешивают ли игроки свои чистые стратегии в соответствии с равновесными прогнозами, воссоздать нельзя. Тем не менее правильность важного теоретического прогноза можно проверить, рассчитав частоту, с которой подающий выигрывает очко в случае каждой из имеющихся в его распоряжении стратегий подачи.

Если теннисисты используют равновесные комбинации стратегий в игре «подача — возврат подачи», подающий должен выигрывать очко с одинаковой вероятностью независимо от того, делает ли он подачу под правую или под левую руку принимающего. В реальном теннисном матче два игрока разыгрывают не менее сотни очков; следовательно, это предоставляет достаточно данных, чтобы проверить, выполняется ли это условие в каждом матче. Уокер и Вудерс составили таблицу результатов подач в 10 матчах. В каждом матче используются четыре типа комбинаций «подача — возврат подачи»: игрок А делает подачу игроку Б и наоборот в сочетании с подачей с правой или с левой стороны корта. Таким образом, Уокер и Вудерс проанализировали данные о 40 ситуациях с розыгрышем подачи и обнаружили, что в 39 из них показатели результативности подающего в случае подачи под правую и под левую руку попадали в допустимые пределы статистической погрешности.

По всей вероятности, теннисисты высшего уровня накопили достаточно большой общий опыт игры в теннис и ее ведения против различных соперников, для того чтобы усвоить общий принцип смешивания стратегий в правильном соотношении в игре против конкретных противников. Тем не менее, чтобы добиться необходимого уровня непредсказуемости, в любой последовательности подач не должно быть никакой закономерности: выбор стороны при каждой подаче не должен зависеть от предыдущего выбора. Как уже отмечалось в контексте применения смешанных стратегий на практике, игроки могут слишком часто чередовать чистые стратегии, не осознавая того, что чередование — такая же закономерность, как и неоднократное повторение одного и того же действия. И данные действительно подтверждают тот факт, что подающие чередовали свои стратегии слишком часто. Однако, согласно тем же данным, такое отклонение от истинного смешивания стратегий оказалось не настолько большим, чтобы соперники его заметили и использовали с выгодой для себя.

Как было показано в разделе 8, пенальти в футболе — еще один подходящий контекст для изучения смешанных стратегий. Преимущество анализа штрафных ударов состоит в том, что это действительно позволяет отслеживать стратегии, используемые как игроком, выполняющим пенальти, так и вратарем, то есть видеть не только, куда бьющий игрок собирается послать мяч, но и в какую сторону бросается вратарь. Это означает, что мы можем вычислить фактические вероятности смешивания стратегий и сравнить их с теоретическими прогнозами. Недостаток этого контекста по сравнению с теннисом состоит в том, что два игрока сталкиваются друг с другом не более чем несколько раз за сезон. Для того чтобы собрать достаточно данных, вместо анализа конкретных случаев противоборства между игроками необходимо проанализировать показатели всех вратарей и игроков, выполняющих пенальти. По результатам двух исследований, основанных именно на таких данных, было получено убедительное подтверждение теоретических прогнозов.

Проанализировав большой объем данных, предоставленных профессиональными футбольными лигами Европы, Игнасио Уэрта составил таблицу выигрышей, соответствующих средней вероятности успешных ударов бьющего игрока (рис. 7.12)[107]. Поскольку в эти данные включены показатели бьющих игроков как с правой, так и с левой ноги, а значит, у них разное естественное направление удара, здесь естественной считается стратегия «направо». (Игроки, выполняющие пенальти, обычно бьют по мячу внутренней стороной стопы. Для игрока, бьющего с правой ноги, естественным является удар направо от вратаря, а с левой — удар налево от вратаря.) Каждый игрок располагает двумя вариантами стратегий — «налево» и «направо». Когда вратарь выбирает стратегию «направо», это означает, что он будет прикрывать естественное направление удара бьющего игрока.


Рис. 7.12. Вероятности успешного выполнения пенальти в европейских высших лигах


Воспользовавшись свойством безразличия соперника, можно легко определить, что бьющий игрок должен выбирать стратегию «налево» в 38,3 % случаев, а стратегию «направо» в 61,7 % случаев. Такая комбинация стратегий обеспечивает показатель результативности ударов 79,6 % независимо от того, какую стратегию выберет вратарь. Вратарь, со своей стороны, должен выбирать стратегии «налево» и «направо» в 41,7 и 58,3 процентах случаев соответственно; эта комбинация стратегий позволит ему удержать показатель результативности ударов бьющего игрока на уровне 79,6 %.

Что же происходит на самом деле? Игроки, выполняющие пенальти, применяли стратегию «налево» в 40,0 % случаев, а вратари — в 41,3 % случаев. Эти показатели максимально близки к теоретическим прогнозам. Выбранные комбинации стратегий почти полностью защищены от использования соперником в своих интересах. Смешанная стратегия бьющего игрока обеспечивает показатель результативности ударов 79 % против стратегии вратаря «налево» и 80 % против стратегии вратаря «направо». Смешанная стратегия вратаря удерживает показатель результативности бьющих игроков на уровне 79,3 % при выборе ими стратегии «налево», а при тратегии «направо» в 79,7 % случаев.

В ранее опубликованной работе Пьер-Андре Кьяппори, Тимоти Гроусклоуз и Стивен Левитт использовали аналогичные данные и получили аналогичные результаты[108]. Кроме того, они проанализировали всю последовательность выбора стратегий каждым игроком, бьющим пенальти, и каждым вратарем и не нашли случаев чрезмерного чередования. Это можно объяснить тем, что большинство одиннадцатиметровых штрафных ударов представляют собой единичные события, происходящие на протяжении многих матчей, в отличие от многократно повторяющихся розыгрышей очка в теннисе, поэтому в случае пенальти игроки чаще не учитывают то, что происходило во время предыдущих пенальти. Тем не менее все эти данные говорят о том, что действия игроков во время выполнения пенальти в футболе даже ближе к истинному смешиванию стратегий, чем в игре «подача — возврат подачи» в теннисе.

При столь убедительном эмпирическом подтверждении теории было бы резонно спросить, эффективны ли навыки смешивания стратегий, приобретенные игроками в футболе, в других игровых контекстах. Результаты одного исследования подтвердили, что да (испанские профессиональные футболисты играли в точном соответствии с равновесными прогнозами во время лабораторных экспериментов в матричных играх с нулевой суммой два на два и четыре на четыре). Тем не менее в ходе другого исследования воспроизвести эти результаты не удалось. В его рамках анализировались показатели игроков американской Высшей лиги футбола, а также участников Мировой серии покера (у которых, как говорилось в разделе 8, также есть профессиональные причины для предотвращения использования их действий соперниками с выгодой для себя посредством смешивания стратегий) и было установлено, что поведение профессиональных игроков во время абстрактных матричных игр так же далеко от равновесия, как и поведение студентов. Как и в случае исследований с участием профессиональных шахматистов, о которых шла речь в главе 3, при наличии опыта профессиональные игроки смешивают стратегии в соответствии с теорией равновесия в своей профессиональной сфере, но этот опыт не приводит их автоматически к равновесию в новых и незнакомых играх[109].

Б. Игры с ненулевой суммой

Лабораторные эксперименты со смешиванием стратегий в играх с ненулевой суммой дают еще более отрицательные результаты, чем аналогичные эксперименты в играх с нулевой суммой. И это неудивительно. Как мы уже убедились, в таких играх свойство, в соответствии с которым равновесная комбинация стратегий каждого игрока становится причиной безразличия соперника в отношении выбора между чистыми стратегиями, — логическое свойство самого равновесия. В отличие от игр с нулевой суммой, у каждого участника игры с ненулевой суммой зачастую нет положительных или целевых причин добиваться безразличия других игроков. В таком случае игрокам труднее понять и освоить логику рассуждений, лежащую в основе вычисления вероятностей применения чистых стратегий в смешанной стратегии, что проявляется в их поведении.

В группе участников эксперимента, играющих в игру с ненулевой суммой, можно увидеть, как одни игроки придерживаются одной чистой стратегии, тогда как другие — другой. Этот тип смешивания в группе не согласуется с теорией равновесий в смешанных стратегиях, хотя у такого смешивания есть интересная эволюционная интерпретация, которую мы проанализируем в главе 12.

Как мы говорили выше в разделе 5.Б, вероятности применения чистых стратегий в смешанной стратегии каждого игрока не должны меняться при изменении его выигрышей. Однако на самом деле именно это и происходит: как правило, игроки выбирают то или иное действие чаще, если их собственный выигрыш от этого увеличивается[110]. Игроки действительно меняют свои действия в ходе повторных раундов игры с разными партнерами, но не в соответствии с равновесными прогнозами.

Общий вывод таков: в играх с ненулевой суммой следует интерпретировать и применять равновесия в смешанных стратегиях как минимум с большой осторожностью.

Резюме

Игры с нулевой суммой, в которых один игрок предпочитает совмещение действий, а другой наоборот, зачастую не имеют равновесия Нэша в чистых стратегиях. В таких играх каждый игрок стремится действовать непредсказуемо и поэтому использует смешанную стратегию с определенным распределением вероятностей на своем множестве чистых стратегий. Вероятности применения чистых стратегий в смешанной стратегии каждого игрока вычисляются с помощью свойства безразличия соперника, которое гласит, что в игре против равновесной смешанной стратегии данного игрока соперник должен получать равные ожидаемые выигрыши от всех своих чистых стратегий. Графики кривых наилучших ответов можно использовать для отображения всех равновесий в смешанных стратегиях (а также в чистых стратегиях) той или иной игры.

В играх с ненулевой суммой также могут присутствовать равновесия в смешанных стратегиях, которые можно рассчитать на основании свойства безразличия соперника и проиллюстрировать с помощью кривых наилучших ответов. Но мотивация к поддержанию безразличия соперника в этих играх слабее или отсутствует вообще, поэтому такие равновесия менее привлекательны для игроков и обычно неустойчивы.

Смешанные стратегии — это частный случай непрерывных стратегий, но им свойственны дополнительные аспекты, заслуживающие специального изучения. Равновесия в смешанных стратегиях можно интерпретировать как исходы игры, в которых каждый игрок имеет правильные убеждения в отношении вероятностей, с которыми другой игрок выбирает среди своих базовых чистых стратегий. Кроме того, при изменении выигрышей игроков равновесия в смешанных стратегиях могут иметь ряд свойств, противоречащих здравому смыслу.

Если в распоряжении одного игрока три стратегии, а другого — только две, первый, как правило, использует в равновесной смешанной стратегии всего две чистые стратегии. Если у обоих игроков по три (или более) чистые стратегии, в равновесных комбинациях стратегий может быть указана положительная вероятность применения их всех или только их подмножества. Все стратегии, активно используемые в смешанной стратегии, обеспечивают игроку равный ожидаемый выигрыш в игре против равновесной смешанной стратегии соперника; все неиспользованные стратегии гарантируют более низкий ожидаемый выигрыш. В крупных играх такого рода бывают случаи, когда равновесная комбинация стратегий остается неопределенной.

При применении смешанных стратегий игрокам нельзя забывать, что их система рандомизации ни в коем случае не должна быть предсказуемой. Крайне важно избегать чрезмерного чередования действий. Лабораторные эксперименты обеспечивают только слабую поддержку применения смешанных стратегий. Тем не менее равновесия в смешанных стратегиях позволяют получить достоверные прогнозы во многих играх с нулевой суммой с участием опытных профессиональных спортсменов.

Ключевые термины

Ожидаемый выигрыш

Свойство безразличия соперника

Упражнения с решениями

S1. Рассмотрим следующую игру:



a) Какую игру она больше всего напоминает: розыгрыш очка в теннисе, игру в доверие или игру в труса?

b) Найдите все равновесия Нэша в этой игре.

S2. В следующей таблице представлены выраженные в денежных суммах выигрыши в игре с одновременными ходами с двумя участниками:



a) Найдите равновесие Нэша в смешанных стратегиях в этой игре.

b) Определите ожидаемые выигрыши игроков в этом равновесии.

c) Ровена и Колин вместе получают максимальную сумму денег, когда Ровена выбирает «вниз». Тем не менее в равновесии она не всегда применяет эту стратегию. Почему? Можете ли вы придумать способы получения более согласованного исхода игры?

S3. Вспомните упражнение S7 из главы 4, где говорилось о пожилой даме, которой нужно было перейти улицу, а два игрока одновременно решали, предлагать ли ей помощь. Если вы выполнили это упражнение, значит, нашли все равновесия Нэша в чистых стратегиях. Теперь найдите равновесие в смешанных стратегиях.

S4. Просмотрите описание игры в теннис в разделе 2.А данной главы. Вспомните, что, согласно равновесию Нэша в смешанных стратегиях, найденному в этом разделе, Эверт выбирает стратегию ПЛ с вероятностью 0,7, а Навратилова с вероятностью 0,6. Предположим, что чуть позже во время матча Эверт получает травму, из-за чего ее удары по линии становятся гораздо медленнее, а значит, Навратиловой их легче отражать. Выигрыши в этой игре представлены в следующей таблице.



a) По сравнению с игрой до получения травмы (см. рис. 7.1) стратегия ПЛ кажется теперь менее привлекательной для Эверт. Как думаете, в новом равновесии в смешанных стратегиях Эверт будет выбирать ее чаще, реже или так же, как раньше? Обоснуйте свой вывод.

b) Найдите равновесную комбинацию стратегий каждой участницы игры. Какова ожидаемая ценность данной игры для Эверт?

c) Чем отличаются равновесные комбинации, найденные в пункте b, от равновесных комбинаций в исходной игре и от вашего ответа на вопрос в пункте а? Объясните, почему изменилась или не изменилась каждая комбинация.

S5. В упражнении S7 главы 6 представлена упрощенная версия игры в бейсбол, а в пункте с указано, что в этой игре с одновременными ходами отсутствует равновесие Нэша в чистых стратегиях. Это объясняется тем, что у питчеров и бэттеров противоположные цели: питчеру нужно бросить мяч мимо бэттера, а бэттеру необходимо отбить этот мяч. Таблица игры выглядит так:



a) Найдите равновесие Нэша в смешанных стратегиях в этой упрощенной версии игры в бейсбол.

b) Определите ожидаемые выигрыши каждого игрока в этом равновесии.

c) Предположим, питчер попытается улучшить ожидаемый выигрыш в равновесии в смешанных стратегиях, замедлив свой фастбол таким образом, что это делает его похожим на керв. В итоге выигрыш бэттера в ячейке «ожидать фастбол — бросить фастбол» изменится с 0,30 до 0,25, а выигрыш питчера скорректируется соответственно. Может ли такое изменение улучшить ожидаемый выигрыш питчера? Тщательно обоснуйте свой ответ. Кроме того, объясните, почему замедление фастбола может (или не может) улучшить ожидаемый выигрыш питчера в этой игре.

S6. Несмотря на опасность игры в труса (см. раздел 4.Б), Джеймс и Дин решают повысить ее эмоциональный накал (и ставки), стартуя на автомобилях с большего расстояния друг от друга. Так они смогут дольше держать зрителей в напряжении и сильнее разогнаться, прежде чем дело дойдет (или не дойдет) до серьезного столкновения. В связи с этим в новой таблице игры указан более высокий штраф за столкновение.



a) Найдите равновесие Нэша в смешанных стратегиях для этой более опасной версии игры в труса. Джеймс и Дин выбирают стратегию «ехать прямо» чаще или реже по сравнению с игрой, таблица которой представлена на рис. 7.4?

b) Определите ожидаемый выигрыш каждого игрока в случае равновесия в смешанных стратегиях, найденного в пункте a.

c) Джеймс и Дин решают разыгрывать игру в труса многократно (например, в присутствии разных групп зрителей из числа безрассудной молодежи). Более того, дабы избежать столкновения, они вступают в сговор и чередуют два равновесия в чистых стратегиях. Каким будет средний выигрыш ткаждого из них в случае такого сговора, если они сыграют четное количество игр? Он лучше или хуже выигрыша, на который они могут рассчитывать при равновесии в смешанных стратегиях? Почему?

d) После того как Джеймс и Дин несколько недель не играли в вариант игры в труса, описанный в пункте с, они договариваются сыграть снова. Однако к этому времени оба совершенно забывают, какое равновесие Нэша в чистых стратегиях разыгрывали в последний раз, и ни один из них этого не осознает, пока не взревут двигатели автомобилей перед самым началом игры. Вместо того чтобы играть в соответствии с равновесием Нэша в чистых стратегиях, каждый из них подбрасывает монету, чтобы решить, какую стратегию выбрать. Чему равен ожидаемый выигрыш Джеймса и Дина, если каждый из них смешивает стратегии в пропорции 50 на 50 таким способом? Как он соотносится с ожидаемыми выигрышами в случае равновесной комбинации стратегий? Объясните, почему эти выигрыши остаются неизменными или отличаются от выигрышей, вычисленных в пункте с.

S7. В разделе 2.Б продемонстрировано, как построить график кривых наилучших ответов в игре с розыгрышем очка в теннисе. В разделе 4.Б отмечено, что при наличии множества равновесий их можно определить по пересечениям кривых наилучших ответов. Для игры «битва полов», представленной на рис. 4.12 в главе 4, постройте графики наилучших ответов Гарри и Салли на координатной плоскости с осями p и q. Обозначьте все равновесия Нэша.

S8. Рассмотрите следующую игру:



a) При каких значениях x в этой игре есть единственное равновесие Нэша? Найдите его.

b) При каких значениях x в этой игре есть равновесие Нэша в смешанных стратегиях? С какой вероятностью, выраженной через x, каждый игрок будет выбирать стратегию «да» в равновесии в смешанных стратегиях?

c) Можно ли назвать эту игру при значениях x, найденных в пункте а, примером игры в доверие, игры в труса или игры наподобие тенниса? Обоснуйте свой ответ.

d) Пусть x = 3. Постройте график кривых наилучших ответов Ровены и Колина на координатной плоскости с осями p и q. Обозначьте все равновесия Нэша в чистых и смешанных стратегиях.

e) Пусть x = 1. Постройте график кривых наилучших ответов Ровены и Колина на координатной плоскости с осями p и q. Обозначьте все равновесия Нэша в чистых и смешанных стратегиях.

S9. Рассмотрите следующую игру:



a) Постройте график ожидаемых выигрышей от каждой из стратегий профессора Плама как функции р-комбинации миссис Пикок.

b) При каком диапазоне значений p стратегия «револьвер» обеспечивает профессору Пламу более высокий ожидаемый выигрыш, чем стратегия «нож»?

c) При каком диапазоне значений p стратегия «револьвер» обеспечивает ему более высокий ожидаемый выигрыш, чем стратегия «гаечный ключ»?

d) Какие чистые стратегии профессор Плам использует в своей равновесной комбинации? Почему?

e) Найдите равновесие Нэша в смешанных стратегиях в этой игре.

S10. Многие из вас наверняка знакомы с детской игрой «камень, ножницы, бумага». В ней два игрока одновременно выбирают свой «камень», «ножницы» или «бумагу», складывая ладони так, чтобы их форма напоминала один из этих вариантов. Счет в игре ведется следующим образом. Игрок, выбравший «ножницы», побеждает игрока, выбравшего «бумагу» (потому что ножницы режут бумагу). Игрок, выбравший «бумагу», побеждает игрока, выбравшего «камень» (поскольку бумага обертывает камень). Игрок, выбравший «камень», побеждает игрока, выбравшего «ножницы» (потому что камень разбивает ножницы). Допустим, в каждом отдельном розыгрыше игры на кону стоят 10 очков. Возможные исходы игры представлены в следующей таблице выигрышей:



a) Найдите равновесие в смешанных стратегиях в этой игре.

b) Предположим, Лиза объявила, что применит комбинацию стратегий, в которой вероятность выбора стратегии «камень» составляет 40 %, «ножницы» — 30 % и «бумага» — 30 %. Определите наилучший ответ Барта на такой выбор стратегий. Объясните, почему ваш ответ резонный, основываясь на ваших знаниях о смешанных стратегиях.

S11. Вспомните игру между торговцами мороженым на пляже из упражнения U6 в главе 6. В ней мы нашли два асимметричных равновесия в чистых стратегиях. В данной игре есть также симметричное равновесие в смешанных стратегиях.

a) Составьте таблицу этой игры пять на пять.

b) Исключите доминируемые стратегии и объясните, почему их не следует применять в равновесии.

c) Используйте ответ, полученный в части (b), чтобы найти равновесие в смешанных стратегиях в этой игре.

S12. Допустим, в игре в пенальти из раздела 7.А данной главы в распоряжении бьющего игрока шесть стратегий: бить высоко и налево (ВЛ), низко и налево (НЛ), высоко и в центр (ВЦ), низко и в центр (НЦ), высоко и направо (ВП), а также низко и направо (НП). Вратарь по-прежнему располагает тремя стратегиями: двигаться налево от бьющего игрока (Л), двигаться направо (П) и оставаться в центре (Ц). Проценты успешных действий игроков приведены в следующей таблице:



Ваша задача — подтвердить, что в равновесии в смешанных стратегиях данной игры вратарь использует каждую из стратегий Л и П в 42,2 % случаев, а стратегию Ц в 15,6 % случаев, тогда как бьющий игрок применяет каждую из стратегий НЛ и НП в 37,8 % случаев, а стратегию ВЦ в 24,4 % случаев.

a) С учетом предложенной смешанной стратегии вратаря вычислите ожидаемый выигрыш бьющего игрока от каждой из его шести чистых стратегий и с учетом предложенной смешанной стратегии бьющего игрока ожидаемый выигрыш вратаря от каждой из его трех стратегий. (Для простоты используйте только три значащие цифры.)

b) На основании ответа, полученного в пункте а, объясните, почему смешанная стратегия вратаря — наилучший ответ на предложенную смешанную стратегию бьющего игрока и наоборот.

c) Воспользовавшись полученными выше ответами, объясните, почему предложенные стратегии образуют равновесие Нэша.

d) Вычислите равновесный выигрыш игрока, выполняющего пенальти.

S13 (дополнительное упражнение). В разделе 5.Б в контексте игры в доверие мы показали, что изменение выигрышей Салли не меняет пропорций, в которых она смешивает чистые стратегии в равновесии, — ее равновесная комбинация зависит только от выигрышей Гарри. В данном упражнении вам предстоит доказать, что это общий результат для всех равновесий в смешанных стратегиях в играх два на два. Рассмотрим общий случай игры с ненулевой суммой два на два, таблица выигрышей которой представлена ниже.



a) Предположим, в этой игре есть равновесие в смешанных стратегиях. Определите вероятность того, что Ровена выберет в равновесии стратегию «вверх» как функцию приведенных в таблице выигрышей.

b) Определите вероятность того, что Колин выберет стратегию «налево» в равновесии.

c) Объясните, как полученные вами результаты показывают, что равновесные комбинации каждого игрока зависят только от выигрышей другого игрока.

d) Каким условиям должны удовлетворять выигрыши, чтобы в данной игре действительно присутствовало равновесие в смешанных стратегиях?

S14 (дополнительное упражнение). Вспомните упражнение S13 из главы 4, основанное на сцене в баре из фильма «Игры разума». Здесь мы проанализируем равновесия в смешанных стратегиях в этой игре, когда в нее играют n > 2 молодых людей.

a) Начните с рассмотрения симметричного случая, когда каждый из n молодых людей самостоятельно пытается привлечь внимание одинокой блондинки с вероятностью P, зависящей от условия, согласно которому каждому молодому человеку должно быть безразлично, какую из двух чистых стратегий выбрать — «блондинка» или «брюнетка», с учетом того, что все остальные игроки смешивают стратегии. Какое условие гарантирует безразличие каждого игрока? Найдите равновесное значение P в этой игре.

b) В данной игре есть также ряд асимметричных равновесий в смешанных стратегиях. В них каждый из m < n молодых людей пытается привлечь внимание блондинки с вероятностью Q, а остальные n — m игроков добиваются расположения брюнеток. Какое условие гарантирует безразличие m молодых людей с учетом действий остальных игроков? Какое условие должно выполняться, чтобы оставшиеся n — m игроков не отказались от применения чистой стратегии выбора брюнетки? Чему равно равновесное значение Q в случае асимметричного равновесия?

Упражнения без решений

U1. В американском футболе команда нападения может либо совершать пробежку с мячом, либо делать пас, тогда как команда защиты может ожидать (и подготовиться) либо пробежку, либо пас. Предположим, ожидаемые выигрыши обеих команд (в ярдах) за каждый отдельно взятый даун составляют:



a) Докажите, что в этой игре нет равновесия Нэша в чистых стратегиях.

b) Найдите в ней единственное равновесие Нэша в смешанных стратегиях.

c) Объясните, почему комбинация стратегий команды нападения отличается от комбинации стратегий команды защиты.

d) Сколько ярдов предположительно может набрать команда нападения в случае равновесия?

U2. Накануне крайнего срока сдачи работ профессор получает электронное письмо от одного из студентов, который утверждает, что застрял с решением одной из задач, просидев над ней больше часа. Профессор не против помочь студенту, если тот действительно работает, но отказал бы в помощи, зная, что тот просто пытается выудить подсказку. Учитывая время получения письма, профессор мог бы просто сделать вид, что прочитал его значительно позже. Очевидно, что студент предпочел бы получить помощь независимо от того, решал он задачу или нет. Но если так ее и не дождется, то предпочтет не усугублять проблему и приступит к работе, поскольку задачи необходимо сдать завтра. Предположим, участники этой игры получат следующие выигрыши:



a) Найдите равновесие Нэша в смешанных стратегиях в этой игре.

b) Вычислите ожидаемый выигрыш каждого из игроков.

U3. В упражнении S12 в главе 4 описывается игра «чет или нечет», в которой нет равновесия Нэша в чистых стратегиях. Однако в ней есть равновесие в смешанных стратегиях.

a) Если Анна выберет 1 (выбросит один палец) с вероятностью p, каков ожидаемый выигрыш Брюса от выбора 1, выраженный через p? Чему равен его ожидаемый выигрыш от выбора 2?

b) При каком уровне p Брюсу будет безразлично, какую стратегию выбрать — 1 или 2?

c) Если Брюс сыграет 1 с вероятностью q, при каком уровне q Анне будет безразлично, какую стратегию выбрать — 1 или 2?

d) Запишите равновесие в смешанных стратегиях этой игры. Чему равен в ней ожидаемый выигрыш каждого игрока?

U4. Вернемся снова к соперничеству между теннисистками Эверт и Навратиловой, о котором шла речь в разделе 2.А. Через много месяцев они опять встречаются на очередном турнире. Эверт восстановилась после травмы (см. упражнение S4), а Навратилова в это же время усердно улучшала навыки защиты против подач по линии. Ниже представлена таблица выигрышей в этой игре.



a) Найдите равновесную комбинацию каждого игрока в этой игре.

b) Что произошло с р-комбинацией Эверт по сравнению с игрой, представленной в разделе 2.А? Почему?

c) Какова ожидаемая ценность данной игры для Эверт? Почему она отличается от ожидаемой ценности первоначальной игры, рассматриваемой в разделе 2.А?

U5. В разделе 4.А данной главы шла речь о смешивании стратегий в контексте «битвы полов» между Гарри и Салли.

a) Как думаете, что произойдет с равновесными значениями p и q, вычисленными в этой главе, если Салли решит, что Local Latte ей действительно нравится гораздо больше, чем Starbucks, поэтому теперь в ячейке Local Latte, Local Latte указаны выигрыши 1, 3? Объясните логику своих рассуждений.

b) Найдите новые равновесные значения p и q. Чем они отличаются от равновесных значений p и q в исходной игре?

c) Определите ожидаемый выигрыш каждого игрока в случае нового равновесия в смешанных стратегиях.

d) Как вы считаете, могли бы Гарри и Салли разыграть равновесие в смешанных стратегиях в новой версии игры? Обоснуйте свой ответ.

U6. Рассмотрим следующий вариант игры в труса, в котором выигрыш Джеймса от стратегии «ехать прямо» при условии, что Дин выбирает стратегию «свернуть», равен 2, а не 1.



a) Найдите равновесие в смешанных стратегиях в этой игре, в том числе ожидаемые выигрыши игроков.

b) Сравните полученные результаты с результатами в исходной игре в разделе 4.Б данной главы. Вероятность того, что Дин выберет «ехать прямо», повысилась? А как насчет вероятности того, что Джеймс «поедет прямо»?

c) Что произошло с ожидаемыми выигрышами двух игроков? Эти различия между равновесными исходами парадоксальны с точки зрения новой структуры выигрышей? Объясните, как можно трактовать ваши выводы в контексте принципа безразличия соперника.

U7. Постройте графики наилучших ответов Джеймса и Дина для игры в труса, представленной на рис. 4.13 в главе 4, на координатной плоскости с осями p и q. Обозначьте все равновесия Нэша.

U8. a) Найдите все равновесия Нэша в чистых стратегиях в следующей игре:



b) Найдите равновесие в смешанных стратегиях в этой игре. Чему равны ожидаемые выигрыши игроков в этом равновесии?

U9. Рассмотрите измененную версию игры из упражнения S9.



a) Постройте график ожидаемых выигрышей от каждой из стратегий профессора Плама как функции р-комбинации миссис Пикок.

b) Какие чистые стратегии использует профессор Плам в своей равновесной комбинации? Почему?

c) Найдите равновесие Нэша в смешанных стратегиях в этой игре.

d) Обратите внимание, что данная версия игры незначительно отличается от игры, представленной в упражнении S9. В чем различие между этими двумя играми? Объясните, почему интуиция подсказывает вам, что равновесный исход игры изменился по сравнению с исходом игры в упражнении S9.

U10. Рассмотрите измененную версию игры «камень, ножницы, бумага», в которой Барт получает приз, когда выигрывает, применив стратегию «камень». Если Барт выберет «камень», а Лиза — «ножницы», он получит в два раза больше очков по сравнению с тем, что оба получили бы при любом ином подходе. Новая матрица выигрышей выглядит так:



a) Найдите равновесие в смешанных стратегиях в этой версии игры.

b) Сравните полученный результат с равновесием в смешанных стратегиях из упражнения S10. Как вы можете объяснить различия между ними?

U11. Рассмотрите следующую игру.



a) Есть ли в ней равновесие в чистых стратегиях? Если да, то какое?

b) Найдите равновесие в смешанных стратегиях в этой игре.

c) В действительности в этой игре два равновесия в смешанных стратегиях. Найдите то, которое вы не нашли в пункте b. (Подсказка: в одном из этих равновесий один из игроков выбирает смешанную стратегию, тогда как другой — чистую.)

U12. Упрямые Джеймс и Дин снова играют в более опасный вариант игры в труса (см. упражнение S6). Они заметили, что их выигрыш («храбрец») зависит от количества зрителей. Чем их больше, тем больше славы и похвал получает тот, кто едет прямо. Безусловно, в случае меньшего количества зрителей наблюдается противоположный эффект. Пусть k > 0 — это выигрыш игрока, который показал себя «храбрецом». Теперь эту игру можно представить так:



a) С какой вероятностью, выраженной через k, каждый водитель выбирает стратегию «свернуть» в равновесии Нэша в смешанных стратегиях? Применяют ли Джеймс и Дин эту стратегию чаще или реже по мере увеличения значения k?

b) Чему равна ожидаемая ценность игры для каждого игрока, выраженная через k, в равновесии Нэша в смешанных стратегиях, найденном в пункте а?

c) При каком значении k и Джемс, и Дин смешивают в данном равновесии стратегии в соотношении 50 на 50?

d) Насколько большим должно быть значение k, чтобы средний выигрыш был положительным при схеме чередования, о которой шла речь в пункте с упражнения S6?

U13 (дополнительное упражнение). Вспомните игру из упражнения S11 в главе 4, где Ларри, Мо и Керли могут покупать билеты с возможностью получить приз в размере 30 долларов. Мы нашли в ней шесть равновесий Нэша в чистых стратегиях. В данном упражнении вам предстоит найти симметричное равновесие в смешанных стратегиях.

a) Исключите слабо доминируемую стратегию каждого игрока. Объясните, почему игрок никогда не использовал бы ее в своей равновесной комбинации стратегий.

b) Найдите равновесие в смешанных стратегиях.

U14 (дополнительное упражнение). В упражнении S4 и упражнении U4 показано, что в играх с нулевой суммой, таких как соперничество Эверт и Навратиловой в теннисе, изменение выигрышей одного игрока иногда приводит к неожиданным или парадоксальным изменениям в равновесной комбинации стратегий. Но что происходит при этом с ожидаемой ценностью игры? Рассмотрим следующую общую форму игры с нулевой суммой с участием двух игроков:



Предположим, в этой игре нет равновесия Нэша в чистых стратегиях, а значения a, b, c и d больше или равны 0. Может ли увеличение значения одной из переменных a, b, c и d обусловить снижение ценности игры для Ровены? Если нет, докажите это. Если да, приведите пример.

Приложение. Вероятность и ожидаемая полезность

При вычислении ожидаемых выигрышей и равновесий в смешанных стратегиях в данной главе мы должны были выполнить ряд простых действий с вероятностями. Для этого существует несколько несложных правил. Возможно, многие из вас с ними знакомы, но мы дадим здесь краткое описание и объяснение основных понятий, чтобы вы могли в случае необходимости восстановить или восполнить свои знания. Кроме того, мы также покажем, как вычислить математическое ожидание случайных числовых величин.

Основные алгебраические действия с вероятностями

Базовое интуитивное представление вероятности наступления того или иного события формируется в процессе размышлений о частоте, с которой оно происходит случайно в рамках более крупного множества возможных событий. Как правило, любой элемент более крупного множества столь же вероятен, как и любой другой элемент. Следовательно, поиск вероятности интересующего нас события сводится к подсчету числа элементов, соответствующих этому событию, и их делению на общее количество элементов в крупном множестве[111].

Например, в любой стандартной колоде из 52 игральных карт четыре масти (трефы, бубны, червы и пики), по 13 карт разного достоинства в каждой: сначала туз, затем номерные карты от 2 до 10 и фигурные карты — валет, дама, король. Мы можем задать массу разных вопросов о том, с какой вероятностью из данной колоды карт можно извлечь карту определенной масти или достоинства (или масти и достоинства): с какой вероятностью можно вытащить карту пиковой масти? А черную карту? А десятку? А даму пик? И так далее. Чтобы ответить на эти вопросы, необходимо обладать определенными знаниями о вычислении вероятностей и о действиях с ними. Если бы у нас было две колоды карт (одна с синими рубашками, а другая с зелеными), мы могли бы задать еще более сложные вопросы («С какой вероятностью можно вытащить по одной карте из каждой колоды так, чтобы обе карты оказались валетом бубен?»), но для получения ответа на них по-прежнему использовали бы все те же алгебраические действия с вероятностями.

В широком смысле вероятность — это степень возможности наступления определенного события или совокупности событий. Возможность того, что вы извлечете карту пиковой масти из колоды карт, — просто вероятность наступления события «вытащить пику». В данном случае крупное множество содержит 52 элемента (общее количество в равной степени вероятных возможностей), а событие «вытащить пику» соответствует подмножеству, состоящему из 13 конкретных элементов. Таким образом, у вас есть 13 шансов из 52 вытащить пику, а значит, вероятность сделать это за один раз равна 13/52 = 1/4 = 25 %. Данную ситуацию можно представить себе иначе: у вас есть четыре масти по 13 карт в каждой, следовательно, ваш шанс извлечь карту определенной масти составляет один к четырем, или 25 %. Если бы вы тащили карту несколько раз (каждый раз из полной колоды карт), то из 52 попыток вы не всегда вытаскивали бы пику в точности 13 раз; по воле случая вы порой вытаскивали бы на несколько больше, а иногда на несколько меньше пик. Однако когда извлечение карт из колоды выполняется многократно, существуют разные множества из 52 попыток и этот шанс усредняется. В таком случае вероятность 25 % представляет собой среднее значение частоты вытаскивания карты пиковой масти в большом количестве наблюдений[112].

В алгебре вероятностей все эти идеи сформулированы в общих терминах и выражены формулами, которые вы сможете использовать автоматически вместо того, чтобы каждый раз анализировать все с нуля. Мы обсудим эти формулы вычисления вероятностей в контексте вопросов, которые можно задать в случае вытаскивания карт из стандартной колоды (или из двух колод — с синими и зелеными рубашками)[113]. Этот метод позволит нам предоставить вам как конкретные, так и общие формулы, которые вы сможете применить в будущем. Аналогия с извлечением карт поможет вам проанализировать другие вопросы, касающиеся вероятностей, возникающие в иных контекстах. Обратите внимание на следующее: в обычном языке принято выражать вероятности в процентах, но в алгебраических формулах их следует записывать в виде простых или десятичных дробей, то есть вместо 25 % должно быть 13/52, или 0,25. Мы будем использовать разные способы представления вероятностей в зависимости от ситуации, но вы должны отдавать себе отчет, что во всех этих случаях смысл один и тот же.

А. Правило сложения вероятностей

Первый наш вопрос будет звучать так: если бы нам понадобилось вытянуть одну карту из синей колоды, с какой вероятностью мы извлекли бы карту пиковой масти? И какова вероятность того, что она была бы не пикой? Мы уже знаем, что вероятность вытащить пику составляет 25 % (мы определили это ранее). Но какова вероятность вытащить не пику? Она равна вероятности извлечь трефу, черву или бубну вместо пики. Очевидно, что интересующая нас вероятность должна быть больше любой из отдельных вероятностей, из которых она состоит; на самом деле эта вероятность равна 13/52 (трефы) + 13/52 (бубны) + 13/52 (червы) = 0,75. Слово «или» в нашей вербальной формулировке ответа на вопрос указывает на то, что эти вероятности необходимо суммировать, поскольку мы хотим знать шансы вытащить карту из всех этих трех мастей.

Существует и более простой способ ответить на второй вопрос: отметить, что вытаскивание карты не пиковой масти происходит в оставшихся 75 % случаев. Таким образом, вероятность вытащить не пику составляет 75 % (100 % минус 25 %) или, в более формальном виде, 1 − 0,25 = 0,75. Как часто бывает при вычислении вероятностей, в данном примере один и тот же результат можно получить двумя разными путями, требующими разных размышлений о событии, вероятность которого мы пытаемся найти. Чуть ниже в данном приложении мы увидим и другие примеры, показывающие, что разные методы вычисления вероятностей порой требуют совершенного разного количества усилий. По мере накопления опыта вы откроете для себя и запомните легкие способы или более короткие пути. А пока утешайте себя тем, что каждый из этих путей, если ему неукоснительно следовать, ведет к получению одного и того же конечного результата.

Обобщим наши предыдущие вычисления. Если разделить множество событий Х на ряд подмножеств Y, Z, …, которые не перекрываются (на языке математики они называются непересекающимися), то сумма вероятностей наступления каждого подмножества равна вероятности полного множества событий; если полное множество событий включает в себя все возможные исходы, то его вероятность равна 1. Иными словами, если наступление события Х требует наступления каждого из нескольких непересекающихся событий, то вероятность Х равна сумме вероятностей отдельных событий Y, Z, …. Обозначив вероятность наступления Х как Prob(X) и запомнив предостережения в отношении Х (это событие требует наступления каждого из событий), а также в отношении Y, Z, … (эти события должны быть непересекающимися), можем записать правило сложения вероятностей в математических обозначениях как Prob(X) = Prob(Y) + Prob(Z) + ….

Упражнение. С помощью правила сложения вероятностей найдите вероятность вытаскивания двух одинаковых карт из двух колод (по одной из каждой колоды).

Б. Правило умножения вероятностей

Теперь давайте поставим вопрос так: какова вероятность того, что две извлеченные (по одной из каждой колоды) нами карты окажутся пиковой масти? Это событие наступит в случае, если мы вытащим пику из синей колоды и пику из зеленой. Переход от «или» к «и» в формулировке ответа на вопрос указывает на переход от математической операции сложения к умножению. Таким образом, вероятность вытащить две пики (по одной из каждой колоды) равна произведению вероятностей вытягивания одной пики из каждой колоды, или (13/52) × (13/52) = 1/16 = 0,0625, или 6,25 %. Как и следовало ожидать, мы получим две пики с гораздо меньшей вероятностью, чем одну пику в предыдущем разделе. (Всегда проверяйте, соответствуют ли ваши расчеты интуитивной оценке исхода игры.)

Подобно тому как правило сложения требует, чтобы события были непересекающимися, правило умножения требует, чтобы они были независимыми: если разделить множество событий X на ряд подмножеств Y, Z, …, эти подмножества будут независимыми, если наступление одного из них не влияет на вероятность другого. Наши события (карта пиковой масти из синей колоды и карта пиковой масти из зеленой) удовлетворяют этому условию; иными словами, вытягивание пики из синей колоды не приводит к изменению вероятности вытягивания пики из зеленой колоды. Однако если бы мы извлекли обе карты из одной колоды, то после вытаскивания пики (с вероятностью 13/52) вероятность вытащить еще одну пику больше не составляла бы 13/52 (на самом деле она равнялась бы 12/51); следовательно, такие события, как вытаскивание одной, а затем второй карты пиковой масти из одной колоды, не относятся к независимым событиям.

Строгая формулировка правила умножения вероятностей гласит, что если наступление события X требует одновременного наступления всего ряда независимых событий Y, Z, …, то вероятность наступления события X равна произведению вероятности наступления отдельных событий Y, Z, …: Prob(X) = Prob(Y) × Prob(Z) × ….

Упражнение. С помощью правила умножения вероятностей найдите вероятность вытаскивания двух карт (по одной из каждой колоды), среди которых была бы одна красная карта из синей колоды и одна фигурная из зеленой колоды.

В. Математическое ожидание

Если количественная величина (такая как денежный выигрыш или количество атмосферных осадков) носит случайный характер и может принимать одно из n возможных значений X1, X2, …, Xn с соответствующими вероятностями p1, p2, …, pn, то математическое ожидание представляет собой взвешенное по вероятности среднее всех возможных значений этой величины: p1X1 + p2X2 + … + pnXn. Например, предположим, вы заключаете пари на подбрасывание двух монет. Если выпадут два орла, вы получите 5 долларов, если один орел и одна решка — 1 доллар, а если две решки, то ничего. Воспользовавшись правилами выполнения действий с вероятностями, о которых шла речь выше, вы можете определить, что вероятность наступления этих событий составляет 0,25, 0,50 и 0,25 соответственно. Следовательно, ваш ожидаемый выигрыш составит (0,25 × 5) + (0,50 × 1) + (0,25 × 0) = 1,75 доллара.

В теории игр в качестве числовых величин, которые необходимо привести к среднему значению таким способом, выступают выигрыши, выраженные в виде численных показателей, или денег, или, как мы увидим в приложении к главе 8, в виде полезности. В каждом контексте мы будем обозначать математическое ожидание соответствующими терминами, такими как ожидаемый выигрыш или ожидаемая полезность.

Резюме

Вероятность события — это возможность его случайного наступления в рамках более крупного множества возможных событий. Вероятности можно вычислять на основании определенных правил. Правило сложения вероятностей гласит, что вероятность наступления любого количества непересекающихся событий равна сумме вероятностей этих событий. Согласно правилу умножения вероятностей, вероятность наступления ряда независимых событий равна произведению их вероятностей. Для вычисления ожидаемых выигрышей в игре используются взвешенные по вероятности средние значения.

Ключевые термины

Вероятность

Математическое ожидание

Независимые события

Непересекающиеся множества

Правило сложения вероятностей

Правило умножения вероятностей

Загрузка...