Глава 2 ХРАНЕНИЕ ПРОДОВОЛЬСТВЕННЫХ И ПРОМЫШЛЕННЫХ ТОВАРОВ

2.1. Основные особенности формирования качества при хранении товаров

Все пищевые продукты от производства до потребления проходят тот или иной срок хранения, который может измеряться часами (молоко, хлеб), месяцами (кондитерские изделия) и годами (консервы стерилизованные, сахар).

Основная задача – сохранить товар без потерь качества и количества при наименьших затратах труда и материальных средств. Для разных товаров эта задача решается неодинаково, так как каждый из них нуждается при хранении в определенном режиме, зависящем от его состава, свойств и интенсивности протекающих в нем процессов.

При хранении продовольственных товаров происходят различные изменения в их составе и качестве. Их можно замедлить, сильно затормозить, но полностью избежать нельзя. По своему характеру эти изменения могут быть биохимическими, микробиологическими, химическими и физическими. Так, для плодов, овощей, зерна большое значение имеют биохимические процессы, главным образом дыхание; для сахара, крахмала и кондитерских изделий – физические и химические процессы и в малой степени биохимические; в консервированных товарах все процессы замедлены, а биохимические и микробиологические благодаря специальной обработке и герметической таре практически приостановлены.

Во всех случаях знание процессов, происходящих в товарах при хранении, позволит ими управлять и максимально использовать современные методы хранения.

2.1.1. Процессы при хранении продовольственных товаров

Физические процессы

Все физические процессы протекают под действием факторов внешней среды. К основным физическим изменениям, протекающим в пищевых продуктах, относят увлажнение и высыхание. Эти процессы изменяют состояние и свойства продуктов, а также влияют на активность химических и биохимических процессов. Усыхание и увлажнение приводят к потемнению массы продукта. Замедлить эти изменения можно соблюдением соответствующих температурных режимов.

Вода в пищевых продуктах играет важную роль, так как обусловливает консистенцию и структуру продукта, а ее взаимодействие с присутствующими компонентами определяет устойчивость продукта при хранении.

Общая влажность продукта указывает на количество влаги в нем, но не характеризует ее причастность к химическим, биохимическим и микробиологическим изменениям в продукте. В обеспечении устойчивости при хранении пищевого продукта важную роль играет соотношение свободной и связанной влаги.

Свободная влага – это влага, не связанная полимером и доступная для протекания биохимических, химических и микробиологических реакций.

Связанная влага – это ассоциированная вода, прочно связанная с различными компонентами (белками, липидами и углеводами) химическими и физическими связями. Она существует вблизи растворенного вещества и других неводных компонентов, имеет уменьшенную молекулярную подвижность и другие свойства, отличающиеся от свойств общей массы воды в той же системе, и не замерзает при –4 °С. Действительное содержание связанной влаги изменяется в зависимости от вида продукта.

Большая часть воды в продукте может быть превращена в лед при –5 °С, а полное замерзание наступает при –50 °С и ниже. Однако определенная доля прочно связанной влаги не замерзает даже при температуре –60 °С.

Наиболее прочно связанной является так называемая органически связанная вода. Она представляет собой очень малую часть воды в высоковлажных пищевых продуктах и находится, например, в щелевых областях белка или в составе химических гидратов. Другой весьма прочно связанной водой является близлежащая влага, представляющая собой монослой при большинстве гидрофильных групп неводного компонента. Вода, ассоциированная таким образом с ионами и ионными группами, является наиболее прочно связанным типом близлежащей воды. К монослою примыкает мультислойная вода, образующая несколько слоев за близлежащей водой. Хотя мультислой – это менее прочно связанная влага, чем близлежащая влага, она все же еще достаточно тесно связана с неводным компонентом, поэтому ее свойства существенно отличаются от чистой воды.

В пищевых продуктах имеется также вода, удерживаемая макромолекулярной матрицей. Например, гели пектина и крахмала, растительные и животные ткани при небольшом количестве органического материала могут физически удерживать большие количества воды.

Эта вода не выделяется из пищевого продукта даже при большом механическом усилии, но в технологических процессах обработки она ведет себя, почти как чистая вода. Ее, например, можно удалить при высушивании или превратить в лед при замораживании. Таким образом, свойства этой воды как свободной несколько ограничены, но ее молекулы ведут себя подобно водным молекулам в разбавленных солевых растворах.

Именно эта вода составляет главную часть воды в клетках и гелях, и изменение ее количества существенно влияет на качество пищевых продуктов. Например, хранение гелей часто приводит к потере их качества из-за потери этой воды (так называемого синерезиса). Консервирование замораживанием тканей часто приводит к нежелательному уменьшению способности к удерживанию воды в процессе оттаивания.

Существует взаимосвязь между влагосодержанием пищевых продуктов и их сохранностью (или порчей). Поэтому основным методом удлинения сроков хранения пищевых продуктов всегда было уменьшение содержания влаги путем концентрирования или дегидратации.

Однако часто различные пищевые продукты с одним и тем же содержанием влаги портятся по-разному. В частности, было установлено, что при этом имеет значение, насколько вода ассоциирована с неводными компонентами: вода, которая сильнее связана, в меньшей степени способна поддержать процессы, разрушающие (портящие) пищевые продукты, такие как рост микроорганизмов и гидролитические химические реакции.

При одном и том же содержании влаги пищевые продукты могут по-разному храниться, это связано с показателем активность воды (аw).

Активность воды (aw) – это отношение давления паров воды над данным продуктом к давлению паров над чистой водой при той же температуре:

aw = Pw/P0 = POB/100,

где Pw – давление водяного пара в системе пищевого продукта;

Ро – давление пара чистой воды; РОВ – относительная влажность в состоянии равновесия, при которой продукт не впитывает влагу и не теряет ее в атмосферу, %.

Активность воды может быть измерена и использована для оценки состояния воды в пищевых продуктах и ее причастности к химическим и биохимическим изменениям. По величине активности воды выделяют: продукты с высокой влажностью (aw составляет 1,0–0,9); продукты с промежуточной влажностью (aw составляет 0,9–0,6); продукты с низкой влажностью (aw составляет 0,6–0,0).

Стабильность пищевых продуктов и активность воды тесно связаны.

В продуктах с низкой влажностью могут происходить окисление жиров, неферментативное потемнение, потеря водорастворимых веществ (витаминов), порча, вызванная ферментами. Активность микроорганизмов здесь подавлена. При хранении пищевых продуктов активность воды оказывает влияние на жизнеспособность микроорганизмов. Поэтому активность воды в продукте имеет значение для предотвращения его микробиологической порчи.

Для большинства химических реакций большая или максимальная скорость имеет место, как правило, в области aw, характерной для продуктов с промежуточной влажностью (0,7–0,9).

Ферментативные реакции могут протекать при более высоком содержании влаги, чем влага монослоя, т.е. тогда, когда есть свободная вода. Она необходима для переноса субстрата.

Продукты с содержанием aw в пределах 1,0–0,9 – это продукты с высокой влажностью, они доступны для жизнедеятельности всех групп микроорганизмов, не стойки при хранении, к ним относится большинство пищевых продуктов.

Для большинства бактерий предельное значение aw = 0,9, но, например, для золотистого стафилококка aw = 0,86. Дрожжи и плесени могут расти при более низких значениях активности воды.

В зависимости от активности воды продукты подразделяются на продукты с промежуточной (aw составляет 0,9–0,6) влажностью и низкой влажностью (aw составляет 0,6–0,0). В основном порчу продуктов с промежуточной влажностью вызывают дрожжи и плесени, в меньшей степени – бактерии. Дрожжи вызывают порчу сиропов, кондитерских изделий, джемов, паст, сгущенных продуктов; плесени – мяса, джемов, пирожных, печенья, сушеных фруктов.

Продукты с низкой влажностью, как правило, сухие, недоступны для микроорганизмов, но в них могут проходить реакции неферментативного потемнения. Снижают значение активности воды такие технологические операции, как сушка, замораживание, вяление. Добавление таких веществ, как соль, сахар и специальные увлажнители (крахмал, глицерин, молочная кислота), увеличивают влажность продукта, но при этом не изменяют активности воды.

Помимо влияния на химические реакции и рост микроорганизмов активность воды имеет значение и для текстуры продуктов. Например, максимальная активность воды, допустимая в сухих продуктах без потери желаемых свойств, может изменяться в пределах 0,35–0,5 в зависимости от вида продукта (сухое молоко, крекеры и т.п.).

Замораживание является наиболее распространенным способом консервирования (сохранения) многих пищевых продуктов. Необходимый эффект при этом достигается в большей степени от воздействия низкой температуры, чем от образования льда. Образование льда в клеточных структурах пищевых продуктов и гелях имеет два важных следствия:

а) неводные компоненты концентрируются в незамерзающей фазе (незамерзающая фаза существует в пищевых продуктах при всех температурах хранения);

б) вся вода, превращаемая в лед, увеличивается – на 9% в объеме.

Во время замораживания вода переходит в кристаллы льда различной, но достаточно высокой степени чистоты. Все неводные компоненты поэтому концентрируются в уменьшенном количестве незамерзшей воды. Благодаря этому эффекту незамерзшая фаза существенно изменяет свои свойства, такие как рН, титруемая кислотность, ионная сила, вязкость, точка замерзания, поверхностное натяжение, окислительно-восстановительный потенциал.

Эти изменения могут увеличить скорости реакций. Например, наблюдается увеличение при замораживании скорости реакций неферментативного потемнения при кислотном гидролизе сахарозы или в процессе окисления аскорбиновой кислоты, сливочного масла, липидов в говядине, токоферола в жареных картофельных продуктах, бета-каротина и витамина А в жирах.

Фактор возможности увеличения скорости различных реакций в замороженных продуктах необходимо учитывать при их хранении, поскольку этот фактор будет влиять на качество продукта.

Как правило, существенное снижение скорости реакций (более чем в 2 раза) имеет место при хранении пищевых продуктов в условиях достаточно низкой температуры (–18 °С).

При отрицательных температурах, достаточно близких к температуре замерзания воды (0 °С), имеет место увеличение доли денатурации белка. При температуре –18 °С денатурация белка уменьшается существенно, это создает оптимальные условия для хранения продуктов.

Все нормативные документы о пищевых продуктах регламентируют определение влажности товара.

Наиболее распространенными физико-химическими процессами являются сорбция и десорбция паров воды и газов. При сорбции влаги масса продуктов возрастает, при этом гигроскопичные продукты размягчаются (сухари, печенье, вафли), теряют сыпучесть и слеживаемость (сахар-песок, соль, мука), становятся липкими (карамельные изделия).

Также неблагоприятно влияет на качество продукта десорбция. При высыхании наряду с потерей массы продукта происходит ухудшение его качества, а испарение воды из продукта часто вызывает физико-химические изменения в его структуре и свойствах (хлеб, печенье, баранки, сухари и т.д.). Этот процесс очень характерен для свежих плодов, овощей и жидких продуктов. Испарение влаги из плодов и овощей приводит к их увяданию, ослаблению тургора клеток, нарушению обмена веществ и порче.

На интенсивность испарения влияют температура и относительная влажность воздуха, скорость его движения, вид тары, способ укладки товара. Обычно способствуют испарению высокая температура, низкая относительная влажность воздуха, активная вентиляция. Наружные слои продукта более интенсивно теряют влагу, чем внутренние. При штабельной укладке товара процесс усушки в верхних и наружных слоях активнее, чем во внутренних.

Ряду пищевых продуктов (например, алкогольным напиткам) свойственны потери за счет испарения летучих веществ.

Некоторые пищевые продукты могут терять при хранении ароматические вещества либо приобретать нежелательные вкус и запах. Это происходит вследствие диффузии ароматических веществ во внешнюю среду либо в результате поглощения продуктом летучих веществ, выделившихся из хранящегося рядом товара. Поэтому при размещении товаров для хранения обязательно соблюдение товарного соседства. Товары, обладающие сильно выраженным запахом и легко отдающие его в окружающую среду (сыры, мясокопчености и др.), нельзя хранить рядом с продуктами, легко поглощающими этот запах (сливочное масло, кондитерские изделия).

Продукты, содержащие ароматические вещества (чай, кофе, пряности), должны быть упакованы в газопаронепроницаемую тару. Причинами появления постороннего запаха могут быть также тара, упаковочная бумага, складское помещение.

Черствение мякиша хлеба представляет собой физико-химические процессы, связанные со старением денатурированных белков и клейстеризованного крахмала. Одним из них является ретроградация – восстановление кристаллической структуры крахмала. В свежевыпеченном хлебе крахмал находится в аморфном, клейстеризованном виде, но спустя несколько часов происходит частичный обратный переход крахмала в кристаллическое состояние, что сопровождается сжатием и уменьшением его объема и переходом связанной воды в свободную. При этом изменяются также белковые вещества мякиша хлеба: уплотняется их структура, снижается гидратационная способность. Хлеб становится крошливым, изменяются его вкус и запах. Ретроградация крахмала характерна также для некоторых продуктов переработки картофеля и круп.

При хранении некоторых продуктов происходит процесс кристаллизации. Кристаллизация сахара в некоторых видах кондитерских изделий и меде ухудшает внешний вид продукта, его консистенцию, вкус. Она может быть двух видов: сахарозной и глюкозной. Первая сопровождается выделением крупных кристаллов сахарозы (варенье, джем, помадные конфеты), вторая развивается при повышенном содержании (до 4% и выше) инвертного сахара (мед), и в этом случае засахаривание происходит за счет менее растворимого сахара (глюкозы). При колебаниях температур во время хранения в мороженом происходит перекристаллизация продукта, увеличиваются размеры кристаллов льда, лактозы, что делает структуру мороженого грубой, а консистенцию более уплотненной («песчанитость» мороженого).

Для некоторых видов товаров характерно старение белков и коллоидов. Этот процесс протекает при хранении муки, круп, бобовых культур и др. Он сопровождается снижением способности белков к набуханию, растворимости. При старении крупы увеличивается время варки, уменьшается объем, ухудшаются вкус и консистенция каш. При высоких температурах хранения расслаивается белковый студень в кефире, простокваше.

Биохимические процессы

Обусловлены эти процессы действием ферментов, находящихся в продуктах. К основным биохимическим процессам, протекающим при хранении пищевых продуктов, относятся дыхание и гидролиз (автолиз).

Дыхание это сложный окислительный процесс, происходящий в любой живой клетке. Процесс дыхания протекает в плодах, овощах, зерне, крупе, муке, яйцах. При этом органические вещества, в первую очередь сахара, окисляются до простых соединений (воды, углекислого газа) с выделением тепла. Дыхание может быть аэробным и анаэробным. Аэробное дыхание происходит в присутствии кислорода воздуха, схематически изображается следующим уравнением:

С6Н12О6 + 6О2 = 6Н2О + 6СО2 + 282 кДж.

При недостатке или отсутствии в среде кислорода в продуктах наблюдается анаэробное (внутримолекулярное) дыхание:

С6Н12О6 – 2С2Н5ОН = 2СО2+117 кДж.

Как видно из приведенных уравнений, при кислородном дыхании в результате полного окисления сахаров образуются вода, углекислый газ и выделяется энергия; при бескислородном дыхании происходит неполное окисление, в результате чего выделяются спирт, углекислый газ и значительно меньше тепловой энергии. В процессе дыхания участвуют не только сахара, но и органические кислоты, белки, жиры и другие соединения.

О характере протекания дыхания судят по дыхательному коэффициенту – отношению объемов выделяемого углекислого газа и поглощаемого кислорода. Если процесс аэробного дыхания происходит в точном соответствии с приведенным уравнением, то дыхательный коэффициент равняется 1.

При прорастании масличных семян, когда происходит окисление жирных кислот, бедных кислородом, и превращение жира в сахар, дыхательный коэффициент значительно меньше 1.

Высокие дыхательные коэффициенты наблюдаются при использовании на дыхание соединений, более богатых кислородом, чем сахар, например органических кислот (щавелевой, винной и др.).

Процесс дыхания сопровождается потерей массы растительного объекта, изменением состава окружающей атмосферы, выделением влаги и тепла.

Потери массы при дыхании растительных продуктов могут достигать значительных размеров. Они особенно велики у хранящихся плодов и овощей. Выделяющиеся при дыхании тепло и влага могут быть причиной дальнейшего усиления процесса дыхания. Это происходит в том случае, когда хранящиеся объекты плохо проветриваются, для удаления накапливающейся в них влаги и понижения их температуры.

Важным фактором, влияющим на интенсивность дыхания, является температура. В определенном интервале температур возрастание интенсивности дыхания растительных объектов подчиняется правилу Вант-Гоффа: повышение температуры на 10 °С увеличивает интенсивность дыхания продукта в 2–3 раза.

На интенсивность дыхания также большое влияние оказывает газовый состав воздуха. Повышение концентрации углекислого газа и понижение кислорода сильно тормозят дыхание растительных продуктов. При понижении количества кислорода в окружающей среде до 2% и менее, а также при повышении концентрации углекислого газа в растительных объектах вместо аэробного начинается анаэробное дыхание, являющееся по существу процессом брожения. Анаэробное дыхание сопровождается накоплением ацетальдегида, спирта, которые губительно действуют на растительные ткани. Однако газовые смеси, содержащие кислород и углекислый газ в количествах 3–5% и азот в количестве 90–94%, благоприятны для хранения некоторых видов плодов и овощей. Такое хранение называется хранением в регулируемой или модифицированной газовой среде. В этих условиях происходит торможение процессов жизнедеятельности (созревания и перезревания), что позволяет значительно удлинять сроки их хранения с минимальными потерями органических веществ на процесс дыхания.

Процесс дыхания у растительных продуктов различного происхождения неодинаков. Он определяется количеством выделенного углекислого газа или поглощаемого кислорода в единицу времени единицей массы. Слабая интенсивность дыхания характерна для сухого зерна, значительно выше она у сочных плодов и овощей. Особенно возрастает интенсивность дыхания при механических повреждениях и микробиологических заболеваниях объектов.

Расходование на дыхание сахаров и других органических веществ (кислот, белков, жиров) приводит к потере сухого вещества продукта. Образующиеся спирт и углекислый газ губительно действуют на живые клетки продукта, вода может способствовать увлажнению продукта, а тепло – его согреванию (самосогреванию).

Таким образом, активное аэробное дыхание ведет к значительной потере сухого вещества, увлажнению и согреванию продуктов. При анаэробном дыхании также наблюдаются потери сухого вещества, а в результате накоплению спирта и ацетальдегида – отравление и отмирание живых тканей продукта. Поэтому для максимального сохранения качества желательно замедленное аэробное дыхание. Замедлить дыхание можно понижением температуры, влажности воздуха и созданием модифицированной газовой среды, т.е. среды с определенным содержанием кислорода, углекислого газа и азота, отличающимся от состава обычной атмосферы.

Гидролитические процессы

Данные процессы протекают в товарах, являющихся живыми объектами, и в продуктах их переработки и могут влиять положительно или отрицательно на качество. Гидролитические процессы протекают в пищевых продуктах под действием ферментов гидролаз. Интенсивность этих процессов определяется химическим составом продукта, наличием и активностью ферментов, условиями хранения. Гидролитические процессы могут оказывать положительное и отрицательное влияние на качество продукта.

В начале хранения при созревании плодов и овощей происходит гидролиз крахмала в сахаре, из протопектина образуется пектин, что приводит к ухудшению вкуса и консистенции продукта. К концу же хранения при полном гидролизе протопектина мякоть становится мягкой и дряблой.

При кислотном гидролизе крахмала образуется глюкоза. В процессе гидролиза из макромолекулы крахмала сначала образуется растворимый крахмал, у которого молекула меньше исходной, он легко растворяется в воде. Дальнейший гидролиз крахмала дает декстрины, представляющие собой полисахариды с более короткими цепями, чем у крахмала. В зависимости от молекулярной массы и свойств они делятся на амило-, эритро-, ахро– и мальтодекстрины. Амилодекстрин по своим свойствам близок к крахмалу, йодом окрашивается в фиолетовый цвет, растворяется в горячей воде. Эритродекстрин дает с йодом красно-бурое окрашивание, растворяется в холодной воде. Мальтодекстрин мало отличается от мальтозы. Все виды декстринов (за исключением мальтодекстринов) осаждаются спиртом определенной концентрации. Декстрины также в силу разрыва связей превращаются в мальтозу, а затем в глюкозу.

Кислотный гидролиз лежит в основе производства патоки, которая представляет собой продукт неполного гидролиза крахмала и состоит из декстринов, мальтозы и глюкозы.

При гидролизе крахмала ферментом амилазой образуются мальтоза и промежуточные продукты (декстрины). Этот процесс наблюдается в тесте для выпечки хлеба. Фосфоролитические ферменты вызывают превращение крахмала в глюкозо– и фруктозофосфаты и в конечном итоге в сахарозу.

При хранении продуктов, богатых жирами, происходит гидролиз жира под действием липаз, что сопровождается повышением кислотного числа жира (показатель свежести); под действием протеаз происходит гидролиз белков до аминокислот.

Жиры при определенных условиях реагируют с водой, образуя глицерин и жирные кислоты. Степень гидролиза жиров характеризуется содержанием свободных жирных кислот, ухудшающих вкус и запах продукта. Реакция гидролиза обратима и зависит от содержания в реакционной среде воды. Гидролиз молекул жира протекает ступенчато. Промежуточными продуктами гидролиза жира являются ди– и моноглицериды, конечными – глицерин и жирные кислоты.

Гидролиз жира может быть неферментативный и ферментативный. Неферментативный гидролиз протекает в жировой фазе и зависит от количества растворенной в жире воды. При низких отрицательных температурах гидролитического расщепления жиров не происходит. При пониженных температурах скорость гидролиза ничтожна, так как в жире растворено мало воды. Реакция гидролитического расщепления жиров ускоряется с повышением температуры, а также в присутствии щелочей и кислот. Реакция гидролиза идет глубоко при нагревании жиров выше 200 °С в присутствии воды. Под действием щелочей жиры гидролизуются более интенсивно, чем под действием кислот.

Наличие сопутствующих веществ (белков, липидов и др.) в растительных маслах увеличивает скорость гидролиза жира, так как создается большая поверхность соприкосновения воды с жиром.

Ферментативный гидролиз жиров происходит под действием липаз, которые могли быть в сырье и сохранились в готовом продукте, а также в том случае, если в процессе хранения в жиры попала микрофлора.

Во время хранения животных жиров при низких минусовых температурах их гидролиз не происходит. В копченых колбасах, беконе, соленом шпике наблюдается глубокий гидролиз жиров при изготовлении и особенно при хранении. Количество свободных жирных кислот за первые два месяца хранения в них возрастает в 10–14 раз.

При гидролизе жира происходит повышение кислотного числа. Кислотным числом называют количество миллиграммов едкого калия, необходимое для нейтрализации свободных жирных кислот, содержащихся в 1 грамме жира. Кислотное число является основным химическим показателем качества жира. По количеству свободных жирных кислот, содержащихся в жире, можно судить о его свежести, так как в природных жирах их находится мало. При неправильном хранении количество свободных жирных кислот возрастает, дальнейшее их окисление приводит к появлению пороков вкуса и запаха, а при более глубоком процессе – к непригодности жира для пищевых целей.

При гидролизе белков белковая молекула расщепляется на пептоны (смесь полипептидов), далее на три– и дипептиды, а затем на альфа-аминокислоты.

Гидролитические процессы приводят к ухудшению вкуса и запаха продуктов, они часто являются причиной значительных потерь пищевых продуктов.

Из других ферментативных процессов необходимо отметить автолиз (саморастворение). Этот процесс протекает в тканях мяса и рыбы под действием тканевых ферментов. В живых объектах ферментативные процессы обратимы – гидролиз веществ всегда сопровождается синтезом новых органических соединений. В неживых объектах (мясе, рыбе и др.) процессы синтеза прекращаются и все реакции смещаются в сторону расщепления веществ.

В результате автолиза происходят сложное превращение гликогена в молочную кислоту (гликолиз), а также различные преобразования белков мышечной ткани.

Автолитические изменения в мясе подразделяют на две стадии: послеубойное окоченение и созревание.

На первой стадии в мышечной ткани мяса, рыбы происходит накопление молочной кислоты, реакция среды смещается в кислую сторону, что приводит к изменению концентрации солей, уменьшению количества АТФ, а также вследствие этого к образованию нерастворимого белкового комплекса – актомиозина.

На второй стадии вследствие биохимических процессов повышается рН и количество АТФ, происходит распад актомиозина на акти– и миозин, в связи с чем увеличивается растворимость миозина. Начинается протеолиз белков, в результате чего в мышечной ткани накапливаются пептиды и свободные аминокислоты. Повышается набухаемость белков. Созревание мяса сопровождается накоплением экстрактивных веществ, которые влияют на вкус и запах мяса. При распаде АТФ образуются адениловая и инозиновая кислоты, гипоксантин – соединения определяющие органолептические свойства мяса. При дезаминировании глутамина образуется глутаминовая кислота, участвующая в образовании вкуса мяса. В результате этих процессов увеличиваются нежность и сочность мяса, улучшаются его вкус и запах.

При глубоком автолизе происходит распад белков, жиров, увеличивается отделение мясного сока, появляется неприятный кислый вкус.

В рыбе автолитические изменения проходят очень быстро и приводят к ухудшению ее качества, а затем и к порче. Рыба пригодна в пищу лишь с начальными признаками автолиза.

Все биохимические процессы могут быть заторможены низкими температурами хранения.

Микробиологические процессы

Одной из главных причин порчи пищевых продуктов при хранении является развитие микроорганизмов. К микробиологическим процессам относят брожение, плесневение, гниение, которые вызываются жизнедеятельностью микроорганизмов, для которых многие пищевые продукты служат хорошей питательной средой.

Брожение – это разложение углеводов и некоторых спиртов под действием ферментов, выделяемых микроорганизмами. В отличие от дыхания брожение, кроме уксуснокислого и лимоннокислого, осуществляется только в анаэробных условиях. При хранении продовольственных товаров наиболее часто возникают следующие виды брожения: спиртовое, молочнокислое, уксуснокислое, маслянокислое.

Спиртовое брожение – наиболее важный вид брожения. Оно лежит в основе целого ряда пищевых производств (виноделия, пивоварения, изготовления спирта). Но часто при хранении спиртовое брожение является причиной порчи пищевых продуктов, например соков, компотов, варенья, джемов и других изделий, содержащих менее 65% углеводов. Эти продукты приобретают спиртовой привкус, изменяется их консистенция в связи с наличием углекислого газа, а соки и компоты мутнеют. Спиртовое брожение вызывается дрожжами рода Saccharomycetes, а также некоторыми плесневыми грибами, например Мuсоr. Под действием этих микроорганизмов в анаэробных условиях происходит расщепление углеводов до этилового спирта и углекислого газа:

С6Н12О6 = 2С2Н5ОН + 2СO2.

Оптимальными условиями для протекания этой реакции являются невысокое содержание сахара (до 15%) и температура 20–30 °С. Однако имеются дрожжи, способные сбраживать продукты с высокими концентрациями сахара, достигающими 60%. Понижение температуры даже до 0 °С замедляет брожение, но не прекращает его.

Молочнокислое брожение вызывается анаэробными гомоферментативными и гетероферментативными бактериями.

Первые сбраживают сахара в молочную кислоту строго по уравнению:

С6Н12O6 = 2СН3СНОНСООН.

Гетероферментативные бактерии, кроме молочной кислоты, образуют значительные количества уксусной кислоты, спирта, углекислого газа, ацетона, диацетила и др.

Молочнокислые бактерии легко переносят высушивание, устойчивы к этиловому спирту, поваренной соли.

Молочнокислое брожение используется при производстве кисломолочных продуктов (сметаны, творога, кефира и др.), квашеных овощей, ржаного хлеба. Однако оно является причиной порчи молока, вызывает прокисание и ослизнение вина и пива.

Маслянокислое брожение происходит под действием маслянокислых бактерий рода Clostridium, сбраживающими сахара, крахмал, пектиновые вещества с образованием масляной кислоты, углекислого газа и водорода:

С6Н12O6 = СН3СН2СН2СООН + 2СO2 + 2Н2.

Кроме указанных веществ, в процессе маслянокислого брожения образуются этиловый и бутиловый спирты, ацетон, молочная и уксусная кислоты. Маслянокислые бактерии вызывают порчу картофеля, квашеной капусты, прогоркание молока, увлажнение муки и др. В результате выделения газов происходит вспучивание сыров, бомбаж консервов. Масляная кислота придает продуктам горький вкус и неприятный острый запах.

Уксуснокислое брожение вызывается бактериями, которые превращают спирт в уксусную кислоту при повышенной температуре (30 °С) и в присутствии кислорода воздуха. Образование уксусной кислоты происходит в две стадии:

2СН3СН2ОН + O2 = 2СН3СНО + 2Н2O;

2СН3СНО + O2 = 2СН3СООН.

Уксуснокислое брожение вызывает порчу продуктов, содержащих небольшое количество спирта (столовых вин, пива, кваса). При этом они приобретают запах и привкус уксусной кислоты и ее эфиров, мутнеют и ослизняются. На уксуснокислом брожении основано получение пищевого уксуса из разбавленных вин и спирта.

Пропионовокислое брожение – превращение углеводов, винной и молочной кислот в пропионовую и уксусную кислоты с выделением углекислого газа и воды. Оно может вызывать порчу виноградных вин, в результате чего они теряют приятный вкус и аромат, мутнеют и изменяют цвет.

Пропионовокислое брожение играет важную роль при созревании сыров, при котором формируются вкус и привкус сыра.

Гниение – это разложение белков под действием ферментов, выделяемых гнилостными микроорганизмами, с образованием продуктов глубокого распада (аммиака, сероводорода, углекислого газа, меркаптанов и др.). Чаще всего гниению подвержены продукты с высокой влажностью и богатые белком: мясо, рыба, яйца.

Гниение – глубокий распад белков и продуктов их гидролиза. Этот процесс возбуждается преимущественно гнилостными бактериями. Распад белков начинается с гидролиза и образования полипептидов и аминокислот. В дальнейшем распад этих соединений зависит от вида микроорганизмов, аминокислотного состава и условий, в которых протекает процесс. Аэробные гнилостные бактерии дезаминируют аминокислоты с выделением аммиака, жирных кислот (муравьиной, уксусной, пропионовой, масляной, валериановой), а также оксикислот и спиртов.

Под действием анаэробных бактерий происходит декарбоксилирование аминокислот с образованием аминов и углекислого газа:

Кадаверин и путресцин токсичны и имеют неприятный запах.

Из серосодержащих аминокислот образуются меркаптаны (R-SН), обладающие дурным запахом.

Карбоциклические (фенилаланин, тирозин) и гетероциклические (триптофан) аминокислоты образуют токсичные соединения, обладающие неприятным запахом (фенол, крезол, индол, скатол).

Плесневение происходит в результате развития на пищевых продуктах плесневых грибов. Ему подвергаются продукты, содержащие в своем составе много воды или увлажнившиеся в процессе хранения: плоды, овощи, хлеб, варенье, мясные и рыбные изделия, мука. Развитие плесеней вызывает глубокие изменения в составе продукта и появление своеобразного плесневелого запаха и налета на поверхности продукта.

Химические процессы

Химические процессы протекают в пищевых продуктах без участия ферментов. Это, например, окислительные процессы, происходящие под действием кислорода воздуха и активизируемые теплом и светом, прогоркание жира в жиросодержащих продуктах, обесцвечивание и изменение окраски вин, химическое разрушение витаминов. К химическим изменениям можно отнести также образование меланоидинов и химический бомбаж консервов, возникающий при взаимодействии металла банки с кислотами продукта. При этом выделяется водород, который, накапливаясь, вздувает крышки банок.

Скорость химических процессов можно замедлить понижением температуры хранения, применением упаковки, изолирующей продукт от действия света и кислорода воздуха.

Одним из распространенных химических процессов является прогоркание жиров – окислительная порча под действием кислорода воздуха. Этот процесс характерен для пищевых жиров и жиросодержащих продуктов (растительного и коровьего масла, сала, маргарина, сыра, орехов и др.). Окислению подвергаются в первую очередь непредельные жирные кислоты, провитамины и витамины, при этом происходят сложные химические превращения, сопровождающиеся накоплением продуктов окисления, в том числе и токсичных. Они придают жиру своеобразный горький вкус, неприятный прогорклый запах, вызывают першение в горле. На скорость окисления влияют степень насыщенности входящих в их состав жирных кислот, температура хранения, присутствие катализаторов (металлов, света), наличие антиокислителей и др.

Другим видом химической порчи пищевых продуктов является неферментативное потемнение, которое может развиваться в результате карамелизации сахаров, а также реакции между аминокислотами и восстанавливающими сахарами (меланоидинообразования). Этот процесс протекает при хранении многих пищевых продуктов (сушеных овощей, картофеля, яичного порошка), а также при кулинарной обработке. Меланоидинообразование отрицательно влияет на пищевую ценность продуктов и их органолептические достоинства: изменяется цвет продукта, появляются посторонние вкус и запах. Этот процесс можно замедлить понижением температур хранения и переработки, а также блокированием реакционноспособных группировок главных компонентов реакции. Эффективным ингибитором этого процесса является сернистая кислота или сернистый ангидрид. Они реагируют с карбонильными группами сахароз, блокируют их и выводят из цепочки реакции.

Однако меланоидинообразование может играть и положительную роль. Меланоидины образуются при выпечке хлеба, жарке мяса и рыбы, приготовлении топленого молока, солода, пива и других продуктов. В этом случае они участвуют в создании специфических вкуса, аромата и цвета.

При хранении консервов в металлической таре происходит растворение металла и накопление его в продукте. Переход металла в продукт в результате разрушения поверхностного слоя и накопление солей олова и других металлов, содержащихся в виде примесей в жести, снижает сохраняемость консервированного продукта, так как катализирует в нем химические процессы, а также оказывает неблагоприятное воздействие на организм человека. Содержание солей олова не должно превышать 200 мг на 1 кг продукта. Образующийся в результате взаимодействия кислот продукта и жести углекислый газ увеличивает давление внутри банки, что приводит к физическому (водородному) бомбажу. Для защиты внутренней поверхности банок от коррозии применяют различные пищевые лаки и эмали.

Химическими процессами обусловлено обесцвечивание и помутнение ликеро-водочных изделий, выпадение нерастворимых осадков в виноградных и плодово-ягодных винах, образование в них сложных эфиров и ацеталей при выдержке, разрушение витаминов.

Все эти процессы, как правило, в конечном итоге приводят к ухудшению цвета, вкуса и запаха продукта.

2.1.2. Методы консервирования продовольственных товаров

Консервирование – это обработка пищевых продуктов для длительного сохранения их доброкачественности различными способами, которые обеспечивают подавление и прекращение биохимических процессов, происходящих в продуктах под действием ферментов. Консервирование позволяет устранить сезонность в потреблении скоропортящихся продуктов, расширить ассортимент товаров и повысить степень их готовности к употреблению. Кроме того, применение некоторых способов консервирования позволяет получать продукты с иными свойствами, т.е. по существу другие товары.

Различают физические, физико-химические, биохимические и химические методы консервирования.

К физическим методам относят консервирование с помощью низких и высоких температур, фильтрования, лучистой энергии, ультразвука, ионизирующей обработки.

Рассмотрим данные методы.

1. Низкие температуры применяют для охлаждения и замораживания продуктов.

Охлаждение – это понижение температуры продукта до минимальной (0-4 °С). При охлаждении не допускается замораживания влаги в продукте. Охлаждение вызывает замедление химических и биохимических процессов, жизнедеятельности микроорганизмов и способствует увеличению сроков хранения товаров. Охлажденные продукты имеют внутри температуру 0 °С или немного ниже. При этом продукты почти полностью сохраняют питательные вещества, вкус и аромат (молоко в охлажденном виде хранится до 24 часов, мясо – 15–20 суток и т.д.).

Температура, при которой начинается образование кристаллов льда в продукте, называется криоскопической. Криоскопическая температура для яиц равна –2,8 °С, для яблок – от 1,7 до –2,8 °С, для рыбы – от –0,6 до –2 °С, для картофеля – от –1,2 до –1,6 °С, для молока составляет –0,5 °С.

Продукты хранят не только в охлажденном, но и в переохлажденном состоянии, а также в замороженном виде.

Замораживание – это охлаждение продуктов до температуры от –12 до –18 °С и ниже, при этом большая часть воды переходит в лед. В результате этого в продукте создаются неблагоприятные условия для развития микроорганизмов, резко сокращается скорость биохимических процессов.

Качество замороженных продуктов сохраняется лучше при быстром замораживании, которое производят при температуре –24 °С и ниже. Однако качество замороженных продуктов по вкусовым и питательным свойствам уступает охлажденным.

При быстром замораживании в продукте образуются мелкие кристаллы льда, которые равномерно распределяются и не изменяют структуры продукта. При размораживании образовавшаяся влага полностью связывается продуктом. В охлажденных и замороженных продуктах значительно замедляются или приостанавливаются микробиологические и биохимические процессы, хорошо сохраняются витамины.

Процесс замораживания применяется также для достижения следующих целей:

1) отделения влаги при концентрировании жидких пищевых продуктов;

2) изменения физических свойств продуктов (твердость, хрупкость и др.) при подготовке их к дальнейшим технологическим операциям;

3) сублимационной сушки;

4) производства своеобразных пищевых продуктов и придания им специфических вкусовых и товарных качеств (мороженое, пельмени и другие быстрозамороженные продукты).

Эффект замораживания достигается при температуре в центре продукта –6 °С и ниже. Замороженные продукты хранят при температуре не выше –18 °С.

Замороженный продукт отличается от охлажденного рядом признаков и свойств:

1) твердостью – результат превращения воды в лед;

2) яркостью окраски – результат оптических эффектов, вызываемых кристаллизацией льда;

3) уменьшением удельного веса – следствие расширения воды при замораживании;

4) изменением термодинамических характеристик (теплоемкость, теплопроводность, температуропроводность).

При замораживании в отличие от охлаждения происходит частичное перераспределение влаги, травмирование тканей продукта кристаллами льда, а также иногда частичная денатурация белка.

Во время замораживания продуктов происходит их усушка. Унесенная воздухом влага осаждается на поверхности воздухоохладителей в виде «снеговой шубы». Усушки почти не происходит, если продукт находится в герметичной таре или упаковке.

2. Высокие температуры применяют для пастеризации и стерилизации продуктов.

Пастеризация – это нагревание продукта до температуры ниже 100 °С. При пастеризации погибают только вегетативные клетки микробов. Поэтому пастеризация хотя и удлиняет сроки хранения, но не гарантирует их полной сохранности. Пищевая ценность пастеризованных продуктов практически не изменяется, только частично разрушается витамин С.

Стерилизация – это нагревание продукта при температуре свыше 100 °С. При стерилизации погибает большинство микроорганизмов и их споры, а также разрушаются ферменты. Поэтому стерилизованные продукты сохраняются длительное время. При стерилизации снижается их вкусовая и питательная ценность, разрушаются витамины.

Асептическим методом консервируют жидкие и пюреобразные продукты: продукты подвергаются кратковременной высокотемпературной стерилизации в крупных емкостях, а затем фасуют в стерильную тару и укупоривают в асептических условиях. При этом сокращается время термической обработки продукта, в результате лучше сохраняется его качество после стерилизации и при последующем хранении.

Продукты стерилизуют также электрическим током сверхвысокой частоты и ультразвуком. Бактерицидными свойствами обладают ультрафиолетовые лучи, которыми стерилизуют поверхности продуктов, воды, воздуха, тары и оборудования. Ультразвук разрушает микроорганизмы и их споры. Механическая стерилизация – фильтрование жидких продуктов (фруктовых соков) через специальные фильтры, задерживающие микроорганизмы. Облучение ионизирующей радиацией можно использовать для задержки прорастания картофеля, лука при хранении т.д. Этот метод находится в стадии разработки.

Физико-химические методы – это консервирование продуктов поваренной солью, сахаром и сушкой.

Консервирующими факторами являются повышение осмотического давления (т.е. давления, вызванного молекулами растворенного вещества) и снижение активности воды. Повышение осмотического давления достигается внесением в продукт поваренной соли или сахара либо концентрированием растворенных веществ самого продукта путем его высушивания. При высоком осмотическом давлении снижается активность воды, наступает плазмолиз (обезвоживание) клеток микробов, инактивируются ферменты. Консервирующее действие поваренной соли обусловлено также тем, что активные катионы натрия и анионы хлора присоединяются по месту пептидных связей белковых молекул, в результате чего белки продукта становятся недоступными для питания микроорганизмов.

1. При консервировании сушкой (обезвоживание) необходимую для жизни и деятельности микроорганизмов влагу из продуктов удаляют обычно тепловым способом. Наиболее распространена сушка продуктов воздухом, нагретым до 80–120 °С и выше. Для каждого вида продуктов разработаны оптимальные режимы сушки.

Существует естественная и искусственная сушка. Естественным способом сушат абрикосы, виноград и другие плоды. Искусственная сушка продуктов осуществляется в специальных сушильных камерах и аппаратах. Известно много способов сушки: нагретым до 80–120 °С воздухом (конвективная, распылительная), горячей поверхностью (вальцевая сушка), сублимационная, вакуумная, микроволновая и другие виды.

Вакуумная сушка характеризуется тем, что продукт высушивается без доступа воздуха при сравнительно низкой температуре (40–60 °С), благодаря чему хорошо сохраняются первоначальные свойства продукта.

Микроволновая сушка проводится с использованием энергии сверхвысокой частоты (СВЧ); процесс сушки при этом ускоряется, продукты приобретают пористую структуру, увеличиваются в объеме.

При сушке методом сублимации продукт обезвоживается в замороженном состоянии (при –5 °С и ниже) и при глубоком вакууме (1,5–2,0 гПА). В этих условиях влага продукта из твердого состояния (льда) переходит в парообразное, минуя жидкую фазу. Происходит возгонка, т.е. сублимация, замороженной влаги в пар. У высушенных продуктов быстро восстанавливаются исходные свойства при заливке их теплой водой. Методом сублимации консервируют мясо, фрукты, овощи, соки и другие продукты.

Консервирование сушкой имеет свои преимущества и недостатки. Преимущества состоят в том, что сушеные продукты хорошо сохраняются, удобны для транспортирования, обладают более высокой калорийностью.

К недостаткам сушки следует отнести изменение физического состояния продукта (внешнего вида, формы, объема, плотности), потери витаминов, ароматических и вкусовых веществ. Размеры потерь, а следовательно, и питательная ценность продуктов во многом зависят от вида применяемой сушки. Наиболее значительные потери наблюдаются в продуктах при солнечной сушке, сушке горячей поверхностью и нагретым воздухом.

2. Консервирование солью применяют для подавления или прекращения жизнедеятельности микроорганизмов в результате повышения осмотического давления в продукте при добавлении в него поваренной соли. Высокое осмотическое давление вызывает обезвоживание и плазмолиз микробной клетки. Консервирующий эффект зависит от концентрации клетки.

При солении происходит частичная потеря питательных веществ продукта, которые вместе с водой переходят в рассол, изменяются вкусовые свойства. Некоторые виды рыбы (сельди, лососевые) в результате выдержки при посоле приобретают особые вкусовые достоинства.

3. Консервирование сахаром также основано на повышении осмотического давления, обеспечивающего подавление развития микроорганизмов в продукте при добавлении в него сахара. Консервирующее действие сахара слабее, чем соли, поэтому консервацию сахаром часто сочетают с пастеризацией или стерилизацией продукта в герметической таре, а также варкой. Этим способам готовят варенье, джем, повидло, цукаты. Продукты, консервированные сахаром, имеют более высокую калорийность по сравнению с исходным сырьем, однако при нагревании возможны потери витаминов и ароматических веществ.

Биохимические методы консервирования. Эти методы основаны на подавлении действия микроорганизмов и ферментов путем добавления консервирующих веществ в продукты или образования их в результате биохимических (ферментативных) процессов. Типичным примером биохимического способа консервирования является квашение.

Квашение основано на консервирующем действии молочной кислоты, образующейся в результате молочнокислого брожения сахаров продукта. Накопившаяся молочная кислота, изменяя кислотность среды, подавляет деятельность гнилостных микроорганизмов, чем и объясняется хорошая сохраняемость квашеных продуктов в охлажденных помещениях. Одновременно с образованием молочной кислоты накапливается этиловый спирт, который также оказывает консервирующее действие.

Квашение применяют для консервирования овощей (квашеная капуста, соленые огурцы, томаты и др.), плодов, грибов. Квашение, соление и мочение – это различные названия одного и того же способа консервирования. Соль, добавляемая в продукты при квашении, выполняет роль вкусового компонента, способствует выделению клеточного сока, содержащего сахар, а также благоприятно влияет на развитие молочнокислых бактерий на первой стадии брожения.

Преимущество квашения состоит в том, что оно позволяет получать продукт с другими вкусовыми свойствами, а также сохранять значительное количество витамина С.

Химические методы. К химическим методам относят следующие методы:

1. Консервирование этиловым спиртом (основано на губительном действии спирта на микроорганизмы). В концентрациях 12– 16% этиловый спирт замедляет развитие микрофлоры, а при 18% полностью подавляет. Этиловый спирт используется в качестве консерванта при производстве полуфабрикатов плодово-ягодных соков, обуславливает длительное хранение вина и других алкогольных напитков.

2. Маринование (основано на подавлении жизнедеятельности микроорганизмов уксусной кислотой, которая так же, как и молочная, повышает активную кислотность среды). Уксусную кислоту в количестве от 0,6 до 1,2% добавляют при мариновании плодов, овощей, рыбы, грибов. Небольшая концентрация кислоты не может полностью гарантировать защиту продукта от порчи в процессе хранения. Поэтому плоды и овощи, маринованные небольшим количеством уксусной кислоты, подвергают пастеризации или стерилизации, маринование рыбы сочетают с солением. Более же высокая концентрация уксусной кислоты ухудшает вкус продукта и небезвредна для организма человека.

3. Кроме перечисленных кислот, с целью консервирования используют сорбиновую, лимонную, бензойную кислоты и их соли. Наиболее перспективной из них является сорбиновая кислота, которая обладает бактерицидным действием по отношению к дрожжам и плесневым грибам. В отличие от других химических консервантов сорбиновая кислота не оказывает вредного воздействия на организм человека и не придает продуктам какого-либо привкуса и запаха. Сорбиновую кислоту и ее соли применяют для консервирования фруктовых пюре, соков, томатопродуктов и др.

Известно много других химических веществ, которые находят применение для удлинения сроков хранения пищевых продуктов. К таким веществам относят метабисульфит калия, сернистый газ, уротропин, борную кислоту и т.д.

Разработчики биоконсервантов столкнулись с серьезной трудностью. В связи с повышением стоимости металлической тары в настоящее время стало возможным использование полимерной тары для консервирования пищевых продуктов. Но недостатком данного вида материала является снижение сроков годности продукта. Поэтому прибегают к различным консервантам, которые могут оказывать на организм человека неблагоприятное воздействие. Среди современных и достаточно безопасных консервантов следует выделить препараты естественного происхождения.[2]

К препаратам естественного происхождения относятся продукты с добавлением бифидум– и лактобактерий. Также используются лактококки, обладающие полезными для человека свойствами. Представителем данной группы является низин – антимикробное вещество природного происхождения. В этом его отличие от традиционных и совсем не безвредных уксусной, бензойной, сорбиновой кислот. Он является единственным антибиотиком, допущенным органами здравоохранения к широкому применению в пищевой промышленности.

Учитывая потребность в качественных консервах с высокими органолептическими показателями, пищевая промышленность, в особенности консервная отрасль, начинают внедрять биоконсерванты, которые имеют высокую потребительскую ценность.

Комбинированные способы консервирования. Находят широкое применение в производстве и хранении пищевых продуктов. К ним относят, например, копчение рыбы, мясных изделий. Консервирующими факторами при копчении являются химические вещества, переходящие в продукт из дыма или коптильной жидкости, частичное обезвоживание продукта, а также поваренная соль. Товары холодного копчения могут храниться при обычной температуре несколько месяцев. К комбинированным методам стоит также отнести вяление рыбы (соление сочетается с подсушиванием), получение молочных консервов (сгущение сочетается с сахаром или стерилизацией).

Комбинированные методы консервирования часто дают положительные результаты для сохранения пищевых достоинств продукта и повышения стойкости в хранении.

2.1.3. Процессы старения, протекающие при хранении промышленных товаров

Старение полимеров – необратимое изменение свойств полимеров под действием тепла, кислорода, солнечного света, озона, ионизирующих излучений.

Старение происходит при хранении и эксплуатации изделий из полимеров.

Причинами старения являются химические превращения макромолекул, приводящие к их деструкции и к образованию разветвленных или трехмерных структур (сшиванию).

Деструкция при термоокислительном старении связана с цепной реакцией окисления полимера, сопровождающейся образованием гидроперекисей и их распадом.

Последствиями старения являются:

1) ухудшение механических характеристик полимеров;

2) появление трещин на поверхности и их разрастание (иногда полное разрушение);

3) изменение окраски.

Стойкость полимеров к старению во многих случаях определяет сроки их хранения, а иногда и службы изделий.

Эффективный способ защиты полимеров от старения – применение стабилизаторов полимерных материалов.

Деструкция полимеров – разрушение макромолекул под действием тепла, кислорода, влаги, света, проникающей радиации, механических напряжений, биологических факторов (например, при воздействии микроорганизмов). В соответствии с фактором воздействия различают следующие виды деструкции: термическую, термоокислительную, фотохимическую, гидролитическую, радиационную и др. Обычно в полимере одновременно протекает несколько видов деструкционных процессов, например, при переработке полимера в изделие – термическая, термоокислительная и механическая.

В результате деструкции уменьшается молярная масса полимера, изменяются его строение, физические и химические свойства, т.е. происходит его старение, и он часто становится непригодным для практического использования. Однако не всегда деструкция – это отрицательное явление. Так, этот процесс используют при механосинтезе различных привитых сополимеров, при пластикации каучуков, для получения из природных полимеров ценных низкомолекулярных веществ (например, глюкозы).

Стабилизация полимеров – способ повышения стойкости полимеров к старению, основанный на применении веществ (стабилизаторов), способных тормозить развитие этого процесса. Выбор таких веществ, которые вводят в полимеры при их синтезе или переработке, определяется механизмом реакций, вызывающих старение. В результате стабилизации скорость старения полимеров уменьшается иногда в 10 и более раз.

2.2. Технология хранения продовольственных и промышленных товаров

2.2.1. Режим хранения. Понятие, составные элементы

Выход стандартной продукции зависит в большей степени от величины потерь. Эти два показателя находятся в обратно пропорциональной зависимости друг от друга. Величина потерь, как известно из предыдущей главы книги, зависит в определенной степени от условий и сроков хранения.

Условия хранения представляют собой совокупность внешних воздействий окружающей среды, обусловленных режимом хранения и размещением товаров в хранилище.

Режим хранения – совокупность климатических и санитарно-гигиенических требований, обеспечивающих сохранность товаров. Можно выделить климатический и санитарно-гигиенический режимы хранения. Их классификация представлена на рисунке 1.


Рис. 1. Режимы хранения

2.2.2. Требования к температурно-влажностным режимам хранения

Температура хранения. Под температурой хранения подразумевается температура воздуха в хранилище, на складе, в холодильной камере. Температура является важнейшим показателем, поскольку с повышением температуры выше нормы на 10 °С скорость химических и биологических процессов увеличивается в 2–3 раза. Наиболее предпочтительной температурой для хранения большинства товаров является интервал от 0 до +4 °С. При температуре ниже нуля вода, входящая в состав многих продуктов, замерзает и разрушает микроструктуру и упаковку. Такие продукты, как молоко, кисломолочные продукты, шампуни, гели, имеющие при положительной температуре гомогенизированную (однородную) структуру, при замерзании расслаиваются. В напитках, например в вине, при низкой температуре выпадает осадок. Резкие колебания температуры приводят к образованию конденсата.

Что касается замороженных продуктов, то их рекомендуется хранить в интервале температур от –8 до –40 °С. Такой интервал выбран потому, что при более низкой температуре происходит сильное обезвоживание продукта. При температуре выше –8 °С происходит резкое укрупнение (рост зерна) кристаллов льда. Качество продукта при размораживании ухудшается. Особенно это касается мяса, рыбы, жиров, масла. Важным фактором является скорость замораживания. Предпочтительнее мгновенная заморозка.

Приведем несколько примеров. Молочные продукты обычно хранятся при температуре от 0 до + 4 °С. Сливочное масло на складе рекомендуется хранить в морозильной камере при температуре –12…–18 °С, а в магазине – при –2…+2 °С в течение 5 дней. Сыры хранят в интервале от +2 до +8 °С и влажности 85–87%, при длительном хранении – в интервале от +1 до +5 °С. Оптимальная температура хранения алкогольных и безалкогольных напитков составляет от +2 до +12°С.

Большинство непродовольственных товаров, а также хлебобулочные изделия и бакалейные товары (мука, крупа, макароны, сахар) хранятся в так называемом широком диапазоне температур: от –30 до +30 °С.

Консервы, парфюмерно-косметические средства, джемы, растительные масла рекомендуется хранить при температуре от 0 до +15 °С. При этом влажность воздуха должна составлять 75%. Срок хранения консервов в жестяных банках обычно составляет 2–3 года.

Температурные интервалы хранения регламентируются санитарными правилами и нормами (СанПиН).

Для контроля за температурой используются термометры и термографы. Термографы используются в хранилищах, крупных складских помещениях и предназначены для регистрации изменения температуры с помощью самописца. Различают термографы суточные и недельные.

Относительная влажность воздуха (ОВВ) представляет собой степень насыщения воздуха водяными парами. При 100%-ной влажности выпадает конденсат. При недостатке водяных паров происходит испарение воды из более влажных продуктов, что приводит к потерям за счет усушки, усыхания или увядания. Сухие продукты, наоборот, поглощают водяные пары, происходит микробиологическая порча.

Относительная влажность связана с температурой обратной зависимостью. При избытке водяных паров образуется конденсат на таре, непосредственно на товаре, стенах и потолках хранилища. Ускоряется порча, происходит коррозия металлических поверхностей, частей тары.

Рассмотрим коррозию подробнее. Коррозия представляет собой процесс перехода металла из свободного состояния в хрупкое химическое соединение (ржавчину) в результате взаимодействия с внешней средой, сопровождающийся утратой физико-механических свойств. Коррозия является разновидностью разрушения изделия.

Общая схема процесса коррозии выглядит следующим образом:

Fe → Fe+ + H2O → Fe(OH)2 → Fe(OH)3 .

Коррозия может быть газовой, протекающей при повышенной температуре при контакте металлических поверхностей с сернистым газом, углекислотой, сероводородом, которые разъедают сталь (сплав железа с углеродом). Почвенная и атмосферная коррозия происходит при хранении изделий «под открытым небом».

Показателем сопротивляемости коррозии является коррозионная стойкость, измеряемая в [мм/год] или [грамм/м2/год]. Следует помнить, что металлический лист ржавеет при хранении «под открытым небом» с интенсивностью 0,1 мм/год, а в закрытом помещении склада – 0,03 мм/год.

Атмосферная коррозия зависит от влажности воздуха, его температуры, солнечной активности, загрязненности воздуха газовыми и солевыми примесями, наличия электрозарядов на поверхности металлических частей изделий.

По характеру вызываемых разрушений коррозия бывает сплошной, сквозной, подповерхностной, локальной (щелевой), питтинговой (пятнистой) и межкристаллитной.

Коррозия трудно распознается в начальный период, поскольку ей присущ инкубационный период, после которого отдельные малозаметные очаги коррозии резко переходят в сплошную коррозию.

Важное значение для сохраняемости товаров имеет стабильность температурно-влажностного режима, которая характеризуется отсутствием резких скачков показателей режима. Такие перепады оказывают более сильное отрицательное влияние на сохраняемость многих товаров, чем небольшое повышение температуры. Стабильность температурно-влажностного режима можно обеспечить за счет оптимального воздухообмена.

Результаты замеров температуры и влажности воздуха следует записывать в месячные графики температуры и относительной влажности воздуха либо в специальные журналы, которые являются техническими документами. Записи замеров показателей режима хранения служат доказательством соблюдения или нарушения заданного оптимального режима и могут быть использованы при необходимости для предъявления экспертам, представителям поставщика и другим заинтересованным лицам.

2.2.3. Влияние освещенности и газового состава среды

Освещенность – показатель режима хранения, характеризующийся интенсивностью света на складе. На сохраняемость большинства товаров свет, особенно солнечный, оказывает отрицательное воздействие, так как активизирует окислительные процессы, вследствие чего отмечаются прогоркание жиров, разрушение красящих веществ, витаминов и других ценных веществ. В результате многие товары утрачивают свойственную им окраску (выцветают) и подвергаются порче. В связи с этим большинство продовольственных товаров рекомендуется хранить в темноте, а если это невозможно (например, в торговом зале магазина), то избегать попадания на товары солнечных лучей. Для этого склады устраивают без окон, а в магазинах окна закрывают занавесями, солнцезащитными козырьками и т.п.

Однако солнечный свет может служить для борьбы с вредителями, микробами. Например, используя бактерицидные свойства ультрафиолетовых лучей солнца, уничтожают вредителя шашела на вяленой, копченой рыбе и обеззараживают склады и деревянное оборудование.

Газовый состав воздуха в хранилище – важный показатель, характеризующий режим хранения. Воздух состоит из различных газов: азота (78%), кислорода, водорода и инертных газов (1%), углекислого газа (0,03%) и др. Под действием кислорода происходят различные химические и окислительные процессы (например, окисление жиров, витаминов, уксуснокислое брожение вина, пива, соков и др.) и активно развиваются плесени на продовольственных товарах.

Для предохранения продуктов от воздействия кислорода их герметично упаковывают.

Изменение газового состава воздушной среды (снижение концентрации кислорода и увеличение концентрации углекислого газа) нашло применение при хранении свежих плодов и овощей, упаковки хлебобулочных изделий. Так называемое газовое хранение осуществляется в модифицированной (МГС) или регулируемой (РГС) газовой среде.

В регулируемой газовой среде состав газовой смеси может изменяться только в заданных пределах. При хранении в РГС в 1,5–2 раза замедляются процессы жизнедеятельности плодов и овощей (дозревание, перезревание, дыхание) и приостанавливается развитие микроорганизмов.

В модифицированной газовой среде на начальном этапе хранения используется обычный воздух, а затем при необходимости создаются модифицированные условия хранения по составу газа в довольно широких пределах. С точки зрения экономичности и технологичности процесса, а также сохранности продукта наибольшее распространение получило хранение в МГС. При хранении используется кислород, диоксид углерода и азот. Их соотношение, особенно кислорода, который играет основную роль и содержание которого может колебаться в широких пределах, зависит от типа продута, закладываемого на хранение.

Азот используется в качестве наполнителя газовой смеси, так как он инертен и не влияет на рост микроорганизмов. Диоксид углерода подавляет рост микрофлоры, и с его помощью (на ранних стадиях развития микроорганизмов) срок хранения продукта можно значительно увеличить.

Международная организация по стандартизации рекомендует три оптимальных состава газовых сред:

I. СО2 – 5%, О2 – 2%, N – 93%.

II. СО2 – 7–10%, О2 – 10–13%, N – 80%.

III. СО2 – 7–10%, О2 – 5%, N – 85–88%.

Предельно допустимые концентрации кислорода – не менее 2%, углекислого газа – не более 10%.

2.2.4. Вентиляция складов

Вентиляция складов производится для создания условий, обеспечивающих длительное хранение товаров. Сохранность товаров при хранении может быть обеспечена при условии исключения выпадения конденсата, поддержания в хранилищах оптимальной влажности и температуры воздуха в требуемых пределах.

Вентиляция складов производится в целях понижения или повышения относительной влажности воздуха, а также для повышения или понижения температуры воздуха и товаров. Понижение относительной влажности воздуха в складах производится для предотвращения увлажнения гигроскопических товаров выше установленных нормативных значений и предотвращения выпадения конденсата влаги. Для понижения относительной влажности воздуха вентиляция производится в периоды, когда абсолютная влажность наружного воздуха ниже абсолютной влажности воздуха в складе.

Например, воздух склада имеет следующие параметры: температура +15 °С, относительная влажность 80%, а наружный воздух имеет температуру +13 °С и относительную влажность 70%. С помощью расчетов находим, что абсолютная влажность воздуха склада составляет 10,2 г/м3, а вне склада – 7,9 г/м3. В результате проветривания относительная влажность воздуха склада снизится.

При проветривании в целях предотвращения выпадения конденсата следует исходить из точки росы складского воздуха.

Воздухообмен (В/об) характеризует интенсивность и кратность обмена воздуха хранилища и склада. Данный процесс определяет температурно-влажностный режим в хранилище продукции.

Различают активный и общеобменный воздухообмен. Воздухообмен, используемый в целях полной замены воздуха в помещении, называется общеобменным, при котором воздух перемещается в свободном от товарной массы пространстве, например в проходах, в проездах между стеллажами. При этом товарная масса проветривается за счет турбулентности (завихрений потоков воздуха).

Для продовольственных товаров, выделяющих физиологическое тепло, применяется активный воздухообмен с применением периодически включающегося вентилятора с заданным реле интервалом времени. Недостатком активного воздухообмена является интенсивный отвод водяных паров, как следствие, утрачивается аромат фруктов. Такой обмен энергоемок, требует значительных затрат на электроэнергию. Чаще всего его применяют при хранении зерна, картофеля, капусты.

Воздухообмен с подачей воздуха извне называется вентиляцией, когда интенсивный воздушный поток создается вращением лопастей. Воздухообмен без подачи наружного воздуха называется циркуляцией.

Вентиляция складов также может осуществляться как путем естественного воздухообмена (проветривания), так и принудительно (с использованием вентиляторов).

При естественной вентиляции воздухообмен происходит за счет действия ветрового напора и вследствие разности плотности массы наружного воздуха и воздуха внутри склада (гравитационный напор).

При отсутствии ветра и при малой разности температур наружного и складского воздуха естественный воздухообмен внутри склада незначителен. Если наружный воздух имеет более низкую температуру, чем воздух внутри склада, то более холодный воздух поступает через нижнюю зону проема ворот склада, а складской воздух удаляется из верхней зоны. На уровне половины высоты проема располагается так называемая нейтральная зона, через которую проходит линия равного деления наружного и складского воздуха.

В весенний период при вентиляции неотапливаемого склада наружный воздух будет поступать в склад через верхнюю часть ворот, а холодный воздух из склада будет удаляться через нижнюю часть дверного проема.

Поддержание требуемого температурно-влажностного режима в хранилищах может осуществляться с помощью отопления (охлаждения) и вентиляции складов, а также техническими способами кондиционирования воздуха.

Принудительная вентиляция осуществляется для замены воздуха в хранилище с помощью вентиляторов и воздуховодов. Система вентилирования может быть централизованной и децентрализованной (для каждого помещения или секции – раздельно) в зависимости от вместимости хранилища. Существуют следующие разновидности вентиляторов:

1. Радиальные вентиляторы (рисунок 2) обеспечивают подачу воздуха за счет вращения колеса спирального кожуха.


Рис. 2. Центробежный (радиальный) вентилятор

2. Осевые лопастные вентиляторы (рисунок 3) используются для перемещения значительных объемов воздуха при относительно малом давлении (до 1000 Па) с диаметром рабочего колеса от 300 до 2000 мм.


Рис 3. Осевой лопастной вентилятор

Электронагреватель в этих вентиляторах устанавливается со стороны всасывания, возможен реверс.

3. Крышные вентиляторы (рисунок 4) устанавливают в вытяжных шахтах для увеличения подвижности воздуха в производственных и общественных помещениях, они снабжены регулятором частоты вращения.


Рис. 4. Крышный вентилятор

Разновидностью принудительной вентиляции также является активная вентиляция непосредственно массы продукции, например через стенки контейнера или другой тары.

Различают также приточную вентиляцию, при которой свежий или охлажденный воздух подается снаружи внутрь, создавая избыточное давление, и выходит через вентиляционные каналы.

При вытяжной вентиляции воздух подается из хранилища наружу, создавая разряжение, а свежий воздух всасывается через вентиляционные каналы.

Возможно также совмещение этих систем в единую приточно-вытяжную вентиляцию.

Смесь наружного и внутреннего воздуха называется рециркуляционной, применяется для достижения требуемой влажности и интенсивности охлаждения.

Теплообмен без применения вентиляторов, только с помощью воздуховодов и приточных шахт, называется естественной вентиляцией, применяется в погребах. Для повышения влажности в воздух принудительно вводятся частички воды или пара с помощью специальных устройств (увлажнителей).

Существуют дисковые увлажнители, действующие по принципу центробежного распыления воды, устанавливаемые непосредственно в вентиляционном канале.

Паровые увлажнители обогащают воздух паром с температурой до 18 °С, полученным из нагретой трубчатым водонагревателем воды. Обычно применяются во фруктохранилищах.

Для отбора из воздуха излишней влаги используются осушители воздуха. Удаление влаги осуществляется либо путем абсорбции (впитывания), либо вымораживания.

В абсорбционных осушителях воздух пропускается через активированный уголь, поглощающий влагу.

Интенсивность вентилирования зависит от величины теплопритоков к вентиляционному воздуху, которая формируется теплом, поступающим от хранимой продукции, от тары, освещения, стен, пола, грунта, электроприводов, ограждений.

Интенсивность активного вентилирования характеризуется удельной подачей воздуха и измеряется в [м3/т/ч].

Воздухообмен обычно контролируют по продолжительности и частоте вентилирования. Интенсивность воздушного потока определяют с помощью специальных приборов (анемометров) или простейшим методом – по отклонению пламени горящей свечи.

2.2.5. Санитарно-гигиенические режимы хранения

Кроме климатических, различают санитарно-гигиенические режимы хранения, которые включают в себя такое понятия, как чистота. Для показателя чистоты характерно состояние объектов окружающей среды, в которой хранятся товары. Все загрязнения, которые при взаимодействии с компонентами товара снижают его качество, при этом не должны превышать предельно допустимых концентраций. Чистота представлена двумя группами показателей чистоты. Первая группа характеризует природу загрязнений, а вторая – их местонахождение.

Существуют следующие виды загрязнений.

1. Загрязнения минерального происхождения. Источником минеральных загрязнений служат остатки почвы, попадающие на склад вместе с корнеплодами, тарой (ящиками, мешками) и колесами транспортных средств, с обувью персонала. Особую опасность среди этих загрязнений представляют пылевидные частицы воздуха, которые оседают на товарах, таре и оборудовании, обслуживающем торговый процесс. Вместе с пылью на пищевых продуктах оседают окислы свинца, ядохимикаты, средства защиты растений и животных, которые представляют угрозу для организма человека. Мерой защиты при этом служит влажная уборка помещений.

2. Загрязнения органического происхождения. К органическим загрязнениям относятся остатки испорченных продуктов, частицы муки, круп, ворсинки тканей. Источниками их, так же как и минеральных загрязнений, служат товары, загрязненные примесями, органическими удобрениями, пестицидами. Так же источниками этих загрязнений очень часто бывают недоброкачественные товары, подвергшиеся порче и вовремя не удаленные со склада. При этом возникает порча других близлежащих товаров и создается благоприятная среда для развития микроорганизмов в окружающей среде. Это приводит к существенным потерям товаров при хранении.

3. Загрязнения микробиологического характера. К микробиологическим загрязнениям относятся микроорганизмы, возбудители заболеваний, споры плесневелых грибов, дрожжевые споры, мучнистая роса и множество других. Пути попадания аналогичны предыдущим загрязнениям.

4. Биологические загрязнения. Биологические загрязнения (конечные продукты обмена веществ живых организмов) появляются там, где присутствуют насекомые, грызуны, птицы. Особенно их наличие характерно для таких товаров, как мука, крупа, сухофрукты, конфеты, рыба, мех, шерсть, кожа.

Для предупреждения всех видов загрязнений в обязательном порядке ежедневно нужно производить визуальный контроль склада, постоянно осматривать товары, тару и тарные материалы, стены и полы, реагировать на посторонние запахи. Для профилактики присутствия различных насекомых и грызунов проводят дезинфекцию, дезинсекцию и дезодорацию хранилищ.

2.2.6. Типы складских помещений. Подъемно-транспортное оборудование

На российском рынке складских помещений представлено несколько типов складов. Наиболее общая классификация представляет собой деление на соответствующие международному стандарту складские помещения и не соответствующие ему. Площадь складов, соответствующих международным стандартам, не превышает 300 тыс. м2.

Единого и утвержденного деления на классы здесь тоже не существует. Но в 2004 году агентство Swiss Realty Group предложило классификацию, которая наиболее подходит для сегодняшней ситуации на рынке недвижимости в России. Эта компания произвела выделение семи классов.

В первый («А») класс входят здания, рассчитанные на использование в складских целях. Необходимо подчеркнуть, что местоположение, оборудование, отделка, близость автомобильной сети дорог, перепланировка под любой вид груза, большая скорость операций с грузами и надежность хранения должны соответствовать современным принципам складской логистики.

Последующая классификация осуществляется с учетом отсутствия каких-либо параметров, которые соответствуют классу «А».

Во второй класс («А–») входят 20–30-летние реконструированные здания. Они имеют схожие с помещениями класса «А» характеристики, но отличаются своим расположением: промзона, черта города.

К классу «В+» относятся здания, созданные в 90-х годах, но не имеющие нескольких параметров, которые присущи классу «А». В связи с тем, что проявляется хаотичный рост инвестиций в сфере строительства складов, такие помещения на рынке представлены в большом количестве.

В четвертый класс («В») входят помещения, построенные в 70-80 годах и имеющие черты, свойственные плановой экономике. Такие здания, как правило, требуют определенной доработки и вложения денежных средств. Это может потребоваться для того, чтобы наиболее оптимально использовать складские площади, например установить современную охранную сигнализацию, произвести замену или ремонт полов и другое.

Пятый класс – это класс «С». В него входят площади, которые не планировались и не использовались в качестве складов. К ним относятся таксомоторные парки, автобазы и подобные производственные помещения. Эти здания потребуют существенной модернизации как в техническом, так и в строительном планах. Для этого может потребоваться установка рампы и пандусов, дополнительных ворот, замена или новая установка пожарной сигнализации, отопления, внешняя отделка.

Шестой класс – это класс «С–». К нему принадлежат старые здания 30–60 годов строительства. Это могут быть бывшие помещения продуктовых оптовых баз и овощных хранилищ. Такие здания не соответствуют современным требованиям эксплуатации.

К классу «D» относятся не предназначенные для использования в складских целях помещения. Такие здания с экономической точки зрения проще снести, чем эксплуатировать. Это связано с огромным количеством денежных средств на восстановление и приведение в порядок к современным показателям.

Особенностью складирования при оптовой торговле является то, что, кроме непосредственного хранения, в складских помещениях производятся такие операции, как контроль качества поступающих от поставщика товаров, поддержание оптимальных условий хранения, накопление товарных запасов, сортировка, фасовка, предпродажная подготовка, комплектование заказов и исполнение заявок магазинов, снабжение розничной торговой сети.

В зависимости от выполняемых функций товарные склады подразделяются на:

1) распределительные, в которых формируются и направляются основные товарные потоки в торговой сети;

2) транзитные, предназначенные для перегрузки товаров с одного вида транспорта на другой и для кратковременного хранения продукции в ожидании перевозчика;

3) склады досрочного завоза – для труднодоступных и отдаленных районов;

4) накопительные – для формирования из мелких крупных партий товара и их отправки;

5) универсальные, в которых сконцентрирован широкий ассортимент как продовольственных, так и непродовольственных групп товаров, являются самым распространенным типом товарных складов;

6) специализированные, предназначенные для хранения родственных групп товаров;

7) общетоварные, обеспечивающие только физическую защиту (охрану) товара без создания особых режимов хранения;

8) специальные, оснащенные специальным холодильным или отопительным оборудованием и установками искусственного освещения;

9) экспедиционные, предназначенные для краткосрочного хранения товара на таможенных терминалах, контрольно-пропускных пунктах;

10) открытые, представляющие собой огороженные площадки под навесом, в основном для хранения строительных материалов или транспортной техники;

11) закрытые – специально оборудованные отдельно стоящие здания или комплексы.

Товарные складские помещения обычно состоят из трех зон:

1) основной, занятой стеллажами, холодильными камерами, комплектовочным и фасовочным участками;

2) вспомогательной, в которую входят служебные помещения, кабинеты, столовая, здравпункт, лестничные проемы, вестибюль, проезды, проходы, накопитель транспортных средств;

3) подсобной, предназначенной для хранения тары, размещения отходов, инвентаря, запчастей, мебели, резервного оборудования.

К складским помещениям предъявляются следующие технологические требования:

1) площадь и емкость склада должна соответствовать объему товарооборота, характеру и месту прохождения основных товарных потоков, а также товарным запасам в регионе;

2) конфигурация и форма складских помещений должна обеспечивать свободный доступ к товарам, быть максимально приближенной к подъездным путям, не иметь препятствий для перемещения товара внутри склада;

3) по возможности обеспечивать поточность, кратчайшую маршрутизацию и непрерывность складского технологического цикла;

4) должны соблюдаться режимы хранения, правила эксплуатации и периодичность ремонта оборудования, охрана труда, техника безопасности, наличие и достаточность средств пожаротушения и охранной сигнализации.

Основные численные параметры складских помещений

Основной характеристикой товарного склада, отражающей эффективность его работы, является годовой складской оборот в тыс. руб. (Q).

Другой немаловажной характеристикой является ежедневный товарный запас (Q), измеряемый в условных вагонах с условным товаром. В торговле принято считать, что условный вагон имеет емкость в 20 тонн, или 42 м3, условный контейнер – 6 м3, условный поддон – 1 м3.

где k = 1,2…1,3 – коэффициент неравномерности образования товарных запасов;

Сваг – стоимость 1 условного вагона товаров, тыс. руб.

Полезная площадь складского помещения (Fскл) рассчитывается по формуле:

Fскл = N•Q,

где N – норматив площади в м2, приходящийся на размещение товаров из 1 условного вагона или на 1000 руб. товарного запаса, если умножить на стоимость 1 условного вагона. Норма площади N для хранения 1 условного вагона зависит от наименования товара, его габаритов, плотности, вида хранения и составляет от 25 до 40 м2.

Потребная площадь для хранения товаров может быть рассчитана также по другой формуле:

где V – необходимый объем хранения, м3; определяется делением рублевого товарного запаса Qруб на стоимость 1 м3 товаров: V = Qруб3;

k1 – коэффициент неравномерности поступления товаров;

k2 – коэффициент эффективности использования объема складского помещения;

h – высота складского помещения, м.

Общая площадь склада (Fобщ) определяется путем умножения расчетной полезной площади на коэффициент проходов и проездов между штабелями, стеллажами и контейнерами, который принимается равным значению: kпрох= 2…3.

Fобщ= Fскл•kпрох.

Площади административно-бытовых помещений определяются исходя из количества обслуживающего персонала и санитарно-гигиенических норм.

Количество основных работников склада (Nосн) определяется исходя из годовой трудоемкости работ (Тгод), фонда времени (Ф),

нормативов погрузочно-разгрузочных работ и массы груза. Трудоемкость измеряется в часах или нормо-часах и складывается из времени хранения, контроля, накопления, сортировки, фасовки, комплектования, снабжения, обслуживания и предпродажной подготовки.

где Ф = (dк – dв – dп – dо )•t•kб,

где dк – количество календарных дней в году;

dв,п,о – количество выходных, праздничных дней, продолжительность отпуска;

t – продолжительность смены или рабочего дня;

kб = 0,97 (коэффициент, учитывающий потери рабочего времени из-за болезни).

К основным работникам склада относятся грузчики, кладовщики, упаковщики, фасовщики, сортировщики, экспедиторы, весовщики, товароведы, диспетчеры.

К вспомогательному персоналу относятся водители и охранники.

Площадь, занимаемая холодильными камерами (Fхол), рассчитывается по формуле:

где Qзап – запасы скоропортящихся продуктов, тонн;

N – норма загрузки холодильной камеры, тонн/м3;

h – высота укладки продукции, м.

Полезную емкость складского помещения или хранилища определяют путем деления массы закладываемого на хранение объема продукции на удельную массу 1 м3. Например, удельная масса 1 м3 товарной пшеницы колеблется от 730 до 850 кг/м3, капусты – от 250 до 400 кг/м3.

Складское оборудование

Оборудование, используемое для хранения товаров, подразделяется на:

1) оборудование для складирования и хранения штучных товаров;

2) оборудование для насыпных и навалочных материалов и продукции;

3) оборудование для наливных товаров.

Для штучных товаров применяют стеллажи различной конструкции. Для мелкоштучных товаров используют полочные, клеточные, ящичные, каркасные и гравитационные стеллажи. Клеточные разделены перегородками, ящичные снабжены ячейками, каркасные имеют возможность изменять конфигурацию, гравитационные изменяют угол наклона полки для перемещения штучных товаров под действием силы тяжести.

Для штабелирования мешков, коробок, легко повреждаемых грузов применяют поддоны и ящичные каркасы.

Насыпные грузы до расфасовки хранятся в бункерах или закромах. Бункера представляют собой металлическую емкость, имеющую конусную форму, с верхним загрузочным устройством и высыпным люком, с затвором снизу, объемом до 100 м3. Закрома представляют собой ячейки, отделенные друг от друга перегородками.

Наливные грузы хранятся в резервуарах или в герметичных контейнерах.

Для механизации операций погрузки-выгрузки применяют грузоподъемные устройства, к которым относятся мостовые краны, тали, лебедки, кран-балки, тельферы, штабелеры, лифты грузоподъемностью от 0,5 до 3 тонн.

Для перемещения грузов применяют транспортирующие механизмы: конвейеры, транспортеры, рольганги, вибролотки.

К подъемно-транспортным машинам относятся электрокары, автопогрузчики и электротягачи.

Необходимое количество подъемно-транспортных машин (Nм) на складе или сортировочной площадке определяется по формуле:

где Vггодовой грузооборот, тонн;

Pмпроизводительность машин, тонн/час;

Т – количество часов работы в смену;

c – количество смен;

n – количество рабочих дней в году, принимается равным 253.

К складскому оборудованию относится также весоизмерительное и фасовочное оборудование. Весовое оборудование подразделяется на гирные, шкальные, циферблатные, электронные, товарные (платформенные), настольные, напольные, крюковые, крановые весы. Диапазон измерений составляет от 50 кг до 3 тонн. Верхний предел взвешивания платформенных весов может достигать 150 тонн. Нижний предел взвешивания обычно составляет 1/20 часть от верхнего.

К фасовочному оборудованию относятся дозаторы, линии по упаковке и пакетированию. Порции при пакетировании в бумажные или полиэтиленовые пакеты обычно составляют до 0,5 кг, погрешность дозирования не должна превышать ±0,5%.

2.2.7. Размещение товаров на хранение. Правила товарного соседства

При размещении товаров на хранение руководствуются принципами совместимости, безопасности и эффективности. При размещении продовольственных товаров учитывают также качество закладываемой продукции, сроки хранения и очередность реализации.

Совместимость основана на правилах товарного соседства, заключающихся в подборе товаров с одинаковыми режимами хранения и сорбционными (впитывающими и поглощающими) свойствами, одинаковым составом газовой среды, воздухообменом.

Например, недопустимо хранить рядом замороженные и охлажденные продукты, так как одни разморозятся, другие, наоборот, заморозятся. Также нельзя хранить вблизи друг от друга сухие и влажные товары (муку и свежие фрукты). Первые увлажнятся, начнется микробиологическая порча, вторые усохнут, потеряют товарный вид. Это требование касается также разных сортов и видов растительной продукции.

Что касается сорбционных свойств, то товары делятся при хранении на сорбенты, т.е. поглощающие газ, запахи, и сорбаты, т.е. отдающие, испускающие запахи, аромат или газовые вещества.

Так, сливочное масло впитывает запах рыбы или краски. Сахар – запах топлива, керосина, бензина, солярки. Чай или кофе – запах косметических и парфюмерных средств. В основном причиной появления посторонних запахов у продуктов является некомпетентность персонала магазина.

При размещении товаров на хранение принимают во внимание возможность совместного хранения товаров. Хранить в одной камере можно продукты, требующие одинакового температурного и влажностного режима. Мороженые, охлажденные и сушеные продукты необходимо хранить раздельно. Не разрешается хранить совместно с другими продуктами мороженое, мясо охлажденное, колбасные изделия и мясокопчености, сыры всех видов, фрукты и овощи, хлебопекарные дрожжи.

К совместному хранению в одной камере холодильников, например, допускаются только продукты, входящие в одну из перечисленных ниже групп. Продукты, входящие в разные группы, хранить совместно запрещается.

Группа 1. Мороженые продукты (температура воздуха в камере –15 °С и ниже, относительная влажность воздуха 90–95%):

1) мясо всех видов, категорий упитанности и назначения (в тушах, полутушах, четвертинах, отрубах);

2) субпродукты (блочные и неблочные), мясо в блоках;

3) птица и кролики;

4) шпик (свежий, соленый);

5) жиры топленые пищевые в бочках и ящиках (монолиты);

6) масло сливочное (монолиты);

7) масло топленое в бочках и флягах;

8) маргарин и кулинарные жиры в бочках и ящиках;

9) яичные мороженые продукты в жестяной таре.

Группа 2. Охлажденные продукты (температура воздуха в камере –1...–2 °С, относительная влажность воздуха 70–75%):

1) яйцо в деревянных и картонных ящиках;

2) консервы всех видов в герметичной таре (кроме стеклянной), в ящиках.

Группа 3. Охлажденные продукты (температура воздуха в камере –1...–2 °С, относительная влажность воздуха 85–90%):

1) яблоки зимние в ящиках;

2) груши зимние в ящиках;

3) виноград в ящиках и паках.

Группа 4. Охлажденные продукты (температура воздуха в камере –1...–2 °С, относительная влажность воздуха 85–90%):

1) яблоки и груши летние и осенние в ящиках и паках;

2) абрикосы и персики в паках и ящиках;

3) слива в ящиках и паках;

4) виноград в ящиках и паках;

5) вишня, черешня в паках;

6) крыжовник в паках;

7) смородина в паках.

Группа 5. Сухие продукты и консервы (температура воздуха в камере 0…1 °С, относительная влажность воздуха 70–75%):

1) сухие яичные продукты в бочках, ящиках, мешках;

2) сухие молочные продукты в потребительской и транспортной таре;

3) сухофрукты в мешках и ящиках;

4) орехи в мешках и ящиках;

5) консервы всех видов, кроме молочных, в потребительской (герметичной) таре, в ящиках;

6) сгущенные молочные консервы, майонезы. Другое правило размещения товаров – это рациональное использование площадей складских и подсобных помещений. Площадь склада рассчитывается по формуле:

F=Fскл•k+Fмех+Fраб.мест,

где k – коэффициент проходов и проездов шириной от 0,7 до 1,5 м;

Fскл – полезная площадь склада, занятого товаром;

Fмехплощадь, занятая вспомогательными механизмами, погрузчиками, электокарами, холодильным оборудованием;

Fраб. мест – площадь рабочих мест (рассчитана на расположение шкафов, столов, персонала).

Другим показателем рациональной компоновки является наличие аэропространства складского помещения, т.е. свободного от товарной массы пространства. Так, максимальная высота штабеля при хранении товарной массы исходя из требований безопасности, устойчивости и возможности механизации не должна превышать 4,5 м. Величина аэропространства определяется также исходя из допустимых расстояний от отопительных приборов, длительности хранения, возможностей воздухообмена, наличия «мертвых зон» и ряда других факторов.

Существует ограничение, согласно которому свободный объем не должен превышать 30% пространства и регламентируется для каждой группы товаров санитарными правилами и нормами (СанПиН). Общую емкость склада принято измерять в условных поддонах. 1 усл. поддон = 1 м3 и имеет размеры 1,2 х 0,8 х 1,05 м.

Следующими факторами размещения является количество перегрузок товара с одного складского места на другое, наличие свободного доступа к очагам возникновения порчи, отсутствие «мертвых зон», соблюдение очередности реализации в соответствии со сроками годности, отсутствие пересечения транспортных потоков сырья и конечных продуктов.

Что касается эффективности хранения, то она зависит от степени механизации погрузочно-разгрузочных работ, наличия эффективной охраны материальных ценностей, величины оплаты за аренду, амортизации оборудования (перенесение части стоимости изношенного оборудования, расходов на его ремонт на себестоимость хранимой продукции).

Условия хранения должны быть непрерывными и неизменными (без перепадов режимов), иметь возможность резервирования важнейших механизмов в случае их поломки, отказа, защищенными от изменения погодных условий, климата, природных катаклизмов.

Систематичность контроля в технологических циклах процесса хранения зависит от длительности хранения, обязательности его проведения при приемке-сдаче товара и при идентификации продукции.

При контроле наибольшее внимание должно уделяться состоянию тары и упаковки, ее наполняемости и оборачиваемости.

Результатом контрольных проверок может быть решение об «отбраковке» дефектных товаров, их срочной реализации, утилизации или вторичной переработке.

Контроль за качеством хранимого товара и состоянием тары и упаковки – одна из главных обязанностей товароведа.

По результатам замеров температуры, влажности, воздушного потока, газовой среды, освещенности составляются графики или делаются записи в журнале наблюдений. Эти записи очень важны, так как по ним списывают товары или накладывают штрафы за несоблюдение режимов, т.е. они служат доказательством нарушений. Принимается также решение о санитарно-эпидемиологической обработке помещения, являющейся дорогостоящим мероприятием.

Методы хранения товаров

Для каждой группы товаров должен применяться свой метод хранения, обеспечивающий минимум потерь в течение заданного срока. Методы хранения различают по климатическому режиму, способу размещения, виду и приемам обработки товаров при хранении.

Наиболее распространенными являются методы хранения регулированием температурного режима. К ним относятся методы охлаждения и замораживания. Для естественного охлаждения применяют ледники, льдосолевые смеси и сухой лед (твердую углекислоту). Искусственный холод применяют для замораживания и охлаждения скоропортящихся пищевых продуктов с использованием холодильных установок, витрин и прилавков.

Пониженная температура в холодильных камерах может достигаться несколькими путями: нагнетанием холодного воздуха в камеру, использованием батарей-испарителей с циркулирующим хладагентом (фреоном или аммиаком), потолочно-панельным охлаждением. Основной характеристикой способов охлаждения является перепад температур. При панельном охлаждении перепад температур составляет 0,25 °С, при воздушном охлаждении – 0,5 °С, с применением испарителей – до 3 °С.

Другим методом хранения является регулирование влажности, которое происходит двумя путями: дополнительным увлажнением за счет установки разбрызгивателей, емкостей с водой или опилками со снегом; путем осушения воздуха в хранилищах с помощью водопоглощающих веществ: извести, мела, силикагеля, угля. При этом обязательно должна проводиться регенерация – периодическая замена поглощающих материалов. Искусственное осушение достигается также подачей в камеру воздуха, насыщенного парами хлористого лития (LiCl).

По способу размещения товаров на складе различают бестарный метод хранения, который в свою очередь подразделяется на 4 вида: насыпной, подвесной, напольный и стеллажный. При таком методе транспортная, потребительская тара и упаковочные материалы не применяются.

Насыпной метод имеет несколько разновидностей: навальный, закромной, траншейный, буртовой и секционный. Навальный способ размещения применяют для клубней, корнеплодов, бахчевых культур.

Картофель, свеклу, капусту, морковь, лук рекомендуется хранить в закромах, представляющих собой секции, отделенные друг от друга деревянными или бетонными перегородками.

Для временного хранения в полевых условиях сельскохозяйственной продукции применяют траншеи и бурты – валообразные кучи, накрытые соломой.

При подвесном размещении товары подвешивают на крюках, штангах, кронштейнах. Применяют для мясных туш, окороков, лука в сетках, одежды.

Напольный метод применяют при хранении крупногабаритных изделий промышленного производства (транспортных средств, мебели, инвентаря).

Широкое распространение получил стеллажный метод в сочетании с современными средствами механизации (транспортерами и подъемниками). Согласно правилам при таком размещении на нижних ярусах должны находиться более тяжелые товары.

При штабельном хранении продуктов в мягкой таре (мешках) должны соблюдаться следующие правила: укладка зашивкой вовнутрь, ряды должны зеркально накладываться на предыдущие, от края штабеля (начиная с 10 ряда) необходимо делать отступление внутрь на 25 см, при сквозной укладке оставляют воздушные промежутки, высота штабеля составляет 8–14 рядов и зависит от влажности продукта. Схема штабельной укладки товаров показана на рисунке 5.


Рис. 5. Схема укладки в штабель (2 мешка боками, 3-й – поперек)

Используют также тарные методы размещения товаров: в контейнерах, бочках, цистернах, корзинах, ящиках, коробах, пакетах, тюках, кадках, бутылях, поддонах.

Виды обработки товаров при хранении

К санитарно-гигиеническим видам обработки товаров относятся дезинфекция, дезинсекция, дератизация, дезактивация, дезодорация и дегазация.

Дезинфекция проводится для обеззараживания поверхности товара, тары, строительных элементов конструкции склада от микроорганизмов путем нанесения химических растворов или их распыления.

Для этих целей применяют известь, щелочи, растворы сернистой кислоты, формальдегид, побелку стен склада, отвары лука, чеснока, горчицы, мяты, полыни. Распыляют озон, дихлорэтан, другие аэрозоли. Применяют окуривание дымом от сжигания веток ели или сосны, листьев можжевельника.

Для антисептической обработки помещений применяют ультрафиолетовые лампы, излучение кобальта, относящегося к слаборадиоактивным элементам.

Дезинсекция применяется для уничтожения насекомых (клещей, мух, моли, червей). Для этих целей используют аэрозоли на основе брома, хлора, фосфора.

Дератизация – деятельность по истреблению грызунов (мышей, крыс) и птиц (голубей, воробьев, ворон – переносчиков туберкулеза). Используют мышеловки, клей, кошек, ядовитые приманки, отраву, муку с цементом, гипсом или алебастром. От птиц товары закрывают полиэтиленом.

Дезактивация заключается в смывке водой с шампунем или с помощью пылесоса радиоактивной пыли с транспортной тары или средств перевозки.

Дезодорация – это удаление посторонних запахов, предотвращение поглощения ароматов. Для этих целей применяют вентиляцию, озонирование складов, адсорбенты (поглотители пахучих веществ).

Дегазация – нейтрализация вредных газов, ухудшающих сохраняемость (этилен). В настоящее время применяется редко.

Для защиты товаров от коррозии, например бытовой техники, транспортных средств, консервов, применяют различные защитные покрытия: краски, лаки, грунтовки, эмали, пластмассы, фольгу, мастику, смолы. При консервации на металлические поверхности наносят защитные консистентные смазки: солидол, литол, фиол, парафин, воск, мыло с загустителем в виде алюминиевой пудры. Применяют защитные покрытия толщиной в несколько микрон, нанесенные химическим путем: оксидированием (кипячением в растворе едкого натра), фосфатированием (кузова автомобилей перед покраской), воронением (покрытие масляным лаком и выдержка в печи), цинкованием (диффузионное насыщение поверхностного слоя цинком), синением, борированием, кадмированием, сульфидированием (S – серой), никелированием (корпуса часов), меднением, битумированием (нанесение слоя битума с последующим отжигом). При этом коррозионная стойкость повышается в 3 раза.

Изделия пищевой промышленности подвергаются эмалированию. При изготовлении посуды и кухонных приборов широко используется нержавейка – сплав, в котором железо частично замещено хромом, титаном, молибденом или никелем.

Для защиты от коррозии применяют ингибиторы – химические соединения, создающие на поверхности изделия защитную пленку экранирующего действия. В качестве ингибиторов используют азотнокислый натрий NaNO3, бикарбонат кальция Ca(HCO3)2, сульфат натрия Na2SO4, уротропин-гексамин (так называемый твердый спирт), глицерин, нефтепродукт (бензотриазол).

С целью покрытия металлических частей защитной пленки их подвергают прокаливанию газовой горелкой, травлением серной или азотной кислотой.

Ведра, консервные банки подвергаются лужению – гальванической обработке, заключающейся в нанесении на поверхность тонкого слоя олова Sn (станнума).

При транспортировке на значительные расстояния металлические изделия заворачивают в вощеную бумагу или упаковывают под вакуумом в термоусадочную пленку. Для хрупких изделий применяют гофрированный картон.

Для поглощения водяных паров, запахов гнили и плесени при хранении используют пересыпочные материалы. Для этих целей используют вермикулит (кристаллы слюды), древесную стружку.

Для сохранения формы, целостности товаров используют перевязочные материалы: шпагаты – нити из пеньковой (полученной из конопляных стеблей) пряжи, ленты, веревки, канаты.

Контрольные вопросы

1. Какие физические процессы протекают при хранении продовольственных товаров?

2. Что такое свободная и связанная вода?

3. Как при хранении вода влияет на качество продовольственных товаров?

4. Что такое сорбция и десорбция воды?

5. Какие биохимические процессы протекают при хранении продовольственных товаров?

6. Какие виды брожения существуют, как они влияют на качество товаров?

7. Какова характеристика гидролитических процессов?

8. Каковы отличительные особенности процессов, которые протекают при хранении непродовольственных товаров?

9. Каковы основные методы консервирования продовольственных товаров?

10. Что такое пастеризация и стерилизация товаров, каково их влияние на пищевую ценность продовольственных товаров?

11. Что такое режимы хранения, какие виды режимов хранения вы знаете?

12. Как относительная влажность воздуха и температурных режимов влияет на сохранение качества товаров при хранении?

13. Как проходит процесс коррозии? Каковы меры предохранения товаров от коррозии металлов?

14. Какие формы вентиляции применяют при хранении товаров?

15. Какие климатические режимы хранения существуют?

16. Какие санитарно-гигиенические режимы хранения и виды загрязнений существуют?

17. Каковы правила товарного соседства? Какие существуют группы продуктов, предназначенных для совместного хранения в холодильной камере?

18. Какие виды товарных складских помещений существуют?

19. Какое оборудование используется для складских помещений?

20. Каковы основные численные параметры складских помещений?

21. Каковы основные методы закладки товаров на хранение?

22. Как происходит обработка товаров при хранении?

Загрузка...