…Подчинить себе весь атом, подчинить его своей воле, воле торжествующего человека, превращающего все грозные и вредные силы природы в полезные. Мы хотим всю природу, всю менделеевскую таблицу элементов положить к ногам трудящегося человечества… Вот смысл и задача нашей работы.
28 марта 1964 года заходила ходуном почва Аляски. На месте города Анкориджа остались руины, оползни да огромные трещины-рвы, зияющие в искореженном асфальте. Десятиметровые водяные валы, вздыбленные над морской гладью подземными толчками, со скоростью реактивного самолета ринулись на тихоокеанское побережье США, сокрушая порты…
У всех свежа в памяти и ташкентская катастрофа, разразившаяся в 1906 году. А марокканская? А чилийская? А югославская? За последние сто лет от землетрясений погибло свыше полумиллиона человек.
На посетителей Третьяковки неизгладимое впечатление производит картина К. П. Брюллова
«Последний день Помпеи». Три древних города были погребены под толстым слоем пепла, когда в 79 году нашей эры Везувий внезапно пробудился от многовекового летаргического сна и, подняв к небу огромный ядовитый султан, низринул на окружающие селения потоки лавы, град камней, тучи дыма и пыли.
История знает и более грандиозные извержения.
Не умея объяснить слепую жестокость природы, люди усматривали в этом сознательное злое начало, мстительную игру разгневанных сверхъестественных сил. Непостижимое облекалось в плоть и кровь религиозных образов.
Один из мифов гласит: при дележе вселенной между богами подводное царство досталось Нептуну, подземное — Плутону. У входа в свои владения сумрачный хозяин преисподней поставил Цербера, громадного трехглавого пса. Свирепому стражу вменялось в обязанность охранять от простых смертных тайны обиталища теней. И все же нашелся смельчак — им оказался не кто иной, как Геркулес, — который укротил страшное чудовище и даже вступил в единоборство с самим Плутоном.
В этой легенде явно сквозят мечты о покорении могущественных земных стихий.
Минули тысячелетия. Миллионоверстые трассы проложены межпланетными кораблями, давно уже шагнувшими из преддверия вселенной в ее заповедные звездные края. А как глубоко проникли созданные людьми зонды в не менее загадочный мир, что лежит у нас прямо под ногами? Максимум на семь-восемь километров! «Далекое космическое пространство известно нам в некоторых отношениях даже лучше, чем недра Земли», — свидетельствует В. В. Белоусов, председатель Междуведомственного геофизического комитета при Президиуме АН СССР.
Между тем, витая в облаках, обживая небо, человек все еще подобен легендарному Антею, который быстро слабел, оторвавшись от своей матери Геи, зато тотчас восстанавливал силы, как только вновь прикасался к ней, к той самой богине, чье имя слышится в слове «геология».
Мрачное царство Плутона не только средоточие разрушительных стихий. Это вместилище минеральных и органических ресурсов, жизненно важных для общества, для техники. Без них мертвы химия, металлургия, энергетика. Без топлива не запустить ни ракету, ни ядерный реактор, без сплавов и пластмасс они вообще не появятся на свет. И если узбекская столица в короткий срок залечила тяжелые раны, нанесенные ей неожиданным буйством природы, и становится еще краше, чем раньше, то своим возрождением она в немалой степени обязана щедрым дарам Земли, без которых не появилась бы столь мощная строительная индустрия, как у нас.
Век каменный. Золотой. Бронзовый. Железный.
Век стали и полимеров. Целые эпохи названы именем материалов, определивших технический уровень той или иной цивилизации!
Со временем, когда верхние, наиболее доступные этажи природной кладовой оказались опустошенными, добытчикам ничего не осталось, как взяться за нижние. Только вот где они, эти «подвалы»?
Шарить вслепую? Геология не могла позволить себе столь дорогостоящую роскошь, не имела на нее права. А чтобы исследовать методично, планомерно, целеустремленно, требовался теоретический компас.
Такая теория, разъясняет член-корреспондент АН СССР В. В. Белоусов, должна базироваться на знании условий, при которых возникают месторождения.
Многие полезные ископаемые, например руды металлов, кристаллизуются либо непосредственно из расплавленной магмы, застывающей в земных глубинах, либо из ее «выделений» — паров или же горячих водных растворов, устремляющихся вверх по трещинам и разломам.
Но те же или приблизительно те же физико-химические процессы протекают и при вулканических извержениях!
Исследования по современному вулканизму начались у нас и получили глубокое развитие исключительно в советский период — главным образом в работах А. Н. Заварицкого, В. И. Влодавца и других наших ученых. На Камчатке создан специальный Институт вулканологии. В 1957 году издан каталог действующих вулканов СССР.
В советские же годы организована единая сеть сейсмических станций, составлена карта, где отражена наиболее вероятная сила землетрясений, возможных в той или иной области Союза. Она выявила «подозрительные» зоны, где должно вестись особое антисейсмическое строительство и где геофизики обязаны быть всегда начеку.
На образование и накопление ценных минералов влияет и движение земных пластов, которые могут, скажем, медленно-медленно подниматься или, наоборот, опускаться, коробясь, сминаясь, даже лопаясь, будто вспарываясь по шву. Это основной вид смещений; впервые он во всех подробностях изучен В. В. Белоусовым. В своих исследованиях Владимир Владимирович прибегал и к моделям — в его лаборатории имитировалось, например, возникновение складок и разрывов в коре. Оказывается, массивные глыбы, разделенные трещинами, ведут себя подобно клавишам рояля: одна вздымается, другая погружается, третья остается на месте; сморщивание же обусловлено неторопливым оплыванием гигантской «клавиши» под действием тяготения, сползанием ее «крыши» на соседнюю, более низкую. Так вот: при тех же обстоятельствах, но уже в естественных условиях, в натуральных земных толщах нередко появляются трещины, способные стать удобными резервуарами для приема и хранения нефти, газа, руд.
Нет, горы, равнины, водные бассейны, подстилающие их породы не мертвы! Они живут, прогибаясь под собственной тяжестью, вспучиваясь буграми от неимоверного сжатия, раскалываясь и трепеща в чудовищных спазмах…
Но ведь те же или приблизительно те же тектонические процессы привели к ташкентской драме!
Сказанное не столько иллюстрирует тривиальную мудрость: мол, добрые и злые начала в природе слились нераздельно, — сколько подчеркивает тесную связь, взаимозависимость разнородных, казалось бы, самых несхожих явлений, с какими имеет дело геономия — так В. В. Белоусов впервые предложил назвать весь комплекс современных наук о Земле. И это не просто новая вывеска над старыми исследовательскими цехами. Это призыв к сплочению под общим знаменем, к выработке единой стратегии, к координации разрозненных усилий в международных масштабах; к более тесному взаимодействию на стыках и флангах всех фронтов — математического, физического, химического, биологического, палеонтологического, даже астрономического — в рамках геономических программ; к перевооружению на основе электронно-вычислительной, радиолокационной, ядерной, ракетной, авиационной, морской (надводной и подводной) техники…
Ну, а поиск полезных ископаемых? Он тоже превратился в сложную научную проблему. В ее решении, помимо геологии, участвуют многие иные области знаний, прежде всего геофизика и геохимия.
Именно геофизические приемы позволяют заглянуть на такую глубину, которая недосягаема для других способов. Наиболее важный из них — сейсмический. Его основоположник — академик Борис Борисович Голицын. Он не только создал теоретическую базу сейсмологии (от греческого слова, означающего «землетрясение»). Сконструированный им электродинамический сейсмограф гораздо более чутко, чем любой из прежних, механических, реагировал на малейшие содрогания почвы. Голицынское изобретение, вошедшее в исследовательскую практику в начале XX века, открыло перед геофизикой новые возможности, привело ко многим замечательным находкам.
В 1909 году серб Андрие Мохоровичич обнаружил, что колебания, вызванные землетрясением на Балканах, распространяются в веществе нашей планеты с неодинаковой скоростью. Было похоже, что они преломляются и отражаются на глубине в несколько десятков километров. Значит, ниже этого уровня вещество Земли имеет иные свойства, чем выше его?
Позднее другие исследователи подтвердили: да, подобные скачкообразные изменения наблюдаются повсеместно, а не только «под звездами балканскими».
Так в геофизический лексикон вошло понятие «граница Мохоровичича». Выше «раздела Мохо» (некоторую фамильярность такого терминологического варианта искупает его краткость) находится земная кора, а ниже расположен намного более мощный, толщиной около 3000 километров, сферический слой, названный мантией, — он окутывает собою ядро под стать яичному белку, охватывающему желток (кстати, такая аналогия дает некоторое представление об относительных размерах земной сердцевины и ее оболочки). В тех же масштабах кора оказалась бы гораздо тоньше скорлупы.
Сейсмограф стал эффективнейшим дальнобойным орудием в руках геофизиков. Именно он рассказал о том, что существует земное ядро и, более того, что в нем заключено второе, внутреннее; что мантия тоже неоднородна и разделена на слои (один из них назван именем Голицына). Что касается коры, то детальное изучение ее структуры оказалось возможным лишь после того, как родилось — опять-таки в нашей стране! — глубинное сейсмическое зондирование. Его методику разработал академик Г. А. Гамбурцев. Состоит она вот в чем.
Проводится взрыв, имитирующий землетрясение. Волны же, вызванные им, регистрируются не одиночными приборами, а целой их системой. В нее входят десятки чувствительнейших приемников, расположенных недалеко друг от друга; причем самописцы, соединенные с ними, вычерчивают каждый свою зигзагообразную линию не порознь, а на одной общей ленте — параллельными рядами. При такой «фронтальной инспекции» прослеживаются более тонкие особенности и различия в свойствах пластов. Случайные же отклонения — «шумы», которые на одиночной сейсмограмме легко посчитать за сигналы, несущие какой-то определенный смысл, — здесь, при сравнении с соседними кривыми, сразу же бросаются в глаза и никого уже не вводят в заблуждение. Точность измерений и их анализа возрастает. Гамбурцевский метод быстро завоевал мировую известность. А исследования, выполненные с его помощью у нас в Казахстане, Средней Азии, на Кавказе, на Дальнем Востоке, на Русской платформе, по словам В. В. Белоусова, «положили начало реальному пониманию глубинного строения земной коры».
Сейчас 60 процентов всего объема геофизических работ падает на долю сейсморазведки. Применяются главным образом две ее разновидности. Первая регистрирует волны, преломленные в слоистой неоднородной среде; другая — отраженные, отхлынувшие от каждой границы раздела (они зачастую слабее, тем не менее четко прорисовывают разрез участка, «прощупываемого» искусственным землетрясением). Основным является скорее второй вариант. Патент на него — на «способ акустического исследования земных напластований путем звуковых отражений» — получен еще в 1923 году советским ученым В. С. Воюцким. Правда, в то время американцы, как недавно выяснилось, тоже приступили к аналогичным полевым экспериментам со взрывами, но они прослушивали не отраженные, а преломленные колебания. Фирмы соблюдали строжайшую конспирацию, стремясь не выдать своего секрета. Между тем в далекой России уже овладевали другим, весьма эффективным приемом.
В 1962 году сейсморазведку применяли у нас 850 из 1200 геологических партий, занятых поисками нефти и газа. Сегодня в стране вместе с сейсмографами насчитывается 15 тысяч всевозможных геофизических приборов.
Геофизика располагает и многими иными методами, но все они косвенные. А хотелось бы непосредственно увидеть, потрогать, что ли, проанализировать само глубинное вещество, извлеченное с разных горизонтов, особенно из-под уровня Мохо.
Впрочем, постойте-ка… Разве вулканический прах, захоронивший Помпею, не дает представления о том, чем «вымощен ад»? Разве величественный султан Везувия не «исчадие ада», которое легко подвергнуть лабораторной экспертизе? Эти выбросы, пройдя через горнило физико-химических превращений, становятся уже далеко не теми, какими они были там, внизу, в раскаленном чреве горы.
Реки лавы, вытекающие из вулканических жерл, вроде бы наталкивают на мысль, что Материки, как и океанические котловины, подобны плотам, плавающим на море расплавленной магмы. Ведь там, откуда изрыгаются огненные потоки, сущее «адское пекло»: верхняя часть мантии раскалена до 1000–1500 градусов, а нижняя, на границе с ядром, — до 3000–4000! При такой температуре силикатные породы, из которых, по-видимому, сложена оболочка, должны перейти в жидкое, легко подвижное, текучее состояние. Однако сейсмологи готовы засвидетельствовать хоть под присягой: «расплав» тверже камня! По жесткости он не уступит лучшей булатной стали.
Быть может, вещество, стиснутое давлением в тысячи и миллионы атмосфер, господствующим там, приобретает какие-то необычные пластические свойства? На сей счет имеется немало мнений и сомнений. А ведь именно там, в подкоровой зоне, идет борьба титанических сил, способных в мгновение ока превратить покой мирного селения в кошмар Помпеи или Анкориджа…
Не меньше загадок хранит в себе ядро нашей планеты. Какое оно? Жидкое или твердое? Железо — никелевое или иное? Не исключено, что само понятие химического элемента в условиях чудовищного сжатия не поддается традиционной трактовке. По гипотезе члена-корреспондента АН СССР А. Ф. Капустинского, в сильно сдавленных атомах электронные облака деформируются, вырождаются, искажая первозданную картину, соответствующую менделеевской таблице. Да что ядро? Даже кора — во всяком случае, ее нижние ярусы — все еще окутана тайной.
Где же он, Геркулес, который сразился бы с Плутоном?
В 1960 году президент Международного геодезического и геофизического союза В. В. Белоусов на конференции в Хельсинки выдвинул на обсуждение комплексную исследовательскую программу, рассчитанную на сотрудничество многих стран, — «Верхняя мантия и ее влияние на развитие земной коры». В осуществлении глобального проекта участвуют СССР, ГДР, Чехословакия, США, Япония — всего свыше 60 государств.
25 августа 1961 года на расширенном заседании коллегии Министерства геологии и охраны недр СССР были рассмотрены предложения ученых о закладке пяти уникальных, беспрецедентных в мировой практике буровых скважин, глубиной до 15 километров каждая. Вот уж буквально семимильные шаги в царство Плутона! Пункты выбраны — в Карелии, Азербайджане, северном Прикаспии, на Урале, на Курилах — с таким расчетом, чтобы по пяти характерным разрезам получить наиболее полную информацию о составе и структуре всей земной коры.
Наружная пленка планеты, облекающая мантию, выглядит как слоеный пирог. Снизу — плотный базальтовый ковер. На нем покоится толща более легких гранитов и им подобных образований. А она, в свою очередь, прикрыта сверху рыхлым чехлом осадочных пород — глин, песчаников, известняков, сланцев. Правда, профиль такого «наполеона» не везде трехступенчатый. Граниты, гнейсы и их сородичи, составляющие от половины до трех четвертей континентальных массивов, кое-где (в Карелии, например) выглядывают прямо на поверхность через обширные прорехи в мягком покрове; зато под океаном они отсутствуют вообще: дно там повсюду двойное (осадки и под ними базальт), а не тройное.
Осадочный пласт напоминает губку, насыщенную земными дарами. В том месте, где он особенно мощен, его и пронижет насквозь одна из скважин.
Геологи смогут разведать новые, пока еще недоступные скопления нефти, установить нижние пределы их распространения, выяснить, как образуется жидкое топливо: из минеральных ли веществ — карбидов, воды (точка зрения Д. И. Менделеева) или же из органических остатков (гипотеза М, В. Ломоносова).
Другой бур просверлит карельские граниты — древнейшие в нашей стране, принесет новые сведения об их образовании и эволюции, об их физико-химическом перерождении в гнейсы и, наоборот, о гранитизации различных пород, не исключая осадочных.
«Проблема гранитизации, — считал член-корреспондент АН СССР А. А. Сауков, — одна из наиболее интересных и практически важных в геологии; в последние годы она особенно усиленно обсуждается.
Ведь с гранитом связаны своим происхождением многие ценные полезные ископаемые, в том числе драгоценные камни — изумруды, сапфиры и другие; слюды, керамическое сырье, олово, вольфрам, молибден и так далее».
Третий бур пронзит дряхлый Уральский кряж до самых его корней, поведает еще неслыханные сказы о его богатейших «малахитовых шкатулках», о кладовых, опекаемых бажовской Хозяйкой Медной горы.
Короче говоря, у каждого из пяти маршрутов своя программа — неповторимая, одинаково обширная и захватывающая. Но, пожалуй, особенно интересна она у броска к таинственной мантии. На берегу моря базальтовая подстилка расположена гораздо ближе к дневной поверхности, нежели в иных точках суши; в нее-то и вгрызается бурильное долото своими алмазными челюстями, шаг за шагом подбираясь к рубежу Мохо. Достигнет ли оно заветного Рубикона? Успех зависит главным образом от того, насколько велико расстояние до «финишной ленточки», а оно вполне может оказаться чересчур большим. Между тем каждый лишний километр дается с боем. Нелегко пробиваться через крепчайшие скальные баррикады.
Царство Плутона стерегут надежные Церберы: давления в сотни и тысячи атмосфер, температуры в сотни градусов — в таких условиях даже почвенная влага, очутись она в скважине, моментально обратится в пар, взорвавшись, будто бомба.
Разумеется, советская техника не раз справлялась с ответственнейшими задачами. Наши машины заслужили добрую славу во всем мире (не далее как в 1956 году США и ФРГ закупили советские патенты на конструкции турбобуров). Но сейчас предстоит преодолеть трудности особого рода. Обычная буровая колонна, свинченная из сотен труб одинакового диаметра, даже если она изготовлена из лучшей стали, при длине свыше 10 километров лопнет, не выдержав собственного веса. Если же верхние цилиндрические звенья сделать толще нижних, то установка выдюжит, однако она будет настолько тяжелой, что для нее придется придумывать особые подъемники.
Можно, правда, использовать трубы из титана. При той же прочности они гораздо легче стальных. Мало того: с их помощью удалось бы добраться до большей глубины — в целых восемнадцать километров! Увы, металл этот пока еще дороговат. Нужны новые материалы, новые конструкции, новые технологические приемы.
Проблема грандиозна — под стать запуску космических зондов. Ею заняты у нас десятки научных учреждений.
Океаническая кора намного, местами чуть ли не в десять раз, тоньше, чем материковая, и в отдельных районах имеет пятикилометровую толщину — всего-навсего. Правда, до самого дна еще несколько километров воды, но ведь Нептуново царство в отличие от Плутонова не оказывает никакого сопротивления породоразрушающему инструменту!
Именно такой вариант прорыва к границе Мохо предпочли ученые США. Они превратили бывшую военную баржу в специальную плавучую платформу «Кусе I», смонтировав на ней буровой агрегат. Вскоре они сумели проделать в мягких донных отложениях вертикальную дырку глубиной около 200 метров, дойти до базальтовой подстилки и даже высверлить из нее керн — столбик породы. Один из образцов, добытых в апреле 1961 года у западного побережья Мексики, прислан в Академию наук СССР.
Пробные вылазки «Кусса I» рассматривались поначалу как генеральная репетиция перед скорой премьерой — после них намечалось сконструировать усовершенствованное судно «Кусе II» с мощным, высокоскоростным турбобуром, которому по зубам неподатливый, даром что последний, заслон на пути к мантии, к такой, казалось бы, близкой — рукой подать!
Но в 1966 году американские журналы сообщили, что из-за технических трудностей осуществление проекта «Мохол» (гибрид имени Мохоровичича и английского слова «хол» — «скважина») откладывается на неопределенный срок. Если же конечная цель и будет со временем достигнута, то результаты этой сверхтрудной затеи ответят лишь на часть вопросов: ведь океаническое ложе лишено гранитного массива!
Проходку всех слоев обеспечит именно континентальное бурение.
Американская программа, бесспорно, по-своему интересна, но только в сочетании с советской она сможет нарисовать наиболее полную картину.
Одна из проблем, стоящих перед «Мохолом», — выбрать самую мелкую, самую тихую «заводь», где базальтовая перегородка была бы к тому же самой тонкой. А как сыскать ее на бескрайней шири Тихого океана, которую облюбовали американцы для своих экспериментов?
«Дно морей земных мы знаем хуже, чем поверхность лунных» — эту крылатую фразу, сказанную пятнадцать лет назад Ф. Шепардом в книге «Геология моря», недавно повторил в Москве на II Международном океанографическом конгрессе участник экспедиции «Кусса I» доктор Роджер Ревелл, директор Океанографического института Скриппса (США).
«Дно океана становится видимым», — заявил в 1966 году академик Д. И. Щербаков корреспонденту советского популярного журнала «Наука и жизнь».
Дмитрий Иванович говорил о совершенно новой, первой в мире карте, изображающей рельеф тихоокеанского ложа, которая составлена у нас, в Институте океанологии АН СССР, коллективом молодых ученых во главе с геологом Глебом Борисовичем Удинцевым.
Даже при беглом взгляде на обычную физическую карту сразу же бросается в глаза контраст в изображении суши и моря.
Голубые пятна огромных, чуть ли не с Европу, акваторий изрезаны отнюдь не по-европейски: они уныло однородны, будто изображают не дно с его вычурным рельефом, а гладкую крышку стола! Да и окантовывающие их тонкие линии, проходящие по отметкам одинаковых глубин, — изобаты менее узорчаты, примитивней по конфигурации, нежели аналогичные горизонтали (изогипсы), которыми соединяются пункты равных высот на континентах и островах.
Простота эта, несомненно, иллюзорная. Она не соответствует реальной, куда более сложной действительности. Оно и понятно: «геодезическая съемка» местности, скрытой под толщей воды, ведется вслепую, с помощью эхолотов, причем не где и когда угодно, а лишь вдоль корабельных трасс, к тому же специальными экспедициями. Там же, где нет промеров, пробелы восполняются путем геометрической интерполяции: по нескольким редким точкам проводят плавную непрерывную кривую, догадываясь иной раз, как она должна идти в промежутках. Такой подход к построению карт основан на допущении: поверхность дна между отдельными ее отметками изменяется равномерно. Однако недавние исследования опровергли это широко распространенное мнение. О том, что оно ложно, еще раньше знал и говорил контр-адмирал советского флота профессор В. А. Снежинский.
Он убеждал в необходимости использовать дополнительную информацию — геологическую, геофизическую, океанографическую. Идеи Снежинского нашли свое блистательное развитие и воплощение в работах Г. Б. Удинцева и его группы.
С почти фанатичной тщательностью эти люди годами собирали по крупицам материалы всех отечественных и зарубежных экспедиций за последние сто лет, изучили сотни эхограмм, донных профилей, содержащих миллионы, десятки миллионов глубиномерных отметок. Самые достоверные из них густой россыпью крапинок нанесены на акваторию Тихого океана. Уже один этот титанический труд, сконденсировавший разрозненные сведения, принес бы свои плоды, уточнив и дополнив каталог знаний о крупнейшем водохранилище нашей планеты. Но главная заслуга авторов в другом — в качественно иной интерпретации их замечательной «коллекции». Они не ограничились данными эхолотного зондирования, достаточными для геометрической интерполяции; они привлекли всю сумму современных представлений о строении земной коры, прежде всего океанического ложа и примыкающей береговой каймы, о свойствах осадочных пород, о процессах в недрах дна, о различных тектонических явлениях в морских пучинах.
Специальные многомесячные рейсы «Витязя», «Оби», других судов выявили типичность отдельных районов огромного бассейна, которые при всем их своеобразии можно было бы принять за эталон при геоморфологической интерполяции. Уникальная аппаратура, сконструированная сотрудником того же института, Н. Л. Зенкевичем, для съемок в условиях «вечной ночи», на многочисленных портретах запечатлела земной лик, искони прятавшийся под волнами, и помогла ученым как бы прозреть, увидеть, наконец, то, что скрывается за невыразительной аквамариновой пеленой географических атласов.
Анализ этих разносторонних характеристик во всей их совокупности позволил надежно определить наиболее вероятное направление хода и очертание изобат; не механически, по лекалу, а со знанием деталей заполнить «вакуум неизвестности». Подводный ландшафт действительно оказался не менее сложным, чем «сухопутный».
«Это самая лучшая и исключительно полезная карта, и я постараюсь сделать ее доступной для всех заинтересованных в ней ученых» — такой отзыв поступил из-за рубежа от Дж. Ходжсона, возглавляющего ассоциацию сейсмологии Международного геодезического и геофизического союза.
Профессор морской геологии Скриппсовского океанографического института Р. Фишер заявил: «Это подлинный вклад в развитие исследований Тихого океана и дружеский шаг со стороны советских ученых, сделавших свои результаты общим достоянием».
Вот те, кому адресованы многочисленные восторженные отклики специалистов: Г. Б. Удинцев, В. Ф. Канаев, Н. Л. Зенкевич, Л. Я. Буданова, Н. А. Марова, Г. В. Агапова, Л. К. Затонский (Институт океанологии АН СССР). А недавно советскими учеными созданы карты дна Атлантического и Индийского океанов.
На страницах популярных журналов уже запестрело удивительное зрелище обнаженной планеты. Как будто сказочный исполин сбросил с нее жидкий балахон. И сразу же изумленному читательскому взору представилась фантастическая картина, не менее впечатляющая, чем лунный глобус. Вместо зеркальной глади — недвижная зыбь холмистых равнин. Глубокие шрамы крутостенных ущелий — «желобов», их всего тридцать, из них три впервые открыты нашими учеными. Как на ладони, видна горная цепь с шипами пиков, опоясывающая Землю через все ее акватории (в «сухом варианте» они превратились в территории) и по протяженности (60 тысяч километров!) затыкающая «за этот пояс» Анды с Кордильерами и Гималаи с Тянь-Шанем в придачу. Вот и хребет Ломоносова, идущий через Северный полюс и связывающий Азию с Америкой, рядом хребет Менделеева — крупнейшие географические открытия XX века, сделанные советскими учеными. А здесь, на Гавайских островах, где американцы планируют осуществить проект «Мохол», расположен грандиознейший скальный конус, который посрамит даже Чомолунгму (Эверест)!
Да, потухший вулкан Мауна-Кеа, едва выставляющий свое остроконечное темя над «мокрой» планетой, теперь, если считать от подошвы до «шапки», почти на целый километр выше, чем поставленный с ним «на одну доску» самый долговязый конек «крыши мира» — Гималаев…
Впрочем, не будем лишать планету круто посоленного «бульона», которому мы, люди, как и прочие живые создания, обязаны своим появлением на свет и который кормит нас, поит, хотя иногда, разволновавшись, и сам заглатывает кое-кого из представителей сухопутной фауны.
Шутки шутками, а океан не только отгораживает человека от своего дна, откуда всего шаг до мантии и где у самой поверхности немало полезных ископаемых; он связывает континенты; он становится уже сегодня и в еще большей степени будет завтра источником пищи, пресной воды, промышленного и энергетического сырья.
В 1964 году Ленинской премией отмечена книга В. П. Зенковича «Основы учения о развитии морских берегов», о которой один берлинский, журнал отозвался так: «Исходя из принципиально новой постановки вопроса, на основе громадного материала наблюдений Зенкович создал гармоническую теорию…
Требовалась незаурядная энергия и творческая смелость, чтобы преодолеть мертвую точку, на которой застыли исследования берегов после выхода в свет монографии Джонсона (имеется в виду труд американца Д. Джонсона „Береговые процессы“), пересмотреть устаревшие взгляды, внедрить новую методику и технику, дать решение проблем, которые еще недавно не были даже сформулированы…»
Именно у нас впервые составлены карты количественного распределения жизни не только в отечественных морях, но также в водах Антарктики, Тихого и Индийского океанов. «Наиболее блестящая страница нашей океанологии». — так охарактеризовал эти исследования А. П. Виноградов, академик-секретарь отделения наук о Земле.
Французский океанографический институт свою высшую награду — медаль Альберта Монакского — присудил члену-корреспонденту АН СССР Л. А. Зенкевичу (труд того же автора «Биология морей СССР» удостоен Ленинской премии). Таких примеров можно привести немало. Но и сказанного достаточно, чтобы получить некоторое представление о том, в каких масштабах изучают наши исследователи голубую целину — богатейший, перспективнейший край!
И в освоении этих ресурсов, в борьбе с непокорной стихией, как и в дальнейших бросках к разделу Мохо, сыграют далеко не последнюю роль советские карты подводного царства. «Они помогут геологам открывать залежи полезных ископаемых, — говорил академик Д. И. Щербаков, — а мореплавателям… более точно и просто определять свое местонахождение в открытом океане, рыбакам находить скопления донных рыб (определенные породы рыб, как правило, придерживаются определенных форм рельефа).
Благодаря новым картам мы делаем важный шаг к началу решения эпохальной научной задачи — проникновению в „антикосмос“ — глубинные слои нашей планеты, поскольку становятся видимыми ближайшие пути к лежащей под земной корой таинственной верхней мантии».
Недавно флагман нашей океанографической армады «Витязь» в осуществление «Проекта верхней мантии» обследовал подводный Срединно-Индоокеанский хребет. И обнаружил на стенках его ущелий обнажения ультраосновных пород — тех самых, из которых сложена загадочная твердь по ту сторону разрыва Мохо! Образцы, извлеченные «Витязем», подверглись анализу. Да, они оказались эмигрантами из подкорковой зоны. Исторгнутые оттуда, они внедрились в вышележащий пласт и даже выглянули кое-где наружу.
Однако, испытывая многолетнее воздействие новой окружающей среды, они, видимо, претерпели радикальные физико-химические изменения. Можно ли этих «отщепенцев» признать «полномочными представителями» того удивительного, еще никем не виданного вещества? Или же они переродились, утратили его характерные черты? Ответ принесет сверхглубинное бурение. Оно позволит заполнить «немую карту» — анатомическую схему земной коры и верхней мантии, нарисованную сейсмологами, внести в нее, пока еще «бесплотную», точные сведения о минеральном составе слоев.
Древние мифотворцы послали Геркулеса к вратам преисподней, наделив его предварительно нечеловеческой силой и смелостью. Персонажи более свежих фантастических произведений, наведываясь в гости к Плутону на борту геобатискафов, тоже отличались незаурядной отвагой; бицепсы же супермена им были ни к чему: могучие корабли-кроты под командованием своих капитанов легко выполняли самую тяжелую физическую работу.
Ученые нашего времени думают о создании такой машины, которая сама, без людей, но, понятно, по их директивам, под их контролем сверху, отправится на разведку подземного мира. Сердцем мощного и умного агрегата явится ядерный реактор. Раскаленный до тысячи градусов или более, он будет проплавлять горные породы и продавливать их собственной тяжестью, оставляя над собой колодец-шурф. Погружаясь все глубже и глубже, такой автономный атомный снаряд рано или поздно «прожжет» и базальтовую броню, которой забаррикадирована мантия. А потом?
Потом, видимо, продолжит экспедицию к ядру планеты, посылая отчеты в виде сигналов, как автоматическая станция «Луна» или «Марс».
Вот он, спутник антикосмоса, геобатискаф фантастов, Геркулес эллинских легенд, который сразится с Плутоном во всеоружии современной техники!
Утопия?
Проникновение в недра атома открыло новые возможности и перспективы в покорении недр земных.
В главе «Демобилизованный Геркулес» рассказывалось о ядернофизическом каротаже. По излучению естественных радиоизотопов, которое одними горными породами испускается, а другими задерживается, также отыскиваются полезные ископаемые, зачастую прямо с борта самолета. Добавляя к песку, глине, граниту меченые атомы, упрятанные в стеклянную пудру, определяют, как быстро размывается морской берег или возникают наносы в дельтах рек.
Еще в 1902 году Пьер Кюри подал мысль: скопище радиоизотопов, вкрапленных в камень и распадающихся с постоянной скоростью, может служить точным «хронометром», запущенным природой миллионы лет назад и теперь показывающим, как стар этот минерал. Но чтобы отладить механизм таких «часов», понадобились напряженные творческие усилия многих 137 ученых, в том числе советских: В. И. Вернадского, В. Г. Хлопина, И. Е. Старика, Э. К. Герлинга, К. А. Ненадкевича и других.
Математический закон радиоактивного распада установлен Э. Резерфордом и Ф. Содди в том же 1902 году. Он описывается одной общей формулой, но в каждом конкретном случае в нее вводятся свои коэффициенты, характерные для данного элемента.
Например, количество урана-238, заключенное в глыбе гранита, убывает ровно наполовину через каждые четыре с половиной миллиарда лет, а урана-235 — через 710 миллионов лет. Зато параллельно в результате того же процесса рождается гелий (альфа-частицы). И еще свинец — конечный продукт превращения. Измерив, сколько к настоящему моменту накопилось дочернего вещества и сколько еще осталось нераспавшегося материнского, легко подсчитать, когда образовалась порода — допустим, когда она выкристаллизовалась из магматического расплава (если, разумеется, с тех пор она больше не подвергалась столь же сильному физико-химическому воздействию окружающей среды, не упускала своих компонентов наружу и не обогащалась ими извне).
В 1962 году доктору химических наук Э. К. Герлингу и академику А. А. Полканову присуждена Ленинская премия за пополнение геохронологического арсенала еще одним, весьма эффективным орудием анализа. В чем его суть?
У калия, а он распространеннее урана, есть изотоп с массовым числом сорок. С периодом полураспада 1 миллиард 300 миллионов лет он превращается в аргон-40 — в инертный газ, который застревает в кристаллической решетке гораздо прочнее, чем гелий.
Обладая такими преимуществами, аргоновый способ не уступает в точности ни гелиевому, ни даже свинцовому, считавшемуся самым надежным.
Сейчас в СССР имеется свыше тридцати лабораторий, которые заполняют графу «возраст» в анкете горных пород и метеоритов. Своими точными данными они помогают выявлять эпохи наиболее интенсивного рудообразования, а затем искать полезные ископаемые в тех районах, где часто попадаются минералы, родословная которых восходит к тому же времени. Известны, например, крупные полиметаллические месторождения редких элементов, приуроченные к слоям вполне определенной давности. Аналогичные методы несколько лет назад помогли геофизикам найти и новые залежи нефти в Башкирии.
Весной 1960 года у нас был создан новый масштаб геологического летосчисления, охвативший всю историю Земли. Он называется абсолютным в отличие от относительного, где отражена лишь очередность эр: сначала была архейская, потом протерозойская, палеозойская, мезозойская, наконец, наступила кайнозойская, продолжающаяся сегодня, — и где нет четких однозначных хронологических зарубок на канве времени. Да, геологический «календарь» еще совсем недавно нельзя было назвать «численником» — в нем отсутствовали строго отмеченные знаменательные даты. Атом дал количественную меру последовательности временных отрезков. Теперь мы знаем, что, к примеру, палеозой (эра древней жизни) начался 570 миллионов лет назад и длился 345 миллионов лет. И что его первый период (кембрийский) тянулся 90 миллионов лет, а последний (пермский) — ровно вдвое меньше. Надо сказать, что советский атомный циферблат достовернее и полнее, нежели тот, что предложен английским ученым А. Холмсом в 1947 году. Передвинуты границы эр и периодов, внесены и другие коррективы.
«Результаты измерения возраста подводят прочный фундамент под построения теоретической и практической геологии, — говорил член-корреспондент АН СССР И. Е. Старик, один из пионеров радиогеохронологии, который еще в довоенные годы вместе с академиками В. И. Вернадским и В. Г. Хлопиным работал в составе комиссии по изучению абсолютного возраста минералов и горных пород, организованной в 1932 году. — Сама геология из описательной науки превращается в точную. Этим она обязана широкому внедрению физических и химических методов».
Удивительные ходики, тикающие внутри холодных и, казалось бы, мертвых камней, — отнюдь не безучастные хроникеры минувшего. Они и среди них прежде всего наши знакомцы — уран, торий, калий-40 — служат вездесущей печкой, прогревающей внутренности Земли. На это обратил внимание еще в 1926 году ирландский ученый Дж. Джоли. Однако более детально проблему радиогенного тепла рассмотрел академик Вернадский. Он пришел к выводу, что энергии, высвобождаемой при радиоактивном распаде, вполне достаточно, чтобы объяснить важнейшие геологические процессы: плавление глубинных пород и превращение их в магму, вулканизм, тектонические движения коры, горообразование, появление океанических чаш и их континентального обрамления.
Одним из первых осознал Вернадский огромное значение радиоизотопов не только в истории планеты, но и общества. В 1922 году, за шестнадцать лет до решающих открытий, положивших начало ядерной энергетике, он произнес пророческие слова: «Недалеко время, когда человек получит в свои руки атомную энергию, такой источник силы, который даст ему возможность строить свою жизнь, как он захочет. Это может случиться в ближайшие годы, может случиться через столетие. Но ясно, что это должно быть. Сумеет ли человек воспользоваться этой силой, направить ее на добро, а не на самоуничтожение? Ученые… должны связать свою работу с лучшей организацией всего человечества».
Еще в 1910 году замечательный ученый пытался привлечь внимание правительства к проблеме радиоактивности, к ее практическому аспекту: «Ни одно государство и общество не может относиться безразлично, как, каким путем, кем и когда будут использованы и изучены находящиеся в его владениях источники лучистой энергии».
Вернадский организовал первые экспедиции для поиска урановых руд и лично принял в них участие.
Царский кабинет «отблагодарил» радетеля отечественной радиохимии. В 1911 году Вернадский вместе с другими жертвами чиновничьего произвола был вынужден покинуть стены Московского университета.
О чем думал изгнанник, идучи в последний раз по московским мостовым? По мостовым, брусчатку для которых поставляли шведские фирмы? Не о том ли, как убога и как обильна матушка Русь?
Его ждал Петербург, заводы которого, равно как и корабли Балтийской эскадры, жгли в своих топках кардиффский антрацит. «По балтическим волнам» в гости к нам действительно прибывали все флаги: из чужеземных трюмов выгружалось сырье, которое наверняка лежало в достатке где-нибудь тут же, рядом, — в Прибалтике, на Кольском полуострове…
Для производства серной кислоты в северную столицу везли серный колчедан из Португалии, полевой шпат для керамической промышленности — из Швеции. Алунд для абразивных предприятий импортировался из Норвегии, гранат — из Америки, корунд — с Анатолийских берегов, карборунд — из Германии…
Но ученый-патриот верил, что рано или поздно страна сумеет «достигнуть того расцвета и той культурной мощи, какие соответствуют как природным богатствам, нам принадлежащим, так и тем неисчерпаемым живым силам, какие таятся в глубинах нашего народа».
Так писал он в записке «О ближайших задачах Комиссии по изучению производительных сил России». В эту комиссию (КЕПС), учрежденную в 1915 году после настойчивых апелляций к тугодумным попечителям российской науки, вошли академики Б. Б. Голицын, Н. С. Курнаков, А. П. Карпинский и другие инициаторы важного дела. Первым председателем ее избрали В. И. Вернадского.
Академик А. Е. Ферсман, активно сотрудничавший в КЕПС наряду с В. А. Обручевым, Д. Н. Анучиным, Е. С. Федоровым, многими иными, рассказывал, что до Октябрьской революции работа комиссии не могла развернуться. В условиях царизма геология прозябала, деятельность энтузиастов наталкивалась на бесчисленные рогатки. Даже на решение такой исключительно важной проблемы, как освоение вольфрамового месторождения, Академия наук целых два года не могла добиться самых ничтожных ассигнований. Между тем еще в 1913 году русская казна отвалила одним лишь германским банкам 1 миллион 300 тысяч золотых рублей чистоганом за мышьяк, сурьму, висмут, селен, ртуть, другие элементы.
Свергнув в 1917 году самодержавие, народ упразднил частную собственность на землю, объявил содержимое недр общенациональным достоянием. В апреле 1918 года Ленин составил «Набросок плана научно-технических работ», где намечалось «систематическое изучение и обследование производительных сил России», поднимался вопрос об изыскании внутренних сырьевых и топливных ресурсов для промышленности и энергетики. Специальное постановление Совнаркома гарантировало всемерную поддержку академии во всех ее начинаниях, направленных на то, чтобы всколыхнуть огромную, богатейшую страну, дремавшую веками в бездеятельности.
25 января 1922 года Вернадский уже делился с коллегами долгожданной радостью: «Я счастлив сообщить академии, что сотрудникам Радиевого института под руководством В. Г. Хлопина удалось получить из русской руды первые пробы радия».
Наряду с радиевым, платиновым и физико-химическим из КЕПС выделился целый ряд других институтов, среди них географический, почвенный, керамики, а также биогеохимическая лаборатория, которая сейчас превратилась в мощный исследовательский центр — Институт геохимии и аналитической химии имени В. И. Вернадского, возглавляемый академиком А. П. Виноградовым.
Советская геохимическая школа, выпестованная В. И. Вернадским и А. Б. Ферсманом, окончательно сложилась в 30-е годы, но о работах ее представителей мир уже знал гораздо раньше.
«Ведущими властителями научной мысли, положившими начало глубочайшим законам химии Земли, были наш русский академик В. И. Вернадский с его школой и норвежец В. М. Гольдшмидт. На наших глазах выросла биогеохимия. В. И. Вернадский наметил в ней новые звенья между геохимией и медициной, между химией Земли и биологией», — писал академик Ферсман.
«Россия подняла и гордо несет знамя новой науки — геохимии, значение которой еще не осознано», — говорил французский ученый Поль Ланжевен.
До того как сформировалась биогеохимия, в поле зрения естествоиспытателей находились «главным образом отдельные тела, минералы, горные породы, растения и животные, и явления, отдельные стихии — огонь (вулканизм), вода, земля, воздух, в чем наука и достигла, можно сказать, удивительных результатов, но не их соотношения, не та генетическая, вековечная и всегда закономерная связь… между растительным, животным и минеральным царствами». Так характеризовал предшествующий этап в естествознании Василий Васильевич Докучаев, заложивший фундамент физической географии, создавший учение о взаимозависимости между средой и ее обитателями.
До тех пор, пока биология, геохимия, почвоведение действовали сепаратно, изолированно, от их глаз ускользали тонкие эффекты, вскрытые новой, синтетической дисциплиной, которую создала школа Вернадского — Виноградова.
Вот, например, солнечная Армения — благодатный край! Между тем в некоторых ее районах ненормально часты заболевания подагрой. Что за напасть?
Оказывается, поблизости от некоторых рудных месторождений почвы сверх меры обогащаются молибденом, а тот всасывается растениями, попадает в корм скоту. С шашлыком или с помидорами, с «соком кипучим, искрометным» виноградников Аястана или просто водой из-под крана проникает он и в человеческий организм. Собственно, он нам необходим, но в строго определенных, причем ничтожных концентрациях. Здесь же он регулярно поглощается в избытке, вызывая иной раз серьезное недомогание. А ведь речь идет о мизерных, совершенно неощутимых на вкус дополнительных дозах!
Лечение и профилактика подобных эндемических («местных») недугов, а их не так уж и мало, стало возможным благодаря именно биогеохимическим изысканиям. Все шире ассортимент микроудобрений, выпускаемых в СССР. Облагораживающие добавки вносятся и в рацион для скота. Человеческое меню также корректируется, с тем чтобы нейтрализовать зловредный нрав того или иного комплекса природных условий.
Задача значительно облегчилась после того, как у нас составлена карта биогеохимических провинций с их специфическим набором микроэлементов. Над системой такого районирования, осуществленного ныне в масштабах всей страны, много лет трудился профессор В. В. Ковальский. Большой вклад в этот раздел науки внесен латвийскими исследователями, прежде всего видным советским ученым, академиком Я. В. Пейве и действительным членом АН Латвийской ССР Я. М. Берзинем. Первому принадлежат хорошо известные монографии «Биохимия почв», «Микроэлементы и урожай», второму — «Микроэлементы в животноводстве».
В 1964 году Ян Вольдемарович Пейве, Ян Матвеевич Берзинь и Виктор Владиславович Ковальский удостоены Ленинской премии.
«Работы советских ученых вызывают большой интерес за рубежом — в США, ФРГ и особенно в молодых государствах Азии и Африки, которым рано или поздно придется решать задачу интенсификации сельского хозяйства, — заявил в одном из своих интервью Ян Вольдемарович Пейве, возглавляющий ныне Научный совет по проблемам микроэлементов в растениеводстве и животноводстве. — Мы изучали, например, содержание микроэлементов в почвах Республики Мали по просьбе ее правительства.
Доклад о наших исследованиях, сделанный мною на праздновании шестисотлетия Ягеллонского университета в Кракове, тоже привлек внимание многих ученых. Это международное признание лишний раз свидетельствует о том, что мы на правильном пути».
Мы оставили следопытов планеты в момент старта, в ту трудную пору, «когда Россия молодая, в бореньях силы напрягая, мужала». Мужала с гением
Ленина. Когда создавались первые советские институты и лаборатории, писались первые после революции статьи и книги. Разумеется, наши геологи ни тогда, ни потом не были кабинетными учеными, хотя новое открытие России требовало новой, причем титанической теоретической работы. Они отправлялись в дальние нелегкие походы по бескрайним просторам социалистической Родины, где их ждали воистину несметные богатства, колоссальные неиспользованные резервы, так долго лежавшие под спудом.
Всегда на марше… Эти слова были и остались справедливыми по отношению к советской геологии.
Атомный ледокол «Ленин». Десятки специальных морских судов, среди них первоклассные комфортабельные плавучие лаборатории «И. Курчатов», «М. Ломоносов», «Ю. Шокальский», «А. Воейков», «Н. Зубов», «Н. Книпович», «П. Лебедев», «С. Вавилов», «Витязь», «Обь», единственная в мире немагнитная шхуна «Заря», исследовательская подводная лодка «Северянка». Амфибии, сухопутные вездеходы, обычные автомашины, тракторы, бульдозеры — сегодня их более 60 тысяч. 6000 передвижных электростанций. Самоходные ядерные установки. Сотни самолетов и вертолетов. Космические корабли, геофизические ракеты. В первые послереволюционные годы о них и мечтать не могли. А было это не так уж и давно — несколько десятилетий назад…
Коняги и ишаки, верблюды и собаки — вот, пожалуй, и весь «таксомоторный парк» тогдашней геологии.
«Мне все чаще приходится иметь дело с нашими учеными, — делился как-то Максим Горький своими впечатлениями с Константином Фединым. — Удивительные люди! По Уралу, в непроходимых горах, бродят — составляют фантастические коллекции драгоценных камней для Академии наук. Месяцами не видят куска хлеба. Спрашивается — чем живы? Охотой живы, как дикари, да-с. И это, знаете ли, не Калифорния, не золотая лихорадка. Бессребреники, а не добытчики в свой сундук. Гордиться надо таким народом… Был у меня профессор Ферсман. Он только что беседовал по прямому проводу с Лениным о делах Комиссии по улучшению быта ученых. Ленин очень отзывчив и готов помогать. Ферсман заверяет: Ленин за интеллигенцию».
И интеллигенция шла за Лениным.
В 1926 году Александр Евгеньевич отправился на Кольский полуостров, где предсказал богатейшие залежи различных минералов и действительно открыл там их десятки, в том числе крупнейшее в мире месторождение апатитов — лучшего сырья для производства суперфосфата. Правда, и тут объявились скептики: мол, толку от этого мало, все равно разоренная Россия не в силах наладить собственный выпуск фосфорных удобрений, так что лучше по-прежнему импортировать их за валюту. «В скором времени, — вещал один из иностранных оракулов, профессор Крюгель, — развеются в дым гордые надежды Советов на независимость от зарубежной фосфатной базы». Зловещие прорицатели явно недооценивали возможностей новой России, они привыкли мерить их по старинке. Советские ученые предложили, а технологи освоили новый способ переработки апатита и его спутника — нефелина (одна из этих работ в 1957 году удостоена Ленинской премии). Кольские 146 концентраты пользуются сейчас огромным спросом и за границей.
1932-й. Всего 15 лет назад свершилась революция.
В Ленинграде выходит книга «Экспедиции Всесоюзной Академии наук 1931 г.» под редакцией академика Ивана Михайловича Губкина. «Ветер странствий» заговорил цифрами, фактами, обобщениями.
Открытия посыпались лавиной. Каменный уголь на Печоре, в низовьях Лены, на Таймыре, на Камчатке… Горючие сланцы под Ленинградом, в Поволжье, Казахстане, Башкирии… Нефть в волго-уральском районе («Второе Баку»), в Узбекистане, Грузии, Чечено-Ингушетии, даже там, где, казалось бы, уже все разведано, — в Азербайджане. Калий под Соликамском, медь, хром, олово, марганец, алюминий, корунд, асбест в Казахстане. Чуть ли не все элементы периодической системы в Средней Азии, хотя еще совсем недавно господствовала догма, будто здесь нет ничего годного для промышленного использования. Золото на Колыме…
Земля пробудилась ото сна.
В 1914, году отечественные запасы ценного сырья были подсчитаны лишь для четырех химических элементов. И еще для шести предполагалось, что их месторождения вроде бы должны встречаться в некоторых районах. Использовала же царская Россия в своей промышленности 14 элементов — недостающие ввозились из-за границы. В 1932 году в ассортименте веществ, извлекаемых из недр СССР, фигурировало 60 наименований. «Мы стоим на пороге полного подчинения нам всех элементов менделеевской таблицы», — подводил итог А. Е. Ферсман в 1940 году.
«Геологически обследована теперь вся территория Союза, даже полярные острова Северной Земли и Врангеля и высокие нагорья — Памирское и Армянское, — рапортовал юбилейной сессии Академии наук, посвященной 25-летию Октября, Владимир Афанасьевич Обручев, неутомимый искатель, проницательный теоретик. — Советский Союз по обилию и разнообразию полезных ископаемых оказался не уступающим такой крупной и богатой стране, как США, а в некоторых отношениях даже превосходящим ее…
За небольшой период выполнено больше, чем за предшествующие двести лет, с начала исследований при Петре I. Отсталое аграрное государство, вывозившее хлеб, кожи, шерсть, масло и ввозившее машины, металлы и даже уголь, сделалось промышленным, независимым от соседей». И еще: «Если бы Россия осталась монархией или сделалась республикой, но с капиталистическим строем и ее развитие подвигалось бы столь же медленно, как и ранее, — она не выдержала бы нашествия фашистских армий, вооруженных до зубов новейшей техникой. Германия быстро захватила бы всю европейскую часть с Уралом и Кавказом и, используя их естественные ресурсы, поработила бы всю Европу и народы мира… И в далеком будущем историки отметят эти двадцать пять лет существования первого социалистического Советского государства как эпоху особенно быстрого расцвета научных исследований, освобожденных от тормозов и пут старого общества».
Когда был принят наш семилетний план, «Нью-Йорк таймс» устами редактора признавалась, что США чувствуют «дыхание Советского Союза на своих затылках», что русских «отделяют от нас всего лишь два прыжка — они позади нас на какой-нибудь десяток лет в развитии своей производственной мощи».
Прошло всего пять лет, и объем нашей промышленной продукции составил две трети американской, а не половину, как было в 1957 году. Наша страна опередила Соединенные Штаты в добыче железной руды, угля, некоторых других полезных ископаемых; у нас больше производится кокса, цемента, причем темпы прироста у нас выше, чем на Западе. По разведанным запасам угля, нефти, торфа, марганца, меди, цинка, свинца, алюминия, калия СССР занимает первое место в мире.
К началу 1967 года в Советском Союзе выявлено и разведано более 15 тысяч месторождений. На их базе работает свыше 200 крупных горнодобывающих предприятий.
Нефть, газ… Еще долго останутся они наряду с углем опорой энергетики, несмотря на бурный прогресс ядерно-силовой техники. И никогда не утратят своего значения как сырье для химической индустрии.
Добыча нефти за годы Советской власти возросла у нас в 25 раз, а газа — еще больше: даже по сравнению с 1940 годом — в 50 раз!
За последнюю четверть века преобразилась географическая карта нефтегазовых промыслов. До Великой Отечественной войны она давала в основном уточненные сведения по старым, уже известным месторождениям. Совершенно новым дополнением было лишь «Второе Баку». Но даже здесь, в волго-уральском районе, геологов ждали замечательные открытия, благодаря которым в корне изменилось мнение о перспективах этой провинции. Именно здесь выкачивается сейчас 70 процентов всей советской нефти.
Именно отсюда протянулся нефтепровод «Дружба», питающий заводы социалистических стран Европы.
Особенно крупными оказались здесь Ромашкинские залежи «жидкого золота» (в Татарии) — уникальные, крупнейшие по запасам не только в СССР, но и, вероятно, во всем мире. Научно обоснована и практически доказана также нефтегазоносность Западно-Сибирской низменности.
В 1953 году на Оби, под Березовом, где когда-то отбывал ссылку могущественный вельможа Петра I князь Александр Меншиков, загудел первый газовый фонтан. Загудел, подобно стартующей ракете, возвестив пришествие «голубого огня» в поселки и города новой Сибири, к кухонным плитам у к заводским агрегатам. А в 1959 году хлынула мощная струя коричневой маслянистой жидкости из высокодебитной Шаимской скважины.
Все дальше к Тихому океану шагают буровые вышки. Обозначающие их треугольнички все более густой россыпью ложатся на карту не только Западной, но теперь уже и Восточной Сибири. В 1962 году у села Марково, что в Иркутской области, взметнулся черный гейзер нефти, на сей раз восточно-сибирской. И самое примечательное — кембрийской, — она изливалась из осадочных пород, отложившихся еще в первый период палеозойской эры (весь предшествовавший ему отрезок времени, включающий архейскую и протерозойскую эры, часто называют просто докембрием).
Откуда взяться нефти в кембрийских отложениях?
Ведь они возникли в тот период, когда флора и фауна вроде бы находились в зачаточном состоянии, когда жизнь была весьма примитивной, скудной и количественно и качественно. Лишь через десятки и сотни миллионов лет достигла она буйного расцвета, создав благоприятные условия для деятельности той биохимической лаборатории, которая производила жидкое и газообразное горючее. Понятно, почему наибольшее внимание уделялось исследованию кайнозойских отложений. Даже мезозойская нефть явилась для геологов как бы откровением.
Только вот ведь что удивительно: на поверхности Байкала издавна замечали радужные пятна. Нефть!
Увы, обнаружить ее поблизости не удавалось, несмотря на все старания. А может быть, она лежит глубже, чем ее искали? Может, она приурочена к кембрию? Такое предположение высказал лет 35 назад Василий Сенюков. Молодого ученого поддержали И. М. Губкин, В. А. Обручев. Сенюков обратился к наркому тяжелой промышленности Серго Орджоникидзе с просьбой выделить для экспедиции буровой станок, хотя во всей стране их насчитывалось примерно два десятка (сегодня их у нас больше 10 тысяч). Агрегатов не хватало для работы на промыслах, не то что для сомнительных экспериментов.
Орджоникидзе поверил, выдал средства. Сенюков отправился в Якутию, где, как и у Байкала, чрезвычайно распространены кембрийские пласты.
И в 1937 году нашел там то, что искал!
Правда, дебит скважины оказался мизерным — хозяйственного значения он не имел. Скептики торжествовали победу. «В течение тридцати лет, когда на каких-нибудь совещаниях произносили слово „кембрий“, — вспоминает профессор В. М. Сенюков, — все оборачивались ко мне с выражением явной иронии. И вот теперь Марково…»
Находка эта имеет не только практическое, но и большое теоретическое значение.
«Преодоление некоторой пессимистической предубежденности о скудости жизнепроявлений в докембрии, чем пестрит геологическая литература, преодоление некоторого психологического барьера, как оказалось, за последние десятилетия принесло местами обильные новые данные, в корне меняющие наши представления», — говорит член-корреспондент АН СССР А. Г. Вологдин.
Происхождение нефти и происхождение жизни на нашей планете… Обе проблемы тесно переплетаются друг с другом. И марковское открытие проливает на них новый свет.
Другой автор, П. Я. Антропов, прослеживая глубокую взаимосвязь между разнородными на первый взгляд явлениями — между зарождением живых существ, с одной стороны, и мертвых минералов — с другой, предлагает отбросить отжившие постулаты и в теории рудообразования: «Получается парадокс: в геологической истории земной коры докембрий занимает 85 процентов всего времени, и этому огромному периоду пытаются приписать исключительно малую роль в образовании месторождений. Практика сняла оковы, которые сдерживали ее размах».
Действительно: полезные ископаемые найдены там, где раньше их даже не искали, памятуя о том вето, которое было наложено именем науки.
Дискуссии не утихают, но ведь именно в споре выкристаллизовывается истина! Стоит ли говорить, с каким нетерпением ожидаются результаты глубинного бурения земной коры?
Да, именно практика служит критерием истины, и она нередко вносит существенные поправки в теорию.
Но разве не теории обязана она многими своими замечательными достижениями?
Геологу всегда был нужен не только молоток, но и компас.
Констатируя тот факт, что в Сибири и на Дальнем Востоке кое-где уже исчерпаны возможности обнаружить новые руды, размещенные близ поверхности, член-корреспондент АН СССР В. А. Кузнецов отмечает: «Приходится все в большей степени ориентироваться на поиски месторождений закрытого типа, залегающих на глубине. В связи с этим резко возрастает значение научных прогнозов, повышается роль науки, в частности геологической теории образования рудных месторождений».
Советской геологии всегда было свойственно гармоничное сочетание широкого экспериментального поиска с глубокими теоретическими обобщениями.
Еще в 1932 году, в разгар экспедиционной «лихорадки», вышло в свет классическое исследование академика В. А. Обручева «Образование гор и рудных месторождений». Владимир Афанасьевич написал почти три тысячи печатных работ общим объемом более двух тысяч авторских листов — свыше сотни томов! Но он же известен как заядлый путешественник, облазивший горы и ущелья, прошедший пустыни и леса Сибири и Внутренней Азии. Неспроста
Парижская Академия наук присудила ему свою высшую географическую награду — премию имени Чихачева. «В научном творчестве В. А. Обручева отражается развитие всей нашей геологии», — писал академик И. М. Губкин.
А вот как ответил Обручев на приветственные слова по случаю своего 90-летия: «Когда я начинал работать, геологи России насчитывались единицами, а теперь работают уже десятки тысяч[1]… Как ветеран этой армии я могу пожелать ей дальнейшего развития и совершенствования, чтобы доказать всему человечеству, что свободный коммунистический строй государства способствует не только всеобщему благосостоянию, но и безграничному развитию… науки».
Наступление огромного многонационального войска подчинялось продуманной научной стратегии, принципы которой формулировал и сам Владимир
Афанасьевич. Наряду с Обручевым в металлогению, в изучение рудных месторождений, в теорию их происхождения, большой вклад внесли С. С. Смирноз, Ю. А. Билибин, К. И. Сатпаев, А. Н. Заварицкий, А. Г. Бетехтин, X. М. Абдуллаев и многие другие.
Богатейший фактический материал, собранный экспедициями, критический анализ и обобщения, сделанные на его основе, позволили приступить к составлению металлогенических и других специальных карт, на которых зиждется геологический прогноз.
Охотники за кладами получают своеобразный компас, помогающий им выбирать наиболее разумное направление дальнейших поисков, выявлять районы, где весьма вероятна встреча с еще не найденными металлами или их рудами. Понятно, что такие же методы научного предвидения разрабатываются и для всех других полезных ископаемых.
«Чертежи» материков, как, впрочем, и дна океанов, понятно, нужны не только искателям сокровищ. По; этому они нередко представляют собой сложнейший комплекс, куда входят общие и специализированные графические схемы — тектонические, геоморфологические, металлогенические, прогнозные и другие.
В 1940 году коллектив сотрудников под руководством академика Д. В. Наливкина подготовил «Геологическую карту СССР». Тогда разномасштабной съемкой были охвачены две трети нашей необъятной страны. В дальнейшем «белые пятна» постепенно исчезали, и новые данные вместе с уточненными прежними легли на сводную геологическую карту, вышедшую под редакцией Наливкина. Этот труд отмечен Ленинской премией.
В настоящее время Д. В. Наливкин и А. А. Богданов возглавляют подкомиссию Международного геологического конгресса, занятую составлением тектонической карты всего мира. Ее европейский «фрагмент» издан в 1962 году в СССР (руководили работой А. А. Богданов, Н. С. Шатский, Г. Штилле, Ф. Блондель), а евразиатский — в 1965 году (главный редактор А. Л. Яншин). Это будет основа всех основ, фундамент современной геологии. Она послужит опорой и в прогнозировании полезных ископаемых — теперь уже не только в отдельных странах, но и в масштабах всего мира. Особенно большую роль сыграет она в подъеме экономики слаборазвитых государств, где сокровища Земли все еще лежат под спудом, как лежали они мертвым капиталом в дореволюционной России.
Участие наших ученых в этой ответственной работе не случайно. Советские специалисты идут в авангарде мировой геотектоники. Имена Н. С. Шатского, А. Д. Архангельского, А. А. Богданова, А. Л. Яншина, В. А. Обручева, С. В. Обручева, М. В. Муратова, В. В. Белоусова хорошо известны за рубежом.
Создается и всемирная геологическая карта. Ее авторы не только подытожат, не просто сведут воедино новейшие результаты, полученные исследователями-моря и суши, поверхности планеты и ее недр, ее богатств, ее возраста, — произойдет синтез всех современных знаний, который станет новой вехой в геономии, «стратегическим планом» в покорении стихий, в преобразовании планеты.
Деятельность наших ученых принимает поистине глобальный размах. Вспомнить хотя бы их участие в осуществлении международных мероприятий. Исследования Арктики, Антарктиды, Мирового океана. Изучение планеты с борта космических аппаратов. Геологические работы по планам Совета Экономической Взаимопомощи. Помощь слаборазвитым странам.
По просьбе Кубинского института минеральных ресурсов А. Ф. Адамович, В. Д. Чехович и другие наши специалисты провели геологическую съемку провинции Ориенте, где находится главная горнорудная база острова Свободы. Калий-аргоновым методом был определен абсолютный возраст магматических пород. Недавно вышла из печати «Геология Кубы». В подготовке этого труда активное участие принимали ученые СССР.
В северных районах Афганистана советские разведчики недр открыли крупные запасы природного газа, который будет использован как сырье на заводе азотных удобрений и как топливо на тепловой электростанции. Крупные залежи нефти обнаружены в Индии, Пакистане, Сирии, золота и алмазов — в Гвинее. В Ираке открыты месторождения серы и фосфоритов; для Сирии составлена геологическая карта, на территории страны найдены запасы фосфоритов, каменной соли, железной, марганцевой и хромовой руд.
Международное сотрудничество, широкий обмен информацией способствуют прогрессу и самой науки о Земле, скажем, геологии.
«В 1930 году, просматривая образцы пород, привезенных из Монче-тундры, я подметил в них блестки какого-то металла, — вспоминал А. Е. Ферсман. — Это заставило меня в следующем году отправиться туда, и после долгих трудов, многочисленных поисков и разведок мне удалось открыть месторождения Монче-тундры, второго в мире рудника по запасам медно-никелевых руд. Но я должен подчеркнуть, что обратил внимание на блестки потому, что знал о подобных породах с блестками в Норвегии. Я связал таким образом свои наблюдения с результатами других исследований».
Другой пример. Еще в начале 40-х годов академик В. С. Соболев, изучая строение отдельных областей за рубежом (Африка, Индия, Австралия, Бразилия) и у нас (Сибирь), пришел к выводу о тождестве их геологической природы. Но если в платформах Африки и Индии имеются коренные месторождения алмазов (кимберлитовые «трубки взрыва»), то почему бы им не быть и у нас? Скорее всего в Якутии.
Этот прогноз полностью оправдался. В 1949 году на Вилюе были открыты россыпи алмазов, а начиная с 1954 года выявлены уже не россыпи, а богатейшие' коренные месторождения.
На этом, пожалуй, можно было бы поставить точку. Но как тут не упомянуть о новой находке: алмазы выявлены также на Русской платформе — под Воронежем! И как не добавить, что их теперь делают на заводах. Делают из графита, стискивая эту разновидность углерода в специальных прессах, заставляя ее таким путем перестраивать свою кристаллическую решетку в жестких условиях, напоминающих те, что царят в земной мантии: десятки тысяч атмосфер и тысячи градусов. Метод разработан в Институте физики высоких давлений (ИФВД) АН СССР под руководством академика Л. Ф. Верещагина. А на ВДНХ демонстрируется прессовая установка, сконструированная в ИФВД. В ней степень сжатия достигает 100 с лишним тысяч атмосфер, температура — 2500 градусов. Так моделируется режим, господствующий там, за разрывом Мохо.
Нынче умеют получать вещество, крупинки которого способны оставить царапину даже на бриллианте. По твердости они превосходят самого короля кристаллов, слывшего эталоном неподатливости. И по жароустойчивости они тоже впереди. Речь идет о боразоне (B3N3). Человек соорудил молекулярную постройку, до которой не додумалась сама природа, великая мастерица, столь тароватая на выдумки.
Посмотрите на циферблат своих часов. На нем мельчайшим шрифтом напечатано: столько-то камней.
Каких? Рубинов. Опять-таки искусственных! Их применяют также в качестве сердечников для квантовых генераторов и усилителей.
Рубины, изумруды, сапфиры — список рукотворных самоцветов растет год от года. Но и это не все!
Создание искусственных месторождений…
Проблема не только поставлена теоретически, но уже решается на практике.
«Кара-Богаз» по-туркменски означает «Черная пасть». Залив и впрямь, как исполинский зев, заглатывает непрерывно поступающую в него соленую воду моря. Но нещадно палящее солнце испаряет ее, концентрируя раствор. «Котел, где выкипает каспийская вода», — так называл Кара-Богаз-Гол его исследователь академик Н. С. Курнаков, создатель геометрического языка химии — физико-химического анализа.
Зимой, когда этот «чан» остывает, из густого рассола выкристаллизовывается мирабилит, который служит прекрасным сырьем для сернокислотного и щелочного производства. На дне оседает мощный пласт минерала. А летом снова переходит в жидкое состояние.
Если в теплое время перекачать рассол в специально подготовленный котлован и дождаться холодов, в искусственном резервуаре появится слой нужного вещества. Раствор же, плещущийся над осадком, легко переправить с помощью тех же насосов восвояси, обратно в залив. Такой принцип применим ко многим нашим водоемам. Недавно он лег в основу технологии на новом заводе — у озера Кучук, что в Кулундинской степи. Здесь тоже отлагается мирабилит (глауберова соль). В других местах можно «организовывать» месторождения иных химикалий, в том числе природных красителей (умбра, мумия), стройматериалов, серы, даже лечебных грязей.
На одном из подмосковных озер («торфянике») под руководством доктора геолого-минералогических наук В. М. Сенюкова ставились интересные опыты — ученые хотели выяснить, как в естественных условиях образуется нефть. Познав тайну ее рождения, человек будет по своему желанию создавать ее залежи, причем, вполне вероятно, не только на Земле, но и на других планетах, подготовив там предварительно соответствующую биогеохимическую среду. Лунная, марсианская и вообще космическая геология уже поставлена в повестку дня. Люди собираются рано или поздно освоить резервы химического сырья, стройматериалов, энергии, витающие покамест в просторах вселенной.
Синтетические минералы. Искусственные месторождения. Что дальше?
Самодельное небесное тело — мыслимо ли такое? Об этом вы также прочитаете в следующей главе.
Царство Плутона в миниатюре… Да, его уже можно встретить сегодня в лабораториях. Воспроизводятся явления, протекающие в коре и мантии. На установке, сверхвысокого давления создан новый минерал — так называемый рутилоподобный кварц; считают, что он напоминает вещество верхней мантии. Американцы его нарекли стишовитом, хотя более правильное название — стиповерит (по фамилиям авторов работы — Стишова, Поповой и Верещагина). Моделируются тектонические процессы, землетрясения, вулканические извержения — познав их природу, люди смогут предсказывать «день гнева» стихий, принимать предупредительные меры, предотвращать катастрофы.
В сентябре 1967 года Советский Союз начал бомбометание в Тихом океане. Искусственно вызванные содрогания донной и водной толщи предназначены для изучения их сейсмологами. Одна из проблем, решению которой поможет эксперимент, — прогноз землетрясений и цунами.
Активная вулканическая зона… Раньше это понятие было лишь символом опасности. Сегодня оно стало предметом растущего исследовательского интереса. Привлекает оно и энергетиков. В одной из таких зон, на Камчатке, уже построена геотермальная электростанция, использующая природное подземное тепло.
«Изменится наш шар земной», — мечтал русский революционер Д. Д. Ахшарумов. Приговоренный к смертной казни, он выводил на стене темницы жизнеутверждающие строки:
Тогда изменятся и люди, и природа,
И будут на Земле мир, счастье и свобода!
Русский народ сбросил иго старого режима, приступил к строительству нового общества под девизом: «Мир, Труд, Свобода, Равенство, Братство и Счастье».
Теперь он намерен изменить Землю, распорядиться ее богатствами, подчинить себе слепую мощь стихий.