Во всяком доказательстве — безотносительно к тому, что именно в нём доказывается, — всегда имеются: 1) тезис, 2) основания доказательства (аргументы) и 3) способ доказательства (демонстрация).
Тезисом называется суждение, или положение, истинность (или ложность) которого выясняется посредством данного доказательства. Доказываемый тезис обычно не имеет очевидности. Так, доказываемое в геометрии положение о том, что площадь круга равняется произведению числа π, выражающего отношение длины окружности круга к длине его диаметра, на квадрат радиуса круга, не есть положение самоочевидное. Истинность его обнаруживается доказательством. И так обстоит дело с громадным большинством доказываемых положений.
Даже в случаях, когда доказываемый тезис представляется очевидным, он всё же обычно доказывается (это особенно относится к математике). Так обстоит дело, например, с положением, что диаметром круг делится на две равные части. То, что мыслится в этом положении, представляется очевидным. Однако в геометрии суждение это, несмотря на явную очевидность утверждаемого в нём, доказывается.
Пример этот — не исключение, а иллюстрация общего правила. Наука стремится доказывать, по возможности, всё, что только может быть доказано, безотносительно к тому, очевидно или неочевидно доказываемое.
Это стремление не оставлять, насколько возможно, ни одного положения недоказанным вытекает, во-первых, из уже выясненного выше значения доказательности для научного мышления. Во-вторых, стремление это обусловлено тем, что очевидность нас иногда обманывает. Так, если мы станем между рельсами на полотне железной дороги и поглядим вдаль, то нам непременно покажется, будто рельсы, параллельные на недалёком от нас расстоянии, вдали от нас сходятся в одной точке. Однако очевидность эта обманчива. В действительности рельсы и вдали от нас остаются параллельными.
Так как очевидность во многих случаях вводит нас в заблуждение, то наука стремится как можно меньше полагаться на одну лишь очевидность. Неочевидное доказывается потому, что оно неочевидно, очевидное проверяется доказательством. Поэтому наука всюду, где это только возможно, не оставляет без доказательства даже таких положений, которые представляются совершенно «наглядными», очевидными.
Выяснение истинности или ложности тезиса есть цель всякого доказательства. Доказательство, посредством которого выясняется истинность тезиса, называется просто доказательством. Доказательство, посредством которого выясняется ложность тезиса, называется опровержением. Опровергнуть некоторый тезис — значит доказать, что он ложен, т. е. не соответствует действительности.
Доказательство, в результате которого истинность доказываемого тезиса (или ложность опровергаемого тезиса) выясняется с полной необходимостью и непреложностью, будет безупречным с логической точки зрения.
Доказательство, не приводящее к этому результату, будет ошибочным, или, по крайней мере, неточным в логическом отношении.
Независимо от степени субъективной уверенности доказывающего в истинности доказываемого конечный успех доказательства возможен лишь в том случае, если доказываемый тезис — безотносительно к тому, что о нём думает сам доказывающий,— истинен по существу своего содержания. Можно успешно доказать истинность лишь того, что действительно истинно. И точно также можно успешно доказать ложность только того, что действительно ложно.
Поэтому первое условие, необходимое для безупречности доказательства, есть истинность тезиса по существу его содержания[10]. Разумеется, истинность тезиса до того, как он доказан, не видна, не усматривается нашей мыслью, но само соответствие тезиса действительности, пусть ещё не дошедшее до уяснения, непременно должно существовать, для того чтобы тезис вообще мог быть доказан.
Если тезис сам по себе истинен, всегда существует возможность доказать его истинность. Возможно, что на первых порах способ доказательства окажется не достигающим цели, ошибочным. В таком случае задача науки заключается в том, чтобы вместо несостоятельного, ошибочного или неточного доказательства истинного тезиса найти другое — правильное, более точное, ведущее к цели. История наук знает немало случаев, когда положения, впоследствии оказавшиеся истинными, первоначально доказывались неточно или даже прямо ошибочным способом, и лишь с новыми успехами науки ошибки в способе доказательства устранялись, а логически неточные способы доказательства заменялись новыми, логически безупречными.
Например, многие доказательства предложений, разработанные античными геометрами, оказались впоследствии недостаточно строгими. Особенно интересно то, что больше всего неточностей оказалось в доказательствах самых первых, элементарнейших предложений. Факт этот легко объясняется. Дело в том, что при доказательстве первых предложений античные геометры в ряде случаев полагались на наглядное представление (или, как иногда называют наглядное представление, на «интуицию»). Так, уже при доказательстве первого предложения первой книги «Начал» (о построении равностороннего треугольника на данной ограниченной прямой) Евклид прибегает для доказательства к построению двух пересекающихся окружностей. Однако, вместо того чтобы строго доказать возможность этой пересекаемости, он просто предполагает эту возможность, опираясь при этом на наглядное представление и не допуская, что оно может быть ошибочным. Пример этот у Евклида — не исключение. Согласно замечанию советского комментатора «Начал» Евклида профессора Д. Д. Мордухай-Болтовского, античные геометрические доказательства имеют настолько явный «полуинтуитивный характер», что из всех составных частей, на которые расчленяется античное геометрическое доказательство, «только один член относится к логической операции, все другие относятся к словесной форме или к чертежу»[11].
Неудивительно поэтому, что в новое время, когда было выяснено, что не всякое наглядное представление безусловно истинно, для теорем, которые доказывались в античной геометрии ссылками на очевидность или наглядность, пришлось разработать более строгие и точные способы доказательства.
Но какой бы ни была степень точности и строгости доказательства, первым условием возможной его безупречности является истинность доказываемого тезиса, т. е. адекватное отражение в нём действительности.
И точно так же для безупречности опровержения первым необходимым условием является действительная ложность опровергаемого положения, его действительное несоответствие фактам. Если опровергаемое положение ложно, то раньше или позже способ его опровержения может быть найден и будет найден. Но если положение, которое пытаются опровергнуть, само по себе истинно, то никакие попытки и ухищрения, какие делаются для его опровержения, не могут привести к цели, и опровергаемое положение останется неопровергнутым.
Убедительным подтверждением сказанного может быть позорное крушение бесчисленных попыток, которые делались и делаются буржуазными социологами и философами для опровержения марксизма. О тщетности этих попыток превосходно говорит в работе «Аграрный вопрос и «критики Маркса»» В. И. Ленин: «Вот уже много лет ученые и ученейшие люди Европы важно заявляют (а газетчики и журналисты повторяют и пересказывают), что марксизм уже сбит с позиции «критикой»,— и тем не менее каждый новый критик опять сначала начинает трудиться над обстреливанием этой якобы уже разрушенной позиции»[12].
Доказательство осуществлено всюду там, где показывается, что истинность (или ложность) некоторого тезиса необходимо следует из истинности (или ложности) некоторых положений, уже ранее доказанных или признанных истинными, а также из выясненного содержания основных для данной науки понятий.
Все положения, на которые опирается доказательство и из которых — при условии их принятия или признания истинными — необходимо следует истинность доказываемого тезиса, называются основаниями, или аргументами доказательства. Так, при доказательстве теоремы о сумме внутренних углов плоского треугольника основаниями доказательства будет, во-первых, ранее установленное содержание таких понятий геометрии, как «плоский треугольник», «внутренний угол», «смежные углы», «параллельность линий», «внутренние накрест лежащие углы», «соответственные углы». Во-вторых, основаниями доказательства данной теоремы будут некоторые ранее принятые в качестве истинных или ранее доказанные положения геометрии Евклида. Таково принимаемое в геометрии Евклида без доказательства положение, что через точку вне данной прямой в одной с нею плоскости может быть проведена одна и только одна прямая, не пересекающаяся с данной прямой. Таково доказываемое в геометрии Евклида положение о том, что образованные пересечением прямой двух параллельных линий внутренние накрест лежащие и соответственные углы равны между собою. Таково же доказываемое в геометрии Евклида положение о равенстве суммы двух смежных углов двум прямым.
Основаниями (аргументами) доказательства теоремы о сумме внутренних углов треугольника эти положения являются потому, что принятие и доказательство их в качестве истинных с необходимостью приводит к признанию истинным также и положения о равенстве суммы внутренних углов треугольника двум прямым.
Основания (аргументы) доказательства заключают в своём составе положения различного типа. В число оснований входят: а) положения об удостоверенных единичных фактах; б) определения; в) аксиомы, или постулаты, г) доказанные ранее данной наукой положения, или теоремы.
Положения об удостоверенных единичных фактах — чрезвычайно важный вид оснований. За исключением математических наук, опирающихся на факты не непосредственно, но посредством обобщённых понятий об отношениях между объектами, во всех науках доказательство основывается на положениях об удостоверенных — прямо или косвенно— фактах. В огромном числе случаев доказать истинность положения — значит показать, что истинность эта — прямое следствие из положений об известных, хорошо удостоверенных фактах.
И напротив, доказать ложность положения во множестве случаев — значит удостовериться в фактах, противоречащих этому положению.
О значении фактов для доказательства не раз говорили корифеи мировой науки. «Факты.— писал академик И. П. Павлов,— это воздух учёного. Без них вы никогда не сможете взлететь. Без них ваши «теории» — пустые потуги»[13].
И в этом же смысле В. И. Ленин говорил: «Точные факты, бесспорные факты — ...вот что особенно необходимо, если хотеть серьезно разобраться в сложном и трудном вопросе... Факты, если взять их в их целом, в их связи, не только «упрямая», но и безусловно доказательная вещь»[14].
Поэтому безупречность доказательства определяется— в числе прочих условий — уменьем находить факты, либо обосновывающие доказываемое положение, либо не совместимые с ним и тем самым его опровергающие. Особую доказательную силу имеют факты опровергающие. И это вполне понятно. Указания фактов, подтверждающих доказываемое положение, часто бывает ещё недостаточно для строгого доказательства его истинности. Такое указание часто обосновывает истинность положения только в пределах тех фактов, которые были найдены для его подтверждения. Достаточно обнаружить хотя бы один факт, противоречащий доказываемому положению, чтобы обнаружить тем самым полную или, по крайней мере, частичную ложность этого положения.
Если бы факты, подтверждающие доказываемое положение, были сами по себе вполне достаточны для строгого и полного его доказательства, то в таком случае индукция через простое перечисление была бы самым надёжным способом доказательства во всех науках, опирающихся на факты. Известно, однако, насколько ненадёжно, недостоверно всякое обобщение, основывающееся только на том, что в пределах наблюдения пока не обнаружены факты, ему противоречащие. Любой такой факт, найденный впоследствии, сразу опрокидывает или по меньшей мере ограничивает обобщение.
Окружающая нас действительность (особенно это касается общественной жизни) настолько сложна и многообразна, что в подтверждение любого положения, даже явно вздорного, можно подобрать большее или меньшее число отдельных фактов. Однако то обстоятельство, что существуют одновременно и такие факты, которые это же положение опровергают, говорит о том, что единичные факты, будучи взяты сами по себе, в отрыве друг от друга и от окружающих условий, ничего не доказывают.
Поэтому значение оснований доказательства факты получают только тогда, когда они берутся не изолированно, не поодиночке; такое значение факты могут иметь только при условии, если они рассматриваются в их связи и не сами по себе, а как носители общих законов, в этих фактах проявляющихся и ими управляющих.
В состав оснований доказательства входят, кроме положений об удостоверенных фактах, также и определения основных понятий данной науки. В самом деле: доказательство есть переход от положений, уже ранее принятых, к некоторому новому положению, истинность которого необходимо следует из истинности принятых положений. Однако не все из числа этих ранее принятых положений доказываются: некоторые из них представляют собой просто определения основных понятий науки. Так, доказательство теоремы о сумме внутренних углов плоского треугольника в евклидовой геометрии опирается не только на ранее доказанные теоремы о свойствах внутренних накрест лежащих углов, соответственных углов и смежных углов и не только на принимаемое без доказательства положение о параллельных, но также и на определения понятий «плоский треугольник», «внутренние углы плоского треугольника», «параллельные линии», «внутренние накрест лежащие углы», «соответственные углы», «смежные углы», «прямые углы».
Но из того, что определения — в качестве определений — не доказываются, а просто формулируются, отнюдь не следует, будто определения принимаются произвольно или представляют простые «соглашения» относительно смысла тех или иных терминов. Чтобы определение было пригодным для науки, необходимо, чтобы определяемый предмет существовал в самой действительности. Поэтому и в математических науках, и в естествознании, и в науках общественных принятие определения всегда предполагает, что может быть доказано существование характеризованного посредством определения предмета. Условно лишь словесное обозначение предмета (свойства, явления, отношения), но не сам предмет как существующий в действительности. Существование же определяемого предмета может быть и должно быть доказано. Должно быть доказано также соответствие определения определяемому предмету.
Определение понятий необходимо, так как оно — и только оно — даёт возможность во всех рассуждениях, посредством которых в доказательстве совершается переход от доказанного к доказываемому, мыслить входящие в эти рассуждения основные понятия науки в одном и том же содержании и, таким образом, мыслить посредством этих понятий одни и те же предметы.
Наличие определений в составе оснований не значит, однако, будто все определения, необходимые для данного доказательства, непременно формулируются в самом данном доказательстве. Обычно определения формулируются не в каждом данном доказательстве, а в начале изложения науки или, по крайней мере, того раздела науки, к которому относится данное доказательство. Так, в «Началах» Евклида определениями основных понятий начинается каждая книга этого труда. При этом определения в каждой следующей книге новые и не повторяют определений, данных в предыдущих книгах. Но, не появляясь вновь в каждом данном доказательстве, определения понятий, необходимые для точного проведения данного доказательства, непременно им предполагаются и всегда могут быть найдены в соответствующем месте изложения.
Однако из того, что в число оснований, общих для всех доказательств данной науки, входят определения основных понятий данной науки, ещё не следует, будто определению подлежат все без исключения понятия данной науки. И действительно: определить — значит свести неизвестное к известному, сложное к простому. Но есть предметы настолько простые и настолько всем известные, что определить понятия об этих предметах невозможно. Всякая попытка такого определения приводит или к тому, что в определяющем повторяется определяемое (круг в определении), или к тому, что до определения понятное и ясное после определения становится непонятным и неясным.
Таким образом, задача науки в отношении определения понятий, входящих в основания доказательства, состоит в том, чтобы избежать двух противоположных ошибок: 1) не оставить не определёнными те понятия, которые должны быть определены, и 2) не пытаться понапрасну определять те понятия, которые по своей крайней простоте не могут быть определены.
Это правильное понимание задачи определения оснований доказательства хорошо сформулировал Паскаль. В небольшой работе «О геометрическом уме» (De l’esprit géométrique) Паскаль писал: «... порядок, совершеннейший у людей, состоит не в том, чтобы всё определять и всё доказывать, и не в том также, чтобы ничего не определять и ничего не доказывать; но в том, чтобы, держась среднего пути, не определять вещей, ясных и понятных всем людям, но определять все остальные, и не доказывать всех вещей, известных людям, но доказывать все остальные»[15].
Поэтому число определений, входящих в основания доказательств данной науки и формулируемых в начале её изложения, обычно бывает невелико и без нужды не должно быть увеличиваемо.
Положения об удостоверенных фактах и определения входят в число оснований самых различных наук: естественных и общественных.
В математике, механике и теоретической физике кроме определений и удостоверенных фактов в число оснований доказательства входят ещё аксиомы, или постулаты. Так называются положения, которые предполагаются истинными, но в пределах каждой науки в качестве истинных не доказываются.
Так, доказательство теоремы евклидовой геометрии о равенстве суммы внутренних углов плоского треугольника двум прямым опирается не только на ранее доказанную теорему о равенстве суммы двух смежных углов двум прямым, но, кроме того, на теоремы о свойствах внутренних накрест лежащих и соответственных углов, которые в свою очередь опираются на положение, согласно которому через данную точку вне данной прямой в одной с ней плоскости можно провести одну — и притом только одну — прямую, которая ни при каком продолжении её в обе стороны от данной точки не пересечётся с данной прямой. Положение это уже не теорема, а аксиома (постулат). В «Началах» Евклида оно дано (в редакции, отличающейся от приведённой в тексте) в качестве 11-й аксиомы первой книги[16].
Аксиомой (постулатом) это положение является потому, что в «Началах» Евклида оно принимается без доказательства. И действительно: положение это утверждает, что возможно неограниченно продолжить прямую так, чтобы последняя нигде не пересекалась с данной прямой. Но совершенно очевидно, что утверждение это не может быть проверено или доказано: как бы далеко мы ни продолжали прямую, продолжение её будет для нашего наглядного представления ограниченным. В лучшем случае можно сказать, что в тех пределах, в каких прямая продолжена нами, она сохраняет параллельность данной прямой. Но сохранит ли она параллельность и при дальнейшем, ещё нами не воспринятом неограниченном её продолжении,— это остаётся недоказанным.
Аристотель, создавший не только науку логики в целом, но и разработавший, в частности, логическое учение о доказательстве, отличал аксиомы от другого вида недоказываемых наукой положений — от постулатов. Под аксиомами (αρώματα) он разумел такие недоказываемые в данной науке положения, которые в сравнении с другими недоказываемыми положениями являются, во-первых, наиболее общими и, во-вторых, представляют необходимое условие доказательства. Так, в «Метафизике» (кн. III, гл. 2, 997а 5—13) Аристотель говорит, что «не может существовать доказательства для всего», что «все доказывающие науки применяют аксиомы» и что «аксиомы обладают наивысшей степенью общности и представляют начала всего» (Κάρολου γαρ μάλιστα αι πάντων άρΧαι τα αξιώματα έστιν).
Под постулатами (τα αιτήματα, буквально — «требования») Аристотель понимал такие положения, которые, безотносительно к их доказуемости, вводятся в начала науки без доказательства, хотя бы они представлялись учащемуся противными его мнению[17]. Именно потому, что постулат может быть противным мнению учащегося, он вводится в качестве требования: это — положение, которое должно быть принято для того, чтобы были приняты все вытекающие из него выводы.
Постулаты Аристотель отличал от аксиом, но не противопоставлял их аксиомам.
В развитии античной математики после Аристотеля были выработаны три точки зрения по вопросу о различии между аксиомами и постулатами. Эти три точки зрения рассматривает математик и философ Прокл (V век н. э.) в своих «Комментариях» к «Началам» Евклида.
Согласно первой из этих точек зрения, аксиомы — недоказываемые положения, на которые опираются доказательства теорем, а постулаты — недоказываемые положения, на которые опираются построения в геометрии.
Согласно второй точке зрения, аксиомы — допущения, общие для всех наук, а постулаты — специальные допущения, принятые в геометрии. Так, у Евклида в качестве аксиом рассматривались, например, такие положения: «равные одному и тому же равны и между собой», «если к равным прибавляются равные, то и целые будут равные» и т. д. В качестве постулатов у Евклида рассматриваются, например, такие положения: «от всякой точки до всякой точки <можно> провести прямую линию», «из всякого центра и всяким раствором <циркуля> <может быть> описан круг» и т. д.
Зачатки этого понимания различия между аксиомами и постулатами имелись уже у Аристотеля: «Из тех <начал>,— читаем у Аристотеля,— которые применяются в доказывающих науках, одни свойственны каждой науке в отдельности, другие — общи всем...»[18].
Согласно третьей точке зрения, постулаты — в отличие от аксиом — суть «требования», выдвигаемые преподающим науку или руководителем диспута. Постулаты должны быть приняты учащимися или участниками диспута, несмотря на то, что для них требования эти могут представляться не безусловно бесспорными[19].
Впоследствии возобладал взгляд, согласно которому аксиомами должны называться недоказываемые положения не специальные, имеющие силу для всех наук, постулатами же — недоказываемые положения более частные, относящиеся к области какой-нибудь особой специальной науки. Согласно этому взгляду, положение о том, что две величины, равные порознь третьей, равны между собой, рассматривалось в силу его всеобщности как типичная аксиома. Напротив, положение о параллельных вследствие его специально геометрического характера толковалось как типичный постулат.
Распределение аксиом и постулатов в «Началах» Евклида не вполне соответствует этому различению. Хотя ряд постулатов Евклида принадлежит к области геометрия, а ряд его аксиом — к области более общего учения о величинах, последовательное разграничение аксиом и постулатов по степени их специального характера оказывается невозможным. Так, 7-я аксиома первой книги «Начал», утверждающая, что «совмещающиеся друг с другом равны между собой», есть, конечно, аксиома геометрии. Положение о параллельных, принадлежащее к области геометрии, помещалось Евклидом в числе аксиом (11-я аксиома первой книги«Начал») и только позднейшими комментаторами и издателями стало рассматриваться как постулат (5-й постулат той же книги).
В философии и математике XVII века понимание логической природы аксиом и постулатов изменилось. Ряд математиков и логиков этого века сущность аксиом стал видеть в их будто бы безусловной очевидности или самоочевидности. Согласно этому новому взгляду, аксиомы — такие основания доказательства, которые не доказываются в науке не в силу своей общепринятости, а в силу своей полной и безусловной очевидности. Существуют будто бы такие положения, которые, как только на них направляется наш ум, представляются ему с ясностью и очевидностью, исключающими возможность какого бы то ни было сомнения. Будучи совершенно очевидными, положения эти будто не требуют доказательства, ниоткуда не выводятся, представляют истины, непосредственно постигаемые умом, или, другими словами, являются «интуициями», притом интуициями не чувств, а ума. Аксиомы — не просто недоказываемые истины, какими их считали древние математики. Это — истины будто бы недоказуемые. Не нуждаясь ни в каком доказательстве, они составляют последнюю основу всех доказываемых в науке истин. Доказать — значит вывести доказываемое положение или прямо из таких самоочевидных аксиом, или вывести его из положений, которые если не прямо, то в последней инстанции сами опираются на самоочевидные аксиомы и доказываются с их помощью.
В этом учении существенным признаком аксиом провозглашается их непосредственно постигаемая самоочевидность (интуитивность) и их недоказуемость. Напротив, их общепризнанность и более или менее общий для всех наук или специальный характер получает значение свойства, производного от указанных основных свойств.
В связи с этим характерное для античных логиков и математиков понимание различия между постулатами и аксиомами у логиков и математиков XVII века в значительной мере утрачивает прежнее значение. Возникает тенденция к сближению постулатов с аксиомами. Поскольку некоторые постулаты представляются не менее очевидными, чем аксиомы, и поскольку непосредственная очевидность аксиом рассматривается как основание их недоказуемости, такие постулаты по сути уже не отличаются от аксиом и вместе с аксиомами образуют совокупность последних оснований всякого доказательства.
В то же время, однако, некоторые постулаты не поддавались этому сближению с аксиомами по признаку безусловной очевидности. Таков был прежде всего постулат Евклида о параллельных. Уже в самой своей формулировке он содержал понятие о неограниченном продолжении прямой — понятие, которое никак не могло быть признано ни самоочевидным, ни непосредственно постигаемым.
К этому присоединилось ещё и то, что целый ряд начальных положений (теорем и задач на построение) геометрии Евклида доказывался и решался вовсе без участия постулата о параллельных. Только в двадцать девятом предложении первой книги «Начал» постулат Евклида впервые использовался в качестве одного из оснований доказательства этого предложения.
Эта далеко не безусловная «очевидность» постулата о параллельных, а также «позднее» появление его в числе оснований, на которые опираются доказательства теорем геометрии Евклида, в сопоставлении со взглядом на аксиомы, как на истины самоочевидные, уже давно внушали математикам мысль — не является ли этот постулат теоремой, которая может быть доказана.
Попытки доказать 5-й постулат Евклида предпринимались ещё античными математиками и продолжались до Лобачевского. Великий русский математик во второй половине 20-х годов прошлого века пришёл к гениальному открытию, которое повлекло за собой коренную переработку взгляда логики на природу аксиом и на их значение для доказательства.
В начале своих исследований, посвящённых теории параллельных, Лобачевский пытался доказать постулат Евклида способом от противного. Предполагая, в противоречии с постулатом Евклида, что через точку вне данной прямой в одной с ней плоскости можно провести не одну единственную прямую, не пересекающуюся с данной, Лобачевский надеялся, что, развивая следствия из этого предположения, он придёт в конце концов к следствию, опровергающему это предположение и тем самым доказывающему истинность самого постулата Евклида.
Но никакие следствия, развиваемые из предположения, противоречащего постулату Евклида, не могли доказать абсурдность этого предположения. Никаких противоречий между теоремами, доказанными на основе предположения, противоречащего постулату Евклида, не получалось.
В конце концов Лобачевский убедился, что все старания ряда математиков доказать постулат Евклида, т. е. вывести его как следствие из других аксиом и постулатов Евклида, были ошибочны не только по выполнению, но и по замыслу. Постулат о параллельных оказался независимым от остальных аксиом и постулатов Евклида. С другой стороны, как уже говорилось выше, постулат этот не обладает и безусловной очевидностью. Тем не менее постулат Евклида является одним из оснований классической системы геометрии, не заключающей нигде в своих доказываемых с помощью этого постулата положениях никаких противоречий.
Небезусловная очевидность постулата Евклида и отсутствие противоречий в системе теорем, доказываемых на основе постулата, противоречащего постулату о параллельных, даёт возможность поставить вопрос, каков будет результат, если вместо постулата Евклида в число оснований геометрии будет принят другой — тоже не безусловно очевидный — постулат. Согласно последнему, получившему название постулата Лобачевского, через данную точку С, лежащую вне данной прямой АВ, можно провести в одной с ней плоскости не одну единственную не пересекающуюся с прямой АВ прямую, как это утверждает постулат Евклида, а целый пучок прямых, заключающийся между двумя прямыми KL и MN, проходящими через данную точку (см. рис.1) и называемыми параллельными относительно АВ[20].
Исследования Лобачевского показали, что замена постулата Евклида постулатом Лобачевского приводит к выявлению новой системы геометрии, получившей название геометрии Лобачевского и оказавшейся одним из видов так называемой неевклидовой геометрии. В геометрии Лобачевского сохраняются все определения, аксиомы и постулаты геометрии Евклида, кроме 5-го постулата, или 11-й аксиомы. Последний заменяется постулатом Лобачевского. Доказательства теорем развиваются безупречно строго в полную систему геометрии, которая нигде не приводит ни к каким противоречиям. По содержанию теоремы геометрии Лобачевского делятся на два класса: во-первых, теоремы, доказываемые без помощи постулата Лобачевского (так называемая абсолютная геометрия), и, во-вторых, теоремы, доказываемые с помощью этого постулата. Первые ничем не отличаются от соответствующих теорем Евклида. Вторые отличаются, а именно: разность в численных результатах этих теорем сравнительно с результатами теорем Евклида тем больше, чем больше масштаб соответствующего геометрического объекта. Например, по Евклиду, сумма внутренних углов плоского треугольника равна двум прямым. По Лобачевскому, эта сумма меньше двух прямых. При этом разность эта тем больше, чем больше данный треугольник.
Открытие Лобачевским неевклидовой геометрии означало эпоху не только в развитии математики, но также и в развитии логического учения об аксиомах как об основаниях доказательства. Это открытие Лобачевского нанесло смертельный удар идеалистическим теориям рационалистов и кантианцев. Логики этого направления сущность аксиом полагали в их интуитивной, т. е. непосредственной очевидности, в их априорной, т. е. будто бы предшествующей всякому опыту, безусловной и необходимой наглядности. Так как, по Канту, истины математики имеют, во-первых, всеобщий и необходимый характер, во-вторых, основываются на априорных формах чувственной интуиции, то ни о какой неевклидовой геометрии, разумеется, не может быть и речи.
Напротив, по Лобачевскому, вопрос о том, какие аксиомы или постулаты должны быть приняты в число оснований всей системы доказательств данной науки, определяется отнюдь не априорными формами интуиции. Такие положения геометрии, как постулат Евклида или постулат Лобачевского, отнюдь не безусловно самоочевидны.
Так как аксиомы не обладают безусловной очевидностью, то для решения вопроса о том, какие из небезусловно очевидных положений будут в данной науке доказываться, а какие будут приняты в ней без доказательства, т. е. в качестве аксиом,— необходимо некоторое основание.
Таким основанием не может быть произвол, условное соглашение, субъективная точка зрения. Если в числе оснований данной науки имеются аксиомы, то в такой науке основанием для выбора системы или группы аксиом, входящих в начальные основания науки, являются следующие требования:
1. Выбранная группа аксиом должна представлять группу допущений, между которыми нет противоречий. Другими словами, группа аксиом должна быть такова, чтобы, опираясь на неё, нельзя было доказать суждение и отрицание этого суждения.
2. Выбранная группа аксиом должна быть такова, чтобы из неё (а также из принятых наукой определений) могла быть последовательно выведена вся совокупность теорем данной науки. При этом число аксиом не должно превышать того, какое необходимо и достаточно, чтобы с помощью данной группы аксиом могли быть доказаны все теоремы данной науки.
3. Ни одна из принятых в данной науке аксиом не может быть получена как вывод ни из какой другой аксиомы или других аксиом той же науки, т. е. каждая аксиома должна быть предположением вполне независимым от предположений, выражаемых всеми другими аксиомами данной науки.
Последнее свойство аксиом нуждается в объяснении. Свойство это нельзя понимать так, будто аксиома вообще не может быть выводима ни из каких других положений. Аксиома не может быть выводима из других аксиом только в рамках данной системы науки. Так, 11-я аксиома Евклида (постулат о параллельных) не может быть выведена из других аксиом геометрии Евклида. Именно поэтому все попытки доказать эту аксиому в рамках геометрии Евклида с её аксиомами и постулатами потерпели неудачу.
Но можно взять другую систему или группу аксиом геометрии. Можно выбрать такую группу аксиом, что постулат о параллельных, который в системе геометрии Евклида является независимой аксиомой, будет в этой другой системе теоремой, выводимой из принятых в этой системе аксиом.
Таким образом, аксиоматическое значение некоторых положений науки не есть безусловное свойство этих положений. Разница между аксиомой и теоремой — не безусловная. Положение, которое в одной системе науки будет аксиомой, оказывается теоремой в системе науки с другой совокупностью аксиом. И наоборот: положение, доказываемое в данной системе науки как её теорема, не доказывается, а принимается в качестве аксиомы в системе науки с другой совокупностью аксиом.
В конечном счёте выбор той или другой группы аксиом (или постулатов) в качестве принятой в науке системы оснований её доказательств обусловливается и оправдывается не самоочевидностью этих оснований, а всей суммой результатов, к которым приводят доказательства науки, опирающиеся на принятые аксиомы и постулаты. Только содержательная плодотворность результатов, полученных с помощью принятой в данной системе науки группы аксиом, составляет основание для их выбора. Тем самым выбор оснований для всей системы доказательств науки — выбор аксиом или постулатов — связывается с проверкой этих оснований по их результатам, связывается с материальной практикой, с опытом.
Таким образом, с точки зрения современной логики, опирающейся на данные новейшей науки, аксиомами называются положения, не доказываемые в данной науке и играющие в ней — наряду с определениями основных понятий — роль допускаемых оснований всех доказываемых в науке истин. Роль эту аксиомы играют не в силу своей безусловной очевидности, хотя некоторые аксиомы представляются очевидными, и тем более не в силу своей априорности, так как никаких априорных положений нет ни в какой науке. Аксиомы данной науки выбираются в качестве аксиом. Однако основанием для выбора является не субъективный произвол, не «удобство», не «соглашение», а способность выбранной группы аксиом доказать всю совокупность известных истин науки, оправданных в своих результатах, т. е. в конечном счёте удостоверенных в своей истинности материальной практикой.
То, что в аксиомах не следует видеть истины безусловно недоказуемые, было не раз показано классиками марксизма-ленинизма. Энгельс говорит, что, например, аксиомы математики «доказуемы диалектически, поскольку они не чистые тавтологии»[21]. И точно также Ленин поясняет в конспекте «Науки логики» Гегеля, что фигуры силлогизма могли получить значение аксиом только после того, как значение это было доказано в миллиардах случаев опытом: «практическая деятельность человека миллиарды раз должна была приводить сознание человека к повторению разных логических фигур, дабы эти фигуры могли получить значение аксиом»[22].
Таким образом, и аксиомы как части оснований доказательства отнюдь не «возвышаются» над опытом, отнюдь не «предшествуют» опыту, а составляют результат материальной практики и опыта, лежащего в основе доказательства.
Все указанные выше требования, предъявляемые при выборе аксиом, имеют силу, разумеется, только в отношении тех наук, которые имеют в числе своих оснований аксиомы (постулаты) или, как говорят, допускают аксиоматическое построение. Таковы математика, теоретическая физика. Но существует обширный класс наук, в которых аксиоматическое построение неприменимо. В этих науках аксиомы (постулаты) не входят в число оснований науки» Такова, например, история.
В число оснований доказательств, кроме положений об удостоверенных фактах, на которые опирается доказываемый тезис, кроме определений основных понятий науки и аксиом, входят ещё доказанные ранее положения науки, необходимые для обоснования тезиса.
Так, при доказательстве теоремы евклидовой геометрии о сумме внутренних углов плоского треугольника в качестве оснований доказательства используют не только определения понятий, например понятий о параллельных, о смежных углах о внутренних накрест лежащих углах, о соответственных углах, и не только аксиомы, например аксиому (постулат) Евклида о параллельных. В качестве оснований доказательства этой теоремы используют также доказанную до неё теорему о равенстве суммы смежных углов двум прямым.
Рассматривая доказательство, нетрудно убедиться, что ранее доказанные положения, на которые опирается доказываемый тезис, используются в ходе доказательства либо непосредственным, либо опосредствованным образом.
Непосредственно используются те положения, на которые прямо ссылаются в ходе доказательства, как на положения, из истинности которых следует истинность доказываемого тезиса. Так, одним из положений, непосредственно используемых для доказательства теоремы Пифагора, будет 41-я теорема первой книги Евклида. Теорема эта утверждает, что если параллелограмм имеет с треугольником одно и то же основание и находится между теми же параллельными, то параллелограмм будет вдвое больше треугольника. Теорема эта принадлежит к непосредственным основаниям теоремы Пифагора, так как при доказательстве последней Евклид дважды ссылается в самом ходе доказательства на 41-ю теорему. Иными словами, 41-я теорема прямо входит в число оснований, истинность которых приводит к признанию истинности теоремы Пифагора.
Опосредствованным образом используются для доказательства те положения, на которые в самом ходе данного доказательства прямо не ссылаются, но при помощи которых были ранее доказаны непосредственные основания данного доказательства. Положения эти могут быть названы предшествующими основаниями доказательства. Так, для той же теоремы Пифагора одним из таких ранее доказанных, или предшествующих, оснований её доказательства будет 38-я теорема первой книги Евклида. Теорема эта утверждает, что треугольники, находящиеся на равных основаниях и между теми же параллельными, равны между собой. Эта теорема не входит в число непосредственных оснований доказательства теоремы Пифагора, так как в ходе этого доказательства Евклид на 38-ю теорему не ссылается. Но она входит в число оснований доказательства опосредствованным образом, будучи одним из оснований, при помощи которых была доказана 41-я теорема. А эта последняя есть, как мы уже знаем, одно из непосредственных оснований доказательства теоремы Пифагора.
Чем дальше развивает наука доказательства своих положений, тем большим становится число предшествующих оснований доказательства каждого нового положения. Если, рассматривая данный тезис науки, мы задались бы целью выяснить все основания, на которые опирается его доказательство, то оказалось бы, что непосредственные основания его доказательства опираются на некоторые предшествующие им основания, эти последние — в свою очередь на другие предшествующие основания и т. д. Однако, каким бы большим ни было число предшествующих оснований данного доказательства, оно не может быть бесконечным. Рано или поздно мы дойдём до таких предшествующих оснований, которые ни из каких предшествующих им оснований уже не могут быть выведены.
Основания доказательства, которые не могут быть выведены ни из каких предшествующих им оснований, называются начальными основаниями данной науки.
Начальными основаниями для данной науки являются: положения об удостоверенных единичных фактах, определения и аксиомы (постулаты). Теоремы не могут быть начальными основаниями, так как начальные основания ниоткуда не выводятся; напротив, всякая теорема — доказываемое положение, а все доказываемые положения выводятся из оснований непосредственных или предшествующих.
Все определения и аксиомы, которые могут встретиться в отдельных доказательствах в качестве непосредственных оснований или к которым доказательство может быть возведено как к своим предшествующим основаниям, входят в число начальных оснований науки. При этом, однако, в доказательства эти основания входят в каждом отдельном случае лишь частично. Так, доказательство, например, теоремы Пифагора опирается непосредственно не на все, а лишь на некоторые аксиомы, не на все, а лишь на некоторые определения, входящие в круг начальных аксиом и определений.
Напротив, в числе начальных оснований науки находится не часть аксиом, а все аксиомы данной науки, не часть определений, а все её определения.
Чем дальше отстоит доказываемое положение от начальных оснований данной науки, тем большим становится число предшествующих оснований доказательства. И действительно: каждое доказанное ранее положение, на которое в данном доказательстве наука ссылается, как на одно из непосредственных оснований доказываемого тезиса, обусловлено, в свою очередь, длинным рядом предшествующих ему положений. Ни на одно из них в пределах данного доказательства не ссылаются — иначе доказательство каждой теоремы было бы повторением всего предшествующего этой теореме содержания науки со всеми её доказательствами. В то же время все они могут быть найдены в соответствующем месте системы науки, где они полностью излагаются, иначе основание, на которое опирается доказываемое положение, само было бы -недоказанным.
Наличие в далеко продвинувшейся науке длинной цепи не непосредственных оснований, предполагаемых каждым непосредственным основанием любого доказательства, делает особенно важным условием состоятельности доказательства истинность всех оснований доказываемого тезиса.
В самом деле, непосредственное для данного доказательства основание есть только звено предшествующей ему цепи обусловливающих его оснований. Если эта цепь длинна и если какое-нибудь из её звеньев окажется ложным, то и заключительное звено — данное непосредственное основание доказательства — тоже может оказаться ложным. А в таком случае и доказываемый тезис, как опирающийся на ложное основание, может оказаться ложным.
Поэтому в качестве оснований доказательства должны быть принимаемы только истинные, строго доказанные, проверенные и удостоверенные в своей истинности положения. Любой вид оснований, вообще говоря, сказывается на истинности результата. Поэтому ни входящие в число оснований доказательства положения об удостоверенных фактах, ни определения основных понятий науки, ни аксиомы, ни уже ранее доказанные положения науки не должны быть ложными. Основания доказательства не должны быть даже сомнительными. Сомнительность основания есть по крайней мере возможность его ложности, а возможность ложности в основаниях доказательства делает возможным ложность самого доказываемого тезиса. Поэтому доказательство, опирающееся на сомнительные основания, не есть, строго говоря, подлинное доказательство. Только вполне удостоверенная истинность всех оснований, на которые опирается доказательство, делает доказательство (при соблюдении всех прочих условий и правил, о которых речь впереди) путём и средством к отысканию новой истины.
Мы рассмотрели две составные части доказательства: доказываемый тезис и основания доказательства. Мы видели, что главная задача доказательства — сделать непреложной либо истинность доказываемого, либо ложность опровергаемого. Мы видели также, что истинность доказываемого или ложность опровергаемого тезиса не могут быть обнаружены непосредственно. Чтобы убедиться в истинности доказываемого тезиса, следует указать истинное основание, признав которое истинным, мы с необходимостью должны признать истинным также и доказываемый тезис.
Однако, хотя указание истинных оснований для выяснения истинности доказываемого тезиса необходимо, но одним лишь этим мы ещё не достигаем цели доказательства. Только в немногих случаях указание истинных оснований даёт истинность доказываемого тезиса сразу, в виде непосредственного вывода. Так, если требуется доказать, что некоторые из равных между собой углов — прямые углы, то для доказательства истинности этого утверждения достаточно сослаться, как на основание, на истину о том, что все прямые углы равны между собою. Из этого основания сразу, непосредственно, по законам одной лишь логики (а именно — согласно правилам обращения) получается истинный вывод, что некоторые из равных между собой углов — прямые.
Но в огромном большинстве случаев знания истинных оснований, ведущих к признанию истинности тезиса, недостаточно. Необходимо кроме того показать, какова связь, необходимо ведущая от истинности данных оснований к истинности обусловленного ими тезиса. Связь эта во многих случаях непосредственно не видна и требует выяснения. Так, если ученик знает все определения, все аксиомы и все теоремы, из истинности которых, как из оснований, выводится истинность теоремы Пифагора, это ещё не значит, что ученик знает доказательство теоремы Пифагора. Для знания доказательства требуется, чтобы ученик знал, какова связь между всеми известными ему порознь основаниями теоремы Пифагора,— другими словами, какова последовательность оснований и выводов из оснований, необходимо ведущая к признанию истинности доказываемого в этой теореме положения.
Последовательность, или связь оснований и выводов из оснований, имеющая результатом необходимое признание истинности доказываемого тезиса, называется способом доказательства у или демонстрацией. Демонстрация есть не составная часть доказательства, но третья, наряду с доказываемым тезисом и основаниями, логическая характеристика доказательства.
Из этого определения демонстрации видно её отличие от составных частей доказательства— тезиса и основания. И тезис и каждое из оснований — положение об удостоверенном факте, определение, аксиома, ранее доказанное положение науки — представляют собой отдельное суждение. Напротив, демонстрация никогда не есть ни отдельное суждение, ни простая сумма отдельных суждений. Демонстрация всегда есть логическая связь суждений, приводящая к определённому логическому результату. Демонстрация это более или менее длинная цепь умозаключений у посылками которых являются основания данного доказательства, а последним заключением — доказываемый тезис у который, таким образом, удостоверяется в качестве истинного.
Так, при доказательстве теоремы евклидовой геометрии о сумме внутренних углов треугольника (см. рис. 2) мы сначала продолжаем сторону треугольника АВС, например сторону АС до точки Е. Затем проводим из точки С прямую CD, параллельную АВ и по одну с ней сторону от прямой АС. Затем мы рассуждаем следующим образом. Прямая ВС пересекает параллельные (по построению) прямые АВ и CD. Следовательно, углы АВС и BCD будут равны как внутренние накрест лежащие. Прямая АС пересекает те же—параллельные по построению — прямые АВ и CD. Следовательно, углы ВАС и DCE равны как соответственные. Угол ВСЕ, представляющий сумму углов BCD и DCE, равен сумме двух внутренних углов треугольника (АВС и ВАС), так как угол BCD равен углу АВС, а угол DCE равен углу ВАС. Прибавим к углу ВСЕ угол ВСА — третий внутренний угол треугольника АВС. Тогда сумма углов DCE, BCD и ВСА будет равна сумме внутренних углов данного треугольника: углов ВАС, АВС и ВСА. Но так как сумма углов ВСЕ (равного сумме углов ВАС и АВС) и ВСА равна сумме двух смежных углов, а эта сумма равна двум прямым углам, то сумма внутренних углов ВАС, АВС и ВСА в треугольнике АВС также равна двум прямым.
Всё в целом это рассуждение — демонстрация. Основания доказательства не выделяются в группу положений, отдельных от демонстрации, но появляются каждое на том месте, какое определяется для него логической связью всех звеньев демонстрации.
Так как демонстрация — порядок связи между основаниями и тезисом— порядок, непросто усматриваемый из оснований, но такой, который ещё должен быть найден, то доказательство одного и того же положения науки может быть более или менее сложным или простым, громоздким или кратким и т. д. Самый порядок, план доказательства может варьироваться.
Связь оснований, ведущая к усмотрению истинности доказываемого тезиса,— не единственная. А так как связь эта не дана вместе с самими основаниями, но ещё должна быть открыта, выяснена, найдена, то доказательство есть творческая задача науки, которая творческими же средствами и решается.
В ряде частных случаев задача доказательства оказывается настолько сложной, что разрешение её требует от учёных огромных усилий на протяжении целых десятилетий или даже столетий. До сих пор не найдено доказательство теоремы Ферма о том, что уравнение xn = yn+zn не может иметь решений для всех целых значений n больших дЕух. В течение почти двух с половиной тысячелетий оставалось недоказанным существование атома, пока успехи новейшей экспериментальной и теоретической физики не принесли, наконец, это доказательство. Гениальная догадка Джордано Бруно о существовании планет, обращающихся вокруг других звёзд, получила доказательное подтверждение только в последние десятилетия. Во всех этих случаях учёным пришлось приложить немало усилий для доказательства того, что могло быть доказано лишь при определённых условиях развития наблюдения, эксперимента и теоретического анализа.
С другой стороны, там, где задача доказательства успешно разрешалась, пути и средства её разрешения у разных учёных были неодинаковы. Уже античная математика знала не одно единственное доказательство теоремы Пифагора, а целый ряд таких доказательств. И это типично для доказательства. Доказываемый тезис — один, логические законы мышления — одни, но способы, ведущие к признанию истинности тезиса, могут быть разные. Способы эти определяются: 1) основаниями, из которых выводится тезис, 2) связью между основаниями и тезисом. Связь эта не видна из оснований, отдельно взятых. Она находится посредством рассмотрения отношений между доказываемым тезисом и тем, что уже ранее было доказано.
Но так как от доказываемого тезиса к уже доказанным положениям можно перейти не одним единственным способом, доказательство способно к развитию и совершенствованию. От примитивных способов доказательства, опиравшихся на неточные, приблизительные и потому часто ошибочные наглядные представления, до современных доказательств, опирающихся на точно определённые понятия, на не зависящие одна от другой, свободные от противоречий, достаточные в своём числе аксиомы, а также на чрезвычайно строго доказанные теоремы, практика доказательства прошла большой путь уточнения и совершенствования. Соответственным образом изменилась, уточнилась и логическая теория доказательства.