Для военных целей может быть изготовлено взрывчатое вещество, в миллион раз более мощное, чем динамит. Наука может резко изменить масштабы военных действий. Не секрет: начиная с весны лаборатории Соединенных Штатов, Германии, Франции и Англии лихорадочно работают в этом направлении.
Пусть будет атом рабочим, а не солдатом!
До восхода оставалось несколько часов. В предрассветных сумерках еще мерцали тропические звезды. Уже посветлела восточная половина неба.
Но солнце внезапно взошло на западе.
Огромный, нестерпимо сверкающий огненный шар всплыл над горизонтом и быстро пополз вверх, заливая ослепительным светом безбрежную гладь Тихого океана. Матросы, возившиеся с рыболовной снастью, словно остолбенели. Несколько минут на палубе траулера царила непривычная тишина, слышно было лишь глухое урчание мотора да плеск воды за бортом. И вдруг воздух дрогнул от далекого грохота, упруго ударив по барабанным перепонкам.
Беда свалилась, будто снег на голову.
Откуда он, снег в тропиках? Да еще странный какой-то — сухой, словно бумажное конфетти. Грязно-белые не тающие пылинки усеяли всю палубу. Они набились людям в волосы, попали в глаза, в уши, за ворот, захрустели на зубах. Как и 22 других члена экипажа, хозяин радиорубки не понимал, что произошло. И не подавал сигналов «SOS». Ему было невдомек, что он уже обречен…
Только через две недели судно пришло в порт Яидзу. Выслушав рассказ потерпевших, власти сразу смекнули, в чем дело: радиоактивные осадки! Людей поместили в больницу, а судно срочно сожгли. Оно называлось «Фукурю-мару» — «Счастливый дракон»…
Через несколько месяцев скончался от лучевой болезни несчастный радист «Счастливого дракона» Аикиси Кубояма. «Си-но хаи» — «пеплом смерти» назвали японцы страшные хлопья, упавшие с неба.
А за несколько часов до необычного снегопада всего в. сотне миль от ничего не подозревавшего «Фукурю-мару» происходили события, окруженные непроницаемой завесой секретности. На рейде у Маршалловых островов обосновались военные корабли под звездно-полосатым флагом. Они опекали крохотный, ничем не примечательный клочок суши, каких много в архипелаге: плоский, с низкими берегами коралловый риф, имеющий форму ятагана. Некогда пустынный, необитаемый, он теперь кишел людьми и механизмами. Накануне злосчастного утра он снова обезлюдел. Только крысы шныряли по песку в поисках объедков, да в тихой лагуне атолла отражалась высокая металлическая башня, укрепленная на бетонном основании.
1 марта 1954 года в 3 часа 50 минут по Гринвичу сработали пусковые устройства. Наблюдатели, находившиеся в 30 милях от атолла Бикини, сквозь темные светофильтры защитных очков деловито следили за причудливыми эволюциями искусственного солнца, так напугавшего японских рыбаков. Миллионы тонн грунта взлетели в воздух, чтобы разнести радиоактивную заразу на сотни миль вокруг. 16 мегатонн! Тротиловый эквивалент бомбы оказался вдвое больше расчетного. Это значит, что для получения той же энергии потребовалось бы 10 000 30-вагонных железнодорожных составов сильнейшей химической взрывчатки — тринитротолуола.
Пепел Бикини разбередил незаживающую рану японского народа; он живо напомнил о другой, намного более страшной трагедии, которая разыгралась всего за девять лет до несчастья с «Фукурю-мару».
Утром 6 августа 1945 года в Хиросиме завыли сирены: воздушная тревога! Вскоре в небе над предместьем на высоте 10 километров показались американские «летающие крепости». Их было три. Всего-навсего. Видимо, ничего страшного они не несли с собой. И тогда решили дать отбой: право же, для столь огромного «объекта», как Хиросима, это не такая уж грозная опасность. Если бы противовоздушная оборона знала, какой груз находится на борту одного из бомбардировщиков! Самолет Б-29 «Энола гей» открыл бомбовой отсек…
В эти последние секунды перед катастрофой Хиросима продолжала жить беспокойной жизнью большого, многолюдного города. Улицы были запружены прохожими: десятки тысяч японцев торопились на работу. Перед магазинами тянулись хвосты очередей.
Сотни тысяч стариков, детей, больных, безработных как ни в чем не бывало сидели дома — не в подвалах, не в бомбоубежищах, а в многоэтажных каменных коробках и ветхих деревянных лачугах — ведь тревога была отменена!
Детонатор сработал на высоте 500 метров.
«Ослепительная зеленоватая вспышка, взрыв, сознание подавлено, и в следующий момент все загорается. Миг — и с людей свалилась вспыхнувшая одежда, вздулись руки, лицо, грудь, лопаются багровые волдыри, и лохмотья кожи сползают на землю.
Оглушенные и обожженные люди, обезумев, сбились ревущей толпой и слепо тычутся, ища выхода…»
Таким запечатлелся хиросимский ад в памяти очевидцев.
До сих пор преждевременно умирают люди — жертвы радиоактивного облучения. До сих пор рождаются неполноценные дети, уроды. И не только в
Хиросиме. Ибо 9 августа 1945 года атомный кошмар повторился в Нагасаки. Сотни тысяч убитых и искалеченных, целые кварталы, стертые с лица земли, — таков итог американского атомного эксперимента.
Расценивая решение об атомной бомбардировке Японии как «одну из величайших ошибок государственных деятелей США», известный американский физик-атомник Ральф Лэпп бросает горький упрек и своим коллегам: «Еще более печален тот факт, что некоторые из самых выдающихся ученых помогли нашим военным так неумно использовать атомное оружие». Казалось бы, эту весьма сомнительную честь и оспаривать вроде неловко, тем не менее…
В 1961 году в Англии выходит книга Рональда У. Кларка «Рождение бомбы». В ней документально опровергается широко распространенное мнение, будто «идея бомбы и ее разработка были целиком делом Соединенных Штатов». Неоднократно подчеркивая, что именно Англия первой сформулировала задачу изготовить ядерное оружие и серьезно приступила к ее решению, благородный ревнивец британского престижа как бы ставит в вину ученым их первоначально антимилитаристскую ориентацию. В 1939 году исследования почти везде проводились в чисто академическом плане.
«Осуществить цепную реакцию пытались также и в Соединенных Штатах, в Колумбийском университете. Подобные же эксперименты выполнил совершенно независимо в Варшаве в самом начале февраля молодой польский физик Юзеф Ротблат. В России в апреле 1939 года были опубликованы результаты Ленинградского физико-технического института, аналогичные полученным в Колумбийском университете».
Что верно, то верно: работы советских ученых действительно диктовались отнюдь не фикс-идеей сверхоружия, так помутившей ясный британский разум.
Социалистическая держава ни на кого не собиралась нападать и ниоткуда не ждала агрессии. К атомной бомбе жадно тянулись руки империалистической военщины. И разве не примечательно, что в активной ядерной обороне от империалистической Германии почувствовала впервые нужду империалистическая же Англия? И что первый ядерный удар нанесен империалистической Японии империалистической же Америкой?
В такой ситуации Страна Советов, подвергшаяся вероломному нападению гитлеровской Германии и не гарантированная от новых провокаций империалистических агрессоров, была вынуждена воздвигнуть свой ядерный заслон. Да, наши физики тоже создали атомную бомбу. Создали не первыми, хотя и намного раньше, чем полагали западные знатоки русских проблем, уверявшие, что взрыв первой советской атомной бомбы произойдет не раньше зимы 1951/52 года, а скорее всего — к 1955, если не к 1965 году.
Эксперты явно просчитались. В 1947 году американская монополия на атомные секреты кончилась.
У нас есть и термоядерные бомбы. Кстати, они созданы раньше американских. И хотя они самые мощные в мире, от них не пострадал ни один город, ни один человек.
Но не этим горда советская наука.
В 1954 году — в том самом, когда на несчастных японских рыбаков упал пепел Бикини, — Московское радио передало: «В Советском Союзе успешно завершены работы по проектированию и строительству первой промышленной электростанции на атомной энергии полезной мощностью 5 тысяч киловатт».
5000 киловатт — это не так много. Первенцы ленинского плана ГОЭЛРО, вошедшие в строй за четверть века до рождения АЭС, были в десятки раз мощнее. Сейчас наша энергетика располагает электростанциями в миллионы киловатт. Но разве дело только в цифрах?
Сообщение о пуске первой в мире АЭС произвело эффект разорвавшейся бомбы: впервые ядерная энергетика обрела новое измерение не в грозных килотоннах, а в добрых киловаттах. Недаром «Дейли уоркер» писала: «Это историческое событие имеет неизмеримо большее международное значение, чем сброс атомной бомбы на Хиросиму».
Человек, полагающийся только на свои мускулы, — тщедушное существо мощностью около 40 ватт.
Работая по восемь часов в сутки ежедневно (кроме субботы и воскресенья), он за год производит энергии примерно на 70 киловатт-часов. Это раз в 50 меньше, чем он потребляет одной лишь электроэнергии — дома, на улице, на предприятии или в учреждении.
А ведь он расходует и энергию других видов! Энергия двигает машины, дает свет, согревает нас, кормит, одевает, создает комфорт, умножает власть человека над природой.
В наши дни львиная доля — 4∕5 всей энергии вырабатывается за счет сжигания каменного угля, нефти, газа, торфа, сланцев. Гидроэлектроэнергия, как и наша мускульная, покрывает не более 0,05 в общем энергетическом балансе. Остальные 15 процентов падают на древесину и сельскохозяйственные отходы.
Значит, чтобы обеспечить постоянно растущий спрос, должна увеличиваться прежде всего добыча горючих ископаемых. Между тем запасы химического топлива далеко не безграничны: их, уже разведанных и еще не открытых, хватит максимум на несколько веков.
Обнинск. Небольшой зеленый городок неподалеку от Москвы стал столицей мирной ядерной энергетики, Меккой для ученых и журналистов всего мира.
Когда смотришь на светлое трехэтажное, отнюдь не грандиозное здание (дом как дом, разве что с пристройкой и высокой трубой), трудно представить, что за скромным фасадом скрывается настоящее чудо техники. Что за холодными каменными стенами бьется горячее и доброе сердце укрощенного ядерного исполина, бьется денно и нощно без перебоев вот уже второе десятилетие.
Подумать только: уран-235, который вспыхнул яростным, испепеляющим солнцем над Хиросимой, теперь мирно кипятит воду! Кипятит, превращает ее в пар, а тот обрушивается горячим потоком на лопатки турбин. И бежит по проводам ток, давая людям свет и тепло, а машинным мускулам — силу.
Изумительно слаженно, безукоризненно четко работают умные механизмы, пробуждая и одновременно сдерживая разрушительные ядерные страсти, чтобы их скрытая мощь устремлялась на благо, а не во зло человеку. Сегодня все это кажется чем-то само собой разумеющимся, привычным, даже, пожалуй, изначально присущим природе покоренного атома — а как же иначе? И невольно забываешь, что атомный век начался с атомных бомб.
АЭС — не просто демилитаризованный урановый котел, с одинаковым успехом производящий килотонны или киловатты, ядерную взрывчатку или электроэнергию. Это первый опыт во всей мировой практике, и он потребовал принципиально новых решений, точного, продуманного до мелочей расчета.
«Можно ли обеспечить взрывобезопасность атомных электростанций? Можно ли разработать надежные защитные устройства, которые автоматически выключали бы неисправный реактор? Велика ли опасность для населения в случае аварии? — спрашивает Ральф Лэпп. И признается: — На эти вопросы не так-то просто ответить».
Все эти задачи были успешно решены советскими учеными и инженерами — пошел уже четырнадцатый год безаварийной, безопасной, безупречной службы первой АЭС. Наше правительство высоко оценило заслуги ее создателей.
Однако Лэпп называет и другую проблему — экономическую.
Да, капиталовложения на единицу мощности атомных электростанций пока несколько выше, чем угольных, киловатт-час обходится дороже. Пока.
Но будет ли так вечно? Вот что писал академик А. П. Александров в 1962 году: «Электроэнергия на некоторых типах созданных или строящихся атомных станций будет дешевле, чем на аналогичных по мощности и расположенных в тех же районах тепловых».
Первая АЭС подтвердила правильность принципов, заложенных в ее конструкции, научила людей, как с ней обращаться, дала возможность провести множество исследований, которые легли в основу новых, более совершенных проектов, стали базой советской ядерной энергетики.
26 апреля 1964 года подключилась в Свердловскую энергосистему Белоярская АЭС имени И. В. Курчатова. Один только первый ее блок в 20 раз превосходит Обнинскую АЭС своей мощностью — 100 тысяч киловатт, а второй блок — в 40 раз. Себестоимость электроэнергии на нем на 40 процентов ниже, чем на первом. И лишь на 10–15 процентов выше, чем на ТЭЦ.
С каждой новой очередью совершеннее становятся установки БАЭС. А ведь именно Обнинская станция послужила прототипом для этого гиганта!
Хорошо освоены у нас и реакторы иного типа, где замедлителем нейтронов служит не графит, как на Обнинской и Белоярской АЭС, а вода. Такие «котлы» стоят и закладываются, например, на Нововоронежской АЭС, первая очередь которой пущена в 1964 году. Один из них обеспечивает трем турбогенераторам электрическую мощность 210 тысяч киловатт.
Другой рассчитан на 365 тысяч.
Сооружению этих мощных ядерных фабрик тепла и света предшествовали испытания трех небольших реакторов, проходившие в несколько необычной обстановке.
Еще недавно хмурилось небо, накрапывал дождик, ветер гнал свинцовую рябь по Неве, но в этот день погода установилась прямо-таки праздничная. По реке величаво плыл громадный корабль — его тащили, пыхтя из всех сил, юркие буксиры. Корабль бросил якорь на том самом месте, где когда-то «Аврора» дала сигнальный выстрел по Зимнему дворцу.
Легендарный трехтрубный крейсер теперь показался бы малышом по сравнению со своим рослым собратом.
Только величественное судно, ставшее в почетный двухдневный караул на историческом месте напротив Зимнего, не имело ни одной пушки. И еще одна деталь бросалась в глаза ленинградцам, а уж они-то знают толк в морском деле. У обычного лайнера над кормовыми надстройками возвышаются огромные, в несколько обхватов, трубы. А здесь их не было.
И ленинградцы, конечно, знали, в чем дело: атомному ледоколу они ни к чему.
Полярный лайнер «Ленин» отчалил от пирса Адмиралтейского завода 12 сентября 1959 года — за два дня до прилунения космической ракеты с вымпелом СССР.
…Коротко арктическое лето. Каких-нибудь два-три месяца, и на Северном морском пути снова опускается ледовый шлагбаум. Выручают ледоколы.
Кромсая холодный голубой панцирь, ведут они караваны судов с промышленными грузами, товарами и продовольствием. Ведут неторопливо, запасы горючего надо экономить: ведь они истощаются гораздо быстрее, чем при плавании в открытой воде. Чего доброго, их может и не хватить, хотя трюмы набиты тысячами тонн угля или нефти. А могли бы быть заполнены тысячами тонн полезного груза.
Советскому атомоходу одной загрузки (по 80 килограммов урана-235 в каждый реактор) хватает на 3 года (первую перезарядку провели весной 1963 года). Его энергетическая установка состоит из трех реакторов, по 90 000 киловатт каждый (правда, здесь имеется в виду уже не электрическая, а тепловая мощность, она всегда выше — у Нововоронежского реактора, например, она равна 760 000 киловатт). Два реактора работают, один — в резерве. Мощность двигателей — 44 000 лошадиных сил, рекордная для судов своего класса. Это вдвое выше, чем у американского ледокола «Глетчер», слывшего дотоле крупнейшим в мире.
Срок плавания по суровым северным морям продлился на два месяца.
Несколько цифр: водоизмещение атомохода — 16 000 тонн, длина — 134 метра, наибольшая ширина — 27,5 метра. Крейсерская скорость — 18 узлов (33 километра в час) на чистой воде и два узла — во льдах толщиной более двух метров. На корабле без малого тысяча помещений, среди них библиотека, кинозал, клуб, поликлиника, парикмахерская, баня, прачечная, хлебопекарня, камбуз, столовые, две электростанции, способные обеспечить энергией город с 300-тысячным населением. Внутрисудовая связь осуществляется автоматической телефонной станцией на 100 номеров. Но главное, самое характерное, конечно, не это.
Сердце корабля — атомный двигатель. Он создан большим коллективом ученых и инженеров во главе с академиком Анатолием Петровичем Александровым.
Ядерному двигателю трубы не нужны. Ведь дыма без огня не бывает!
Хотя, впрочем, огонь все-таки есть — своеобычный, внутриатомный. Незримый фейерверк ядерных вспышек, направляемый рукой человека, перед которым расступается мерзлая твердь океана.
Лед и пламень… Холодное равнодушие стихии и неугасимый накал разума — в этом извечном конфликте природа все чаще уступает человеку.
Было время — наш первобытный пращур с трудом высекал искры из кремня, чтобы кое-как оградить себя от наступающих холодов и хищных зверей. Нынче у нас в руках атомное огниво, способное зажечь доброе электрическое солнце. Или испепеляющий термоядерный смерч…
Небоскребы и коттеджи построил человек XX века. Даже на кораблях — океанских, воздушных, космических — он создал домашний уют. Он уже не боится ни холода, ни хищников. Но его по временам тоже пробирает озноб. Ибо все еще дуют пронизывающие сквозняки «холодной войны». И тянутся хищные руки к смертоносному ядерному запалу.
Прячась от дневного света и людских глаз, шныряют в морских глубинах атомные субмарины, вооруженные ракетами с ядерной боеголовкой. Уж где, а тут американцы опять постарались взять пальму первенства. Но тщетно: Советский Союз давно уже обладает атомным ракетоносным подводным флотом, достаточно мощным, чтобы противостоять любому шантажу, любой агрессии. Наши моряки не раз по примеру жюль-верновского капитана Немо совершали кругосветные путешествия под водой и проходили подо льдами Северного полюса, доказав полную надежность судовых атомных установок.
Кто же он все-таки, этот новый Геркулес, — друг или враг? Неужели чудовищная сила раскованного атома призвана сеять смерть и разрушение? Разве не способна она своротить горы в грохоте созидательного труда?
Люди, построившие первую атомную станцию и первый атомный ледокол, доказали, что у атома другое будущее — светлое, мирное, большое. Все ярче разгораются по белу свету огоньки, подобные обнинским. Все энергичней впрягаются в работу лошадиные силы энергоустановок, подобных тем, что двигают атомоход «Ленин».
Вот уже около пятнадцати лет Советский Союз делится своим опытом с различными странами, поставляет им оборудование, приборы, расщепляющиеся материалы, помогает строить ядерные реакторы и создавать национальные исследовательские центры.
Такие мирные атомные городки возникли в Румынии, Чехословакии, Польше, Венгрии, Болгарии, ГДР, Югославии, Объединенной Арабской Республике.
Расширяя сотрудничество и связи в области мирного атома, наша страна заключила десятки межправительственных соглашений: с Афганистаном, Ганой, Ираком, Францией, Великобританией, Канадой, США, многими другими государствами.
Осенью 1955 года по решению Генеральной Ассамблеи ООН была созвана первая международная конференция по мирному использованию атомной энергии. Тогда работала одна-единственная АЭС — советская. Ко времени, когда открылась вторая конференция (1958 год), действовали уже 4 станции (две у нас и по одной в США и Англии). А участники третьей конференции в 1964 году подвели такой итог: эксплуатируется и сооружается около 40 атомных станций, кроме того, построено более 500 всевозможных реакторов. Прикинули, что к 1970 году мощность всех АЭС достигнет 25 миллионов киловатт.
А к 1980 году — 150 миллионов, то есть будет примерно такой же, как у всех электростанций Европы, взятых вместе (без Советского Союза).
Семимильными шагами идет вперед ядерная энергетика. Советские специалисты приветствовали открытие первой американской АЭС в декабре 1957 года.
Они от души поздравляли заокеанских коллег, когда в 1962 году появилось атомное товаро-пассажирское судно «Саванна».
Еще в апреле 1955 года Эйзенхауэр говорил:
«Корабль мира с ядерным двигателем продемонстрирует достижения американской культуры, науки и промышленности. Хотя мы строим суда с атомными двигателями для войны, мы намерены строить такие суда и для мира».
Увы, конгресс не утвердил тогда ассигнований на постройку мирного атомохода. Лишь через год, после утомительной дискуссии, средства, наконец, сыскались.
Но если ледокол «Ленин» в полном смысле атомоход, то «Саванна» отчасти дизель-электроход: на ней используются и обычные источники энергии. «Нет только парусов», — шутил по этому поводу член-корреспондент АН СССР В. С. Емельянов, посетивший осенью 1959 года Кемденскую верфь, где судно достраивалось.
«Реактор к этому времени был почти полностью смонтирован, а на пульте управления не хватало всего нескольких приборов, — рассказывает Василий Семенович. — И все же „Саванна“ не вышла в плавание ни в 1960, ни в 1961 году. Строительство судна было завершено к концу 1960 года, и начались предварительные испытания, во время которых стали обнаруживаться различные дефекты: течь в гидравлической системе регулирующих стержней, засорения фильтров, плохая термоизоляция труб паропроводов.
Только 4 апреля 1962 года механизмы судна были испытаны на полную мощность. После встречи с представителями прессы мы обедали со специалистами судостроительного завода. Был поднят тост за то, чтобы атомный ледокол „Ленин“ сломал лед „холодной войны“ и провел „Саванну“ на чистые воды».
Надо полагать, атомные установки на военных подлодках и авианосцах встречают куда более заботливое отношение со стороны американских конгрессменов и промышленников…
Как бы там ни было, мирный атомный флот родился и будет расти. В ФРГ заложено атомное грузовое торговое судно «Отто Ган». В Японии, Англии,
Франции, Италии, Норвегии, Швеции также ведутся работы по созданию кораблей с ядерными двигателями.
Теперь у нас накопился уже солидный опыт проектирования и эксплуатации реакторных установок для судов. И он важен не только для кораблестроения.
Как обнинская установка послужила основой для проектирования Белоярской АЭС, так и атомные котлы ледокола, хорошо зарекомендовавшие себя за многие годы безупречной службы, стали прототипом более мощных нововоронежских агрегатов. Реактор похожего типа сооружен на Мелекесской станции близ Ульяновска (ее мощность 50 000 киловатт). Там же действует исследовательский реактор с самым плотным в мире потоком нейтронов. Этот реактор очень высоко оценил американский ученый Г. Сиборг.
В нашей стране наряду с крупными АЭС строятся АЭС средней и малой мощности. Они призваны заменить не очень экономичные дизельные, паротурбинные и локомобильные энергоустановки в отдаленных, скажем, северо-восточных районах (впрочем, они открывают перспективу освоения и таких необжитых мест, как Антарктида или даже Луна).
В 1963 году была пущена атомная блочная реакторная установка «АРБУС» мощностью 750 киловатт — оригинальная по конструкции и первая в своем роде. Здесь роль замедлителя и теплоносителя неплохо исполняет газойль — дизельное топливо. Побывав в реакторе, оно в отличие от воды почти не заражается наведенной радиоактивностью.
Так что наружная петля магистрали, по которой оно циркулирует, не требует сверхмощной защиты — надобность в толстых свинцовых или бетонных экранах отпадает.
Хорошо зарекомендовал себя и экспериментальный образец атомной электростанции ТЭС-3 на 1500 киловатт.
Быстрыми темпами прогрессирует ядерная энергетика. Но она вскрывает и новые трудности, ставит новые проблемы перед учеными.
Уран-235 — единственное ядерное топливо естественного происхождения. Доля его в природном уране прискорбно мала — 0,715 процента (один атом из 150).
Мировые запасы урана-235 обещают примерно миллиард миллиардов киловатт-часов. Казалось бы, немало. Но это в 10 раз меньше, чем могут дать разведанные запасы обычных горючих ископаемых!
Выходит, ядерная энергетика, если она и впредь будет ориентироваться только на уран-235, отнюдь не упразднит проблему энергетического голода.
Чего действительно много в земной коре, так это урана-238. Беда в том, что он не в силах обеспечить самоподдерживающуюся цепную реакцию. Правда, из него получается отличное горючее — плутоний-239.
На такому превращению подвергаются лишь два процента урана-238, загруженного в обычный реактор.
Впрочем, мы забыли о тории! Этот элемент, как и уран-238, сам гореть в ядерных топках не способен.
Однако под нейтронным обстрелом в реакторе он тоже превращается в горючее — в уран-233. Так что у наших потомков есть еще один резерв.
И все же…
Человеку этого мало. Его неугомонный разум изыскивает все новые и новые возможности, таящиеся в недрах воистину неисчерпаемого атома.
В главе «Из искры — пламя» рассказывалось о физиках, которым на заре их научной деятельности приходилось кочегарить у «буржуйки» в нетопленной лаборатории. То-то были бы озадачены, верно, эти юные «истопники», скажи им кто-нибудь тогда, что в печке вместо одной начисто сгоревшей охапки дров каждый раз откуда ни возьмись сама собой должна появляться новая, возрождаясь из пепла, словно сказочная птица Феникс. Между тем нечто подобное и впрямь осуществимо, только не в химической, а в ядерной топке.
Вот уже восемь лет непрерывного трудового стажа насчитывает необычная атомная машина, созданная под руководством члена-корреспондента АН УССР А. И. Лейпунского. Ее инициалы БР-5 расшифровываются так: быстрый реактор тепловой мощностью 5 тысяч киловатт. От других «котлов», упоминавшихся здесь, он отличается отсутствием замедлителя.
В обычных установках на АЭС применяется вещество (графит, вода), тормозящее нейтроны, снижающее их энергию. Без замедлителя самоподдерживающийся процесс в бедной смеси заглохнет — слишком уж велика здесь жадная толпа атомов урана-238, этих микрогаргантюа, заглатывающих нейтроны без последующего деления, то есть попросту обрывающих цепочку распадов. Чтобы реакция, несмотря на потери, все же пошла, нужно резко повысить содержание урана-235, доведя его до десятков процентов против, к примеру, полутора (Нововоронежская АЭС) или 1,3 процента (Белоярская).
Конечно, облагораживание естественной изотопной смеси стоит немало. Но в атомных котлах без замедлителя количество топлива с течением времени не уменьшается, а, напротив, растет. Ведь ядро урана-238, отправив в свое чрево нейтрон, превращается в конце концов в плутоний-239 (отличное горючее!).
В итоге весь бездеятельный уран, загруженный в реактор, можно сделать энергетически активным, полезным.
Установка перейдет на полное самоснабжение да еще будет делиться своим непрерывно растущим капиталом с другими атомными станциями. Если теперь пересчитать ядерные энергоресурсы, они окажутся в десятки раз больше, чем химические — те, что заключены в органическом топливе планеты. Мало того, благодаря быстрым реакторам со временем будет выгодной добыча и переработка бедных урановых и ториевых руд.
У быстрых реакторов (их называют также размножителями) есть и другие преимущества.
Изучение новых перспектив, которые открыл перед энергетикой самовозрождающийся из пепла «ядерный Феникс», началось у нас еще в 1949 году. Шесть лет спустя был пущен первый советский реактор на быстрых нейтронах мощностью 50 ватт, в 1956 году — второй (100 киловатт), в 1958 году — третий (5000 киловатт).
Одновременно исследования в этом же направлении развернулись в Америке и в Западной Европе.
АЭС с быстрыми реакторами построены в США, Англии.
«Советская концепция развития ядерной энергетики, — подводил итог в своем отчете о III Международной женевской конференции А. М. Петросьянц, председатель Госкомитета по использованию атомной энергии, — предполагает более быстрый переход к созданию реакторов-размножителей как генеральной линии ядерной энергетики, хотя для нас, конечно, ясно, что реакторы на быстрых нейтронах, являясь наиболее перспективным и многообещающим типом реакторов (имеются в виду промышленные масштабы), требуют еще большой творческой работы».
Глубокие исследования, проведенные в СССР над быстрыми нейтронами, позволили приступить к сооружению в районе Каспия промышленного реактора-размножителя электрической мощностью 150 000 киловатт.
На этом фоне совсем неприметно выглядит цифра — от 1∕2 до 4∕5 киловатт. Такую мощность имеет установка «Ромашка», построенная под руководством академика М. Д. Миллионщикова в Институте атомной энергии имени И. В. Курчатова. Ее реактор тоже быстрый, только служит он уже не размножителем. Основная его функция, как и у большинства других его собратьев, — превращать тепло в ток. Но как превращать!
Законное изумление вызывает у нас изощренная смекалка конструкторов, придумавших массу хитроумнейших приспособлений, дабы энергию расщепленного атома передать потребителю в наиболее удобной форме — в виде электрического тока. Тут и тепло — носитель — вода, натрий, газойль. Тут и сеть коммуникаций, своей витиеватостью напоминающая кровеносную систему. Трубы, распираемые десятками атмосфер и обжигаемые сотнями градусов.
Перегреватели. Парогенераторы. Турбины. Электрогенераторы.
Да, сперва надо превратить атомный жар в упругий влажный ураган, затем поступательное движение пара — во вращение якоря с обмоткой, наконец, механическую энергию — в электрическую. Вот сколько пересадок на маршруте тепло — ток! Пока что нигде в мире не умеют делать иначе — по крайней мере в промышленных масштабах. Но будет ли так всегда?
14 августа 1964 года состоялся пуск, первого в мире реактора, трансформирующего ядерное тепло прямо в электрический ток. Поэтическое название цветка родилось неспроста: боковые выступы на цилиндрическом корпусе термоэлектрического преобразователя напомнили инженерам лепестки простой полевой ромашки.
«Ромашка» отапливается ураном-235 — в изотопной смеси его доля составляет 90 процентов. Вес горючего — почти полцентнера.
Тепловой поток воспринимается кремний-германиевыми термоэлементами. В них-то и происходит волшебное превращение тепла в ток, прямое, без промежуточных ступеней. Горячие спаи полупроводниковых преобразователей нагреты до тысячи градусов. «Холодные» — до 600, хотя находятся совсем рядом. Этот температурный перепад, необходимый для эффективной работы кристаллических источников тока, достигается без сложной системы охлаждения.
Тепло отводится в окружающий воздух металлическими лепестками «Ромашки».
Преобразователи работают в очень напряженном режиме. Убийственная жара. Резкие температурные контрасты. Мощные потоки нейтронного излучения.
Выстоят ли в этой адской обстановке все узлы агрегата?
Советская инженерная мысль с честью выдержала ответственные испытания на зрелость.
Русское слово «Ромашка» замелькало на всех языках в строгих научных отчетах после того, как наши ученые на Международной конференции по мирному использованию атомной энергии сделали доклад и показали кинофильм о новом типе реактора.
Спору нет, «Ромашка» с ее полукиловаттной мощностью не конкурент большим советским реакторам.
Но перед нами новое слово в ядерной энергетике.
Кто знает, к каким сдвигам ведет этот путь, по которому сделан лишь первый шаг?
На Женевской конференции сообщалось и о других аналогичных аппаратах. В частности, о советском транзисторном устройстве «Бета-1». Здесь уже атомную энергию для непосредственного превращения ее в электрическую поставляет не деление урана или плутония, а бета-распад церия, помещенного в маленький контейнер. Преобразователь дает жизнь радиопередатчику мощностью в 150 ватт, которым оборудована стандартная автоматическая метеостанция. На весенней Международной лейпцигской ярмарке 1965 года удостоен золотой медали следующий представитель того же семейства, созданный Всесоюзным научно-исследовательским институтом радиационной техники, — «Бета-2». Он снаряжен стронцием-90 и рассчитан на 10 лет совершенно независимой работы при полном самообслуживании.
Можно без конца рассказывать о мирных завоеваниях советской ядерной энергетики. Впрочем, почему обязательно энергетики? Разве список гражданских профессий атома исчерпывается одной строкой — «добытчик тепла, света, движущей силы»?
Опуская в скважину источник ядерной радиации, геологи прощупывают пласты, пройденные буром.
Так отыскиваются нефть, газ, уголь, металлические руды. По идее члена-корреспондента АН СССР Г. Н. Флерова сконструирован и внедрен в практику миниатюрный импульсный ускоритель для нейтронного каротажа (зондирования) земных слоев.
Гамма-дефектоскопия — некое подобие рентгена, разве что в его более мощном индустриальном исполнении — позволяет заглянуть внутрь детали и выяснить, нет ли там предательских трещин или раковин.
С помощью радиоактивных изотопов человек измеряет уровень жидкости в закрытых резервуарах, следит, не обмелели ли порты. Оценивает степень износа рабочих поверхностей — от кромки резца до огнеупорной футеровки, выстилающей раскаленную пасть доменной печи. Обнаруживает утечки газа из подземных трубопроводов. Снимает сильные заряды статического электричества, угрожающие пожаром.
Узнает структуру отдельных молекул. С фантастической точностью определяет чистоту веществ.
Ускоряет химические реакции. Меняет свойства материалов и даже живых существ. Уничтожает вредителей.
Наконец, лечит. Невозможно перечислить все, что дает атом человеку.
Три с лишним тысячи советских заводов, институтов, лечебниц применяют в своей повседневной практике ионизирующие излучения и свыше тысячи всевозможных радиоактивных препаратов, производящихся в нашей стране. За один только 1962 год это принесло 200 миллионов рублей экономии. С 1961 по 1963 год у нас выпущено более 30 тысяч радиоизотопных приборов.
Как ускорился научный прогресс, сколько экономится усилий и средств с приходом доброго атома!
Как же и когда он пожаловал в нашу страну? Чьи открытия и изобретения подготовили почву для грандиозных завоеваний советской атомной техники?
«Наука интернациональна, — писал в 1961 году английский ученый Джордж Томсон, широко известный у нас как автор книги „Предвидимое будущее“. — Это очевидно из простого перечня имен: англичанин Чадвик первый открыл нейтроны; итальянец Ферми установил, что они производят определенный эффект в уране, хотя и не смог правильно его объяснить; немец Ган объяснил ошибку Ферми, но сам не сделал последнего шага: не сумел разглядеть процесс ядерного деления. Это выпало на долю его австрийской сотрудницы Лизы Мейтнер, ее племянника Фриша, бежавших от Гитлера, француза Жолио и коллектива американцев, которые почти одновременно открыли явление, обеспечивающее возможность цепной реакции. Здесь названы представители шести национальностей».
Здесь не названы представили русской нации.
Что ж, это вполне простительно: в своей мимолетной иллюстрации сэр Джордж Томсон не задавался целью исчерпывающим образом изложить «этнографический аспект» ядерной проблемы. Иначе ему пришлось бы объяснять, что, например, атомники шестой названной им «национальности» — американцы — на добрую половину состояли из европейцев, «импортированных» Соединенными Штатами. В частности, в США работали Лео Сциллард, Юджин Вигнер, Эдвард Теллер (все из Венгрии); из Италии — Энрико Ферми, Эмилио Сегре; из Германии — Альберт Эйнштейн, причем здесь названы далеко не все выходцы из Старого Света, не говоря уж о том, что сами «аборигены» Нового Света имели тоже довольно пестрый состав (канадец Вальтер Цинн, латиноамериканец Луис Альварес и т. д. и т. п.).
Томсон, бесспорно, не преминул бы назвать датчанина Бора, который стал общепризнанным преемником «патриарха» ядерной физики — неистового новозеландца Резерфорда, скончавшегося в 1937 году. Возможно, он помянул бы польского физика Ротблата, о котором говорилось раньше. А также югославского химика Савича, который вместе с полуполькой-полуфранцуженкой Ирен Кюри в Париже повторил берлинские опыты Гана — Мейтнер — Штрассмана и опроверг первоначальные выводы знаменитого австро-германского трио (возражения парижан побудили Гана и Штрассмана перепроверить свои результаты — именно так было экспериментально обнаружено деление уранового ядра, теоретически объясненное вскоре Мейтнер и Фришем. Это эпохальное открытие увенчано Нобелевской премией).
Ну, а советские ученые? Разве не достойны они занять подобающее место в созвездии столь блистательных имен?
…1932 год. На авансцену физики выходит главный герой ядерной драмы — нейтрон. Коротенькая, в полстранички, весточка о его открытии Чадвиком появляется в английском журнале «Нэйчур» 27 февраля.
Это сообщение будто молнией пронзает умы физиков.
Его ждали. Еще в 1920 году Резерфорд высказал догадку: возможно, существует элементарная частица с такой же массой, как у протона, но в отличие от него не имеющая электрического заряда.
Молодой ленинградский теоретик Дхмитрий Иваненко давно уже размышляет над структурой ядра.
Верно ли, что оно представляет собой смесь электронов и протонов? Если так, то, к примеру, у азота оно должно состоять из 14 элементарных положительных зарядов и 7 отрицательных. В итоге получается плюс 7. Если говорить о конечном результате, то он вполне соответствует действительности. Далее. Ядро азотного атома имеет массу, равную 14 единицам.
Так оно и есть: ведь основной вклад в нее вносят 14 протонов; ничтожным же довеском из семи электронов, который в тысячи раз легче, можно пренебречь.
Вроде бы все концы с концами сводятся хорошо, но…
В соответствии с квантовомеханическими воззрениями каждая частица наделяется особой характеристикой — спином. Эта величина и для протона и для электрона равна 1∕2. Число частиц в азотном ядре нечетное — 21. Стало быть, их суммарный спин всегда будет, как выражаются специалисты, «полуцелым».
Между тем вопреки теоретическим предсказаниям он именно целый. Похоже, что ядерный коллектив скомпонован из четного количества сочленов.
И это далеко не единственная неувязка из тех, что давно уже мозолят глаза ученым. Протонно-электронная модель расползается по швам. К сожалению, ничего лучшего пока не предложено.
А есть ли вообще электроны внутри ядер? Такое недоверие к общепризнанной концепции еще в 1928 году высказали Виктор Амазаспович Амбарцумян, ныне академик, астроном с мировой известностью, и Дмитрий Дмитриевич Иваненко, ныне профессор МГУ, доктор физико-математических наук. Это звучало как ересь. Ведь налицо был неоспоримый факт: бета-излучение. Откуда тогда берутся электроны, выстреливаемые ядром, ежели их там нет? Появляются на свет в момент бегства из ядра, не сдавались теоретики — «еретики», а отнюдь не запасены там загодя — подобно тому как, по метафорической аналогии доктора физико-математических наук С. Ю. Лукьянова, звуки «Лунной сонаты» Бетховена не спрятаны под деревянной крышкой рояля, а зарождаются при ударах о клавиши. Идея советских ученых тогда не встретила поддержки.
Наконец пробил час: открыт нейтрон! Буквально через два-три месяца в знаменитом «Нэйчур» вслед за чадвиковокой заметкой появляется столь же лаконичная и не менее сенсационная весть: ядра состоят не из электронов и протонов, как думали до сих пор, а из нейтронов и протонов! У автора гипотезы не столь привычное для англосаксонского и романского слуха имя, как Эрнест Резерфорд, Вернер Гейзенберг, Поль Адриен Морис Дирак, Франсис Перрэн. Его зовут Dmitri Iwanenko…
Гипотеза подвергается атакам. Среди оппонентов не кто иной, как проницательный Дирак, математически предвосхитивший в 1928 году открытие позитрона — положительного электрона (1932 год). Тот самый Дирак, на идеи которого опирались Амбарцумян и Иваненко, подвергая сомнению присутствие электронов в ядрах. Но на сей раз могучая интуиция словно отказывает кембриджскому корифею новой физики.
Со скрипом, не без сопротивления рушится протонно-электронная конструкция. Делаются попытки восстановить ее на новой основе. Так, в июле 1933 года супруги Жолио-Кюри предполагают, что ядра состоят из своеобразной «смеси» нейтронов с позитронами, где нейтрон является не элементарной частицей, а комплексом — протон плюс электрон.
В сентябре 1933 года докладом Фредерика Жолио-Кюри «Нейтроны» в Ленинградском физико-техническом институте открывается I Всесоюзная конференция по атомному ядру. На ней выступает и другой именитый гость — Франсис Перрэн (впоследствии он получит патент на расчет критической массы, а после войны станет верховным комиссаром Франции по атомной энергии). Он считает весьма правдоподобным представление Гейзенберга об облаках, окружающих нуклоны в ядре: электронном, охватывающем протон, и позитронном, в которое одет нейтрон.
На кафедре — Иваненко. В заочной полемике с Гейзенбергом он отстаивает элементарность ядерного нейтрона, как, впрочем, и протона. Он не убежден, что адвокатура Перрэна спасет гейзенберговские электронные и позитронные облака в ядре: подобное состояние маловероятно.
Слушателям и невдомек, что через несколько недель, в конце того же 1933 года, Гейзенберг сойдет с этих шатких позиций. В октябре на VII Сольвеевском физическом конгрессе в Брюсселе он заявит: попытки истолковывать бета-распад как сосуществование внутриядерных электронов с нуклонами не выдерживают критики.
Изгнание электронов из ядра и воцарение там нейтронов положило конец «азотной катастрофе».
Спин нейтрона равен 1∕2, как и у протона. Общее число нуклонов в ядре азота четное — 14. Потому-то у него суммарный спин целый. Но бывают ядра и с полуцелым спином. Значит, общее количество нейтронов и протонов в них нечетно.
Новая модель дала возможность точно рассчитывать энергию, высвобождающуюся при радиоактивном распаде.
Дважды два — четыре. Эта арифметическая истина в странном мире ядерных частиц терпит неожиданное фиаско. Оказывается, любое ядро всегда легче простой суммы несвязанных нуклонов, из которых оно возникло. «Недостача», — сказал бы ревизор.
«Дефект массы», — говорят физики. Правда, «материальный ущерб», нанесенный нуклонам при их коллективизации, полностью и тотчас возмещается в драгоценнейшей «валюте» — энергетической, причем такая компенсация в точности равна дефекту массы, умноженному на скорость света в квадрате.
Вся ядерная энергетика зиждется на этой закономерности, о чем бы ни шла речь — о синтезе легких ядер или же о делении тяжелых. У нейтрона масса не точно такая же, как у протона, хотя и близка к ней по своей величине. Эта разница играет существенную роль при вычислениях дефектов масс и энергетических эффектов, когда учитываются ничтожнейшие доли нуклонной плоти. Понятно, к каким грубым ошибкам приводили бы расчеты на основе протонно-электронной модели, если они вообще были бы возможны. Прочность ядра, его способность делиться, другие кардинальные его свойства зависят от соотношения между количествами нейтральных и заряженных частиц, составляющих сердцевину атома.
Стоит ли говорить, какое значение приобрела в руках теоретиков и экспериментаторов иваненковская модель?
Но так уж повелось, что разрешение одной проблемы немедленно ставит новые вопросы. Какими узами связаны вместе ядерные нуклоны?
Протоны — одноименно заряженные частицы. Они отталкиваются друг от друга. Что же спаивает их в дружный коллектив? Гравитационное взаимодействие? Нет, оно слишком слабо, чтобы противостоять электростатической вражде. Не может оно обеспечить и сильное взаимное влечение незаряженных нейтронов, способное сцементировать их вместе с протонами в сверхплотный ядерный сгусток.
Над этой загадкой мучительно бились физики всего мира. Ломал над ней голову и Энрико Ферми.
Однажды неутомимого римского исследователя осенила идея, которая обещала стать ключом к таинственному, за семью печатями, ядерному ларцу.
Великий итальянец уже засел было за изложение своей концепции, как вдруг…
В одном из номеров «Нэйчур» за 1934 год он прочитал две публикации, еще раз доказывавшие, что идеи «носятся в воздухе». И что в далекой, в такой, по слухам, «неевропейской» России есть свои физики — настоящие профессионалы, занятые проблемами атома.
Одну статью, напечатанную в «Нэйчур», написал москвич И. Е. Тамм, ныне академик, лауреат Нобелевской премии, другую — ленинградец Д. Д. Иваненко. Они дали новый подход к проблеме, после чего она, наконец-то, была выведена из тупика.
Какова же, по Тамму и Иваненко, природа ядерных сил?
Чтобы объяснить, как действуют силы на расстоянии, физики ввели особое понятие — «поле».
Например, поле гравитационное. Или электромагнитное.
Ни то, ни другое не годилось, чтобы объяснить притяжение нуклонов. А других полей физики не знали.
Тамм и Иваненко предположили: есть специфическое поле ядерных сил, не похожее ни на одно из уже знакомых и все же чем-то напоминающее их.
Было известно, что, например, взаимное влечение или отталкивание зарядов обусловлено тем, что они обмениваются квантами электромагнитного поля — фотонами. Перебрасываются ими, как жонглеры кольцами или игроки в пинг-понг пластмассовым шариком. Таким образом партнеры влияют на поведение друг друга. Тамм и Иваненко высказали гипотезу: такое же обменное взаимодействие связывает и нуклоны в ядре. Оно несравненно мощнее, чем гравитационное или электромагнитное, только проявляется на гораздо более коротких дистанциях. И здесь тоже должен существовать свой посредник в межнуклонном обмене. Какой же?
Не фотон, это ясно: он обеспечивает слишком слабую связь. Быть может, электрон? Расчеты, проделанные Таммом, показали: нет, он не годится на роль внутриядерной «разменной монеты» — мешало то, что у электрона полуцелый спин, а не целый, как у фотона. Нейтрино? Тоже нет: у него спин, как и у электрона, равен одной второй. Были и другие неувязки. А если нуклоны обмениваются сразу двумя частицами? У пары электрон — нейтрино суммарный спин целый! Увы, даже вдвоем этим тщедушным частицам не по плечу обеспечить чудовищно сильное тяготение между нуклонами.
Расчеты советского ученого упорно давали отрицательный результат. Что же тогда служит посредником в обменном взаимодействии, что? Оставалось сделать последний шаг, но… Наука в большей степени, нежели поэзия, «вся — езда в незнаемое».
Впрочем, разве мало сделано? Показав, что понятие поля универсально, эти работы словно открыли глаза физикам. Достаточно четким пунктиром они наметили зоны будущих раскопок на карте силовых полей — там мог лежать еще не найденный заветный «золотой ключик» к ядерному ларцу.
Так оно и случилось. Ответ на поставленный вопрос пришел меньше чем через год из японского города Осака. Ссылаясь на основополагающие работы Тамма и Иваненко, молодой преподаватель
Хидеки Юкава высказал догадку: обменные силы в ядре, видимо, обязаны своим происхождением частице с нулевым спином, которая в 200–300 крат тяжелее электрона и соответственно в 6–8 раз легче нуклона. «Мезон» (от греческого «мезос» — «средний») — так нарекли потом этого гипотетического «невидимку», которому суждено было еще некоторое время скрываться от физиков, пока, наконец, он не попался им в сети из потока космических лучей.
Вскоре Юкава разработал теорию мезонного поля, за что в 1949 году удостоился Нобелевской премии.
По представлениям Юкавы, внутри ядра протон и нейтрон непрерывно обмениваются заряженными 98 мезонами, превращаясь друг в друга. Нейтрон с нейтроном, как и протон с протоном, тоже перебрасываются мезонами, но уже нейтральными.
Говоря об истоках этой замечательной теории в ее сорокалетний юбилей (1945 год), японский физик профессор Ш. Саката, ученик X. Юкавы, отдаст должное работам советских ученых: «Мало кто пытался вскрыть сущность ядерных сил. До профессора Юкавы мы можем назвать только Тамма и Иваненко».
Три десятилетия с лишним наука об атоме «пробавлялась» только тремя видами радиоактивных излучений: альфа, бета и гамма. Первые два были открыты Резерфордом в 1899 году. Третий — французским ученым Вилларом в 1901-м. Лишь в 1934 году супруги Жолио-Кюри опознали среди ядерных беглецов положительного двойника электрона (несколько раньше его поймали в космических лучах).
Наступил 1935 год.
Братья Курчатовы, несмотря на молодость, не были «зелеными» новичками ни в физике вообще, ни в атомной в частности. Тридцатидвухлетний Игорь Васильевич вот уже десятый год работал в Ленинградском физико-техническом институте, а с 1932 года возглавлял отдел ядерной физики. Борису Васильевичу тоже не были чужды проблемы радиоактивности, хотя он и занимался больше полупроводниками.
Однако явление, с которым столкнулись ученые, могло озадачить и маститого ветерана науки об атоме.
В начале 1935 года счетчик ядерных излучений бесстрастно возвестил сотрудникам Курчатовской лаборатории о том, чего на первый взгляд быть не должно. Исследователи бомбардировали бром недавно открытыми нейтронами. Ожидалось, что элемент № 35 даст при этом две свои активные разновидности — одну с 18-минутным периодом полураспада, другую — с 4-часовым. Так по крайней мере свидетельствовали опыты Энрико Ферми. И действительно, полученная смесь давала радиацию обоих типов.
Но одновременно обнаружилось и другое излучение: оно уменьшало свою интенсивность вдвое не через 18 минут и не через 4 часа, а лишь по прошествии полутора суток. Странно! Ведь у брома два стабильных изотопа: один с массовым числом 79, другой — 81. Поглотив нейтрон, первый превращается в бром-80, второй — в бром-82. Оба новорожденных активны, причем ни один из них, судя по результатам Ферми, не должен быть столь долговечным. Откуда взяться более живучему? Быть может, в смеси перед облучением содержался какой-то третий, до сих пор не известный изотоп, который потом под действием нейтронов тоже сделался из стабильного радиоактивным, только с другой константой распада?
Эксперимент отмел такую версию.
Тщательный химический анализ, проведенный Б. В. Курчатовым, исследования и расчеты Л. И. Русанова, Л. В. Мысовского, других сотрудников привели к однозначному заключению: налицо не новый изотоп, а новый тип радиоактивности, ускользнувший от зорких глаз Ферми.
Выяснилось, что полуторасуточным периодом обладает бром-82. Ни один из двух других упомянутых сроков жизни, более коротких, к нему касательства не имеет. Оба они относятся к брому-80.
Парадоксально, но факт: атомы-близнецы неодинаковы! При полной идентичности ядерной и электронной структуры часть атомов брома-80 уполовинивает общую интенсивность излучения через 18 минут, часть — через 4 часа. Как оказалось, в последнем случае особинка ядер в том, что они возбуждены. Излучая гамма-кванты, они переходят в основное, более устойчивое состояние, после чего начинают испускать те же электроны, что и их более спокойные двойники.
Так к уже известным типам радиоактивных превращений примкнула ядерная изомерия.
Сейчас былые «диковинки» — ядерные изомеры — исчисляются многими дюжинами.
Эффект, обнаруженный братьями Курчатовыми,
Мысовским и Русиновым, встал в один ряд с открытиями Резерфорда, Виллара и Жолио-Кюри.
Не сразу признали русскую находку. «Трудно поверить в существование изомерных атомных ядер, то есть таких, которые при равном атомном весе и равном атомном номере обладают различными радиоактивными свойствами… Мы надеемся после проведения экспериментов узнать, стоит ли заниматься вопросом об изомерных ядрах». Так на физическом съезде в Цюрихе в 1936 году говорила та самая Лиза Мейтнер, которой суждено было вскоре узреть то, чего не видел или не хотел видеть Отто Ган, — деление урановых ядер. Правда, оценивая значение «невероятного» открытия, Лиза Мейтнер добавила, не могла не добавить: «Предположение о существовании изомерных ядер дало бы возможность объяснить искусственные превращения урана».
Искусственные превращения урана! Так ведь это та самая проблема, решение которой преобразило мир и над которой с 1934 года бились лучшие умы: сначала Ферми, а впоследствии Ноддак, Савич, Жолио-Кюри, Ган и Штрассман, наконец, Мейтнер вместе с Фришем. Интересно: в 1939 году именно Лиза Мейтнер сделала последний шаг, завершивший одно из крупнейших открытий века, рассеявший последние сомнения в способности уранового ядра разваливаться на крупные осколки. Она сделала этот шаг вопреки необоримому скепсису Гана. А тогда, в Цюрихе, Мейтнер сама выступала в роли скептика, вливая яд сомнения в души физиков…
В качестве постскриптума остается добавить следующее. В 1938 году, на три года позже наших соотечественников, ядерную изомерию обнаружили Н. Фезер и Э. Бретчер (Англия) — вторично. И все же в 1963 году один канадский научный журнал, посвященный проблемам ядерной энергии, поместил таблицу видов радиоактивности, где в качестве первооткрывателей фигурировали именно британские ученые. Неосведомленность? Интересно, как отнесся бы к этому сюрпризу соотечественник Фезера и Бретчера Рональд Кларк, благородно ратующий, если помните, за честность записей в свитках истории.
С именем И. В. Курчатова связан еще один эпизод в истории радиоактивности.
— Это произошло за год до начала Великой Отечественной войны, — вспоминает член-корреспондент АН СССР Г. Н. Флеров. — Отгромыхав по рельсам, нырнул в тоннель последний голубой экспресс московской подземки. Столица затихла. А на станции метро «Динамо» тем временем появилась группа довольно странных полуночников. На них не было метростроевских комбинезонов… Они были одеты в лабораторные халаты, а в руках держали хрупкие приборы… Описанный эпизод, — продолжает Георгий Николаевич, — мне запомнился вовсе не потому, что он произошел в столь необычной обстановке. Дело в другом: подземный эксперимент, проведенный Константином Антоновичем Петржаком и мною, завершал длительную серию исследований. Выйдя после ночного бдения из метро, мы тут же дали телеграмму в Ленинград нашему руководителю профессору Игорю Васильевичу Курчатову: «Есть спонтанное деление!»
К тому времени уже было открыто деление урана, но вынужденное — под действием нейтронов. Как продемонстрировали Ган и Штрассман, а затем обосновали Мейтнер и Фриш, ядро урана-235, впустив нейтрон, разваливается на два крупных куска.
Флеров и Петржак доказали: чтобы пала ядерная крепость, вовсе не обязателен троянский конь, намеренно забрасываемый в нее физиками. Такие катастрофы случаются сами собой — спонтанно. Чем же интересна эта находка?
Счетчик Флерова и Петржака отмечал на круг шесть таких «самоубийств» в час, хотя вес препарата (природная смесь урановых изотопов) измерялся граммами. В атомный же котел загружаются тонны урана. Так что самопроизвольных вспышек там больше чем достаточно. Сама природа сняла с человека заботу о первотолчке, порождающем цепную лавину в реакторе. Открытие Флерова и Петржака показало, что «запальные» устройства уже есть в самом ядерном топливе и делать их специально не имеет смысла.
Деление, правда, могут вызвать также случайные микроскопические гости, жалующие к нам из глубин вселенной и прошибающие даже толстые крыши, — космические лучи. Потому-то ученые и отгораживались от неба земляным сводом метро.
Сейчас спонтанное деление замечено прочти у трех десятков изотопов. И чем крупнее ядро, тем ярче выражена склонность к такому самоуничтожению.
К примеру, у урана спонтанное деление наблюдается в миллионы раз реже, чем альфа-распад. Зато у рукотворного элемента № 104 (для него предложено название «курчатовий» — он синтезирован недавно группой Г. Н. Флерова) самопроизвольное деление преобладает. Именно оно обусловливает очень короткий период полураспада у курчатовия — треть секунды.
Совсем недавно в Дубне одна из флеровских групп, руководимая С. М. Поликановым, впервые обнаружила самопроизвольное деление ядер из возбужденного изомерного состояния. Так в работах молодых советских физиков сошлись, словно на перекрестке, два больших открытия, сделанных ученым старшего поколения — Курчатовым и его учениками.
В 1936 году начался новый этап в «беге на стартовой дорожке», как назвал Резерфорд лихорадочную исследовательскую гонку после открытия нейтрона.
Прицельную пальбу нейтронной картечью по ядерной Бастилии ведут взапуски канониры всех известных атомных лабораторий. Они жадно всматриваются в результаты экспериментов. Что получится, если нейтронная дробинка, таранив ядро, застрянет в нем?
«Это может привести к взрыву ядра», — говорит Нильс Бор.
В 1936 году член-корреспондент АН СССР Я. И. Френкель одновременно с Н. Бором теоретически анализирует явления, протекающие в атомной сердцевине, когда она ранена пулей, посланной человеком. Он уподобляет нуклонный сгусток капле сверхплотной жидкости, которая, захватив нейтрон, начинает «кипеть», разбрызгивая ядерные частицы.
Френкель впервые вводит условное представление о температуре ядра. Он публикует цикл работ, где облекает свои соображения в математически строгую форму, уточняет первоначальную модель.
Мысли Френкеля получают признание и развитие в трудах самого Бора (1938 год).
В кульминационный момент ядерной эпопеи, когда мир узнает об опытах Гана, Френкель тотчас печатает классическую работу по делению тяжелых ядер медленными нейтронами (1939 год). Лишь несколькими месяцами позднее появится аналогичная и, понятно, более детализированная с количественной стороны публикация Бора и Уилера.
В 1939 году, по горячим следам открытий Гана и Штрассмана, Мейтнер и Фриша, выходит статья «К вопросу о цепном распаде основного изотопа урана». Ее авторы — Я. Б. Зельдович и Ю. Б. Харитон.
В 1940 году они продолжают свои исследования: «Деление и цепной распад урана», «О цепном распаде урана под действием медленных нейтронов», «Кинетика цепного распада урана», «К теории развала ядер» (совместно с Ю. А. Зысиным). И в 1941 году — «Механизм деления ядра».
В первых же работах советские ученые наметили конкретные пути, как технически реализовать идею, которая так долго считалась неосуществимой.
В начале 1939 года «великий старец» Нильс Бор в беседе с Юджином Вигнером перечислил 15 веских доводов, из-за которых, по его мнению, практическое использование ядерного деления абсолютно исключено. Альберт Эйнштейн уверял одного американского репортера в том, что все эти перспективы не более как химера.
Кто осмелится укорять ученых в наивности или пессимизме? Буквально до 1940 года уровень знаний о тонкостях ядерного деления не давал оснований для смелых прогнозов. Либо, наоборот, вдохновлял на беспочвенные прожекты. До позднего лета 1939 года специалисты сомневались в справедливости воровского предположения, высказанного еще в феврале: делению подвержен не уран-238, а уран-235 (сам этот изотоп был открыт совсем недавно — в 1935 году).
Лишь весной 1939 года выяснилась необходимость замедлять нейтроны.
О том, насколько скудными и противоречивыми сведениями располагали ученые, говорят первые оценки критической массы. Они колебались в широком диапазоне — от фунта до многих тонн. Франсис Перрэн, например, подсчитал: достаточно получить 40 тонн урана, чтобы произошел взрыв.
«Деление урана, казалось, можно было легко осуществить, — вспоминает о некоторых заблуждениях того времени академик Я. Б. Зельдович. — Перрэн предполагал, что извержение вулканов — это и есть результат цепной реакции деления урана, случайно скопившегося в недрах Земли. На самом деле все оказалось гораздо сложнее. В 1939 году в Институте химической физики АН СССР вместе с Харитоном мы анализировали условия, которые действительно нужны, чтобы могла осуществиться цепная реакция деления. Было показано, что уран-238, а также и природная смесь изотопов урана не пригодны для осуществления деления (впоследствии И. В. Курчатов, проделав титаническую работу по измерению ядерных констант, которые в довоенное время были определены неточно, установил, что природную урановую смесь тоже можно использовать в качестве топлива для реактора. — Л. Б.)… С другой стороны, сама организация ядерной реакции оказалась проще, чем представлял себе Перрэн. Не зная в подробностях цепной теории, он предполагал, что стоит создать критическую массу, как произойдет взрыв.
На самом деле в критической массе реакция идет не разгоняясь и не затухая: 100 нейтронов при делении дают 250 нейтронов, из них 150 теряются и поглощаются, остается ровно 100. Реакцию легко проводить в строго постоянных условиях».
В ноябре 1940 года на Всесоюзном совещании по физике атомного ядра обсуждался вопрос о том, чтобы обратиться к правительству за ассигнованием крупных средств на создание первого уранового реактора. В Президиум Академии наук поступил план предстоящих работ по цепным ядерным реакциям.
Работы наших ученых шли в фарватере мировых достижений.
22 июня 1941 года на улицы наших городов упали первые бомбы. Поднятые по тревоге пограничные заставы приняли первый бой. Мимо пылающих хат загрохотали танки с тевтонскими крестами на башнях, колонны моторизованной пехоты исполинскими удавами поползли по старинным русским дорогам.
Физики пошли на фронт, стали работать на оборону. Но атом не забыт, не может быть забыт.
И. В. Курчатов по всей стране скликает рать физиков.
25 декабря 1946 года советский реактор пущен!
Первый в Европе. Это произошло всего через четыре года после того, как в декабре 1942 года под трибунами чикагского стадиона заработал котел Энрико Ферми. Четыре года — много это или мало? Два с половиной из них — всенародная военная страда, дорога скорби и мужества, бесконечно долгая, обильно политая кровью и потом. Остальные полтора — залечивание ран, преодоление страшной разрухи.
Годы, которые вместили эпоху…
Советский народ, только что переживший опустошительную войну, не мог сквозь пальцы смотреть, как западные дипломаты снова играют с огнем, теперь уже у бочки с ядерным порохом. Наученный горьким опытом, он должен был гарантировать от любых посягательств свою свободу и право на мирный труд, отвоеванные столь дорогой ценой. Таким гарантом стал наш атомный часовой, заступивший на пост в 1949 году.
«Для ученых все это было чудовищным сюрпризом, — свидетельствует Роберт Юнг в книге „Ярче тысячи солнц“. — …Широко распространенная на Западе в послевоенные годы недооценка возможностей России изготовить атомную бомбу в ближайшее время, пожалуй, еще более поразительна, чем прежняя переоценка атомных возможностей Германии…
Ошибочный вывод, сделанный в Америке из краха атомного проекта в третьем рейхе, заключался в недооценке русских атомных разработок и общего прогресса, достигнутого Советским государством».
А 12 августа 1953 года над советским испытательным полигоном взметнулся термоядерный взрыв.
Девятью месяцами раньше, в ноябре 1952 года, на тихоокеанском атолле Эниветок испытывалось американское термоядерное устройство (операция «Майк»). Но, как признали сами его творцы, оно являлось громоздким и нетранспортабельным. Вместе с холодильником для сжижения дейтериево-тритиевой смеси оно весило 65 тонн! Настоящую водородную бомбу США взорвали только 1 марта 1954 года. Это была та самая операция «Кастл», из-за которой пострадали 23 японских рыбака.
Создав надежный атомный щит, Страна Советов еще настоятельней, чем прежде, предложила запретить все виды нового оружия. Тем временем уже полным ходом шли работы над проектом первой АЭС.
И над укрощением термоядерной реакции.
25 апреля 1956 года британский ядерный центр Харуэлл посетила советская делегация. Перед учеными, собравшимися в конференц-зале, с полуторачасовой лекцией выступил высокий бородатый человек с открытым, приветливым лицом и пронзительным взглядом темных глаз. На следующий день «Дейли экспресс» писала: «Курчатов поразил аудиторию, сообщив, во-первых, что русские закончили эксперименты, которые в Харуэлле находятся только в стадии планирования; во-вторых, тем, что он без утайки привел все методические детали, иллюстрируя их цифрами и формулами, которые в Англии и США считались совершенно секретными».
Эдвард Теллер, «отец» американской водородной бомбы, заявил: доклад Курчатова имеет огромное значение и свидетельствует о высоком техническом уровне исследований, проводимых Советским Союзом.
«Я прилетел из Чикаго в Вашингтон, надеясь услышать отчет Теллера о нашей работе, — пишет американский физик Ральф Лэпп. — …Теллер не знал, что все присутствующие получили по экземпляру текста Курчатовского доклада. Слушая Теллера, мы испытывали не только разочарование, но и досаду из-за того, что человеку, находящемуся по ту сторону „железного занавеса“, пришлось поведать Западу об управляемой термоядерной реакции».
Да, Курчатов говорил о достижениях и перспективах термоядерной энергетики.
В огненном клубке плазмы, возникающем при термоядерном взрыве, протекают примерно те же процессы, что и в недрах Солнца. Чтобы «звездная» реакция началась, необходимы колоссальные температуры. Недаром детонатором взрыва служит атомная бомба.* Только в этих условиях легкие ядра, разгоняясь до сверхвысоких скоростей, преодолевают взаимное отталкивание и сливаются, высвобождая энергию. 40 миллионов градусов — вот сколько нужно для соединения дейтерия с тритием. Казалось бы, ни один материал, даже самый жаропрочный, не выдержит такого нагревания. Между тем проблема выворачивается наизнанку: опасаться за свое существование надо не столько термоядерной «печи», сколько самому горючему.
В газообразной и весьма «разжиженной» форме заполняет оно герметичную камеру, где царит глубокий вакуум: концентрация частиц там в миллионы раз ниже, чем в воздухе на уровне моря. Так что, если начнется термоядерный синтез, давление отнюдь не подскочит до миллионов атмосфер, как при взрыве водородной бомбы. Оно превысит нормальное всего раз в сто. Ну, а солнечные температуры?
Вы можете попробовать на ощупь десятки тысяч градусов без малейшего риска обжечься — прикоснитесь к газосветной лампе, скажем, к одной из тех, что заливают вечерние улицы огнями неоновых реклам: под стеклом трубки витают частички, которые раскалены именно до такой температуры! Имеется в виду их кинетическая температура, вернее, энергия, а по сути дела — скорость их суетливой беготни.
Намного более бешеная стремительность, соответствующая полумиллиарду градусов, нужна дейтронам, чтобы они при сближении смогли превозмочь взаимную неприязнь и слиться. Мы говорим «дейтронам», а не «дейтериевым атомам» потому, что перед нами плазма — нейтральная в целом смесь оголенных ядер и сорванных с них электронных оболочек. Что же касается энергии этих крупинок вещества, то ее не хватит даже на заметное нагревание их обиталища — до тех пор, пока не начнется термоядерный синтез.
Зато само плазменное облачко как огня боится окружающей его твердо% поверхности. При соприкосновении с нею оно тотчас охлаждается. Как не допустить столь опасную для него встречу со стенками?
В 1950 году академики А. Д. Сахаров и И. Е. Тамм впервые предложили использовать для этого магнитное поле. Оно должно собрать ядра и электроны в густой рой посредине камеры и поддерживать его на весу до тех пор, пока не начнется реакция. Сетку силовых линий легко ввести внутрь полого кольца или цилиндра с помощью наружного электромагнита. А можно сделать иначе — перевести плазму на самообслуживание.
Вот проволочки, расположенные рядом, взаимно параллельно, как гитарные струны. Если пропустить через них ток в одном направлении, они потянутся друг к другу. Их обоюдное влечение порождено нимбом электромагнитного поля, окутывающим каждую из них этакой незримой муфтой. А если ток пройдет через газовую смесь? Скажем, в виде мощного разряда — в десятки тысяч ампер? Разумеется, кратковременного, в миллионные доли секунды: иначе просто не выдержит аппаратура. Тогда отдельные «волоконца» искусственной «молнии» будут стремиться сойтись, увлекая за собой заряженные частицы — те самые, что во время пробоя образовались из нейтральных атомов. Сжимаясь в тонкий длинный жгут, плазма разогреется до сверхвысоких температур (это явление получило в английском языке название пинч-эффекта).
Теорию быстрых линейных пинчей создали в 1953 году академик М. А. Леонтович и С. М. Осовец, а впоследствии независимо от них американский ученый М. Розенблют. Советские физики впервые обратили внимание на огромную роль, которую играет полностью ионизированная токопроводящая оболочка газового столба (скин-эффект — от английского «шкура»). Мгновенно сужаясь, она порождает цилиндрическую ударную волну, направленную внутрь, к собственной оси. Распространяясь по радиусу со скоростью свыше 100 километров в секунду, этот необычный взрыв превращает нейтральную газовую сердцевину шнура в высокотемпературную плазму.
В своих опытах над самосжимающимся разрядом ученые впервые столкнулись с явлением плазменной неустойчивости. Электрические струйки искусственной «молнии», не обладая жесткостью, вихлялись и тем самым способствовали быстрому разрушению осевого ядерно-электронного сгустка. Нужно было сделать эфемерное облачко плазмы более стабильным.
Советский физик Г. И. Будкер, ныне академик, возглавляющий Институт ядерной физики в новосибирском Академгородке, высказал, а потом (в 1953 году) обосновал идею «магнитной бутылки». По такому принципу действует знаменитая «Огра» («объемный газовый разряд») — самая большая в мире ловушка подобного типа, пущенная в 1958 году. Она рассчитывалась и строилась под научным руководством И. Н. Головина. Это установка цилиндрической формы поперечником 1,4 метра, а в длину — целых 20. Здесь магнитное поле создано неподвижным соленоидом, намотанным снаружи на трубу. Таким образом, силовые линии, удерживающие плазму, не «гуляют», они как бы закреплены в пространстве жесткой сеткой. Поле внутри вакуумной камеры напоминает бутыль, у которой на месте донца второе горлышко. «Пробки» тоже магнитные — они создаются парой катушек с током, расположенных по обоим торцам цилиндра.
Применяются не только цилиндрические камеры, но и изогнутые — скажем, наподобие восьмерки («Стелларатор»). Или в виде бублика (английские «Зета» и «Скептр»); советская «Альфа», сконструированная по образцу «Зеты»; семья оригинальных советских установок («Токамак»).
«Если рассматривать результаты исследований, выполненных на установках „Зета“, „Скептр“, „Альфа“ и других, с точки зрения тех перспектив, которые они открывают для решения задачи об управляемом термоядерном синтезе, то эти перспективы будут иметь весьма пессимистическую окраску», — говорил академик Л. А. Арцимович. Зато дальнейшая работа с системами типа «Токамак», по его словам, «имеет серьезные перспективы».
Несмотря на все ухищрения, плазма увертывается от магнитной упряжи, отлынивает от мирной работы.
Но, обнажая с каждым разом все новые черточки своего норовистого характера, она тем самым подсказывает ученым и инженерам, как им лучше идти на следующий приступ.
Несколько лет назад в Институте атомной энергии имени И. В. Курчатова в отделе плазменных исследований, которым руководит Л. А. Арцимович, закончилось строительство установки ПР-5. В нее заложен оригинальный принцип комбинированного поля.
До сих пор испытывались ловушки двух типов — либо с выпуклыми магнитными «стенками» («бутылка с пробками»), либо с вогнутыми («раструбы фанфар»), У каждой из них свои преимущества. Но и свои недостатки. Больное место первой — магнитные объятия слабеют от середины, от оси камеры к ее краям. Плазма всплывает изнутри наружу, как керосин, налитый под воду. У второй ловушки наоборот — магнитные стенки от центра к периферии становятся все плотнее и плотнее. Но в том месте, где «фанфары» соприкасаются, зияет кольцевая щель. Плавные изгибы раструбов обусловлены взаимным отталкиванием встречных полей. Граница вражды становится лазейкой для плазменного сгустка.
А если совместить «бутылку» с «фанфарами»?
Советские физики Ю. Т. Байбородов, Р. И. Соболев и В. М. Петров под руководством кандидата физико-математических наук М. С. Иоффе построили такую гибридную ловушку.
О результатах проведенной на ней работы председатель Государственного комитета по использованию атомной энергии СССР А. М. Петросьянц отзывался так: «В 1962 году на установке ПР-5 удалось подавить гидромагнитную неустойчивость и получить плазму с температурой 40 миллионов градусов и плотностью 1010 частиц/см3. Она устойчиво удерживалась в ловушке в течение сотых долей секунды, то есть в тысячи раз дольше, чем удавалось получить ранее при этой температуре и плотности. Этот результат явился одним из крупных достижений на пути изучения плазмы. Однако этого еще недостаточно для овладения термоядерной энергией: необходимо научиться подавлять другие типы неустойчивостей, получать более плотную и горячую плазму».
Да, более плотную, ибо концентрация составила 10 миллиардов частиц на кубический сантиметр, а нужно в миллион раз, больше. И более горячую: температура в 40 миллионов градусов примерно в 10 раз ниже заветного предела (для дейтериевой плазмы). Наконец, срок, в течение которого плазма должна удерживаться при этих условиях, чуть ли не в сто раз дольше — порядка секунды.
Никто не возьмется указать срок, когда даст ток первая термоядерная электростанция. Но никто не усомнится в том, что на этом пути сделан новый важный шаг, пожалуй, самый значительный за последние годы.
В 1965 году академик Андрей Николаевич Колмогоров и его молодой сотрудник Владимир Арнольд были удостоены Ленинской премии за решение математической проблемы, которая имеет прямое отношение к физике вообще и к ядерной в частности. Речь идет об устойчивости замкнутых механических систем типа солнечной. Метод исследования, разработанный Колмогоровым и Арнольдом, позволил доказать: да, вполне возможно создание термоядерной ловушки, где облачко плазмы, изолированной от стенок, будет удерживаться длительное время.
Сделано многое, но еще больше предстоит сделать впереди, чтобы приблизить новый грандиозный триумф человеческого разума.
— Если удастся добиться плотности в десятки триллионов частиц на кубический сантиметр, можно будет считать, что мы успешно справились с задачей, — говорит академик Л. А. Арцимович. — Разумеется, нужны еще хорошие способы нагревания частиц до сверхвысоких температур. Обращает на себя внимание предложенный Завойским новый метод, в котором для нагревания плазмы используется ее же начальная неустойчивость, исчезающая после такого ее применения.
Оказалось, что можно не просто обезвреживать неустойчивости, но и заставлять их делать доброе дело!
Плазма — чрезвычайно своеобразная субстанция.
От обычного газа она отличается тем, что ее частички заряжены и потому особенно неравнодушны друг к другу, откликаются на малейшие электрические и магнитные воздействия. Но если парные взаимоотношения (например, столкновения) частиц целиком определяют собой свойства газа, то здесь они не играют практически никакой роли. Зато дают себя знать коллективные взаимодействия, когда отдельные скопища ионов или электронов, плазменные сгущения и разрежения выступают как единое целое и активно влияют друг на друга.
Этими явлениями увлекся молодой сотрудник Института ядерной физики (Новосибирск) Р. 3. Сагдеев, ныне член-корреспондент АН СССР. В 1962 году, в тридцатилетнем возрасте, он защитил докторскую диссертацию. Темой для нее он избрал свои теоретические изыскания, согласно которым ударные волны (они несутся со сверхзвуковой скоростью, вызывая сильное сжатие среды) могут возникать и распространяться в разреженной плазме, несмотря на то, что она представляет собой эфемерное, неощутимо бесплотное облачко. Могут, ибо она обладает вполне достаточной упругостью, обусловленной ее специфическими свойствами. Но самое интересное в том, что ударная волна, обычно такая устойчивая, долго не затухающая, здесь, в условиях коллективных взаимодействий, подвержена неустойчивости, способна расплываться, «угасать», даже опрокидываться подобно морскому валу, когда над ним вырастает пенный гребень, загибающийся вперед, а затем падающий к подножию водяного холма. Но, умирая, она передает свою мощь частицам, переводит их потоки, коллективные смещения в беспорядочную суету. На эту особенность обратил внимание академик Е. К. Завойский. Ведь хаотизация плазмы не что иное, как ее разогревание!
В то же время действие сверхбыстрой ударной волны настолько скоротечно, что, задав электронам и ионам хорошую «встряску», разгорячив их, оно не успеет разрушить облачко, хотя и вызовет в нем мимолетные неустойчивости. Именно так — мгновенными мощными импульсами магнитного и электрического поля — в лаборатории Завойского было осуществлено турбулентное нагревание плазмы. Температура ядер поднималась до 30 миллионов градусов, а электронов — до 2 миллиардов!
В наши дни четвертое состояние вещества подвергнуто тщательному теоретическому анализу. Основой расчетов здесь служит знаменитое «уравнение Власова», названное по имени советского ученого, профессора МГУ. В изучении коллективных взаимодействий и неустойчивостей большая заслуга принадлежит харьковчанам Я. Б. Файнбергу и его коллегам.
Интересно: один из двух главных эффектов, к которым сводятся почти все виды неустойчивостей (а их около двадцати), был открыт еще в 1934 году молодым аспирантом профессора С. И. Вавилова Павлом Черенковым. Речь идет об особом свечении, которое испускал электрон, пронизывая какую-то среду.
И. Е. Тамм и И. М. Франк подметили, что скорость электрона при этом превосходила световую.
Разумеется, не в пустоте, а именно в той среде, какую использовал Черенков. За эти исследования Черенков, Тамм и Франк удостоены Нобелевской премии.
Свет в любом твердом, жидком и газообразном (прозрачном) теле распространяется медленнее, чем в абсолютном вакууме. Скажем, в воде он сбавляет свою скорость на четверть. Между тем весьма энергичные электроны в той же среде способны двигаться заметно быстрее: их «темп» порой лишь на десятую долю меньше, чем у того же света в пустоте. И если в вакууме ни одна частица не способна нестись наравне с фотоном, то здесь электрон берет реванш.
Потому-то он и порождает электромагнитные волны, даже если двигается равномерно и прямолинейно. (В других случаях такая возможность исключена. Скажем, в пустоте электрон излучает кванты только тогда, когда он меняет скорость или направление.)
Ситуация напоминает полет артиллерийского снаряда со сверхзвуковой скоростью. Фронт звуковых волн от него имеет форму конуса: сбоку он схож с «усами», разбегающимися по реке от носа катера.
Неспроста мины (реактивные самолеты, ракеты тоже) «воют». По аналогии с ними черенковские электроны получили прозвище «поющих». Кстати, это электромагнитное «бельканто» тоже принимает коническую форму — наподобие светящегося колокола.
Излучение Вавилова — Черенкова легко видеть невооруженным глазом: вода, служащая замедлителем в ядерных реакторах, пронизывается потоками быстрых бета-частиц и вся охвачена голубоватым сиянием.
Плазма несравненно «жиже», чем вода и даже воздух. Тем не менее и в ней проявляется описанный эффект. Излучение быстрых электронов возбуждает в ней колебания, коллективные движения. Изучая этот интересный механизм, Я. Б. Файнберг выяснил природу многих неустойчивостей и наиболее благоприятные условия, в которых они возникают при взаимодействии электронных и ионных пучков с плазмой в магнитном поле. Он подсказал, как их преодолевать, а при случае — использовать.
«Современный уровень термоядерных исследований, — пишут советские ученые И. Н. Головин, Б. Б. Кадомцев и В. Т. Толок в сборнике „Советская атомная наука и техника“, выпущенном к 50-летию Октября, — можно иллюстрировать следующими результатами: на установках „Токамак“ при плотности плазмы 1013 см−3 (10 триллионов частиц в кубическом сантиметре. — Л. Б.) в объеме нескольких сотен литров удается повысить температуру ионов до 1 миллиона градусов Цельсия при времени жизни в несколько миллисекунд. На других установках более высокие температуры и плотность одновременно удавалось до сих пор получать лишь на более короткие промежутки времени, а температуру в сотни миллионов и даже миллиарды градусов и время удержания плазмы порядка секунды — только при очень низкой плотности плазмы».
В одних случаях удалось перешагнуть температурный рубеж, за которым начинается термоядерная реакция, в других увеличить плотность ионно-электронного сгустка и срок его жизни или заметно удлинить быстротечный век плазмы. Но пока ни в одной лаборатории мира еще не научились получать плазму с необходимой концентрацией, энергией и устойчивостью — не порознь, а одновременно. И все же достигнутые результаты настолько значительны, что вселяют уверенность в окончательном успехе.
Впрочем, исследования в области термоядерного синтеза уже принесли плоды — в иных областях обширной нивы знаний. В 1967 году группой ученых и инженеров под руководством академика В. А. Кириллина и члена-корреспондента АН СССР А. Е. Шейндлина пущен опытный магнитогидродинамический генератор. В нем тепловая энергия горючего газа преобразуется прямо в электрическую: ток снимается электродами, введенными в струю пламени (плазма!), которая пронизывает магнитное поле. Со своей стороны, другие науки идут на подмогу термоядерникам.
В 1966 году присуждена Ленинская премия академику В. Л. Гинзбургу, членам-корреспондентам АН СССР А. А. Абрикосову и Л. П. Горькову за работу но сверхпроводящим сплавам, которая во всем мире известна как теория ГЛАГ (Гинзбурга — Ландау — Абрикосова — Горькова; работа академика Л. Д. Ландау отмечена Ленинской и Нобелевской премиями в 1962 году).
Идеи и расчеты советских ученых стали существенным подспорьем для тех, кто занят созданием сверхмощных магнитов с малой затратой электроэнергии.
Такие установки пригодятся конструкторам термоядерных электростанций.
Покорителям плазмы скоро, видимо, придут на помощь удивительные «магнитные хлопушки», предложенные впервые академиком А. Д. Сахаровым и независимо от него профессором Я. П. Терлецким. Идея вкратце заключается в следующем.
Представьте металлический стакан, в котором создано магнитное поле и который снаружи обложен взрывчаткой. Когда заряд детонирует, стенки полого цилиндра съеживаются, будто рука сжимается в кулак. Они увлекают за собой и магнитные силовые линии, мгновенно сгущая их в плотный пучок. Таким путем ученым удалось получить кратковременные магнитные поля рекордной, просто чудовищной мощности — 25 миллионов гаусс! Это в десятки и сотни раз выше, чем получали исследователи любыми иными способами, причем на более дорогих установках. Если бы обмотка обладала сверхпроводимостью, то сконцентрированное поле сохранялось бы сколь угодно долго.
В 1959 году выяснилось, что аналогичные работы начались и в США, затем в Италии и многих иных странах. Недавно в Риме состоялась международная конференция, посвященная этим вопросам. Проблеме импульсных магнитных полей уделил внимание президент АН СССР М. В. Келдыш в своем докладе на XXIII съезде КПСС.
Не исключено, что благодаря открытию Сахарова — Терлецкого удастся добиться прогресса не только в физике плазмы, но и в ускорительной технике, достигнуть энергий, которые пока недосягаемы для самых мощных машин, разгоняющих элементарные частицы.
Раскованным Прометеем назвал атом французский физик Поль Ланжевен, друг и учитель Фредерика Жолио-Кюри. Пожалуй, было бы точнее сравнить с мифическим титаном именно ученого, который выпытал у природы тайну ядерного огнива и поплатился за это.
Подобно орлу, терзавшему живого Прометея, казнит ученого совесть за то, что не смог уберечь страшную силу атома от рук, уничтоживших Хиросиму и Нагасаки. Еще мучают его опасения за судьбу атомного трута и кресала, врученных человеку…
Прекрасная античная легенда повествует о том, как Геркулес, сильнейший из людей, освободил Прометея, разбив своей палицей его оковы и вырвав из груди стальное острие, которым титан был пригвожден к скале. И уж если сравнивать атом с кем-то из мифических героев, то разве не Геркулесом суждено ему быть? Геркулесом, который прибегал к своей могучей палице, только когда уничтожал злых чудищ.
Геркулесом, который совершил столько подвигов во имя человека. Разве советский атом не начал эру мирной ядерной энергетики?
…В Олимпии на высоком подножии стоял многоколонный беломраморный храм. А внутри находилась ля статуя высотой 17 метров, изваянная Фидием — величайшим скульптором Древней Греции. Она изображала величественного старца с посохом в руке, сидящего на троне, — громовержца Зевса, царя всех богов и людей. Того самого, кто в ярости так жестоко отомстил Прометею, похитившему у неба огонь, чтобы передать его людям. Того самого, кто каждый день посылал своего орла выклевывать печень непокорному титану, — изображение жестокой птицы красовалось на рукояти Зевсова жезла. Одним из семи чудес света прослыла огромная фигура бога.
А небольшая статуя Геркулеса, созданная Лисиппом, не была чудом света. Но так уж получилось, что каменный громовержец погиб при пожаре. Творение же Лисиппа сохранилось до наших дней.
Атом достоин стать новым чудом света, но ему не подходит судьба громовержца. Ему не нужна гневная эпитафия истории на обломках новых Хиросим, среди новых чудовищных гекатомб. Неисчерпаемый, он должен принести и принесет прогресс, счастье, мир.
В этом убеждены советские люди, строящие коммунизм. Мы знаем: Прометей будет раскован, если широко распахнуть двери перед дружелюбной силой новоявленного Геркулеса — самой революционной, по выражению Эйнштейна, за все время с тех пор, как человечество овладело огнем.