Для всього свій час, і година своя кожній справі під небом…
Стрімкий розвиток подій упродовж 1930-х років від відкриття нейтрона до дослідження природи нейтронного розпаду, а також відкриття нейтрино й подальше відкриття нової й універсальної близькодійної слабкої сили природи радше збентежили фізиків, аніж надихнули. Блискучий поступ, що привів до об’єднання електрики й магнетизму, а потім квантової механіки й теорії відносності, ґрунтувався на вивченні природи світла. Проте було незрозуміло, як елегантна теоретична доктрина квантової електродинаміки може надати засоби для розгляду нової сили. Слабка взаємодія дуже далека від безпосередніх людських відчуттів і стосується нових та екзотичних елементарних частинок і ядерних трансмутацій, що змушують пригадати алхімію, проте, на відміну від алхімії, їх можна перевірити й відтворити.
Фундаментальне збентеження було пов’язане з природою власне атомного ядра та питанням, що ж тримає його вкупі. Відкриття нейтрона допомогло розв’язати парадокс, який до того, як здавалося, вимагав ув’язнення в ядрі електронів заради врівноваження заряду додаткових протонів, необхідних для одержання відповідних ядерних мас, проте спостереження бета-розпаду, унаслідок якого з ядер вилітали електрони, картину аж ніяк не прояснили.
Здогад, що за бета-розпаду нейтрони в ядрі стають протонами, дещо прояснив ситуацію, проте далі природним чином постало інше запитання: чи могло це перетворення в якийсь спосіб пояснити сильне зв’язування, яке тримало протони й нейтрони всередині ядра вкупі?
Попри очевидні відмінності між слабкими силами й квантовою теорією електромагнетизму (КЕД), видатні успіхи КЕД в описі поведінки атомів і взаємодії електронів зі світлом не могли не вплинути на роздуми фізиків щодо цієї нової слабкої сили. Пов’язані з КЕД математичні симетрії чудово спрацювали, забезпечивши щезання здатних завдати великого клопоту нескінченостей з обрахунків, що постають з обміну віртуальними частинками при переході до передбачень значень фізичних величин. Можливо, щось подібне спрацює й під час спроб зрозуміти силу, що зв’язує докупи протони й нейтрони в ядрі?
А саме, якщо електромагнітна сила зумовлена обміном частинками, було логічно припустити, що сила, яка тримає ядро вкупі, також може бути зумовлена обміном частинками. 1932 року, приблизно в той же час, коли було відкрито нейтрон, цю ідею запропонував Вернер Гайзенберг. Якщо нейтрони й протони можуть перетворюватися один на одного, причому протону для перетворення на нейтрон треба поглинути електрон, то, можливо, саме обмін електронами між ними може якимось чином породити здатну зв’язати силу?
Утім, цю картину затьмарювали кілька широко відомих проблем. Першою була проблема «спіну». Якщо вслід за Гайзенбергом припустити, що нейтрон, по суті, складається зі зв’язаних докупи протона й електрона й вони обидва є частинками зі спіном ½, то після їхнього складання докупи в нейтроні він не може мати спін ½, адже ½ + ½ не може дорівнювати ½. Гайзенберг у пориві відчаю, адже то були часи відчаю, коли, здавалося, руйнувалися всі традиційні правила, висунув припущення, що «електрон», який передається від нейтронів до протонів і тримає їх у ядрі вкупі, якимось чином відрізняється від вільного електрона й не має спіну взагалі.
Ретроспективно подана картина мала іншу проблему. У Гайзенберга були причини вважати, що саме електрони зв’язують докупи нейтрони й протони, оскільки він думав про молекули водню. У водні два протони зв’язуються докупи за рахунок спільних електронів, що обертаються навколо них. Проблема з поясненням аналогічним чином ядерного зв’язування полягає в масштабі. Як нейтрони й протони можуть обмінюватися електронами й триматися разом настільки щільно, що середня відстань між ними більш ніж у сто тисяч разів менша за розмір молекул водню?
Цю проблему можна розглянути в інший спосіб, до якого буде корисно повернутися згодом. Пригадаймо, що електромагнетизм є далекосяжною силою. Через обмін віртуальними фотонами, взаємне відштовхування, хоч і вкрай слабеньке, можуть відчувати два електрони в протилежних кінцях галактики. Це можливо завдяки квантовій теорії електромагнетизму. Фотони не мають маси, тож віртуальні фотони до свого поглинання можуть подорожувати необмежено далеко й нести необмежено малу кількість енергії, не порушуючи при цьому принципу невизначеності Гайзенберга. Якби фотони були масивними, це було б неможливим.
Проте якби сила взаємодії між нейтронами й протонами в ядрах виникала за рахунок поглинання та випускання, скажімо, віртуальних електронів, ця сила була б близькодійною, оскільки електрони масивні. Наскільки близькодійною? Ну, виходить, десь приблизно в сто тисяч разів більше за розміри типових ядер. Отже, сили в масштабах ядер не можуть бути спричинені обміном електронів. Я ж казав, то були часи відчаю.
Відчайдушна ідея Гайзенберга щодо дивної безспінової версії електрона не оминула молодого японського фізика, сором’язливого 28-річного Хідекі Юкаву. 1935 року, коли Японія тільки-тільки почала виходити на сцену після століть ізоляції й незадовго до того, як її імперіалістичні плани запалили війну в Тихоокеанському регіоні, Юкава опублікував першу оригінальну роботу з фізики, написану вченим, який здобув освіту винятково в Японії. Ця стаття лишалася непоміченою щонайменше два роки, проте чотирнадцять років по тому Юкава здобув Нобелівську премію за свою роботу, яку на той час уже помітили, хоча і з зовсім інших причин.
Візит Ейнштейна до Японії 1922 року закріпив щораз більшу цікавість Юкави до фізики. Коли він іще вчився в середній школі й шукав матеріали, які допомогли б йому скласти іспити з другої іноземної мови, він знайшов німецькомовне видання «Вступу до теоретичної фізики» Макса Планка. Він дуже зрадів можливості читати одночасно німецькою й фізику, і в цьому йому допомагав однокласник Синітіро Томонага, талановитий фізик, який був його колегою і в школі, і пізніше в Кіотському університеті. Томонага був настільки талановитим, що пізніше отримав спільно з Річардом Фейнманом і Джуліаном Швінґером Нобелівську премію за демонстрацію математичної узгодженості квантової електродинаміки.
Той факт, що Юкава, який був японським студентом у часи, коли багато з його викладачів іще несповна розумілися на сфері квантової механіки, яка лише зароджувалася, натрапив на можливе рішення проблеми ядерної сили, яке не розгледіли Гайзенберг, Паулі й навіть Фермі, не може не вражати. Підозрюю, що частиною проблеми був феномен, який кілька разів мав місце у ХХ столітті, а можливо, як раніше, так і пізніше. Коли парадокси та ускладнення, пов’язані з деяким фізичним процесом, починають здаватися непереборними, дуже спокусливо припустити, що якась нова революція на кшталт теорії відносності чи квантової механіки потребуватиме настільки докорінного повороту в міркуваннях, що сенсу просуватися далі, використовуючи наявні методики, немає.
На відміну від Гайзенберга чи Паулі, Фермі не прагнув повномасштабної революції. Він був ладен запропонувати, за його власними словами, «пробну теорію» нейтронного розпаду, яка позбавлялася електронів у ядрі, допускаючи їхнє спонтанне утворення в процесі бета-розпаду. Він запропонував модель, яка працювала, і при цьому був свідомий того, що це лише модель, а не повноцінна теорія, яка, утім, надавала змогу здійснювати обрахунки й робити передбачення. У цьому полягала сутність практичного стилю Фермі.
Юкава стежив за цими подіями, навіть переклав статтю Гайзенберга на тему ядер разом зі вступом, яку опублікував у Японії, тож проблеми з версією Гайзенберга вже були йому очевидні. Далі, 1934 року, Юкава прочитав теорію нейтронного розпаду Фермі, яка стала каталізатором виникнення в нього нової ідеї. Що, як ядерна сила, яка зв’язує протони й нейтрони, була викликана обміном між ними не віртуальними електронами, а електроном і нейтрино, які утворюються під час перетворення нейтронів на протони?
Утім, одразу ж виникла інша проблема. Нейтронний розпад є результатом того, що стало відоме під назвою слабкої взаємодії, і сила, яка за це відповідає, слабка. Якщо підставити значення можливої сили, яка могла б виникнути між протонами й нейтронами в результаті обміну електронно-нейтринної пари, стане очевидно, що ця сила буде заслабка для того, щоб їх зв’язати.
Далі Юкава дозволив собі зробити те, чого не робив ніхто інший. Він запитав себе, чому ядерна сила, якщо вона подібно до КЕД є результатом обміну віртуальними частинками, має бути спричинена обміном однією або кількома частинками, які вже відомі або чиє існування припускають. Якщо пригадати, з якою нехіттю фізики на кшталт Дірака та Паулі висували ідею існування нових частинок попри те, що мали рацію, можна, мабуть, оцінити, наскільки радикальною була ідея Юкави. Пізніше Юкава описував її так: «У цей період саме атомне ядро було втіленням несумісності, геть непоясненним. А чому? Бо наша концепція елементарної частинки була завузькою. У японській мові такого слова не було, тож ми вживали англійське слово, яке позначало протон і електрон. Звідкілясь надійшло божественне веління, що заборонило нам думати про якісь інші частинки. Мислити поза цими межами (за винятком фотона) означало бути пихатим, не боятися гніву богів. Це через те, що концепція вічності матерії була традицією ще з часів Демокріта й Епікура. Думати про створення частинок, відмінних від фотонів, було підозріливим, і такі думки пригнічували майже підсвідомо».
Один із моїх добрих друзів-фізиків казав, що міг займатися складними обрахунками лише після народження кожного зі своїх дітей, коли він усе одно не міг спати, тож не лягав і працював. От і в жовтні 1934 року, якраз після народження своєї другої дитини й не маючи можливості спати, Юкава збагнув, що, якщо радіус дії сильної ядерної сили має обмежуватися розмірами ядра, тоді частинки, що беруть участь в обміні, мають бути значно масивніші за електрон. Наступного ранку він приблизно оцінив цю масу як у двісті разів більшу за масу електрона. Щоб цією частинкою могли обмінюватися нейтрони й протони, вона мала нести електричний заряд і не повинна була мати спіну, аби не змінити спін протона чи нейтрона при поглинанні чи випусканні.
Ви можете спитати, як уся ця метушня навколо сильних ядерних сил стосується нейтронного розпаду – теми, яка відкрила цей розділ і закрила попередній? У 1930-х роках, точно як видумування нових частинок суперечило загальноприйнятій традиції, так і винайдення нових сил видавалося в найкращому випадку непотрібним, а в найгіршому – єрессю. Фізики були переконані, що всі процеси, які відбуваються в ядрі, незалежно від того, сильні вони чи слабкі, мають бути взаємопов’язані.
Поєднавши ідеї Фермі й Гайзенберга та узагальнивши ідеї успішної квантової теорії електромагнетизму, Юкава вигадав кмітливий спосіб досягти цього. Якщо замість фотона нейтрони в ядрі випускали нову, важку, безспінову заряджену частинку, – яку Юкава спершу називав мезотроном, аж доки Гайзенберг не відкоригував грецьку Юкави й не скоротив назву до «мезона», – то ця частинка могла поглинатися протонами ядра, породжуючи силу тяжіння, величину якої Юкава зміг обчислити за допомогою рівнянь, екстрапольованих з, як неважко здогадатися, електромагнетизму.
Утім, аналогія з електромагнетизмом не могла бути точною, оскільки мезон масивний, а протон безмасовий. Юкава вчинив так, як міг би вчинити Фермі, якби додумався до цього. Так, теорія була неповна, проте Юкава був ладен проігнорувати ті аспекти електромагнетизму, які його теорія не могла відтворити. Грець із ними, з торпедами, повний вперед.
Юкава винахідливо – і зрештою неправильно – поєднав цю сильну силу зі спостережуваним нейтронним розпадом, припустивши, що простий обмін мезонами між нейтронами й протонами в ядрі може відбуватися не завжди. Дещиця випущених нейтронами мезонів може ще до поглинання розпастися в польоті на електрон і нейтрино, спричиняючи нейтронний розпад. У цьому разі нейтронний розпад виглядатиме не так, як на лівому з рисунків нижче, де розпад і випускання всіх інших частинок відбуваються в тій самій точці. Він виглядатиме, як на рисунку праворуч, де розпад розтягнутий у часі, а нова частинка, відмічена пунктиром (який позначає мезон Юкави), після випускання долає невелику відстань, а тоді розпадається на електрон і нейтрино. Додавання цієї нової проміжної частинки робить слабку взаємодію, яка опосередковано спричиняє нейтронний розпад, більш схожою на електромагнітну взаємодію між зарядженими частинками:
Юкава запропонував нову проміжну частинку, важкий мезон, який зробив нейтронний розпад подібним до вже знайомої нам картини фотонного обміну в електромагнетизмі, – який, власне, і спонукав його міркувати в цьому напрямку, – проте із суттєвими відмінностями. У цьому випадку проміжна частинка була одночасно масивною й електрично зарядженою, а також, на відміну від фотона, не мала обертального кутового моменту.
Утім, Юкава зміг показати, що у випадку важкого мезона його теорія не відрізняється від точкової взаємодії Фермі, яка описує нейтронний розпад, принаймні в плані передбачення подробиць нейтронного розпаду. Окрім того, теорія Юкави пропонувала спосіб звести всі дивні властивості ядра – від бета-розпаду нейтронів усередині ядра до сили взаємодії, що зв’язувала докупи протони й нейтрони – до простого розуміння властивостей лише однієї нової взаємодії, що була результатом обміну новою частинкою, а саме його мезоном.
Однак якщо цей новий мезон дійсно існує, то де він є? Чому його ще не виявили в космічних променях? Через це, а також через те, що Юкава був невідомо ким і працював далеко від центру подій, на його варіант пояснення як сильної взаємодії між нуклонами, так і слабкішої, яка, судячи з усього, була відповідальна за нейтронний розпад, ніхто не звернув особливої уваги. Разом із тим його варіант, на відміну від варіантів Гайзенберга та інших, зокрема Фермі, був простішим та більш осмисленим.
Усе змінилося 1936-го, менш ніж через два роки після передбачення Юкави, коли Карл Андерсон, першовідкривач позитрона, спільно із Сетом Неддермайєром виявили в космічних променях щось, що виглядало новим набором частинок. З характеристик треків цих нових частинок у камерах Вільсона випливало, що вони продукували замало радіації в матерії, крізь яку проходили, щоб бути протонами чи електронами. Вони також були масивніші за електрони і в одних випадках поводилися як позитивні, а в інших – як негативні. Дуже скоро виявилося, що ці частинки мають масу в діапазоні, приблизно у двісті разів більшому за масу електрона, як і передбачив Юкава.
Дивовижно, наскільки швидко решта світу на це пристала. Юкава опублікував коротку замітку, у якій зазначив, що його теорія передбачила існування саме таких частинок. Уже за кілька тижнів найкращі фізики Європи почали вивчати його модель і впроваджувати його ідеї у свої роботи. 1938 року, на останній великій конференції перед тим, як Друга світова війна перервала практично всю міжнародну наукову співпрацю, троє з восьми основних доповідачів присвятили свої виступи теорії Юкави, цитуючи ім’я, зовсім не відоме їм лише рік чи два тому.
Хоча решта з більшості фізиків світу святкувала те, що виглядало відкриттям мезона Юкави, воно мало свої проблеми. Розпад мезона на електрон, як це передбачив Юкава у 1940 році, було виявлено в треках космічних променів. Проте протягом 1943–1947 років стало зрозуміло, що частинки, які відкрили Андерсон і Неддермайєр, взаємодіяли з ядрами значно слабкіше, аніж мали б згідно з передбаченнями Юкави.
Щось було не так.
Троє японських колег Юкави висловили думку, що мезони бувають двох різних видів і що мезон юкавівського типу може розпадатися на інший, відмінний та слабкіше взаємодійний мезон. Проте їхні статті були написані японською й були перекладені англійською лише після війни, а доти аналогічне припущення встиг висловити американський фізик Роберт Маршак.
Ця затримка виявилася щасливою. Розробляли нові технології спостереження треків космічних променів у фотоемульсіях, а низка відважних дослідників тягла своє обладнання на вершини в пошуках можливих нових сигналів. Багато космічних променів взаємодіють і зникають іще до досягнення рівня моря, тож ця група й усі інші, зацікавлені у вивченні цього чудового нового джерела частинок із небес, не мали іншого вибору як шукати якомога вищі пагорби. У цих місцях космічні промені проходили меншу відстань в атмосфері і їх було легше фіксувати.
Під час війни італійця Джузеппе Оккіаліні, колишнього гіда-альпініста, який перекваліфікувався у фізики, запросили з Бразилії доєднатися до британської команди, що працювала над атомною бомбою. Оскільки він був уродженцем іншої країни, то не зміг працювати над цим проектом, тож натомість приєднався до групи з фізики космічних променів у Брістолі. Альпіністські навички Оккіаліні стали йому у великій пригоді під час підйому фотографічних емульсій на французький Пік-дю-Міді заввишки дві тисячі вісімсот метрів. Нині до обсерваторії на вершині цього піка можна дістатися підйомником, і це невимовно захоплива подорож. Проте 1946 року Оккіаліні мав дертися на вершину, ризикуючи здоров’ям, заради виявлення сигналів екзотичної нової фізики.
І вони з командою таки відкрили екзотичну нову фізику. Як висловився Сесіл Пауелл, колега Оккіаліні з Брістолю (і майбутній нобелівський лауреат, при тому що Оккіаліні, який власне здійснив сходження, залишився без премії), вони побачили «…зовсім новий світ. Це було, наче ми раптово вдерлися до обнесеного муром саду, де пишно росли заповідні дерева й щедро достигали найрізноманітніші екзотичні фрукти».
Їхнє відкриття було не настільки поетичним: два випадки, коли початковий мезон зупинявся в емульсії й породжував другий мезон, точно як передбачали теоретики. Значно більше таких випадків вдалося зафіксувати, коли емульсії підняли на вершину, майже удвічі вищу за Пік-дю-Міді. У жовтні 1947 року Пауелл, Оккіаліні й студентка Пауелла Сезар Латтес опублікували в журналі «Nature» статтю, у якій назвали початковий мезон, який взаємодіяв із ядерною силою, що відповідала мезону Юкави, піоном, а подальший мезон – мюоном.
Було схоже на те, що мезон Юкави нарешті відкрито. Що ж до його «напарника» мюона, який спершу прийняли за мезон Юкави, він виявився зовсім на нього не схожим. Він не був безспіновим, натомість маючи такий самий спін, як в електрона й протона. І його взаємодії з матерію й близько не були достатньо сильними, щоб відігравати роль у ядерному зв’язуванні. Мюон виявився лише важкою, тому нестабільною копією електрона, і саме це спонукало Рабі поставити запитання: «Хто це замовив?»
Отже, урешті-решт Юкаву прославила не та частинка, яку він передбачив. Його ідея стала відомою тому, що результати його оригінального експерименту були хибно проінтерпретовані. На щастя, Нобелівський комітет дочекався відкриття піона 1947 року, і лише після цього, 1949-го, присудив Юкаві свою премію.
Утім, з огляду на весь цей список помилок і хибних позначень, логічно запитати, чи дійсно піон – та частинка, яку передбачив Юкава? Відповідь: і так, і ні. Дійсно, обмін зарядженими піонами між протонами й нейтронами є одним із надійних способів спробувати оцінити сильну ядерну силу, що тримає ядра вкупі. Проте на додачу до заряджених піонів – вони ж передбачені Юкавою мезони – існують ще й нейтральні піони. Хто замовив їх?
Мало того, теорія, яку застосував Юкава для опису сильної сили, як і теорія Фермі для опису нейтронного розпаду, була не зовсім математично узгодженою, що визнавав сам Юкава, коли її пропонував. На той час не існувало правильної релятивістської теорії, що охоплювала б обмін масивними частинками. Досі чогось бракувало, тож низка несподіваних експериментальних відкриттів у поєднанні з пророцькими теоретичними ідеями, які, на жаль, були застосовані до неправильних теорій, спричинила плутанину, що тривала більш ніж десятиліття, аж доки туман не розсіявся й у кінці тунелю, чи, радше, на вході в печеру, не з’явилося світло.
І замешкає вовк із вівцею, і буде лежати пантера з козлям…
Взаємозв’язок між теоретичною проникливістю й експериментальним відкриттям є одним із найцікавіших аспектів прогресу науки. Як і вся наука, фізика за своєю суттю є емпіричною дисципліною. Проте подеколи короткочасні сплески теоретичної проникливості все змінюють. Гарними прикладами, безумовно, є прозріння Ейнштейна щодо простору й часу впродовж перших двох десятиліть ХХ століття, а також визначний теоретичний прогрес, пов’язаний із розвитком квантової механіки зусиллями Шрьодінґера, Гайзенберга, Паулі, Дірака та інших упродовж 1920-х років.
Значно меншу славу має період із 1954 до 1974 року, який, хоч і не був настільки ж революційним, через достатню кількість років вважатиметься однією з найврожайніших та найпродуктивніших для теоретичної фізики ер у ХХ столітті. Ці два десятиліття, хоч і не без потрясінь, привели нас від хаосу до порядку, від збентеження до впевненості, від потворності до краси. Це карколомна поїздка з кількома раптовими змінами маршруту, які можуть здатися чудернацькими, проте я дуже прошу вас набратися терпіння. Якщо почуватиметеся трохи незручно, згадайте, що я казав у вступі про науку й комфорт. Лише помістивши себе в систему роздумів тих, хто брав участь у цих пошуках і чиє роздратування зрештою привело до здогадок, можна по-справжньому оцінити значення цих самих здогадок.
Цей буремний період змінив той, коли експериментальні блокбастери породили загальне сум’яття, зробивши природу «усе дивнішою й дивнішою», як висловився б Льюїс Керрол. Відкриття позитрона, а невдовзі після того – нейтрона, були лише початком. Нейтронний розпад, ядерні реакції, мюони, піони й ціла купа нових елементарних частинок після них справляли враження, що фундаментальна фізика безнадійно ускладнена. Проста картина всесвіту, у якій взаємодією матерії, утвореної з протонів та електронів, керували суто електромагнетизм і гравітація, відправилася на смітник історії. Деякі тогочасні фізики, як деякі нинішні прихильники правих політичних поглядів, сумували за часто згадуваною в спотвореному вигляді простотою добрих давніх часів.
До початку 1960-х років новознайдена складність спонукала декого уявити собі, що ніщо не є фундаментальним. В уявленій ними дзеноподібній картині всі елементарні частинки складалися з усіх інших елементарних частинок, і навіть саме поняття фундаментальних сил могло бути не більш ніж ілюзією.
Утім, на задньому плані потроху просочувалися теоретичні ідеї, які відсунуть темні завіси невігластва та збентеження й відкриють базисну структуру природи, яка виявиться настільки ж дивовижною, наскільки напрочуд простою, і в якій ключову роль знову відіграватиме світло.
Усе почалося з двох теоретичних розробок, одна з яких була ґрунтовною та маловідомою, а друга – відносно прямолінійною та вшанованою практично одразу. Що цікаво, до обох мала стосунок та сама людина.
Народжений 1922 року в родині математика, Янг Чженьнін здобув освіту в Китаї, а 1938 року переїхав із Пекіна до Куньміна, рятуючись від японського вторгнення. Чотири роки по тому він закінчив Національний південно-західний об’єднаний університет, у якому залишився ще на два роки. Там він зустрів іншого вимушеного переїхати до Куньміна студента – Лі Цзун-дао. Хоча вони дуже мало знали про США, 1946 року обидва одержали засновані урядом США на отримані від Китаю кошти стипендії, метою яких було надати можливість талановитим китайським студентам здобути вищу освіту в Америці. Янг уже мав магістерський ступінь, тобто більше свободи у виборі шляху до здобуття докторського ступеня, і разом із Фермі переїхав із Колумбійського до Чиказького університету. Лі ще не мав ступеня магістра, тож його вибір був вужчим, проте єдиним американським вищим навчальним закладом, у якому він міг працювати безпосередньо над здобуттям докторського ступеня, виявився той-таки Чиказький університет. Янг написав дисертацію під керівництвом Едварда Теллера й безпосередньо працював із Фермі як його асистент упродовж лише року після випуску, тоді як Лі писав свою дисертацію під безпосереднім керівництвом Фермі.
Упродовж 1940-х років Чиказький університет був одним із найбільших центрів теоретичної й експериментальної фізики в країні, і його докторанти мали величезну вигоду від спілкування зі славетною плеядою науковців, яка включала не лише Фермі й Теллера, а й багатьох інших, зокрема блискучого, проте скромного астрофізика Субрахманьяна Чандрасекара. У 19-річному віці Чандра, як його часто називали колеги, довів, що зорі, чиї маси перевищували масу Сонця більш ніж в 1,4 разу, по закінченні свого життя, пов’язаного зі спаленням ядерного палива, мають катастрофічно колапсувати або шляхом того, що нині відоме як вибух наднової, або безпосередньо в те, що нині відоме як чорна діра. Хоча в той час над його теорією потішалися, сорок три роки по тому він отримав за цю роботу Нобелівську премію.
Чандра був не просто блискучим науковцем, а ще й, як Фермі, відданим учителем. Попри те, що він проводив дослідження в Єркській обсерваторії в штаті Вісконсин, щотижня він здійснював стомильну подорож в обидва кінці, щоби провести заняття для лише двох записаних студентів, Лі та Янга. Урешті-решт усі учні цього класу разом зі своїм професором стали Нобелівськими лауреатами, що, наскільки мені відомо, є унікальним випадком в історії науки.
1949 року Янг переїхав до уславленого Інституту перспективних досліджень у Принстоні, де плекав їхню з Лі товариську співпрацю з різноманітних тем. 1952 року Янг став постійним членом Інституту, а Лі 1953 року переїхав до сусіднього Колумбійського університету в Нью-Йорку, де пропрацював решту своєї кар’єри.
Кожен із цих чоловіків зробив значні внески в різноманітні галузі фізики, проте спільна робота, яка зробила їх знаменитими, почалася з дивного експериментального результату, знов-таки одержаного під час спостереження космічних променів.
Того ж року, коли Янг переїхав із Чикаго до ІПД, Сесіл Пауелл, першовідкривач піона, відкрив у космічних променях нову частинку, яку назвав тау-мезоном. Спостереження показали, що ця частинка розпадається на три піони. Невдовзі було відкрито ще одну нову частинку, яку назвали тета-мезоном і яка розпадалася на два піони. Що цікаво, маса й час життя цієї нової частинки виявилися точно такими самими, як у тау-мезона.
Це може здатися не таким уже й дивним. Що, як це та сама частинка, просто здатна згідно зі спостереженнями розпадатися двома різними способами? Пригадаймо, що у квантовій механіці дозволено все, що не заборонено, і допоки нова частинка є достатньо важкою, щоб розпастися на два чи три піони, – а слабка сила допускає такі розпади, – відбуватися мають обидва.
Проте якщо слабка сила має сенс, вона не повинна допускати одночасно два різні розпади.
Задумайтеся на хвильку про свої руки. Ваша ліва рука відрізняється від вашої правої руки. Жоден простий фізичний процес, за винятком хіба що проходження крізь дзеркало, не може перетворити одну вашу руку на другу. Жодна послідовність рухів угору чи вниз, жоден поворот чи підстрибування вгору-вниз не можуть перетворити одну руку на другу.
Сили, що керують нашими чуттями, електромагнетизм і гравітація, не розрізняють лівий і правий боки. Жоден процес, що відбувається під дією якоїсь із цих сил, не може обернути щось на кшталт вашої правої руки на її дзеркальне відображення. Скажімо, я не можу обернути вашу праву руку на ліву, просто посвітивши на неї.
Іншими словами, якщо я посвічу на вашу праву руку й погляну на неї з деякої відстані, інтенсивність відбитого світла буде такою самою, якщо я посвічу на вашу ліву руку. Світлу, яке від чогось відбивається, байдуже, лівий це бік чи правий.
Наше визначення лівого й правого нав’язане нам людською нормою. Завтра ми можемо вирішити, що лівий бік є правим і навпаки, і не зміниться нічого, крім наших позначень. Я пишу ці рядки в літаку, в економ-класі, і людина праворуч від мене дуже відрізняється від людини ліворуч від мене, проте це лише випадковий збіг обставин. Я не очікую, що закони, які керують польотом мого літака, працюватимуть для його правого крила одним чином, а для лівого – іншим.
Тепер подумаймо, як це виглядає в субатомному світі. Пригадаймо, що Енріко Фермі виявив, що, згідно з правилами квантової механіки, математична поведінка груп пар елементарних частинок залежить від того, чи мають вони спін ½, себто чи є вони ферміонами. Поведінка груп ферміонів суттєво відрізняється від поведінки таких частинок, як фотони, зі значенням спіну, рівним 1 (або будь-яким цілочисельним значенням обертального кутового моменту, себто 0, 1, 2, 3 тощо). Для прикладу, математична «хвильова функція», яка описує пару ферміонів, є «антисиметричною», тоді як функція, котра описує пару фотонів, «симетрична». Це означає, що, якщо поміняти частинки місцями, хвильова функція, яка описує ферміони, змінить знак. Проте для таких частинок, як фотони, хвильова функція після обміну залишиться незмінною.
Поміняти дві частинки місцями рівносильно їх відображенню в дзеркалі. Частинка ліворуч стає частинкою праворуч. Таким чином, існує тісний взаємозв’язок між такими обмінами й тим, що фізики називають парністю, яка є загальною властивістю системи в умовах відображення (себто заміни лівого боку правим і навпаки).
Якщо елементарна частинка розпадається на дві інші частинки, хвильова функція, яка описує «парність» кінцевого стану (себто чи змінює хвильова функція знак при ліво-правому обміні частинок), дає нам змогу приписати початковій частинці величину, яку можна назвати парністю. У квантовій механіці, якщо сила, котра керує розпадом, не розрізняє лівий і правий боки, тоді розпад не змінить парність квантового стану системи.
Якщо хвильова функція системи після розпаду антисиметрична стосовно перестановки частинок, тоді система має «негативну» парність, тобто є непарною. У цьому випадку хвильова функція, яка описує початковий квантовий стан частинки, що розпадається, також повинна бути непарною (себто має змінювати знак при перестановці лівого й правого боків місцями).
Далі, піони – частинки, відкриті Пауеллом та гіпотетично передбачені Юкавою, непарні, тож хвильова функція, яка описує квантовий стан їхнього дзеркального відображення, матиме протилежний знак порівняно з початковою хвильовою функцією. Розрізнення між парністю й непарністю чимось нагадує розгляд, з одного боку, правильного сферичного м’ячика, який у дзеркалі виглядає ідентично, а отже, є парним:
А з другого боку, скажімо, ваша рука, яка у дзеркалі змінює характер (з лівого на правий), а отже, є непарною:
З огляду на ці дещо абстрактні роздуми, дані спостережень розпадів нових частинок, які відкрив Пауелл, ставили дослідників у глухий кут. Оскільки піон непарний, два піони повинні бути парними, адже (-1)2 = 1. Проте система з трьох піонів, за цими ж роздумами, є непарною, оскільки (-1)3 = -1. Таким чином, якщо в результаті розпадів частинок парність не змінюється, та сама початкова частинка не може розпадатися на два різні кінцеві стани з різною парністю.
Якби сила, відповідальна за цей розпад, поводилася, як усі інші відомі на той час сили на кшталт електромагнетизму чи гравітації, вона була б сліпа щодо парності (не відрізняла б лівий бік від правого), тож після розпаду вона не змінювала б початкову парність системи, точно як освітлення вашої правої руки не змушує її виглядати, як ваша ліва рука.
Оскільки видавалося неможливим, щоб частинки одного типу іноді розпадалися на два, а іноді на три піони, рішення здавалося простим. Має бути дві різні нові елементарні частинки з протилежними характеристиками парності. Пауелл назвав їх тау-частинкою й тета-частинкою, і одна з них розпадалася на два піони, а друга – на три.
Спостереження показували, що ці дві частинки мають точно однакові маси й час життя, що було трохи дивним, проте Лі і Янг висловили припущення, що це може бути загальною характеристикою різних елементарних частинок, які, на їхню думку, трапляються парами з протилежною парністю. Вони назвали цю ідею «дублюванням парності».
Такою була ситуація навесні 1956 року, коли відбулася Міжнародна конференція з фізики високих енергій, яка щорічно збиралась у Рочестерському університеті. 1956 року вся спільнота фізиків, які цікавилися ядерною фізикою та фізикою елементарних частинок, могла поміститися в одній університетській лекційній залі, тож усі ці вчені, зокрема всі основні гравці, традиційно приїздити на цю щорічну зустріч. Цього разу сталося так, що в одній кімнаті опинилися Річард Фейнман та Марті Блок. Як експериментатор, Блок не був настільки обтяжений можливою єрессю, властивою ідеї, що якась сила природи не була сліпою до розрізнення правого й лівого боку, тож він спитав Фейнмана, чи може бути так, що слабка взаємодія, яка керує виявленими Пауеллом розпадами, може відрізняти лівий бік від правого. Це дало б можливість одній частинці розпадатися на стани з різною парністю, а отже, тау-й тета-мезони могли бути тією самою частинкою.
Блоку бракувало зухвалості підняти це питання на відкритому засіданні, а от Фейнман це зробив, хоча сам особисто вважав це дуже малоймовірним. Янг відповів, що вони з Лі про це думали, але досі з цієї ідеї нічого не вийшло. Юджин Вігнер, який пізніше здобуде Нобелівську премію за роз’яснення важливості речей на кшталт парності для атомної та ядерної фізики, також був присутній і також поставив аналогічне питання щодо слабкої взаємодії.
Проте всі лаври дістаються переможцеві, і одна справа – теоретизувати щодо можливого порушення парності новою силою природи, здатною відрізняти лівий бік від правого, а зовсім інша – продемонструвати це. Через місяць Лі та Янг сиділи в нью-йоркському кафе й вирішили вивчити всі відомі експерименти, пов’язані зі слабкою взаємодією, аби перевірити, чи бодай якийсь із них може перекреслювати можливість порушення парності. На їхній величезний подив виявилося, що жоден експеримент не давав на це запитання чіткої відповіді.
Як пізніше казав Янг, «той факт, що збереження парності за слабкої взаємодії так довго бралося на віру без експериментальних підтверджень, приголомшував. Проте ще приголомшливішим була перспектива порушення так добре вивченого фізиками закону симетрії простору-часу. Ця перспектива нас не захоплювала».
До честі Лі та Янга, вони запропонували ціле розмаїття експериментів, які могли б перевірити можливість того, що слабка взаємодія розрізняє правий і лівий боки. Вони запропонували розглянути бета-розпад нейтрона в ядрі кобальта-60. Оскільки це радіоактивне ядро має ненульовий обертальний кутовий момент, тобто поводиться так, наче воно обертається, то також поводиться як маленький магніт. У зовнішньому магнітному полі ці ядра вишиковуються в напрямку поля. Якщо електрон, випущений при розпаді нейтрона в ядрі, переважно опиняється в якійсь одній півкулі, це буде ознакою порушення парності, оскільки в дзеркалі електрони опинятимуться в протилежній півкулі.
Якщо це було так, то вийшло б, що на фундаментальному рівні природа здатна відрізняти правий бік від лівого. Отже, створені людьми відмінності між ними (наприклад, зло проти добра) не є повністю штучними. Таким чином, світ у дзеркалі можна відрізнити від реального світу, або ж, як пізніше поетично висловився Річард Фейнман, можна скористатися цим експериментом, щоб надіслати повідомлення марсіянинові з поясненням, де розташоване «ліворуч» – скажімо, там, де перебуває півкуля, у якій за спостереженнями виникає більшість електронів, – без необхідності показувати це графічно.
На той час це здавалося настільки притягнутим за вуха, що багато кого з фізичної спільноти це потішило, проте ніхто не побіг виконувати цей експеримент. Ніхто, крім колеги Лі з Колумбійського університету, експериментаторки Ву Цзяньсун, також відомої як Мадам Ву.
Навіть нині ми сумуємо через брак фізиків-жінок, що їх випускають американські освітні заклади, а 1956 року ситуація була значно гірша. Якщо вже на те пішло, аж до кінця 1960-х років жінок навіть не приймали на бакалаврат у заклади Ліги плюща.[7] Майже через тридцять років після приїзду Ву з Китаю для навчання в Берклі в 1936-му в присвяченій їй статті в «Newsweek» вона зазначала: «Це ганьба, що в науці так мало жінок… У Китаї у фізиці багато, багато жінок. В Америці побутує хибне уявлення, що жінки-науковці – неохайні старі дівки. Це провина чоловіків. У китайському суспільстві жінку цінують за те, ким вона є, і чоловіки заохочують її до звершень, проте при цьому вона завжди лишається жіночною».
Хай там як, Ву була експертом із нейтронного розпаду, і коли вона від своїх друзів Лі та Янга дізналася про порушення парності в слабкій взаємодії, її заінтригувала бентежна можливість пошукати її. Вона скасувала відпочинок із чоловіком у Європі, і в червні, через місяць після того, як Лі та Янг вперше подумали про цю проблему, заходилася експериментувати, і вже до жовтня того ж року – у тому ж місяці, коли вийшла друком стаття Лі та Янга – вона з кількома колегами зібрала необхідне для проведення експерименту обладнання. Через два дні після тогорічного Різдва вже був результат.
У наші часи від розробки експерименту з фізики елементарних частинок до його завершення можуть минути десятиліття, проте в 1950-х роках усе було не так. Також то був час, коли фізики, судячи з усього, не переймалися взяттям відпусток. Попри свята, п’ятничні «китайські обіди», що їх організовував Лі, тривали, і в першу п’ятницю після Нового року Лі оголосив, що група Ву в результаті експерименту відкрила не просто порушення парності, а максимально можливе її порушення. Результат був настільки несподіваним, що група Ву продовжувала роботу, аби пересвідчитися, що їх не ввела в оману якась експериментальна помилка.
Водночас Леон Ледерман із колегами Діком Ґарвіном та Марселем Вайнріхом, які також працювали в Колумбійському університеті, збагнули, що вони можуть перевірити результати своїх експериментів із піонними та мюонними розпадами на університетському циклотроні. Уже за тиждень обидві групи, а також Джеррі Фрідман та Вел Телегді в Чикаго незалежно підтвердили одержаний результат із великою впевненістю й до середини січня 1957 року подали свої статті до «Physical Review». Вони змінили нашу картину світу назавжди.
Колумбійський університет скликав, напевне, першу в історії прес-конференцію для оголошення наукового результату. Фейнман програв 50 доларів, а от Вольфгангу Паулі пощастило більше. 15 січня він написав із Цюриха листа Вікторові Вайскопфу в МТІ, у якому закладався, що експеримент Ву не виявить порушення парності, не знаючи, що він уже це виявив. У листі Паулі проголосив: «Я відмовляюся вірити, що Бог слабкий ліворукий», – продемонструвавши заодно несподівану пристрасть до бейсболу. Вайскопф, який на той час уже знав про отриманий результат, був надто добрий, щоб прийняти парі.
Пізніше, почувши новини, Паулі писав: «Тепер, коли перший шок минув, я починаю брати себе в руки». То був дійсно шок. Ідея, що одна з фундаментальних сил природи розрізняє правий і лівий бік, була просто-таки ляпасом здоровому глузду, а заодно й більшості основ сучасної фізики в тому вигляді, на якому вона розумілася тоді.
Шок був настільки великим, що той рік став одним із лише кількох разів в історії Нобелівських премій, коли волю Нобеля було дотримано як слід. Його заповіт вказує, що премія в кожній галузі має присуджуватися людині або людям, чия робота була найважливішою того року. У жовтні 1957-го, майже рівно через рік після публікації статті Лі та Янга, та лише через десять місяців після підтвердження їхньої ідеї Ву та Ледерманом, 30-річний Лі та 34-річний дорослий з обличчям дитини Янг спільно отримали за свою ідею Нобелівську премію. На жаль, Мадам Ву, яку називали китайською мадам Кюрі, була вимушена вдовольнитися здобуттям двадцять років по тому першої Премії Вольфа з фізики.
Зненацька слабка взаємодія стала одночасно цікавішою та заплутанішою. Теорія Фермі, якої досі було цілком достатньо, була грубо скопійована з електромагнетизму. Електромагнітну взаємодію можна розглядати як силу між двома різними електричними струмами, які відповідають двом окремим рухомим електронам, що взаємодіють між собою. Слабку взаємодію можна розглядати дещо аналогічним чином, якщо в одному зі струмів нейтрон під час взаємодії конвертується в протон, а в іншому струмі перебувають вихідний електрон і нейтрино.
Проте є дві ключові відмінності. У слабкій взаємодії Фермі два різні струми взаємодіють в одній точці, а не дистанційно; також струми в слабкій взаємодії в процесі поширення простором допускають зміну частинками їхнього типу.
Тоді як електромагнітні взаємодії в дзеркалі такі самі, як і в реальному світі, у слабкій взаємодії, якщо порушується парність, її «струми» повинні мати, як указував Паулі, «хіральність», як у штопора чи ножиць, і їхні дзеркальні відображення відрізнятимуться.
Таким чином, порушення парності в слабких взаємодіях нагадує правило етикету, згідно з яким ми завжди робимо рукостискання правицею. У дзеркальному світі люди завжди робитимуть рукостискання лівицями. Отже, реальний світ відрізняється від свого дзеркального відображення. Якщо струми в слабкій взаємодії мають хіральність, то слабка взаємодія здатна розрізняти правий і лівий боки, і в дзеркальному світі відрізнятиметься від сили, що діє в нашому з вами світі.
Спроби фізиків визначити, які саме типи нової можливої взаємодії можуть замінити просту міжструменеву взаємодію Фермі, у рамках якої задіяним частинкам не можна було приписати жодної очевидної хіральності, призвели до чималих зусиль та бентежень. Теорія ймовірності допускала велике розмаїття можливих узагальнень взаємодії Фермі, проте результати різних експериментів приводили до різних і взаємовиключних математичних форм цієї взаємодії, тож видавалося неможливим, що всі вони можуть бути пояснені однією універсальною слабкою взаємодією.
Десь о тій порі, коли з’явилися перші експериментальні результати стосовно нейтронного й мюонного розпадів, які свідчили, що порушення парності було настільки великим, наскільки це взагалі можливо, юний докторант Рочестерського університету Джордж Сударшан почав вивчати цю заплутану ситуацію та запропонував те, що зрештою виявилося правильною формою універсальної взаємодії, здатної замінити форму Фермі, і що також вимагало, аби принаймні деякі з одержаних на той час експериментальних результатів виявилися хибними.
Решта історії дещо трагічна. Сударшан попросив дозволу представити свої результати на Рочестерській конференції, яка відбувалася через три місяці після відкриття порушення парності й через рік після того, як Лі та Янг представили свої перші міркування стосовно дублювання парності. Проте через те, що він був лише докторантом, йому відмовили. Його науковий керівник Роберт Маршак, який і запропонував Сударшану взятися за цю дослідницьку проблему, на той час уже займався іншою проблемою ядерної фізики й вирішив доповідати на засіданні саме на цю тему. Інший член факультету, якого попросили згадати у своєму виступі роботу Сударшана, також про це забув. Тож на цьому засіданні дискусія щодо можливої форми слабкої взаємодії в підсумку завершилася нічим.
До цього, 1947 року, Маршак був першим, хто висловив думку, що в ході експериментів Сесіла Пауелла було відкрито два різні мезони, причому один був частинкою, що її передбачив Юкава, а другий – тим, що нині зветься мюоном. Також Маршак започаткував Рочестерську конференцію і, можливо, вважав, що, якщо дозволить виступати на ній своєму учневі, це сприймуть як фаворитизм. Крім того, оскільки ідея Сударшана вимагала хибності принаймні частини експериментальних даних, Маршак, можливо, вирішив, що презентувати її на цьому засіданні зарано.
Того літа Маршак працював у «RAND Corporation» у Лос-Анджелесі й запросив Сударшана та ще одного студента приєднатися до нього. Двоє найвизначніших на той час фізиків-теоретиків у галузі елементарних частинок, Фейнман і Маррі Гелл-Манн, працювали в Калтеху, і обома оволоділа одержимість розгадати таємницю форми слабкої взаємодії.
Фейнман упустив відкриття порушення парності, не довівши власної лінії роздумів до логічного завершення, проте відтоді зрозумів, що його робота над квантовою електродинамікою може пролити світло на слабку взаємодію. Він відчайдушно жадав це зробити, оскільки вважав свою роботу над КЕД усього-на-всього невеличким технічним чаклунством, значно менш благородним за відшукування форми закону, що керує ще одним різновидом фундаментальних взаємодій у природі. Проте форма слабкої взаємодії, яку Фейнман запропонував, на перший погляд також суперечила тогочасним експериментальним даним.
Упродовж 1950-х років Гелл-Манн став автором багатьох найважливіших та найдовговічніших із тогочасних ідей у фізиці елементарних частинок. Він був одним із двох фізиків, які висловили думку, що протони й нейтрони складаються з більш фундаментальних частинок, які він назвав кварками. Гелл-Манн мав свої причини розмірковувати над парністю та слабкою взаємодією. Значній частині свого успіху він завдячував зосередженню на нових математичних симетріях у природі, і з-поміж іншого вчений використав ці ідеї для створення нової можливої форми слабкої взаємодії, проте знов-таки його ідея суперечила даним експериментів.
Під час перебування в Лос-Анджелесі Маршак улаштував обід Сударшана з Гелл-Манном для обговорення їхніх ідей. Вони також зустрілися з видатним експериментатором Феліксом Боемом, чиї експерименти, за його словами, уже узгоджувалися з їхніми ідеями. Від Гелл-Манна Сударшан та Маршак дізналися, що його ідеї узгоджувалися з пропозицією Сударшана, проте в найкращому випадку Гелл-Манн планував включити згадку про це лише в один з абзаців довгої оглядової статті на тему слабкої взаємодії.
Тим часом Маршак і Сударшан готували статтю, присвячену їхній ідеї, і Маршак вирішив приберегти її для презентації на міжнародній конференції в Італії восени. Дізнавшись від Боема про нові експериментальні дані, Фейнман у досить-таки сильному збудженні вирішив, що його ідеї правильні, і почав писати свою статтю на цю тему. Гелл-Манн, який мав украй змагальну вдачу, вирішив, що, якщо Фейнман пише статтю, він має написати свою. Урешті-решт керівник їхнього факультету переконав їх, що вони мають писати статтю разом, і це вони й зробили, і ця їхня стаття стала знаменитою. Хоча в ній Фейнман і Гелл-Манн віддавали належне Сударшану й Маршаку за дискусії, у збірнику тез конференції стаття останніх була розташована ближче до кінця й не могла конкурувати за увагу спільноти.
Пізніше, 1963 року, Фейнман, який намагався бути щедрим з ідеями, публічно заявив: «Цю… теорію відкрили Сударшан і Маршак, а опублікували її Фейнман і Гелл-Манн…» Проте це було наче мертвому припарка. Навіть на піку слави Сударшану було б складно змагатися за популярність із Фейнманом та Гелл-Манном, тож йому довелося впродовж багатьох років жити з усвідомленням, що універсальна форма слабкої взаємодії, яку відкрили двоє з героїв світової фізики, уперше й значно більш упевнено була запропонована саме ним.
Теорія Сударшана, чудово роз’яснена в статті Фейнмана й Гелл-Манна, стала відома під назвою V-A-теорії слабкої взаємодії. Причина вибору такої назви вимагає довгих пояснень і стане зрозумілішою в наступних розділах, проте фундаментальна ідея проста, хоч і звучить одночасно сміховинно й безглуздо: струми в теорії Фермі мають бути «ліворукими».
Щоб зрозуміти цю термінологію, пригадаймо, що у квантовій механіці елементарні частинки на кшталт електронів, протонів та нейтрино мають обертальний кутовий момент – поводяться, наче вони обертаються, хоча з точки зору класичної фізики точкову частинку без протяжності не можна зобразити такою, що обертається. Тепер розглянемо напрямок їх руху та на мить зробимо вигляд, що частинка схожа на дзиґу, яка обертається довкола своєї осі. Простягніть праву руку й виставте великого пальця в напрямку руху частинки. Тоді зігніть решту пальців. Якщо вони згинаються в тому ж напрямку (проти годинникової стрілки), у якому частинка/дзиґа обертається стосовно напрямку руху, то частинку називають праворукою. Якщо ви простягнете ліву руку й зробите те саме, ліворука частинка обертатиметься за годинниковою стрілкою, що збігатиметься з напрямком згину пальців на вашій лівій руці:
Точно так само, як у дзеркалі ваша ліва рука виглядатиме як права, якщо ви подивитеся на дзеркальне відображення стрілки, що обертається, напрямок її руху буде протилежним, тобто, якщо в реальному світі стрілка від вас віддаляється, у дзеркалі вона рухатиметься до вас, проте напрямок її обертання не зміниться. Таким чином, у дзеркалі ліворука частинка перетворюється на праворуку (а отже, якби бідолахи з Платонової печери мали дзеркала, їх би не настільки здивувала зміна орієнтації тіней стрілок).
Ця робоча картина ліворуких частинок не є строгою, адже, якщо над нею замислитися, станеться, що ліворуку частинку можна перетворити на праворуку, просто рухаючись швидше за неї. У системі відліку, у якій особа в стані спокою спостерігає за частинкою, що пролітає повз неї, остання може рухатися ліворуч. Проте якщо заскочити в ракету та полетіти ліворуч і пролетіти повз цю частинку, то стосовно вас вона рухатиметься праворуч. Таким чином, наведений вище опис правильний лише для частинок, які не мають маси, а відтак рухаються зі швидкістю світла. Адже, якщо частинка рухається зі швидкістю світла, ніщо не може рухатися настільки швидко, щоби пролетіти повз неї. Математично визначення ліворукості має все це враховувати, проте нам із вами перейматися цим ускладненням більше немає потреби.
Електрони можуть обертатися в будь-якому напрямку, проте математично з V-A-взаємодії випливає, що «відчувати» слабку силу й брати участь у нейтронному розпаді можуть лише такі рухомі електрони, чиї струми є ліворукими. Праворукі струми не відчувають цієї сили.
Ще більш приголомшливим є те, що нейтрино відчувають лише слабку силу й жодну іншу. Наскільки ми можемо судити, нейтрино бувають лише ліворукими. Ідеться не про те, що лише один різновид нейтринного струму вступає в слабку взаємодію. Досі в усіх до єдиного експериментальних спостереженнях не було виявлено жодного праворукого нейтрино, що можна вважати найяскравішою демонстрацією порушення парності в природі.
Для мене удавана дурість цієї номенклатури була підкреслена багато років тому, під час перегляду епізоду серіалу «Зоряний шлях: Глибокий космос 9», у якому офіцер із науки цієї космічної станції виявляє, що в ігорному казино щось негаразд із законами ймовірності. Вона пропускає крізь заклад нейтринний промінь і на виході спостерігає тільки ліворукі нейтрино. Очевидно, що щось тут не так.
За винятком того, що так воно насправді і є.
Що не так із природою? Як так сталося, що принаймні для однієї з фундаментальних сил лівий бік відрізняється від правого? Проста відповідь на ці запитання така: ми наразі не знаємо, хоча від цього в остаточному підсумку залежить саме наше існування, яке спирається на природу відомих сил. Це одна з причин, чому ми намагаємося це з’ясувати. Відкриття нової сили призвело до нової головоломки, і, як і більшість головоломок у науці, ця зрештою надала ключ, який указав фізикам новий шлях пізнання. Дізнавшись, що природі бракує ліво-правої симетрії, яку всі звикли вважати фундаментальною, фізики були змушені переглянути, як симетрії проявляються у світі і, що важливіше, як вони не проявляються.
А віра то підстава сподіваного, доказ небаченого.
Запозичивши вислів Паулі, маємо всі підстави стверджувати, що Матінка Природа є слабким ліворуким. Переживши приголомшливе усвідомлення, що природа відрізняє лівий бік від правого, фізика, своєю чергою, зробила дивний лівий поворот на шлях без знайомих дороговказів. Чудова впорядкованість періодичної таблиці, яка регулює явища в атомних масштабах, поступилася місцем таємниці ядра й незбагненній природі сил, що ним керують.
Минули часи світла, руху, електромагнетизму, гравітації й квантової механіки, що їх нині сприймають як безтурботні. Феєрично вдала теорія квантової електродинаміки, яка щойно перебувала на передньому краї фізики, схоже, поступилася місцем химерному світу екзотичних феноменів, пов’язаних із нещодавно відкритими слабкою й сильною ядерними силами, які правили бал у серці матерії. Попри те, що одна з цих сил була в тисячі разів сильнішою за іншу, їхні наслідки та властивості було непросто виокремити. Світ фундаментальних частинок виглядав іще складнішим, аніж досі, і з кожним роком ситуація дедалі більше заплутувалася.
Якщо відкриття порушення парності кинуло тіні збентеження, продемонструвавши, що природа має абсолютно непередбачувані забаганки, перші промені світла постали з усвідомлення, що інші ядерні величини, які на перший погляд здавалися вкрай відмінними, з фундаментальної точки зору можуть виявитися зовсім не такими різними.
Гадаю, найважливішим відкриттям у ядерній фізиці було те, що протони й нейтрони, як за кілька років до того припустив Юкава, можуть перетворюватися одні на одних. Це стало основою зародження розуміння слабкої взаємодії. Проте більшість фізиків відчувала, що це було також ключем до розуміння сильної сили, котра, як виявилося, тримає ядра вкупі.
За два роки до революційної спільної роботи з Лі Цзун-дао, яка не звертала уваги на священну ліво-праву симетрію природи, зусилля Янга Чженьніна були зосереджені на намаганнях зрозуміти, яким чином інший тип симетрії, запозичений із квантової електродинаміки, може пролити світло на приховану красу всередині ядра. Можливо, як з’ясував Галілей стосовно базових засад руху, найочевидніші речі, які ми спостерігаємо в природі, можуть одночасно бути саме тим, що ефективно маскує її фундаментальні властивості.
Поступово внаслідок не лише прогресу в розумінні нейтронного розпаду та інших слабких ефектів у ядрах, а й розгляду сильних ядерних зіткнень стало зрозуміло, що очевидна відмінність між протонами й нейтронами – перші мають заряд, а другі нейтральні – може не мати ніякого значення в контексті базисної фізики, що визначає властивості ядер. Чи принаймні мати таке ж значення, яке видима відмінність між пером і каменем, що падають, має для нашого розуміння базисної фізики гравітації об’єктів у падінні.
По-перше, слабка сила здатна конвертувати протони в нейтрони. Мало того, вивчаючи інтенсивності інших, сильніших ядерних реакцій, пов’язаних із зіткненнями протонів чи нейтронів, встановили, що заміна нейтронів протонами й навпаки несуттєво впливає на результати.
Того ж 1932 року, коли було відкрито нейтрон, Гайзенберг висунув припущення, що нейтрон і протон можуть бути всього-на-всього двома станами тієї самої частинки, і винайшов для їхнього розрізнення параметр, який назвав ізотопічним спіном. Урешті-решт їхні маси майже однакові, і світлостійкі ядра містять їх в однаковій кількості. Після цього, а також після встановлення авторитетними ядерними фізиками Бенедиктом Кассеном, Едвардом Кондоном, Грегорі Брейтом і Юджином Фінбергом, що ядерні реакції, схоже, здебільшого сліпі в плані розрізнення протонів і нейтронів, блискучий математичний фізик Юджин Вігнер висловив припущення, що в ядерних реакціях ізотопічний спін «зберігається», з чого випливала базисна симетрія, яка визначає поведінку ядерних сил між протонами й нейтронами. (Перед цим Вігнер розробив правила, що демонстрували, яким чином симетрії в атомних системах зрештою уможливлювали повну класифікацію атомних станів і переходів між ними, за що пізніше отримав Нобелівську премію).
Вище, обговорюючи електромагнетизм, я зазначав, що в рамках електромагнітних взаємодій загальний електричний заряд не змінюється – себто електричний заряд зберігається – через базисну симетрію між позитивними й негативними зарядами. Цей базисний зв’язок між законами збереження та симетріями значно ширший та глибший за один цей приклад. У минулому столітті саме глибокий та несподіваний взаємозв’язок між законами збереження та симетріями природи був найважливішим керівним принципом фізики.
Попри цю важливість, точне математичне відношення між законами збереження та симетріями строго вивела лише 1915 року видатна німецька жінка-математик Еммі Нетер. На жаль, незважаючи на те, що Нетер була однією з найвизначніших математиків початку ХХ століття, більшу частину своєї кар’єри вона працювала, не маючи ані офіційної посади, ані зарплатні.
На шляху Нетер було дві перешкоди. По-перше, вона була жінка, що ускладнювало здобуття нею на початку кар’єри освіти й пошуки роботи, а по-друге, – єврейка, що врешті-решт поклало край її академічній кар’єрі в Німеччині та змусило незадовго до смерті стати вигнанкою в США. Їй вдалося вступити в Ерлангенський університет, де вона була однією з двох жінок з-поміж 986 студентів, але навіть у такому разі для відвідування курсів їй було необхідно дістати окремий дозвіл від кожного з професорів. Зрештою вона склала випускний іспит і пізніше деякий час навчалася в славетному Геттінгенському університеті, після чого повернулася в Ерланген для завершення роботи над докторською дисертацією. Пропрацювавши сім років в Ерлангені як безоплатний викладач, 1915 року вона отримала запрошення від славетного математика Давида Ґілберта повернутися до Геттінгену. Проте університетські викладачі історії та філософії заблокували її призначення. Один із членів професорсько-викладацького складу висловив своє заперечення так: «Що подумають наші солдати, коли, повернувшись до університету, виявлять, що повинні навчатися в ногах жінки?» Ґілберт дав на це відповідь, яка змусила мене безмежно його поважати не лише за видатний математичний талант: «Я не розумію, як стать кандидатки може бути аргументом проти її прийому на посаду приват-доцента. Зрештою, це університет, а не лазня».
Утім, подання Ґілберта відхилили, і хоча Нетер викладала в Геттінгені впродовж наступних сімнадцяти років, їй почали платити лише з 1923-го, і, попри всі її визначні внески в численні галузі математики, – настільки численні й глибокі, що її часто зараховують до найвидатніших математиків ХХ століття, – вона так ніколи й не здобула посади професора.
Окрім того, 1915 року, невдовзі після приїзду до Геттінгену, вона довела теорему, нині відому як теорема Нетер, яку вивчають усі докторанти-фізики (або мають вивчати, якщо хочуть називатися фізиками).
Знову повертаючись до електромагнетизму, взаємозв’язок між довільним розрізненням між позитивним і негативним зарядами (якби Бенджамін Франклін краще розумів природу, визначаючи, що таке позитивний заряд, нині електрони, не виключено, позначали б як носії позитивного, а не негативного заряду) і збереженням електричного заряду – а саме що сумарний заряд у системі до та після будь-якої фізичної реакції залишається незмінним, – зовсім не очевидний. Насправді це наслідок із теореми Нетер, яка стверджує, що кожній фундаментальній симетрії природи – себто кожному перетворенню, у результаті якого закони природи виявляються незмінними, – відповідає певна збережувана фізична величина. Іншими словами, у процесі еволюції фізичних систем деяка фізична величина з часом не змінюється. Таким чином:
• закон збереження електричного заряду відображає той факт, що закони природи не змінюються в разі зміни знаків усіх електричних зарядів;
• закон збереження енергії відображає той факт, що закони природи не змінюються з часом;
• закон збереження імпульсу відображає той факт, що закони природи не змінюються при переміщенні з одного місця на інше;
• закон збереження кутового імпульсу відображає той факт, що закони природи не залежать від напрямку обертання системи.
Відповідно, заявлене збереження ізотопічного спіну в ядерних реакціях є відображенням експериментально перевіреного твердження, що, якщо всі протони замінити нейтронами й навпаки, ядерні взаємодії залишаться більш-менш такими самими. Це також відображено у світі наших чуттів, у тому факті, що принаймні в легких елементах кількість протонів і нейтронів у ядрі приблизно однакова.
1954 року Янг та його тодішній напарник Роберт Міллз, знов-таки розмірковуючи про світло, зробили важливий крок уперед. Електромагнетизм і квантова електродинаміка не лише мають просту симетрію, яка каже нам, що нема ніякої фундаментальної різниці між негативним і позитивним зарядом і що це позначення довільне. Як було розлого описано вище, тут працює ще одна, значно менш помітна симетрія, яка в остаточному підсумку й визначає завершену форму електродинаміки.
Калібрувальна симетрія електромагнетизму каже нам, що можна локально змінити визначення позитивного й негативного заряду, не змінюючи при цьому фізику, якщо існує поле, у цьому випадку електромагнітне поле, здатне врахувати всі такі локальні зміни й гарантувати, що далекосяжні сили взаємодії зарядів не залежать від цього перепозначення. Наслідком цього у квантовій електродинаміці є існування безмасової частинки – фотона, який є квантом електромагнітного поля й переносить силу між віддаленими частинками.
У цьому сенсі той факт, що калібрувальна інваріантність є симетрією природи, забезпечує те, що електромагнетизм має саме таку форму, яку він має. Саме ця симетрія визначає взаємодії між зарядженими частинками та світлом.
Далі Янг і Міллз поставили питання, що станеться, якщо розширити симетрію, з якої випливає, що ми можемо всюди поміняти нейтрони на протони й навпаки, не змінюючи фізику, до симетрії, яка дозволить нам у різних місцях по-різному вибирати, що позначати «нейтроном», а що – «протоном». За аналогією з квантовою електродинамікою очевидно, що для врахування та нейтралізації впливу цих довільних точкових змін позначень потрібне якесь нове поле. Якщо це поле є квантовим полем, то чи можуть пов’язані з ним частинки якимось чином грати роль або навіть повністю визначати природу ядерних сил між протонами й нейтронами?
То були захопливі питання, і слід віддати належне Янгу та Міллзу, які не лише поставили їх, а й спробували визначити відповіді шляхом дослідження, якими саме будуть математичні наслідки цього нового типу калібрувальної симетрії, пов’язаної з ізотопічним спіном.
Буквально одразу ж стало зрозуміло, що все набагато ускладниться. У квантовій електродинаміці просте перемикання знака зарядів між електронами й позитронами не змінює величини загального заряду кожної з частинок. Проте перепозначення частинок у ядрі замінює нейтральний нейтрон позитивно зарядженим протоном. Тож яке б поле не знадобилося для нейтралізації наслідків такого точкового перетворення заради незмінності базисної фізики, воно саме має бути зарядженим. Але якщо саме поле заряджене, то, на відміну від фотонів, які, будучи електрично нейтральними, безпосередньо не взаємодіють з іншими протонами, це нове поле має взаємодіяти саме із собою.
Введення потреби нового зарядженого узагальнення електромагнітного поля значно ускладнює математику, на яку спирається ця теорія. Передусім для врахування всіх таких перетворень ізотопічного спіну потрібне не одне поле, а одразу три – позитивно заряджене, негативно заряджене й нейтральне. Це означає, що одного поля в кожній точці простору, яке подібно до електромагнітного поля в КЕД указує в певному напрямку в просторі з певною величиною (і тому називається у фізиці векторним полем), уже недостатньо. Електричне поле необхідно замінити полем, яке описане математичним об’єктом під назвою «матриця» – не плутати ні з чим, до чого має стосунок Кіану Рівз.
Янг і Міллз дослідили математику, що крилася за цим новим та складнішим типом калібрувальної симетрії, який ми нині звемо або неабелевою калібрувальною симетрією через певну математичну властивість матриць, через яку їхнє множення відрізняється від множення чисел, або з поваги до Янга та Міллза симетрією Янга – Міллза.
На перший погляд стаття Янга й Міллза здається абстрактним, або суто умоглядним, математичним дослідженням наслідків припущення про можливу форму нової взаємодії, умотивованим спостереженням калібрувальної симетрії в електромагнетизмі. Проте вона не була вправою з чистої математики. Ця стаття була спробою дослідити можливі спостережувані наслідки цієї гіпотези, аби перевірити, чи має вона стосунок до реального світу. На жаль, математика була настільки складною, що можливі спостережувані сигнатури були далеко не очевидними.
Проте одна річ була очевидною. Для того, щоб ці нові «калібрувальні поля» враховували, а отже, нейтралізували наслідки окремих перетворень ізотопічного спіну у віддалених точках, вони, тобто поля, мали бути безмасовими. Це еквівалентне твердженню, що сила, яку протони передають від частинки до частинки, може бути як завгодно далекосяжною лише завдяки тому, що фотони безмасові. Повертаючись до моєї аналогії з шахівницею, якщо випадковим чином поміняти кольори клітинок, для здійснення правильних ходів на всій дошці потрібна одна загальна книга правил. Проте запровадження масивних калібрувальних полів, якими не можна обмінюватися на необмежено великих відстанях, еквівалентне створенню книги правил, котра пояснює, як нівелювати зміну кольорів лише в найближчих до відправної точки клітинках. Проте це не дасть вам змоги пересувати фігури на дошці у віддалені місця.
Коротше кажучи, калібрувальна симетрія на зразок характерної для електромагнетизму чи більш езотеричної пропозиції Янга – Міллза працює тільки в тому випадку, якщо нові поля, яких вимагає ця симетрія, безмасові. З-поміж усіх математичних складнощів цей конкретний факт є непорушним.
Проте в природі не спостерігають жодних, окрім електромагнетизму й гравітації, далекосяжних сил, що передбачають обмін безмасовими частинками. Ядерні взаємодії близькодійні, вони спрацьовують суто в межах ядра.
Ця очевидна проблема не пройшла повз Янга та Міллза, які її розгледіли та, відверто кажучи, сіли в калюжу. Вони висловили припущення, що якимось чином їхні нові частинки можуть ставати масивними в результаті взаємодії з ядром. Коли вони спробували оцінити їхні маси на основі неемпіричних обрахунків, теорія виявилася занадто складною математично, щоб мати змогу зробити прийнятні оцінки. Вони знали лише те, що емпірично маса нових калібрувальних частинок мала б бути більшою за масу піонів, адже в іншому випадку їх було б виявлено в ході тодішніх експериментів.
Така готовність підняти руки вгору може здатися або лінощами, або непрофесіоналізмом, проте Янг із Міллзом, як до того Юкава, знали, що ще нікому не вдалося виписати прийнятну квантову теорію поля частинки, яка була б подібна до фотона, проте, на відміну від нього, мала б масу. Тож на той момент здавалося, що не варто марно витрачати час та зусилля на спроби одним махом розв’язати всі проблеми квантової теорії поля. Натомість вони з більшою шанобливістю, аніж Джонатан Свіфт, подали свою статтю лише як скромну пропозицію з метою пришпорити уяву колег.
Вольфганг Паулі, одначе, був позбавлений її начисто. Хоча роком раніше він розмірковував щодо деяких споріднених ідей, він усі їх відкинув. Мало того, він вважав, що всі ці розмови про квантові невизначеності під час оцінювання мас були помилковим слідом. Якщо в природі дійсно існувала нова калібрувальна симетрія, яка була пов’язана з ізотопічним спіном та керувала ядерними силами, тоді нові янг-міллзівські частинки мали б бути безмасовими, точно як фотони.
Зокрема, саме з цієї причини стаття Янга й Міллза свого часу наробила значно менше шуму, аніж пізніший опус Янга та Лі. Для більшості фізиків то була в найкращому випадку цікава дивина, а відкриття порушення парності здавалося значно більш захопливим.
Проте не для Джуліана Швінґера, який не був пересічним фізиком. Вундеркінд, він у 18-річному віці закінчив університет, а у 21 рік захистив докторську дисертацію. Мабуть, важко знайти більш різних фізиків, аніж він та Річард Фейнман, які 1965 року розділили Нобелівську премію за окремі, проте еквівалентні праці з розробки теорії квантової електродинаміки. Швінґер був вишуканим, формальним та геніальним. Фейнман був геніальним, невимушеним і аж ніяк не вишуканим. Фейнман часто спирався на інтуїцію та вгадування, виїжджаючи за рахунок дивовижного математичного хисту й досвіду. Швінґерів математичний хист нічим не поступався фейнманівському, проте Швінґер працював акуратно, маніпулюючи складними математичними виразами з легкістю, недосяжною для простих смертних. Він жартував щодо діаграм Фейнмана, які той розробив задля полегшення страшенно трудомістких обрахунків у рамках квантової теорії поля: «Подібно до силіконових чипів, що з’явилися в останні роки, діаграма Фейнмана несла обрахунки в маси». Утім, у них обох була спільна риса. Вони крокували не в ногу з усіма… у протилежних напрямках.
Швінґер серйозно поставився до ідеї Янга – Міллза. Мабуть, його привабила її математична краса. Того ж 1957 року, коли відкрили порушення парності, Швінґер висунув сміливе та на перший погляд дуже малоймовірне припущення, що слабка взаємодія, відповідальна за розпад нейтронів на протони, електрони та нейтрино, може мати вигоду від можливості існування полів Янга – Міллза, проте в новий та незвичайний спосіб. Він запропонував ідею, що спостережувана калібрувальна симетрія електромагнетизму може бути лише частиною більшої калібрувальної симетрії, у якій нові калібрувальні частинки можуть переносити слабку взаємодію, яка змушує нейтрони розпадатися.
Очевидним запереченням проти такого роду об’єднання є те, що слабка взаємодія значно слабша за електромагнетизм. Швінґер мав на це відповідь. Якщо якимось чином нові калібрувальні частинки є дуже важкими, майже в сотню разів важчими за протони й нейтрони, тоді взаємодія, яку вони здатні передавати, матиме значно менший радіус дії, аніж навіть розмір ядра або навіть одного протона чи нейтрона. У цьому випадку можна вирахувати, що ймовірність того, що ця взаємодія змусить нейтрон розпастися, буде дуже малою. Таким чином, якщо радіус дії слабкої взаємодії малий, тоді ці нові поля, силу чийого внутрішнього зв’язування з електронами й протонами на малих масштабах можна порівняти із силою електромагнетизму, на масштабах ядра й більше можуть здаватися значно, значно слабшими.
Простіше кажучи, Швінґер запропонував дику ідею, що електромагнетизм і слабка взаємодія були, попри значні й очевидні відмінності між ними, частинами єдиної теорії Янга – Міллза. Він не виключав, що фотон може бути тим самим нейтральним членом множини з трьох калібрувальних частинок янг-міллзівського типу, потрібних для розгляду ізотопічного спіну як калібрувальної симетрії, причому саме заряджені версії переносять слабку взаємодію та відповідальні за спричинення розпаду нейтронів. Він не мав гадки, чому в такому разі заряджені частинки матимуть величезну масу, тоді як фотон не матиме ніякої. Проте, як я вже не раз казав, брак розуміння не є свідченням ані існування Бога, ані того, що ви неодмінно помиляєтеся. Це всього-на-всього свідчення браку розуміння.
Швінґер був не тільки блискучим фізиком, а й блискучим учителем та наставником. Тоді як у Фейнмана було лише кілька успішних студентів, – не виключено, через те, що ніхто з них за ним не встигав, – Швінґер (таке враження) був майстром наставляти блискучих докторантів. За своє життя він був керівником понад сімдесяти докторів філософії, і четверо з його колишніх студентів здобули Нобелівську премію.
Швінґер був достатньо зацікавлений у пов’язуванні слабкої взаємодії з електромагнетизмом, щоб заохотити дослідити це питання одного з дюжини своїх тодішніх гарвардських докторантів. Шелдон Ґлешоу випустився 1958 року, захистивши дисертацію з цієї теми, та впродовж наступних кількох років продовжував працювати над цим питанням у Копенгагені як дослідник-постдокторант Національного наукового фонду. Двадцять років по тому у своїй Нобелівській лекції Ґлешоу зазначив, що вони зі Швінґером планували після його випуску написати з цієї теми рукопис, проте один із них втратив перший чернетковий варіант, і вони до цього більше ніколи не поверталися.
Ґлешоу не був клоном Швінґера. Вишуканий і геніальний, проте водночас зухвалий, жартівливий та галасливий, Ґлешоу проводив дослідження, для яких була характерна не математична акробатика, а строга зосередженість на фізичних головоломках та вивченні нових можливих симетрій природи, які могли б їх розв’язати.
Коли я був молодим докторантом із фізики в МТІ, спершу мене вабили глибокі математичні питання фізики, тож екзаменаційне есе для вступу до докторантури я писав саме з цієї теми. Через кілька років я відчув, що природа математичних досліджень, які я проводив, мене пригнічує. У літній школі для докторантів у Шотландії я зустрівся з Ґлешоу й потоваришував і з ним, і з його родиною, і наша дружба квітнула й тоді, коли пізніше ми стали колегами в Гарварді. Через рік після нашої зустрічі він проводив річну відпустку в МТІ. У цей важливий для мене період, коли я розглядав альтернативи, він сказав мені: «Є фізика, а є формалізм, і слід відрізняти перше від другого». У цій пораді було приховано натяк, що мені слід займатися фізикою. Коли я побачив, яке задоволення від цього дістає він, мені стало легше ухвалити рішення долучитися до цього.
Невдовзі я збагнув, що прогресування у фізиці потребує роботи над питаннями, пов’язаними переважно з фізичними, а не математичними проблемами. Єдиний спосіб, у який я міг це робити, було тримання руки на пульсі поточних експериментів і нових експериментальних результатів. Спостерігаючи за Шеллі та його підходом до занять фізикою, я зрозумів, що він має надзвичайну здатність розуміти, які саме експерименти цікаві і які саме результати можуть бути важливими чи вказати напрямок до чогось нового. Почасти це було, поза всяким сумнівом, вродженим, проте почасти ґрунтувалося на життєвому досвіді тримання руки на пульсі того, що відбувається «на землі». Фізика – наука емпірична, і, на наше нещастя, ми втрачаємо розуміння цього.
У Копенгагені Ґлешоу зрозумів, що якщо він хоче гідно втілити в життя пропозицію Швінґера поєднати слабку взаємодію з електромагнітною, то не можна просто так узяти й зробити фотон нейтральним членом трійки калібрувальних частинок, заряджені члени якої стають масивними внаслідок якогось невідомого дива. Це не могло пояснити справжню природу слабкої взаємодії, зокрема той чудернацький факт, що слабка взаємодія нібито впливала лише на ліворукі електрони (і нейтрино), тоді як електромагнітні взаємодії не залежали від того, ліворукі електрони перед нею чи праворукі.
Єдиним розв’язанням цієї проблеми було б існування на додачу до фотона ще однієї нейтральної калібрувальної частинки, яка зв’язувалася лише з ліворукими частинками. Проте, очевидно, ця нова нейтральна частинка також мала бути важкою, оскільки взаємодії, що їх вона переносить, також мають бути слабкими.
Ідеї Ґлешоу виклав фізичній спільноті на Рочестерському з’їзді 1960 року Маррі Гелл-Манн, оскільки на той час він завербував Ґлешоу до Калтеху для роботи у своїй групі. Стаття Ґлешоу з цієї теми, подана 1960 року, вийшла друком 1961-го. Проте масового переходу фізиків на його бік вона не спричинила.
Зрештою, пропозиція Ґлешоу так і не позбулася двох фундаментальних проблем. Першою була давно відома проблема того, як частинки, потрібні для перенесення різних сил, можуть мати різні маси, коли калібрувальні симетрії вимагають, щоб усі калібрувальні частинки були безмасовими. У вступі до своєї статті, продовживши давню традицію пихи, Ґлешоу відверто зазначив: «Це камінь спотикання, на який не варто звертати уваги».
Друга проблема була менш очевидною, проте не менш серйозною з експериментальної точки зору. Якщо нейтронний, піонний та мюонний розпади дійсно були спричинені якимись новими частинками, які переносять слабку силу, вони, судячи з усього, вимагали обміну лише новими зарядженими частинками. Досі не спостерігали жодної слабкої взаємодії, яка потребувала б обміну новою нейтральною частинкою. Якщо така нова нейтральна частинка дійсно існує, то, згідно з тогочасними обрахунками, вона мала б давати змогу іншим відомим важчим мезонам, які розпадалися на два чи три піони (і були відповідальні за початкове збентеження, що привело до відкриття порушення парності), розпадатися значно швидше, аніж це відбувалося згідно зі спостереженнями.
З цих причин пропозиція Ґлешоу відійшла на задній план у міру того, як фізики захоплювалися новим зоопарком частинок, що виринали з прискорювачів, та супровідними нагодами для нових відкриттів. Проте кілька ключових теоретичних інгредієнтів, необхідних для завершення революції у фундаментальній фізиці, уже перебували на своїх місцях, але на той час це було далеко не очевидно. Тоді здавалося ненауковою фантастикою, що впродовж менш ніж десяти років після публікації статті Ґлешоу будуть відкриті й осягнуті всі відомі сили природи, окрім гравітації.
І ключем до цього стане симетрія.
Із чиєї утроби лід вийшов, а іній небесний хто його породив?
Легко жаліти нещасних бранців Платонової печери, які здатні розуміти все, що тільки можна знати про тіні на стіні, окрім того, що це лише тіні. Проте зовнішність може бути оманливою. Що, як світ навколо нас – лише аналогічна тінь реальності?
Припустімо, наприклад, що якось ви прокидаєтеся холодним зимовим ранком і визираєте у вікно, а краєвид повністю закрито чудовими крижаними кристалами, що утворили на склі химерні візерунки. Вони можуть виглядати так:
Принаймні почасти краса цього зображення вражає через дивовижний порядок на малих масштабах, що ховається під очевидною довільністю на великих масштабах. Крижані кристали утворюють витіюваті деревоподібні візерунки, що ростуть у довільних напрямках та стикаються один з одним під випадковими кутами. Дихотомія між порядком на малих масштабах і довільністю на великих свідчить про те, що для крихітних фізиків та математиків, чий життєвий простір обмежено гребенем одного із зображених на фото крижаних кристалів, усесвіт виглядатиме зовсім інакше.
Один із напрямків у просторі, що відповідає напрямку вздовж гребеня певного крижаного кристала, матиме особливе значення. Світ природи виглядатиме орієнтованим відносно цієї осі. Мало того, враховуючи ґратчасту структуру кристала, електричні сили, напрямлені вздовж гребеня, поводитимуться зовсім інакше порівняно із силами, перпендикулярними до нього: ці сили поводитимуться так, наче вони зовсім різні.
Якщо фізик чи математик, який живе на кристалі, виявиться розумним або подібно до математика з Платонової печери йому пощастить полишити кристал, невдовзі йому стане очевидно, що особливий напрямок, який визначав фізику звичного йому світу, є ілюзією. Він виявить або вирахує, що інші кристали можуть указувати в багатьох інших напрямках. Урешті-решт, якщо йому вдасться поглянути на вікно ззовні в достатньо великому масштабі, йому відкриється базисна симетрія природи відносно обертання у всіх напрямках, відображенням якої буде зростання кристалів у всі боки.
Поняття про те, що світ нашого чуття є аналогічною випадковістю наших конкретних обставин існування, а не безпосереднім відображенням базисних реальностей, стало стрижневим у сучасній фізиці. Ми навіть дали йому красиву назву – «спонтанне порушення симетрії».
Вище я вже згадував один із різновидів спонтанного порушення симетрії, коли обговорював парність, або ліво-праву симетрію. Наші ліві руки виглядають відмінними від правих, хоча електромагнетизм – сила, що визначає побудову великих біологічних структур на кшталт наших тіл, – не відрізняє лівий бік від правого.
Інші два відомі мені приклади, за якими стоять видатні фізики, також допомагають висвітлити спонтанне порушення симетрії в різні способи, які можуть стати нам у пригоді. Абдус Салам, який 1979 року одержав Нобелівську премію за роботу, критично залежну від цього феномену, описав відому всім нам ситуацію – перебування в компанії інших людей за круглим обіднім столом, накритим, скажімо, на вісьмох. Коли ви сідаєте за стіл, може бути неочевидно, який бокал ваш, а який – вашого сусіда, правий чи лівий. Проте незалежно від правил етикету, які чітко встановлюють, що ваш бокал праворуч, щойно перша людина бере свій бокал, усі інші за столом мають лише один варіант, за якого випити зможуть усі. Хоча базисна симетрія стола проявляється дуже чітко, вона порушується, щойно обрано напрямок взяття бокалів.
Йоїтіро Намбу, ще один нобелівський лауреат, який першим із фізиків описав спонтанне порушення симетрії у фізиці елементарних частинок, навів інший приклад, який я адаптував для викладення тут. Візьміть паличку або навіть питну соломинку, поставте її одним кінцем на стіл, а на другий кінець натисніть. Урешті-решт паличка зігнеться. Вона може зігнутися в будь-якому напрямку, і якщо повторити експеримент кілька разів, може статися, що вона щоразу згинатиметься в якомусь іншому напрямку. Перед натисканням паличка має повну циліндричну симетрію. Після натискання відбувається обрання одного з багатьох можливих напрямків, який визначається не базисними фізичними властивостями палички, а випадковим чином залежно від того, як саме ви на неї тиснете. Симетрія порушується спонтанно.
Якщо тепер повернутися до світу захололих вікон, то в результаті охолодження систем властивості матеріалів можуть змінюватися. Вода застигає, гази зріджуються тощо. У фізиці така зміна називається фазовим переходом, і, як показує приклад із вікном, коли система переживає фазовий перехід, нерідко виявляється, що симетрії, пов’язані з однією фазою, в іншій фазі зникають. Приміром, до застигання криги в кристали на вікні краплі води не розташовувалися б настільки впорядковано.
Один із найприголомшливіших фазових переходів, що їх коли-небудь спостерігали в науці, уперше побачив на власні очі 8 квітня 1911 року голландський фізик Камерлінг-Оннес. Оннес дивовижним чином умів охолоджувати речовини до недосяжних раніше температур, і він став першою людиною, яка зрідила гелій, остудивши його до температури, лише на чотири градуси вищої за абсолютний нуль. За цю експериментальну звитягу він пізніше отримав Нобелівську премію. Коли 8 квітня він охолоджував ртутний дріт у ванні з рідкого гелію до температури, на 4,2 градуса вищої за абсолютний нуль, одночасно вимірюючи його електричний опір, він із превеликим подивом виявив, що опір раптом упав до нуля. Струм, який почав протікати дротом, міг продовжувати робити це нескінченно довго навіть після прибирання батареї, яка його спричинила. Продемонструвавши, що його талант піарника аж ніяк не поступався обдаруванню експериментатора, він запропонував для опису цього визначного й зовсім несподіваного результату термін надпровідність.
Надпровідність була настільки несподіваною й дивною, що мине майже п’ятдесят років після відкриття квантової механіки, від якої вона залежить, перш ніж 1957 року (того ж року, коли було виявлено порушення парності, а Швінґер запропонував модель, яка була спробою об’єднати слабку й електромагнітну взаємодію) команда в складі Джона Бардіна, Леона Купера та Роберта Шріффера розробить його разюче фізичне пояснення. Їхня робота була тріумфом винахідливості й спиралася на низку проникливих здогадок, зроблених упродовж кількох десятиліть наполегливої праці. У підсумку це пояснення спирається на несподіваний феномен, який може мати місце лише в певних речовинах.
У порожньому просторі електрони відштовхують інші електрони, оскільки заряди з однаковим знаком взаємовідштовхуються. Проте в деяких речовинах при охолодженні електрони здатні зв’язуватися з іншими електронами. У таких речовинах це відбувається через те, що вільний електрон схильний збирати навколо себе позитивно заряджені іони. Якщо температура дуже-дуже низька, інший електрон може притягнутися до позитивно зарядженого поля навколо першого електрона. Пари електронів можуть зв’язуватися докупи, при цьому роль, так би мовити, клею виконує позитивно заряджене поле, утворене притяганням першого електрона до кристалічної ґратки позитивних зарядів, пов’язаних з атомами речовини.
Оскільки ядра атомів важкі й утримуються на місці відносно сильними атомними силами, перший електрон дещо викривляє ґратку сусідніх атомів, підсуваючи деякі з них трохи ближче до себе, ніж вони мали б бути. Викривлення ґратки зазвичай викликають у речовині вібрації, або звукові хвилі. У квантовому світі ці вібрації квантуються й називаються фононами. Леон Купер відкрив, що ці фонони здатні зв’язувати пари електронів таким чином, як я описав вище, тож ці пари дістали назву куперівських пар.
Далі відбувається справжня магія квантової механіки. Коли ртуть (або якась інша з цих особливих речовин) охолоджується до температури, нижчої за певний поріг, відбувається фазовий перехід, і всі куперівські пари раптом зливаються в єдиний квантовий стан. Цей феномен, який дістав назву конденсації Бозе – Ейнштейна, відбувається тому, що, на відміну від ферміонів, частинки з цілим квантово-механічним спіном, такі як фотони, та навіть частинки з нульовим спіном полюбляють гуртом перебувати в одному й тому ж стані. Цю ідею вперше висловив індійський фізик Шатьєндранат Бозе, а пізніше розвинув Ейнштейн. І знов-таки ключову роль відіграло світло, оскільки аналіз Бозе включав у себе статистику фотонів, і конденсація Бозе – Ейнштейна тісно пов’язана з фізикою, яка керує лазерами, у яких багато окремих фотонів в одному стані поводяться когерентно. З цієї причини частинки з цілим спіном на кшталт фотонів назвали бозонами, аби відрізняти їх від ферміонів.
За кімнатної температури в газі чи твердому тілі зазвичай відбувається настільки багато зіткнень між частинками, що їхні індивідуальні стани стрімко змінюються, і ніяка колективна поведінка неможлива. Проте газ бозонів за достатньо низької температури може злитися в конденсат Бозе – Ейнштейна, у якому ідентичності окремих частинок зникають. Система в цілому поводиться як єдиний, подеколи макроскопічний об’єкт, проте в цьому випадку його поведінка визначається правилами квантової, а не класичної механіки.
Як наслідок, конденсат Бозе – Ейнштейна може мати екзотичні властивості, так само як лазерний промінь може поводитися зовсім інакше, ніж звичайне світло з ліхтарика. Оскільки конденсат Бозе – Ейнштейна є велетенською амальгамацією того, що в іншому випадку було б множиною окремих невзаємодійних частинок, нині зв’язаних у єдиний квантовий стан, створення такого конденсату вимагало екзотичних та особливих експериментів у галузі атомної фізики. Перше безпосереднє спостереження такої конденсації газу з елементарних частинок сталося лише 1995 року зусиллями американських фізиків Карла Вімана та Еріка Корнелла – ще одна звитяга, яка була визнана гідною Нобелівської премії.
Можливість такої конденсації всередині масивних речовин на кшталт ртуті виглядає настільки дивною тому, що фундаментальними частинками, які на перших порах грають першу скрипку, є електрони, які зазвичай не лише відштовхують інші електрони, а й мають спін ½ і, будучи ферміонами, поводяться строго протилежним чином порівняно з бозонами, про які йшлося вище.
Проте коли формуються куперівські пари, кожен із двох електронів діє узгоджено з напарником, а оскільки обидва мають спін ½, їхнє об’єднання має цілий спін (2 × ½). Вуаля, утворився новий вид бозона. Найнижчий енергетичний стан системи, у який вона приходить у результаті врівноваження за низької температури, є конденсатом куперівських пар, причому конденсованих у єдиний стан. Коли це відбувається, властивості речовини повністю змінюються.
До формування конденсату в результаті прикладання до дроту напруги окремі електрони починають рухатися й створюють електричний струм. Врізаючись в атоми на своєму шляху, вони розсіюють енергію, породжуючи знайомий нам усім електричний опір та нагріваючи дріт. Проте щойно формується конденсат, окремі електрони й навіть окремі куперівські пари вже не мають індивідуальної ідентичності. Вони асимілюються в колектив, як борґи із «Зоряного шляху». Коли на конденсат починає діяти струм, він рухається як одне ціле.
Проте якби конденсат відбивався від окремих атомів, мінялася б траєкторія руху всієї цієї маси. Однак це вимагало б великої кількості енергії – значно більше, ніж потрібно для перенаправлення руху окремого електрона. У термінах класичної механіки підсумковий результат можна уявити так: за низьких температур довільне коливання атомів породжує замало теплової енергії, щоб спричинити зміну напрямку руху масивного конденсату частинок. Це схоже на спроби зрушити з місця вантажівку, кидаючи в неї попкорном. У квантовій механіці підсумок аналогічний. У цьому випадку ми сказали б, що зміна конфігурації конденсату потребує зсуву всього конденсату частинок на велику фіксовану величину в новий квантовий стан, який має енергію, відмінну від енергії його поточного стану. Проте в термальній ванні за низької температури таку енергію нема де взяти. З другого боку, можна поставити питання, чи може таке зіткнення розбити куперівську пару в конденсаті на два електрони – щось на кшталт відбиття дзеркала заднього огляду при зіткненні вантажівки зі стовпом. Проте за низьких температур усе рухається занадто повільно для цього. Тож струм тече безперешкодно. Як сказали б борґи, опір марний. Хоча в цьому випадку опору просто немає. Ініційований струм протікатиме вічно, навіть якщо прибрати приєднану перед цим до дроту батарею.
Це була теорія надпровідності Бардіна – Купера – Шріффера (БКШ) – видатна праця, яка зрештою пояснила всі експериментальні властивості надпровідників на кшталт ртуті. Ці нові властивості сигналізують про зміну основного стану системи порівняно з тим, який був до перетворення її на надпровідник, і подібно до крижаних кристалів на вікні ці нові властивості відображають спонтанне порушення симетрії. У надпровідниках порушення симетрії не настільки візуально очевидне, як у випадку крижаних кристалів на віконному склі, проте воно там, під поверхнею.
Математично сигнатура цього порушення симетрії полягає в тому, що зненацька, тільки-но сформується конденсат куперівських пар, зміна конфігурації всієї речовини починає вимагати великої мінімальної кількості енергії. Конденсат поводиться як макроскопічний об’єкт певної великої маси. Утворення цієї «масової прірви» (саме так називається це явище, що виражається мінімальною кількістю енергії, необхідної для виривання системи з надпровідникового стану) є фірмовим знаком переходу, унаслідок якого порушується симетрія й утворюється надпровідник.
Можливо, ви не розумієте, як усе це, яким би цікавим воно не було, пов’язане з оповіддю, на якій наша увага була зосереджена досі, а саме з розумінням фундаментальних сил природи. Завдячуючи нашому післязнанню, цей взаємозв’язок стане очевидним. Проте в заплутаному та збентеженому світі фізики елементарних частинок 1950-1960-х років дорога до прозріння була зовсім не такою прямою.
1956 року Йоїтіро Намбу, який нещодавно переїхав до Чиказького університету, прослухав семінар Роберта Шріффера, присвячений тому, що стане теорією надпровідності БКШ, і він справив на нього глибоке враження. Як і більшість інших тогочасних представників фізики елементарних частинок, він сушив голову над тим, яке місце посідають добре відомі частинки, з яких складаються атомні ядра, себто протони й нейтрони, у зоопарку елементарних частинок і джунглях взаємодій, пов’язаних з їхнім утворенням і розпадом.
Як і інші, Намбу був вражений неймовірною близькістю мас протона й нейтрона. Йому, як до нього Янгу та Міллзу, здавалося, що такий результат має бути наслідком якогось базисного принципу природи. Проте Намбу припускав, що ключову підказку може надати приклад надпровідності, зокрема виникнення нового характеристичного енергетичного масштабу, пов’язаного з енергією збудження, необхідною для зламу конденсату куперівських пар.
Упродовж трьох років Намбу досліджував, яким чином цю ідею можна адаптувати до порушення симетрії у фізиці елементарних частинок. Він запропонував модель, згідно з якою аналогічний конденсат деяких полів, що могли б існувати в природі, та мінімально необхідна для створення збудження й виходу з цього конденсованого стану енергія можуть бути характеристиками великої маси/енергії, пов’язаної з протонами та нейтронами.
Незалежно один від одного Намбу та фізик Джефрі Ґолдстоун встановили, що чіткою ознакою такого порушення симетрії було б існування інших безмасових частинок, які нині мають назву бозонів Намбу – Ґолдстоуна (НҐ), чия взаємодія з іншою матерією також відображатиме природу порушення симетрії. Тут можна провести аналогію з краще знайомою системою на кшталт крижаного кристала. У випадку просторового паралельного перенесення така система спонтанно порушує симетрію, оскільки під час руху в одному напрямку все виглядає зовсім інакше, ніж при русі в іншому напрямку. Проте в такому кристалі можливі крихітні вібрації окремих атомів в околі їхніх положень спокою. Ці вібраційні моди,[8] які, як уже згадувалося вище, називаються фононами, можуть накопичувати необмежено малі обсяги енергії. У квантовому світі фізики елементарних частинок ці моди відображатимуться у вигляді безмасових частинок Намбу – Ґолдстоуна, оскільки там, де виражена еквівалентність між енергією й масою, збудження, що переносять малу або нульову кількість енергії, відповідають безмасовим частинкам.
І – хто б міг подумати! – піони, що їх відкрив Пауелл, дуже гарно підходять під цей опис. Вони не зовсім безмасові, проте значно легші за всі інші сильно взаємодійні частинки. Їхні взаємодії з іншими частинками мають властивості, яких слід було б очікувати від НҐ-бозонів, які могли б існувати, якби в природі існував який-небудь здатний руйнувати симетрію феномен із розмірністю енергії збудження, яка могла б відповідати масштабам маси/енергії протонів і нейтронів.
Але, попри важливість праці Намбу, він і майже всі його колеги не помітили спорідненого, проте значно глибшого наслідку спонтанного порушення симетрії в теорії надпровідності, який пізніше надав ключ для розкриття істинної таємниці сильних і слабких ядерних сил. Намбу зосередився на порушенні симетрії під впливом надпровідності, проте аналогії, які він та його колеги провели з нею, були неповні.
Схоже, у нас значно більше спільного з тими крихітними фізиками з крижаного кристала на віконному склі, ніж ми коли-небудь собі уявляли. І, що, можливо, справедливо й для тих крихітних фізиків, ця короткозорість була зовсім не очевидною для «великої» фізичної спільноти.
Марноту говорять один до одного, їхні уста облесні, і серцем подвійним говорять…
Завдяки післязнанню помилки минулого можуть здаватися очевидними, проте не забуваймо, що предмети в дзеркалі заднього огляду нерідко ближчі, аніж здається. Легко критикувати наших попередників за те, що вони впустили, утім, те, що ставить нас у глухий кут сьогодні, може бути очевидним для наших нащадків. Працюючи на передньому краї, ми ходимо шляхом, часто вкритим імлою.
Аналогія з надпровідністю, уперше досліджена Намбу, корисна, проте значною мірою з причин, відмінних від тих, які свого часу уявляли собі Намбу та інші. Заднім числом відповідь може здатися майже самоочевидною, точно так само, як маленькі натяки на справжнього вбивцю у творах Агати Крісті стають очевидними після його викриття. Проте, як і герої її детективів, ми також натрапляємо на купу помилкових слідів, і ці глухі кути роблять підсумкове рішення ще більш несподіваним.
Є всі підстави співпереживати тогочасним спантеличеним фізикам елементарних частинок. Запускали нові прискорювачі, і щоразу, як був досягнутий новий поріг енергії зіткнення, породжувалися нові сильно взаємодійні брати нейтронів і протонів. Цей процес видавався нескінченним. Від такого багатства розбігалися очі, і як теоретики, так і експериментатори були вмотивовані зосередитися на таємниці сильної ядерної сили, яка, здавалося, кидала найсерйозніший виклик наявній теорії.
Здавалося, що для мікроскопічного світу характерна потенційно нескінченна кількість елементарних частинок із дедалі більшими масами. Проте це суперечило всім ідеям квантової теорії поля – вдалої моделі, яка надала чудове розуміння релятивістської квантової поведінки електронів і фотонів.
Розробку популярної й впливової програми з розв’язання цієї проблеми очолював фізик із Берклі Джефрі Чю. Чю відмовився від ідеї існування якихось дійсно фундаментальних частинок, а також від будь-яких мікроскопічних квантових теорій, що включали точкоподібні частинки й пов’язані з ними квантові поля. Натомість він виходив із того, що всі спостережувані сильно взаємодійні частинки були не точкоподібними, а комплексними, зв’язаними станами інших частинок. Це означало, що ніякої редукції до первинних фундаментальних об’єктів бути не може. У цій дзеноподібній картині, яка настільки личила Берклі зразка 1960-х років, усі частинки вважали складеними з інших частинок – так звана бутстрап-модель, у якій жодні елементарні частинки не вважали первинними чи особливими. Саме тому цей підхід також дістав назву ядерної демократії.
І хоча він полонив багатьох фізиків, які розчарувались у квантовій теорії поля як інструменті для опису будь-яких взаємодій окрім найпростіших, між електронами й фотонами, жменька науковців була достатньо вражена успіхом квантової електродинаміки, щоби спробувати зімітувати її в теорії сильної ядерної сили – яка згодом стала відома як сильна взаємодія – за образом і подобою підходу, який обстоювали Янг і Міллз.
Один із цих фізиків, Д. Д. Сакураї, опублікував 1960 року статтю з вельми амбітною назвою «Теорія сильних взаємодій». Сакураї серйозно сприйняв пропозицію Янга й Міллза та спробував точно визначити, які фотоноподібні частинки можуть переносити сильну силу між протонами, нейтронами й іншими нововідкритими частинками. Оскільки сильна взаємодія була близькодійною, охоплюючи в найкращому випадку лише розмір ядра, здавалося, що частинки, необхідні для перенесення цієї сили, мають бути масивними, що суперечило будь-якій строгій калібрувальній симетрії. Проте, за винятком цього, вони повинні мати багато властивостей, аналогічних властивостям фотонів, і мати спін 1, або так званий векторний спін. З огляду на це нові передбачені частинки були названі масивними векторними мезонами. Вони мали зв’язуватися з різноманітними потоками сильно взаємодійних частинок аналогічно тому, як фотони зв’язуються з потоками електрично заряджених частинок.
Частинки із загальними властивостями передбачених Сакураї векторних мезонів були експериментально відкриті впродовж наступних двох років, тож ідея, що вони якимось чином можуть розкрити секрет сильної взаємодії, була використана для розплутування складних взаємодій між нуклеонами та іншими частинками.
Відреагувавши на думку, що за сильною взаємодією може стояти деякий різновид янг-міллзівської симетрії, Маррі Гелл-Манн розробив вишукану схему симетрії, яку в дзеноподібній манері охрестив Восьмеричним Шляхом. Вона не лише давала можливість класифікувати вісім різних векторних мезонів, а ще й передбачала існування досі не спостережуваних сильно взаємодійних частинок. Ідея, що ці свіжозапропоновані симетрії природи можуть допомогти навести лад у тому, що здавалося безнадійно хаотичним звіринцем елементарних частинок, була настільки захоплива, що, коли пізніше відкрили частинку, яку передбачив Гелл-Манн, йому було присуджено Нобелівську премію.
Проте найчастіше Гелл-Манна згадують як автора більш фундаментальної ідеї. Він і незалежно від нього Джордж Цвейґ увели поняття того, що Гелл-Манн назвав кварками (це слово він запозичив із роману Джеймса Джойса «Поминки за Фіннеганом»), які мали фізично допомогти пояснити властивості симетрії його Восьмеричного Шляху. Якщо уявити, що множина кварків, які Гелл-Манн розглядав просто як зручний математичний звітний інструмент (так само як до того Фарадей розглядав електричне й магнітне поля, ним же й запропоновані), включає в себе всі сильно взаємодійні частинки на кшталт протонів і нейтронів, можна передбачити симетрію й властивості всіх відомих частинок. У повітрі знову запахло великим синтезом, який об’єднує розмаїті частинки й сили в єдине когерентне ціле.
Складно переоцінити важливість кваркової гіпотези. Хоча Гелл-Манн не стверджував, що його кварки є реальними фізичними частинками всередині протонів і нейтронів, його категоризаційна схема означала, що саме міркування симетрії можуть кінець кінцем визначати природу не лише сильної взаємодії, а й усіх фундаментальних частинок у природі.
Утім, хоча один різновид симетрії міг визначати структуру матерії, можливість доповнити цю симетрію до якогось різновиду янг-міллзівської калібрувальної симетрії, що визначала б сили взаємодії між частинками, більш досяжною не виглядала. Докучлива проблема спостережуваних мас векторних мезонів полягала в тому, що вони не могли правдиво відображати будь-яку базисну калібрувальну симетрію сильної взаємодії таким чином, який міг би однозначно визначити її форму та потенційно гарантувати, що вона матиме квантовомеханічний сенс. Будь-яке янг-міллзівське доповнення до квантової електродинаміки вимагало, щоб нові фотоноподібні частинки були безмасовими. Крапка.
Становище виглядало безвихідним, проте неочікуваний дзвінок-будильник надпровідності відкрив інший, менш очевидний та в остаточному підсумку більш плідний шлях.
Першим жаринки струснув теоретик, який працював безпосередньо в галузі фізики конденсованих середовищ, пов’язаної з надпровідністю в речовинах. Філіп Андерсон із Принстону, пізніше за іншу роботу відзначений Нобелівською премією, висунув припущення, що в контексті фізики елементарних частинок варто дослідити один із найфундаментальніших, усюдисущих феноменів надпровідників.
Однією з найефектніших демонстрацій, яку можна провести з надпровідниками, особливо новими високотемпературними надпровідниками, які допускають прояви надпровідності за температур рідкого азоту, є левітація магніту над надпровідником, як показано нижче:
Це можливо з причини, що її відкрили 1933 року в ході експерименту Вальтер Мейснер із колегами та пояснили двома роками пізніше теоретики Фріц і Хайнц Лондони; її назвали «ефект Мейснера».
Як шістдесятьма роками раніше відкрили Фарадей та Максвелл, електричні заряди по-різному реагують на магнітні й електричні поля. Зокрема, Фарадей відкрив, що змінне магнітне поле може спричинити протікання струму у віддаленому дроті. Не менш важливим фактом, на якому я раніше не наголошував, є те, що результуючий струм протікатиме так, що породить нове магнітне поле, спрямоване в зустрічному напрямку до змінного зовнішнього магнітного поля. Таким чином, якщо зовнішнє поле зменшуватиметься, згенерований струм породжуватиме магнітне поле, яке протидіятиме цьому зменшенню. Якщо ж воно збільшуватиметься, згенерований струм потече у зворотному напрямку й породить магнітне поле, яке протидіятиме цьому збільшенню.
Можливо, ви помічали, що коли розмовляєте стільниковим телефоном і заходите в певні ліфти, зокрема ті, у яких зовнішня частина кабіни облицьована металом, то після зачинення дверей зв’язок обривається. Це приклад явища під назвою «клітка Фарадея». Оскільки телефонний сигнал отримують у вигляді електромагнітної хвилі, метал екранує вас від зовнішнього сигналу, адже в металі виникають такі струми, які протидіють змінними електричному й магнітному полям у сигналі, через що його сила всередині ліфта значно слабшає.
Якщо взяти ідеальний провідник без жодного опору, то заряди в такому металі були б здатні, по суті, звести нанівець будь-які впливи зовнішнього змінного електромагнітного поля. У ліфті не ловилися б жодні сигнали цих змінних полів, себто жодний телефонний сигнал. Мало того, ідеальний провідник також екранував би впливи будь-якого постійного зовнішнього електричного поля, оскільки в надпровіднику заряди здатні у відповідь на появу будь-якого поля переорієнтовуватися і повністю відсікати його.
Проте ефект Мейснера цим не обмежується. У випадку надпровідника ніякі магнітні поля – навіть постійні магнітні поля на кшталт спричинених зображеним вище магнітом – не можуть проникнути всередину нього через те, що, якщо повільно наближати до нього здалеку магніт, надпровідник генеруватиме струм, котрий протидіятиме змінному магнітному полю, яке збільшується в міру наближення магніту. Але оскільки речовина надпровідна, струм не перестає протікати навіть після того, як магніт перестає рухатися. Якщо ж присунути магніт іще ближче, для протидії новому зростанню магнітного поля починає протікати сильніший струм. І так далі. Отже, через те, що струми в надпровіднику здатні протікати, не розсіюючись, екрануються не лише електричні, але й магнітні поля. Ось чому магніти левітують над надпровідниками. Струми в надпровіднику відбивають спричинене зовнішнім магнітом магнітне поле й за рахунок цього відштовхують магніт точно так само, наче на поверхні надпровідника перебуває інший магніт, чиї північний і південний полюси розташовані так само, як і в зовнішнього магніту.
Брати Лондони, які перші спробували пояснити ефект Мейснера, вивели рівняння, яке описувало цей феномен усередині надпровідника. Результат наводив на роздуми. Кожен різновид надпровідників утворює під своєю поверхнею унікальну характеристичну розмірність довжини, що визначається мікроскопічною природою надструмів, що утворюються для врівноваження будь-якого зовнішнього поля, і будь-яке зовнішнє магнітне поле нівелюється саме в цьому масштабі довжини. Вона називається лондонівською глибиною проникнення. Ця глибина різна для різних надпровідників і залежить від особливостей їхньої мікрофізики в спосіб, який брати визначити не змогли, оскільки на той час не мали у своєму розпорядженні мікроскопічної теорії надпровідності.
Разом із тим саме існування глибини проникнення вражає, оскільки з цього випливає, що всередині напівпровідника електромагнітне поле поводиться інакше: воно вже не є далекосяжним. Але якщо під поверхнею електромагнітні поля стають близькодійними, тоді носій електромагнітних сил повинен поводитися інакше. Підсумковий наслідок? Усередині надпровідника фотон поводиться так, наче має масу.
Під поверхнею надпровідників віртуальні фотони – а також електричне й магнітне поля, які вони переносять, – можуть поширюватися лише в межах відстані, порівнюваної з лондонівською глибиною проникнення, точно так само, як було б у випадку, якби електромагнетизм усередині надпровідника виникав унаслідок обміну масивними, а не безмасовими фотонами.
Тепер уявімо, як виглядало б життя всередині напівпровідника. Електромагнетизм був би близькодійною силою, фотони – масивними, а вся звична фізика, пов’язана з електромагнетизмом як далекосяжною силою, зникла б.
Хочу підкреслити, наскільки це дивовижно. Жоден експеримент, який можна було б провести всередині надпровідника, допоки він лишається надпровідником, не показав би, що в зовнішньому світі фотони є безмасовими. Якби ви були Платоновим філософом усередині такого надпровідника, вам довелося б інтуїтивно вирахувати неймовірний обсяг фактажу щодо зовнішнього світу, і лише потім ви змогли б зробити висновок, що причиною цієї ілюзії є якийсь таємничий та невидимий феномен. Могло б знадобитися кілька тисяч років роздумів та експериментів, перш ніж ви чи ваші нащадки змогли б здогадатися, якою є природа реальності в основі тіньового світу, у якому ви живете, чи побудувати пристрій із достатньою кількістю енергії для розриву куперівських пар та розтоплення стану надпровідності, відновлення нормальної форми електромагнетизму й відкриття, що фотон є безмасовим.
У ретроспективі ми, фізики, виходячи лише з міркувань симетрії й не розглядаючи безпосередньо ефект Мейснера, мали б очікувати, що фотони всередині надпровідника повинні поводитися як масивні частинки. Конденсат куперівських пар, який складається з електронних пар, має підсумковий електричний заряд. Це порушує калібрувальну симетрію електромагнетизму, оскільки на цьому тлі будь-які додані до речовини позитивні заряди поводитимуться інакше, ніж додані негативні заряди. Проте згадаймо, що безмасовість фотонів є ознакою того, що електромагнітне поле далекосяжне, і далекосяжна природа електромагнітного поля відображає той факт, що вона дозволяє локальним варіаціям визначення електричного заряду в одному місці не впливати на фізику глобально у всій речовині. Проте якщо калібрувальної інваріантності немає, локальні варіації визначення електричного заряду матимуть реальні фізичні наслідки, тож далекосяжне поле, що нівелює всі такі варіації, існувати не може. Один зі способів позбутися далекосяжного поля – зробити фотон масивним.
Тепер питання на 64 тисячі: чи може щось на зразок такого відбуватися у світі, у якому доводиться жити нам із вами? Чи можуть маси важких фотоноподібних частинок бути наслідком того, що ми насправді живемо в чомусь схожому на космічний надпровідник? Саме таке приголомшливе запитання поставив Андерсон, керуючись як мінімум аналогією зі звичайними надпровідниками.
Перш ніж зуміти відповісти на це запитання, необхідно зрозуміти невеличке формальне чаклунство, завдяки якому стає можливим виникнення маси фотона в надпровіднику.
Пригадаймо, що в електромагнітній хвилі електричне (Е) та магнітне (В) поля коливаються туди-сюди в напрямках, перпендикулярних напрямку хвилі, як показано на рисунку:
Оскільки перпендикулярних напрямків два, електромагнітну хвилю можна зобразити двома способами. Хвиля може виглядати так, як на рисунку, або ж із переставленими місцями полями Е та В. Це відображає наявність в електромагнітних хвиль двох ступенів свободи, які називаються двома різними поляризаціями.
Це є наслідком калібрувальної інваріантності електромагнетизму або, що еквівалентно, безмасовості фотонів. Проте якби фотони мали масу, це не лише порушило б калібрувальну інваріантність, а й створило б передумови для третього варіанта. Замість коливатися перпендикулярно до напрямку руху хвилі, електричне й магнітне поля могли б коливатися вздовж цього напрямку (оскільки фотони більше не рухаються зі швидкістю світла, стають можливі коливання вздовж напрямку руху цих частинок).
Проте це означає, що відповідні масивні фотони матимуть уже не два, а три ступені свободи. Як фотони в надпровідниках можуть набувати цього додаткового ступеня свободи?
Андерсон дослідив це питання в надпровідниках, і його розв’язання тісно пов’язане з описаним вище фактом. За відсутності електромагнітних взаємодій в надпровіднику є можливість спричинити невеличкі просторові варіації конденсату куперівських пар, які матимуть довільно малу енергетичну вартість, оскільки куперівські пари не взаємодіятимуть між собою. Проте якщо врахувати електромагнетизм, ці низькоенергетичні моди (які знищили б надпровідність) зникають якраз через взаємодії зарядів у конденсаті з електромагнітним полем. Ця взаємодія змушує фотони в надпровіднику поводитися так, наче вони масивні. Новий режим поляризації масивних фотонів у надпровіднику виникає у зв’язку з коливаннями конденсату у відповідь на проходження електромагнітної хвилі.
Мовою фізики елементарних частинок безмасові моди Намбу – Ґолдстоуна, що відповідають частинковим версіям мізерно малих енергетичних коливань у конденсаті, «з’їдаються» електромагнітним полем, надаючи фотонам масу й новий ступінь свободи, унаслідок чого електромагнітна сила в надпровіднику стає близькодійною.
Андерсон висловив припущення, що цей феномен – згідно з яким у надпровідниках зникають безмасовий фотон і безмасова мода Намбу – Ґолдстоуна, які поєднуються й породжують масивний фотон, – може мати стосунок до давньої проблеми створення масивних фотоноподібних янг-міллзівських частинок, які можуть бути пов’язані із сильними ядерними силами.
Тут Андерсон різко зупинився, так і залишивши висіти в повітрі припущення, що цей механізм, побудований за аналогією з надпровідниками, можна застосувати до теорії елементарних частинок. Так само різко зупинився Намбу, який розглядав спонтанне порушення симетрії у фізиці елементарних частинок із використанням аналогії з надпровідністю, проте не використав пов’язаний із надпровідністю феномен, на якому пізніше зосередився Андерсон, тобто ефект Мейснера, що надає фотонам у надпровідниках масу, тож явного застосування всіх цих ідей до фізики елементарних частинок не сталося.
Як наслідок можливі ґрунтовні наслідки надпровідності для розуміння фізики фундаментальних частинок не були швидко осягнуті фізичною спільнотою й залишилися схованими в тіні.
Утім, версія, що ми живемо в чомусь на зразок космічного надпровідника, виглядає надто натягнутою, щоб у неї можна було повірити. Зрештою, люди здатні фантазувати різні небилиці для пояснення чогось незбагненного, вигадуючи різні фантастичні та приховані причини на кшталт богів і демонів. Чи можна вважати твердження про існування в усьому просторі якогось прихованого конденсату полів, який пояснює непоясненні натомість сильні ядерні сили, хоч трохи більш правдоподібним?
Позбирайте куски позосталі, щоб ніщо не загинуло.
Природі, як і багатьом людським драмам, притаманна дивовижна поезія. А в моїх улюблених давньогрецьких епосах, створених у часи, коли Платон писав про свою печеру, постає загальна тема: знаходження чудового скарбу, доти схованого від людських очей, який дістає маленький та везучий загін малоприємних мандрівників, які після знаходження цього скарбу змінюються назавжди.
О, яке ж це щастя. Саме можливість цього спонукала мене вивчати фізику, адже романтика можливого першовідкриття якогось нового та чудового прихованого закутка природи вабила непереборно. Ця оповідь повністю присвячена саме таким моментам, коли поезія природи зливається з поезією людського існування.
Поетичність значною мірою притаманна майже кожному аспекту епізодів, про які я збираюся розповісти. Нині, у другому десятилітті ХХІ століття, можна легко погодитися стосовно того, які з видатних теорій ХХ століття є найчудовішими. Проте для того, аби оцінити справжню драму прогресу науки, необхідно зрозуміти, що в той час, коли їх пропонують уперше, чудові теорії нерідко не є настільки ж звабливими, як роки по тому, подібно до вишуканого вина чи далекого кохання.
Тож сталося так, що ідеї Янга, Міллза, Швінґера та решти, які ґрунтувалися на математичній поезії калібрувальної симетрії, не змогли свого часу ані стати джерелом натхнення, ані конкурувати з ідеєю, що квантова теорія поля, найкращим уособленням якої була квантова електродинаміка, не є продуктивним підходом для опису інших сил природи, а саме слабких та сильних ядерних сил. Багато хто вважав, що до таких сил, які діють на коротких відстанях, властивих масштабу атомних ядер, слід застосовувати нові правила й що колишні методики тут не підходять.
Аналогічно пізніші спроби Намбу та Андерсона застосувати ідеї з фізики матеріалів, яка також називається фізикою багатьох тіл або фізикою конденсованих середовищ, до субатомного царства, багато фізиків елементарних частинок відкинули, позаяк глибоко сумнівалися, що ця нова галузь здатна хоч якось покращити розуміння «фундаментальної» фізики. Скептицизм фізичної спільноти озвучив чудовий теоретик Віктор Вайскопф, який на семінарі в Корнелльському університеті буцімто сказав: «Нині фізики елементарних частинок доведені до такого розпачу, що їм доводиться робити запозичення з новинок у фізиці багатьох тіл… Можливо, щось із того й вийде».
Цей скептицизм був небезпідставним. Зрештою, Намбу стверджував, що спонтанне порушення симетрії може пояснити великі та подібні маси протонів і нейтронів, і він сподівався, що вона це зробить, одночасно пояснивши, чому піон набагато легший. Проте в основі запозичених вченим ідей лежало розуміння, що ознакою спонтанного порушення симетрії є існування строго безмасових, а не дуже легких частинок.
Робота Андерсона також була цікавою, ніде правди діти. Утім, те, що вона була написана в контексті нерелятивістської моделі конденсованого середовища й до того ж порушувала теорему Ґолдстоуна з фізики елементарних частинок, з якої випливала нероздільність порушення симетрії й безмасових частинок, призвело до того, що його твердження про зникнення безмасових станів у його прикладі, тобто в електромагнетизмі в надпровідниках, більшість фізиків елементарних частинок також проігнорували.
Проте Джуліан Швінґер не полишав ідею, що калібрувальна симетрія Янга – Міллза може пояснити ядерні сили, і продовжував стверджувати, що янг-міллзівські протони можуть бути масивні, щоправда, не демонструючи, як таке можливе.
Робота Швінґера привернула увагу сумирного молодого британського теоретика Пітера Хіггса, на той час викладача математичної фізики в Единбурзькому університеті. Він був людиною тихої вдачі, і ніхто й подумати не міг, що він стане революціонером. Проте він був змушений стати революціонером, хоча через деяких короткозорих редакторів журналів ледь не втратив свій шанс.
1960 року Хіггса, який щойно прийшов на посаду, попросили попрацювати в комітеті, який організовував першу Літню школу шотландських університетів із фізики. Вона стала поважною школою, присвяченою різним галузям фізики. Приблизно раз на чотири роки впродовж трьох тижнів успішні докторанти та молоді постдокторанти відвідують лекції старших науковців із фізики елементарних частинок у перервах між стравами, які запивають вишуканими винами, а потім – міцним віскі. Того року серед студентів були майбутні нобелівські лауреати Шелдон Ґлешоу та Мартінус Велтман, а також Нікола Кабіббо, який, на мою думку, теж мав би здобути цю премію. Імовірно, Хіггс, якого призначили сомельє,[9] помітив, що ці троє студентів не відвідують ранкових лекцій. Вони, судячи з усього, проводили вечори, обговорюючи фізику та попиваючи вино, яке нишком виносили з їдальні впродовж частувань. Тоді Хіггс не мав змоги долучитися до їхніх дискусій, тож не дізнався від Ґлешоу про його новітню пропозицію щодо об’єднання електромагнітної та слабкої сил, яку він уже подав на публікацію.
Шотландським літнім школам притаманна власна поезія. Вони почергово проводяться в різних місцях і періодично повертаються до чудового узбережного міста Сент-Ендрюс, розташованого якраз поруч зі славетним Старим полем, де народився гольф. 1980 року в рамках школи, яка проходила в Сент-Ендрюсі, читали лекції свіжоспечений нобелівський лауреат Ґлешоу та знаменитий колишній учень Велтмана Герард ‘т Гофт, і я мав честь відвідувати їх як докторант.
Я прибув пізно, і мені припала найменша кімната, на горищі з видом на Старе поле, і насолоджувався не лише фізикою, а й алкоголем, а також програшами в грі на випивку з одним із лекторів, оксфордським фізиком Гремом Россом, на сусідньому полі для мінігольфу, яке небезпідставно прозвали «Гімалаями». ‘Т Гофт був не лише фізиком майже неземного таланту, а й неабияким художником. 1980 року він переміг на щорічному шкільному конкурсі з дизайну футболок, і я досі зберігаю футболку з його малюнком і автографом. Не можу примусити себе розлучитися з нею, хоч би як мене вабив eBay. (Двадцять років по тому, 2000-го, я повернувся до цієї літньої школи, проте цього разу як лектор. На відміну від Ґлешоу, ‘т Гофта, Велтмана та Хіггса, я не привіз Нобелівської премії, проте нарешті дістав змогу поносити кілт. Ще одна галочка в списку зробленого.)
Відпрацювавши в літній школі 1960 року, Хіггс почав читати літературу із симетрії та порушення симетрії, вивчаючи праці Намбу, Ґолдстоуна, Вайнберґа та Андерсона. Хіггса пригнічувало неможливе на перший погляд завдання примирити теорему Ґолдстоуна з можливістю існування масивних векторних янг-міллзівських частинок, які можуть переносити сильну силу. Але потім, того чарівного 1964 року, коли Гелл-Манн увів поняття кварків, Хіггс прочитав дві статті, які подарували йому надію.
Першою була стаття Авраама Кляйна та Бена Лі, який на момент своєї загибелі в автокатастрофі дорогою на з’їзд фізиків був одним із найблискучіших молодих фізиків елементарних частинок у світі. Вони пропонували спосіб уникнути теореми ґолдстоуна та позбутися неспостережуваних натомість безмасових частинок у квантових теоріях поля.
Далі Волтер Ґілберт, молодий фізик із Гарварду – який невдовзі вирішить полишити сповнену бентежень фізику елементарних частинок заради більш тепличних умов молекулярної біології, де здобуде Нобелівську премію за сприяння розробці методу секвенування ДНК, – написав статтю, у якій показав, що розв’язання, яке запропонували Кляйн і Лі, схоже, призводить до протиріччя з теорією відносності, а отже, сумнівне.
Як ми вже бачили, калібрувальні теорії мають цікаву властивість, яка дозволяє довільно змінювати визначення позитивних та негативних зарядів у кожній точці простору без зміни будь-яких спостережуваних фізичних властивостей системи за умови, що електромагнітне поле має можливість як зберегти свої наявні взаємодії, так і змінитися таким чином, щоби правильно врахувати ці нові локальні варіації. Як наслідок можна здійснювати математичні обрахунки за будь-якого калібрування, тобто використовуючи будь-які конкретні локальні визначення зарядів та полів, консистентних із симетрією. Перехід від одного калібрування до іншого здійснюють за допомогою відповідного перетворення симетрії.
Хоча в цих різних калібруваннях теорія може виглядати зовсім по-різному, симетрія теорії гарантує, що обрахунки будь-якої фізично вимірювальної величини не залежать від вибору калібрування – а саме, що видимі відмінності є ілюзіями, які не відображають базисну фізику, котра визначає вимірювані значення всіх фізично спостережуваних величин. Таким чином, можна обирати таке калібрування, у якому легше проводити обрахунки, і очікувати, що в результаті обрахунків у будь-якому іншому калібруванні будуть одержані такі самі передбачені значення фізично спостережуваних величин.
Читаючи статті Швінґера, Хіггс збагнув, що деякі обрані калібрування можуть виглядати такими, що суперечать теорії відносності, так само, як, за словами Ґілберта, їй суперечить пропозиція Кляйна та Лі. Проте цей видимий конфлікт був просто артефактом певного конкретного вибору калібрування. В інших калібруваннях він зникне. Отже, коли справа дійде до формулювання фізичних передбачень, які можна перевірити, він не буде відображенням жодного реального конфлікту з теорією відносності. Тож можливо, що в калібрувальній теорії запропонований Кляйном та Лі спосіб позбутися безмасових частинок, пов’язаних зі спонтанним порушенням симетрії, усе-таки може спрацювати.
Хіггс дійшов висновку, що спонтанне порушення симетрії в моделі квантової теорії поля, яке включає в себе калібрувальну симетрію, може уникнути обмежень теореми Ґолдстоуна та породити масу для векторних бозонів, котрі можуть переносити сильну ядерну силу без участі будь-яких залишкових безмасових частинок. Це корелюватиме з виявленим Андерсоном електромагнетизмом у надпровідниках у нерелятивістському випадку. Іншими словами, через спонтанне порушення симетрії сильна взаємодія могла бути близькодійною силою.
Упродовж пари вікендів Хіггс працював, виписуючи модель, у рамках якої до моделі, яку використав Ґолдстоун для дослідження спонтанного порушення симетрії, додавався електромагнетизм. Хіггс виявив саме те, що очікував: передбачувана теоремою Ґолдстоуна безмасова мода натомість перетворювалася на додатковий поляризаційний ступінь свободи нині масивного фотона. Іншими словами, нерелятивістське твердження Андерсона для надпровідників поширювалося на релятивістські квантові поля. Усе-таки всесвіт міг поводитися, як надпровідник.
Коли Хіггс письмово оформив отримані результати й подав їх до європейського журналу «Physics Letters», його статтю одразу ж відхилили. Рецензент банально не зрозумів, яке вона має відношення до фізики елементарних частинок. Тож Хіггс додав кілька пасажів, у яких прокоментував можливі спостережувані наслідки своєї ідеї, і подав перероблений варіант до американського журналу «Physical Review Letters». Зокрема, він додав таке речення: «Варто зазначити, що ключовою рисою цього типу теорії є передбачення неповних мультиплетів скалярних та векторних бозонів».
Українською це означає, що Хіггс продемонстрував таке: при тому, що в його моделі можна прибрати безмасову скалярну частинку (вона ж бозон Ґолдстоуна) на користь масивної векторної частинки (масивного фотона), існуватиме також залишкова масивна скалярна (тобто безспінова) бозонова частинка, пов’язана з полем, конденсація якого порушила вихідну симетрію. Так народився бозон Хіггса (БХ).
«Physical Review Letters» швидко прийняли статтю, проте рецензент попросив Хіггса прокоментувати зв’язок його статті зі статтею Франсуа Анґлера й Роберта Браута, одержаною журналом десь за місяць до того. На превеликий подив Хіггса, вони незалежно від нього дійшли, по суті, тих самих висновків. І справді, подібність цих статей проявляється навіть у їхніх назвах. Стаття Хіггса називалася «Порушені симетрії й маси калібрувальних бозонів», а стаття Анґлера й Браута – «Порушена симетрія й маса калібрувальних векторних мезонів». Важко собі уявити подібніші назви за відсутності їхнього узгодження.
Проте на цьому щасливі збіги не закінчилися. Двадцять років по тому на черговій конференції Хіггс зустрівся з Намбу та дізнався, що той рецензував обидві ці статті. Годі й придумати щось доречніше за те, що саме людина, яка першою привнесла до фізики елементарних частинок ідеї порушення симетрії та надпровідності, рецензувала статті тих, хто продемонстрував, наскільки його ідеї були далекоглядними. І, як і сам Намбу, усі ці автори були одержимі сильною взаємодією й можливістю зрозуміти, яким чином протони, нейтрони й мезони можуть мати великі маси.
Ще однією ілюстрацією того, що на той час це відкриття назріло, стала поява десь через місяць статті іншої команди в складі Джеральда Гуральника, К. Р. Хаґена й Тома Кіббла, у якій було викладено багато цих самих ідей.
Може виникнути запитання, чому ми говоримо «бозон Хіггса», а не «бозон Хіггса – Браута – Анґлера – Гуральника – Хаґена – Кіббла». Окрім очевидної відповіді, що таке позначення вельми складно вимовити без запинки, з усіх поданих статей лише стаття Хіггса містила явне передбачення існування в масивних калібрувальних теоріях зі спонтанним порушенням симетрії супутнього масивного скалярного бозона. І, що цікаво, цю додаткову ремарку Хіггс включив лише тому, що оригінальний варіант статті без неї було відхилено.
І ще дещиця поетичності. Через кілька років після публікації його оригінальної статті Хіггс закінчив довшу статтю й був запрошений (1966 року) виступити на кількох заходах у США, де він проводив річну відпустку. Після виступу Хіггса в Гарварді, де Шелдон Ґлешоу вже на той час був професором, останній начебто похвалив Хіггса за винайдення «гарної моделі» й пішов собі. Одержимість сильною взаємодією була настільки сильною, що в той час Ґлешоу не збагнув, що це може стати ключем до розв’язання проблем теорії слабкої взаємодії, яку він опублікував п’ять років тому.