Наблюдаем Вселенную

131. Что такое свет?

Исаак Ньютон (1643–1727) считал, что свет состоит из крошечных частиц, движущихся прямолинейно. Теория описана в Оптике (Opticks), 1704.


Христиан Гюйгенс (1629–1695) не согласился. Он считал, что свет — это волна, как звук. Теория описана в Трактате о Свете (Treatise on Light), 1690.


В 1801 в Лондоне Томас Юнг продемонстрировал два световых луча, которые могут усилить или погасить друг друга (интерференция) — характерное свойство волны.


В XIX в. Майкл Фарадей и Джеймс Клерк Максвелл описали свет как электромагнитную волну, распространяющуюся в пространстве со скоростью в 300 000 км/с.


Несмотря на явную волновую природу света, Альберт Эйнштейн и Роберт Милликен высказали гипотезу, что свет состоит из сгустков, или квантов энергии (фотонов).


В квантовой физике свет одновременно имеет свойства и частицы, и волны. Энергия фотона связана с его длиной волны; фотоны интерферируют.


Длина волны видимого света лежит в диапазоне от 380 нм (фиолетовый, высокая энергия) до 780 нм (красный, низкая энергия). Солнечный свет содержит все цвета.


Белый солнечный свет может разлагаться на составляющие цвета (спектр), преломляясь капельками воды (радуга) или призмой.


Разреженный светящийся газ излучает только характеристические длины волн. Натриевые лампы: оранжевый свет. Космические облака горячего водорода: розоватый свет.


Газы в атмосфере Солнца поглощают определенные длины волн. Результирующие темные фраунгоферовы линии в спектре несут информацию о составе.


Поляризация света дает информацию о магнитных полях. Красный или синий сдвиги спектральных линий дают информацию о движении частиц.


Распределение энергии света (голубой/красный) говорит вам о температуре излучающего тела. Все обо всем, свет содержит в себе массу информации.


Видимый свет — это только малая часть полного электромагнитного спектра. Астрономы также используют приборы для исследования других видов излучения.

132. Что такое скорость света и почему она так важна?

Скорость света (с) играет роль бесконечной скорости во Вселенной. Точно так же, как недосягаема бесконечность, скорость света недостижима для материального объекта.


Почему с недостижима? Энергия связана с массой. Если толкать тело быстрее, растет не только его энергия движения, но и масса. При приближении к с масса возрастает многократно до бесконечности.


Если что-то движется бесконечно быстро, то ваша скорость по сравнению с этим пренебрежимо мала. Таким образом, это что-то представляется бесконечно быстрым, независимо от того, какова ваша скорость.


Аналогично, вы всегда получите при измерении одно и то же значение для скорости света, независимо от того, насколько быстро вы движетесь относительно источника света.


Даже если кто-то приближается к вам со скоростью, равной половине скорости света, и светит фонариком вам в глаза, свет достигает вас не со скоростью 1,5 с, а все с той же скоростью с.


Так что, поскольку каждый получает при измерении одно и то же значение для скорости света (отношение расстояние/время), оценки расстояния и времени, сделанные каждым в отдельности, будут различаться.


В какой степени интервалы времени и пространства претерпевают изменения для кого-то движущегося полностью зависит от того, как быстро он движется по отношению к вам.


Движущиеся часы идут медленнее, движущиеся линейки сжимаются. Проходящий человек движется в замедленном темпе и сжимается, как блин, в направлении движения.


Но «замедление времени» и «лоренцевское сокращение длины» заметны, только если кто-то движется по отношению к вам с немалой долей скорости света.


Свет движется со скоростью (300 000 км/с), в миллион раз большей, чем пассажирский самолет, поэтому эффекты специальной теории относительности незаметны в повседневной жизни.


Если отправиться к звездам со скоростью, близкой к скорости света, то время будет течь так медленно, что при возвращении выяснится, что уже прошли миллионы лет.

133. Что слушают радиотелескопы?

Радиоволны это электромагнитные волны с длиной волны более 1 см. Они представляют собой низкоэнергетическую часть электромагнитного спектра.


В 1930 Карл Янский, радиоинженер из Лаборатории Белл Телефон, обнаружил радиоволны от Млечного Пути. Так родилась радиоастрономия.


Семь лет спустя Грот Ребер построил управляемую параболическую радиоантенну на своем заднем дворе в США. Направив ее на небо, он обнаружил дискретные источники радиоволн.


Преимущество радиоастрономии: космические радиоволны могут быть зафиксированы при ярком дневном свете и даже в дождь или снежную бурю — нет необходимости в темном небе.


Во время Второй мировой войны голландский астроном Хендрик ван де Хюльст показал, что атомарный холодный нейтральный водород должен давать слабое радиоизлучение на длине волны 21 см.


21-сантиметровое излучение впервые обнаружили в марте 1951 Харольд Юэн и Эдвард Перселл в Гарварде, за ними сразу последовали голландцы в мае 1951.


Вскоре были построены большие радиотелескопы: (1956, 25 м в диаметре) в Двингелоо, Нидерланды; (1957, 76 м) в Джодрелл-Бэнк, Англия.


Используя радиотелескопы, астрономы смогли построить карту спиральной структуры галактики Млечный Путь и холодных удаленных областей других галактик.


Радиотелескопы также поймали «синхротронное излучение» (на разных длинах волн), испускаемое быстрыми электронами, движущимися по спирали вокруг линий магнитного поля.


Таким образом, радиоастрономия позволяет изучать быстро вращающиеся пульсары, активные ядра галактик, энергетические струи от черных дыр и удаленные квазары.


Крупнейшая радиоантенна (тарелка): Аресибо в Пуэрто-Рико (305 м), построена в чаше долины. Крупнейшая управляемая тарелка: Зеленый берег в Вирджинии (100 х 110 м).


Very Large Array (Очень Большой Массив, Нью-Мексико) и Wester-bork Array (Массив Вестерборк, Нидерланды) являются одними из крупнейших интерферометров: небольшие тарелки, связанные в сеть.


В будущем Square Kilometre Array (SKA) с тысячами небольшим антенн станет самой большой в истории радиообсерваторией в Южном полушарии.

134. Как выглядит микроволновое небо?

Если посмотреть на ночное небо, вы увидите отдельные звезды. Но самое удивительное, что ночное небо в основном черное.


Видимый свет — это только малая часть «электромагнитного спектра». Другие виды света (невидимого) включают рентгеновское, УФ, ИК излучения и радиоволны.


Представьте, что у вас есть «волшебные очки», и, просто крутя ручку на оправе, вы можете изменить тип света, который видите.


Если настроить ваши очки на рентгеновские лучи, вы увидите такие объекты, как черные дыры. Но небо для вас по-прежнему преимущественно черное. То же для других типов света.


Исключение: микроволны, коротковолновое радиоизлучение — типа «света», который используют мобильные телефоны, телевизоры и, конечно, микроволновые печи.


Если настроить ваши очки на микроволны, небо больше не будет преимущественно черным. Наоборот, оно будет полностью ослепительно белым.


То, что вы видите, есть «послесвечение» огненного шара Большого взрыва. Невероятно: 13,7 млрд лет прошло после этого события, но оно по-прежнему наполняет собой все пространство.


Космическое фоновое излучение, охладившееся из-за расширения Вселенной до -270 °C, составляет 99,9 % всех фотонов во Вселенной.


Хотя посмотрите внимательно. Вы увидите отсвет не равномерно белый; узоры чуть светлее или чуть менее яркие, чем в среднем.


Горячие и холодные точки в «послесвечении творения» раскрывают природу огненного шара Большого взрыва, начавшего сворачиваться в первую в истории галактику.


Послесвечение Большого взрыва показывает нам Вселенную через 380 000 лет после ее рождения. Это наиболее дальняя по времени точка, от которой мы сейчас можем увидеть свет.


Факт, что Вселенная — все пространство — по-прежнему светится благодаря остаточному теплу, является наиболее ярким свидетельством того, что зарождение Вселенной произошло в Большом взрыве.

135. Как же астрономы измеряют температуру Вселенной?

Инфракрасное (ИК) излучение с длиной волны от 700 нм до 1 мм было открыто в 1800 Уильямом Гершелем (1738–1822).


Гершель использовал призму, чтобы получить спектр солнечного света, от красного до синего. Он использовал обыкновенные термометры для измерения энергии в спектре.


Он отметил, что термометр вне красной части спектра также нагревается в результате воздействия невидимого длинноволнового излучения.


Сегодня инфракрасное излучение (тепловое излучение) известно и используется в очках ночного видения и видеокамерах для записи ночных сцен.


В астрономии холодные объекты, такие как темные облака пыли, выделяют большую часть своей энергии в виде ИК волн. ИК астрономия показывает пыльную Вселенную.


Пыль также прозрачна для инфракрасного света. Инфракрасные телескопы показывают протозвезды, встроенные в облака пыли, даже когда видимый свет поглощается.


Проблема: космическое ИК излучение частично поглощается водяным паром в атмосфере Земли. Телескоп должен быть на высокой горе или в космосе.


Сегодня большинство гигантских наземных телескопов (например, Кек и VLT) оснащены камерами видимого света и ближними ИК-детекторами.


Первые ИК-детекторы не имели четкой направленной чувствительности. Вы не могли использовать их, чтобы сделать снимки инфракрасного неба, получались только размытые снимки.


Теперь даже обычные видеокамеры содержат ИК-чувствительные электронные ПЗС-детекторы. Современные технологии/возможности сопоставимы с оптическими детекторами.


Чтобы иметь возможность «видеть» слабое ИК излучение из космоса, детекторы всегда должны быть охлаждены, иметь близкую к абсолютному нулю температуру (например, жидкого гелия).


Первые ИК карты всего неба были сделаны спутником IRAS (1983). Обнаружено 350 000 источников, в том числе протопланетные диски и далекие пыльные галактики.


Затем последовали ИК космические телескопы типа Spitzer Space Telescope (НАСА, 2003) и Herschel (ЕКА, 2009). «Хаббл» также имеет камеру, работающую в ближней ИК области.


Будущий 6,5-метровый James Webb Space Telescope (HACA/EKA преемник «Хаббла», запуск в 2018) будет вести наблюдения в основном в ИК диапазоне.

136. Как выглядит ультрафиолетовое небо?

Ультрафиолетовый (УФ) свет имеет длину волны от 10 до 400 нанометров (нм). Невидимый для человеческого глаза, но некоторые животные, например такие как пчелы, видят в этом диапазоне.


УФ фотоны несут в себе гораздо больше энергии, чем фотоны видимого света. Поэтому ультрафиолетовый свет от Солнца вызывает солнечные ожоги или даже рак кожи.


К счастью, большая часть УФ излучения поглощается в атмосфере Земли, в основном озоном. Вот почему вызывает опасение угроза атаки озонового слоя ХФУ-газами (хлорфторуглероды).


Только очень горячие объекты, такие как молодые массивные звезды и маленькие белые карлики, излучают большую часть своей энергии в виде ультрафиолетовых волн.


Большинство звезд более тусклые в УФ, чем в видимом диапазоне. Так что, будь у нас УФ-чувствительные глаза, ночное небо выглядело бы весьма невыразительным.


Космическое ультрафиолетовое излучение можно изучать только из космоса. Известные УФ спутники: International Ultraviolet Explorer (IUE, [1978–1996]), FUSE (1999).


Космический телескоп «Хаббл» также имеет УФ спектрограф/камеру STIS. Установлен в 1997, вышел из строя в 2004, отремонтирован космонавтами в 2009.


Настоящий наиболее активный УФ космический телескоп — это GALEX (Galaxy Evolution Explorer), запущенный в 2003. Исследует формирование звезд в отдаленных галактиках.


УФ телескопы могут также обнаружить присутствие тепло-горячей межгалактической среды (WHIM): очень разреженного газа между галактиками и скоплениями галактик.


Присутствие атомов кислорода и азота в WHIM выявляется при отрыве электронов за счет поглощения определенных частот УФ излучения от далеких квазаров.


Между тем, УФ камеры на борту солнечных космических телескопов, таких как SOHO и Solar Dynamics Observatory, отслеживают взрывы вспышек на Солнце.

137. Как астрономы делают рентген Вселенной?

Самые высокоэнергетические виды излучения в природе — рентгеновские лучи (Х-лучи, длина волны 0,01–10 нм) и гамма-лучи (все, что короче 0,01 нм).


На Земле рентгеновские лучи используются в медицинских целях. Энергия их квантов достаточна для прохождения через ткани человека; могут вызвать рак, если доза слишком велика.


Гамма-лучи: обладают еще большей энергией квантов. Образуются в ядерных реакциях. Могут быть смертельными. К счастью, атмосфера Земли блокирует космические X- и гамма-лучи.


Ракетный эксперимент в 1949 обнаружил рентгеновское излучение Солнца. В 1962 еще один ракетный эксперимент обнаружил первый космический рентгеновский источник, Скорпион Х-1.


С тех пор летали многие рентгеновские спутники, в том числе Chandra (НАСА) и XMM-Newton (ЕКА), которые функционируют и в настоящее время.


Рентгеновские лучи проходят сквозь зеркало телескопа, поэтому нужна специальная оптика и/или детекторы, чтобы получить спектры или создать рентгеновский образ неба.


Рентгеновские лучи генерируются чрезвычайно горячим газом (млн градусов), например когда он втягивается в черную дыру или сотрясается в остатках сверхновой.


Спутники с гамма-излучением: Комптоновская обсерватория (1991–2000), а также Integral (ЕКА) и Fermi (НАСА) — функционируют и в настоящее время.


Важная область исследований: всплески гамма-лучей. Большинство событий во Вселенной, сопровождающихся выбросом энергии, вызваны взрывающимися звездами-гигантами или слиянием нейтронных звезд.


Взаимная аннигиляция материи и антиматерии и распад гипотетических частиц темной материи также производит рассеянные гамма-лучи.


Высокоэнергетические фотоны гамма-лучей генерируют поток вторичных частиц в атмосфере Земли, наблюдаемых с помощью наземных инструментов.


Рентгеновские и гамма-лучи открывают высокоэнергетическую Вселенную ищущим острых ощущений астрономам: горячие, самые яростные и самые взрывоопасные события в природе.

138. Что такое космические лучи?

Это не лучи, а быстрые заряженные частицы из космоса, происхождение которых еще плохо изучено.


В 1912, летая на воздушном шаре на высоте 5300 м, австрийский физик Виктор Гесс обнаружил, что атомы в воздухе на больших высотах лишены большей части электронов.


Американский физик Роберт Милликен ошибочно полагал, что такая «ионизация» вызвана высокой энергией фотонов. Он ввел термин «космические лучи».


Около 90 % частиц в космических лучах являются протонами (ядра атома водорода); 9 % — альфа-частицы (ядра гелия), 1 % — более тяжелые ядра.


При столкновении с молекулами воздуха космические лучи производят потоки вторичных частиц и очень слабое свечение, известное как излучение Вавилова — Черенкова.


Наземные детекторы частиц, расположенные на большой площади, регистрируют атмосферные потоки. Сверхчувствительные детекторы света регистрируют излучение Вавилова — Черенкова.


Самой мощной обсерваторией космических лучей на сегодняшний день является обсерватория Пьера Оже в Аргентине: 1600 детекторов, распределенных более чем на 3000 км2.


К сожалению, заряженные частицы отклоняются магнитным полем Млечного Пути, так что направление прихода на Землю не связано с местом их рождения.


Космические частицы сверхвысоких энергий (КЧСВЭ) — это протоны, движущиеся почти со скоростью света и переносящие каждый столько же энергии, сколько теннисный мяч при сильной подаче.


Эти КЧСВЭ могут быть в 50 млн раз более быстрыми, чем частицы самых высоких энергий, образующиеся в любом искусственном ускорителе частиц.


КЧСВЭ очень редки. Они не легко отклоняются. Могут быть созданы в относительно близких активных галактиках, скрывающих центральные черные дыры.


Космические лучи с меньшими энергиями, вероятно, ускоряются в ударных волнах от взрывов сверхновых, но точный механизм пока не ясен.

139. Что космические нейтрино говорят нам о Вселенной?

Нейтрино — субатомные частицы, практически не имеющие массы. Они редко взаимодействуют с другими частицами, что затрудняет их обнаружение.


Нейтрино были постулированы в 1930 Вольфгангом Паули для объяснения экспериментов с частицами. Впервые были зарегистрированы в ядерном реакторе в 1956.


Нейтрино заполняют Вселенную. Около 400 триллионов нейтрино пронзают ваше тело каждую секунду почти со скоростью света.


Многие нейтрино возникли во время Большого взрыва. Другие рождаются в ядерных реакциях в звездных ядрах и при взрывах сверхновых.


Нейтрино могут быть обнаружены путем наблюдения за большими объемами воды: очень редко они взаимодействуют с атомами, создавая крошечные вспышки света.


Детекторы построены под землей, чтобы защитить их от космических лучей. Некоторые крупные нейтринные детекторы: Super-Kamiokande (Япония), Sudbury (Канада).


Крупнейшим на сегодняшний день является IceCube Neutrino Observatory на Южном полюсе: 1 кубический км льда, содержащий тысячи световых детекторов.


Большинство нейтрино прибывает на Землю, приходя из ядра Солнца. В 1987 были неожиданно обнаружены нейтрино от близкого взрыва сверхновой.


Во время путешествия через пространство нейтрино изменяет «аромат» (электронное/мюонное/тау-нейтрино). Это возможно только при наличии у нейтрино сверхмалой массы.


Однако, несмотря на многочисленность реликтовых нейтрино, возникших в Большом взрыве, они настолько легки, что не могут отвечать за существование темной материи.


Нейтрино являются только «посланниками», которых мы получаем непосредственно из ядра Солнца. Изучение космических нейтрино может также пролить свет на взрывы сверхновых.


Тем не менее основная цель нейтринной астрономии узнать больше о фундаментальных свойствах природы, может быть, даже о тайне темной материи.

140. Что такое гравитационные волны?

Гравитационные волны являются гипотетическими волнами в структуре пространства-времени, движущимися со скоростью света, как рябь на поверхности пруда.


Согласно общей теории относительности Эйнштейна, жесткое 4-мерное пространство-время должно быть деформировано/искривлено наличием массы.


Кроме того, ускоряющиеся массы создают рябь, распространяющуюся в пространстве-времени, которая уносит энергию. Это называется гравитационным излучением.


В 1974 Рассел Халс и Джо Тейлор обнаружили, что орбита двойного пульсара В1913 +16 теряет энергию и сокращается на 3,5 м/год.


Потери энергии находятся в точном согласии с предсказаниями общей теории относительности. Двойной пульсар, видимо, излучает гравитационные волны.


Прямая регистрация очень сложна, так как амплитуда волны чрезвычайно мала. Детекторы используют лазерные пучки в многокилометровых изолированных трубах.


Даже чувствительные детекторы LIGO в США ни разу ничего не обнаружили. Обновление в 2014 для повышения чувствительности может изменить эту ситуацию.


Ожидаемые источники гравитационных волн: орбитальное движение массивных тел, взрывы сверхновых, гамма-всплески, поглощение звезд черными дырами.


Будущие космические детекторы могут также обнаружить высокочастотные гравитационные волны, которые являются остатками Большого взрыва.


Гравитационно-волновая астрономия открывает совершенно новые окна Вселенной. Может выявить явления, прежде никогда не наблюдаемые людьми. Разве это не здорово?

Загрузка...