Глава пятая ОСЕДЛАТЬ КЕНТАВРА?

Силы давления лучей могут со временем получить большое значение в вопросах физики и астрономии.

П. Н. Лебедев профессор физики, Россия, 1901 г.

Работы Лебедева по световому давлению — это не отдельный эпизод, но важнейший экспериментальный узел, определивший развитие теории относительности, теории квантов и современной астрофизики.

С. И. Вавилов, академик, СССР, 1937 г.

…Золотые блики на раструбах фанфар, описав дугу, застывают высоко в воздухе, и зычный трубный глас потрясает торжественную тишину концерт-хауза.

Появляется его величество Густав VI Адольф. В церемониальной процессии горделиво проплывают парадные мундиры с аксельбантами и орденскими лентами, чопорные фраки, белоснежные воротнички и крахмальные манишки. Зрители тоже одеты по всем правилам щепетильного придворного этикета.

Участники шествия останавливаются у ковра. Группа людей во фраках делает поклон и садится. Все остальные, в том числе королевская семья, стоят. А тем людям предоставлено право сидеть в присутствии самого короля! Чем они заслужили такие почести?

Об этом расскажет представитель Шведской академии. Его речь, насыщенная физическими терминами 160 второй половины XX столетия, звучит странным диссонансом на фоне старомодной великосветской «мишуры» и средневекового городского колорита. Еще бы: ведь он говорит об открытии, которое сделано в 1954 году!

Один за другим подходят к королю Чарлз Хард Таунс, Александр Михайлович Прохоров, Николай Геннадьевич Басов. Его величество собственноручно вручает каждому большую золотую медаль и диплом нобелевского лауреата.

В 1904 году здесь, в Стокгольме, получал Нобелевскую премию И. П. Павлов, в 1908 — И. И. Мечников. В 1956 году ее присудили Н. Н. Семенову, в 1958 — П. А. Черенкову, И. Е. Тамму, И. М. Франку, в 1962 — Л. Д. Ландау. И вот 1964-й…

Новым лауреатам по обыкновению предоставляется слово.

«Квантовая электроника возникла в конце 1954 — начале 1955 года. Именно в этот период были даны теоретические основы квантовой электроники, а также создан первый прибор — молекулярный генератор. Квантовые приборы по предложению профессора Ч. Таунса получили название мазеров. Казалось бы, после создания мазеров в радиодиапазоне вскоре будут созданы квантовые генераторы и в оптическом диапазоне волн. Однако этого не случилось. Лазеры были созданы только через пять-шесть лет».

Так 11 декабря 1964 года говорил в традиционной нобелевской лекции А. М. Прохоров. Н. Г. Басов тогда же посвятил свой доклад «наиболее молодой ветви квантовой электроники — полупроводниковым квантовым генераторам, которые появились на свет всего около двух лет назад, хотя и здесь им предшествовал теоретический анализ, начатый еще в 1957 году».

Еще одно чудо света?

Еще издревле человек использовал свет для своих повседневных нужд. Им отгонял он ночную мглу и хищных зверей, им мгновенно передавал важные вести тем, кто оставался недосягаем для звука или гонцов.

Свет обожествляли. Самый мощный его источник — Солнце — был персонифицирован греками в образе Гелиоса. 35-метровая бронзовая статуя лучезарного бога поднялась в III веке до нашей эры на острове Родос, чтобы стать одним из семи пресловутых чудес. В те же годы на противоположном берегу Средиземного моря закончилось строительство не менее грандиозного сооружения:

Башню на Фаросе, грекам спасенье, Сострат Дексифанов,

Зодчий из Книда, воздвиг, о повелитель Протей!

Ночью издали видят плывущие морем все время

Свет от большого огня в самом верху маяка.

Маяк, воздвигнутый в 280 году до новой эры на скалистом мысе острова Фарос близ Александрии, представлял собой настоящий небоскреб.

Колоссальное многоярусное сооружение вздымалось ввысь на 120 (по некоторым источникам — на 170) метров.

Наверху полыхал огромный факел; топливо для него доставлялось навьюченными ослами по пологой винтообразной лестнице, построенной внутри «высотного здания». Система металлических зеркал усиливала световой поток, отбрасывая его далеко в ночной мрак.

Шестнадцать столетий «маячило» перед глазами изумленных мореходов фаросское диво; и по сей день еще легко уловить осколок его овеянного легендами имени в слове «фара».

Кстати, о фарах. Даже они, обычные автомобильные лампы с зеркалами, и уж тем паче их мощные собратья на современных маяках — как далеки они от смрадных пожарищ, которые больше чадили, нежели светили, даром что были вознесены на верхушки исполинских постаментов вроде многоэтажной каменной башни в Александрийском порту.

На каком отдалении видели марсовые древних галер фаросскую «путеводную звезду»? Десять километров? Двадцать? Сто?

Многие миллионы километров — с такой дистанции можно рассмотреть невооруженным глазом сфокусированный луч квантового генератора.

Генератора современного типа, то есть далеко не самого совершенного из всех его мыслимых воплощений.

Становится реальностью межзвездная оптическая связь (до ближайшей к нам звезды свет идет четыре с лишним года). Конечно, самые мощные лазеры гораздо крупнее автомобильной фары или даже прожектора (недавно построен гигант длиной свыше десяти метров), но есть и такие, что запросто умещаются на небольшом лабораторном столе.

Осенью 1963 года сотрудники Физического института имени П. Н. Лебедева установили лазер в фокусе телескопа имени Г. А. Шайна (Крымская астрофизическая обсерватория) — этот уникальный астрономический инструмент с диаметром зеркала 2,6 метра по своей оптической мощности занимает первое место в Европе, а по качеству изображения не уступает крупнейшему в мире рефлектору на горе Маунт Паломар (США). Понятно, почему именно на него пал выбор московских физиков. Но на сей раз дальнозоркий крымский «циклоп» не ловил сияния далеких, светил: он сам стал прожектором.

Его нацелили на Луну. На затененном участке нашего естественного спутника заиграл зайчик. Не очень яркий: отраженный сигнал, попав в зрачок второго телескопа, оказался в миллиарды миллиардов раз слабее первоначального, посланного с Земли. И все же его уловил чувствительный прибор.

Световое зондирование небесных тел позволит в десятки, если не в сотни, раз точнее определять расстояния до различных участков той или иной планеты, чем с помощью радиолокации.

«Гиперболоид инженера Гарина», вызванный к жизни воображением А. Н. Толстого, разрезал световым «скальпелем» сталь броненосцев, словно дальнодействующий автогенный аппарат. Герой этого фантастического романа тоже использовал систему зеркал, собирая в нерасходящийся пучок лучи от ослепительно белого пламени, которое давали некие таинственные «пирамидки».

Ну, а лазер?

Уже сегодня его луч пробуравливает самые тугоплавкие металлы, самые твердые материалы.

Например, бритвенное лезвие с расстояния в 10 метров.

Именно так специальными агрегатами, созданными в Московском научно-исследовательском институте металлорежущих станков, прожигаются наитончайшие калиброванные каналы в различных промышленных изделиях. Скажем, в рубиновых камнях для часовых механизмов.

Такая неуловимо-нежная, неосязаемая субстанция, а действует под стать тарану-долоту! Или ракетному двигателю.

Есть идея — корректировать траектории искусственных спутников, направляя на них с Земли лазерный луч. Свет будет «отталкивать» рукотворную «луну» и не даст ей раньше времени сгореть в плотных слоях атмосферы. Что это — давление света?

«Я, кажется, сделал очень важное открытие в теории движения светил, специально комет… Сообщил Винеру, сперва он объявил, что я с ума сошел, а на другой день, поняв, в чем дело, очень поздравил». Это отрывок из письма великого русского физика Петра Николаевича Лебедева. Сумасбродный немецкий ученый Винер поначалу счел ныне общепризнанную астрономическую истину: хвосты комет направлены всегда в сторону от Солнца потому, что их отталкивает свет нашей дневной звезды. Такой вывод следовал из электромагнитной теории англичанина Максвелла. Но оспаривался крупнейшими авторитетами, в их числе лордом Кельвином, имя которого присвоено абсолютной шкале температур. Изящнейшими экспериментами Лебедев неопровержимо доказал: механическое давление света — факт. К. А. Тимирязев рассказывал, как в 1903 году лорд Кельвин обратился к нему со словами:

— Вы знаете, что я не поддавался на аргументы Максвелла. А вот перед опытами вашего Лебедева пришлось сдаться…

Световое давление в повседневной жизни совершенно неощутимо, его обнаруживают лишь очень чувствительные приборы. Однако при фокусировке лазерного излучения в малых объемах создается до того высокая концентрация энергии, что световой напор может достигнуть миллиона атмосфер! Правда, в случае со спутником, освещенным с Земли, этот эффект почти не скажется; он перекроется другим, куда более заметным: с поверхности космического аппарата, нагретой лазерным лучом, начнут отрываться атомы и молекулы — такое испарение создаст реактивную силу, противодействующую тяготению.

Знаменательно, что идеи «силовой оптики» получили блестящее развитие в трудах того самого института, который носит имя П. Н. Лебедева. Именно там работают академики Н. Г. Басов и А. М. Прохоров. Там (и не только там) работают их многочисленные ученики. Следуя традициям передовой русской науки, обогащая ее наследие, они умножают ее добрую славу. Но у преемников Лебедева иная судьба.

Вынужденный подать в отставку в знак протеста против произвола царского министра, Лебедев в 1911 году был выдворен из университетской лаборатории. Виртуоз физического эксперимента оказался фактически за бортом большой науки. Тяжело переживая злосчастную участь дела, которому он отдал целых 20 лет, 45-летний профессор слег в постель и больше не поднялся, так и не дожив до триумфального стокгольмского эпилога (кандидатуру Лебедева выдвинули на соискание Нобелевской премии).

Преждевременно скончавшийся, а вернее — сведенный в могилу в расцвете творческих сил, Лебедев не увидел послеоктябрьскую Россию. Но дело, начатое им, нашло в новых условиях достойных продолжателей. Впрочем, пора вернуться к лазерам.

Недавно советские инженеры превратили световую рапиру в паяльник. Это станок-автомат. Он скрепляет крохотные, с типографскую точку, детальки электронных схем. Точечную сварку можно вести в самых труднодоступных местах, через узкие щели, через прозрачные перегородки. А другими подобными аппаратами даже сквозь стекловидное тело глазного яблока.

В 1964 году в Украинском научно-исследовательском институте глазных болезней и тканевой терапии имени академика В. П. Филатова успешно опробован новый способ «приваривания» к глазному дну отслоившейся от него сетчатки. В 1966 году сдан в серийное производство офтальмокоагулятор ОК-1. Пациент не успевает ни увидеть, ни почувствовать вспышку — настолько кратковременно и деликатно прикосновение необычного скальпеля.

«В одну телегу впрячь не можно коня и трепетную лань», — гласит знаменитая сентенция, противопоставляющая грациозную легкость грубоватой силе.

Чудодеи квантовой физики сплавили воедино, казалось, несовместимое — деликатность и резкость, слепую мощь и ювелирную точность. Миллионы лошадиных сил — у светового импульса мощность может быть больше, чем у Братской ГЭС. Правда, это всего-навсего блицпревосходство, оно существует постольку, поскольку скоропреходяще, мгновенно — энергия, выделяющаяся за миллионные доли секунды, обеспечила бы собой лишь кратковременную вспышку лампочки карманного фонарика.

В 1965 году профессора А. М. Прохоров и С. Л. Мандельштам пробовали ионизировать газы: лазерный луч у них своим электрическим полем вызывал пробой в воздухе. Профессор Н. Г. Басов пытается с той же целью вести световой обстрел твердых мишеней. Полагают, что так со временем удастся получать высокотемпературную плазму. А в отдаленном будущем — инициировать термоядерный синтез и управлять им.

Первенцем квантовой электроники, как известно, явился мазер — источник сантиметровых и миллиметровых радиоволн. Термин составлен из первых букв английской фразы, переводящейся примерно так: «Усиление микроволн посредством индуцированного излучения». Еще более коротковолновые (а следовательно, и более высокочастотные) колебания генерирует лазер; здесь вместо «м» («микроволны») фигурирует сокращение «л» («лайт» — значит «свет»). Он работает в видимой области спектра. Ради краткости все члены этого непрерывно плодящегося семейства часто именуются собирательно — просто «лазеры».

Дорогами разведчиков

…Многим не привелось уцелеть под ураганным минометным огнем, который в тот весенний день сорок третьего года обрушился на передовые позиции, занятые под Ржевом 94-м полком 30-й гвардейской стрелковой дивизии одной из армий Западного фронта. Находясь в разведке, был тяжело ранен и старший лейтенант Александр Прохоров. Просто чудом избежал он смерти: истекающего кровью, с зияющей раной в бедре доставили его товарищи в медсанбат.

Крепкий организм выдюжил — через год 28-летний офицер выписался из госпиталя. Но вернуться в строй уже не пришлось, врачи не разрешили. Так бывший разведчик снова очутился в родных пенатах — в лаборатории колебаний ФИАНа (Физического института имени П. Н. Лебедева АН СССР). Отсюда ушел он на войну, не успев закончить аспирантуру, прервав интересное исследование, которое велось под руководством Н. Д. Папалекси и В. В. Мигулина и уже тогда дало новый радиометод наблюдения за ионосферой.

Теперь предстояло наверстать упущенное. Думал ли, гадал вчерашний солдат, только что сменивший застиранную гимнастерку на лабораторный халат, что через 20 лет ему придется во фраке явиться на аудиенцию к шведскому королю?

Александр Михайлович с головой погружается в родную стихию радиофизики. Под руководством профессора Сергея Михайловича Рытова он занимается стабилизацией «блуждающей» частоты радиогенераторов. Вскоре ему вместе с С. М. Рытовым и М. Е. Жаботинским присудят премию имени Л. И. Мандельштама — за теорию стабилизации частоты. Идет разведка на мирных рубежах.

Той порой получает путевку в жизнь большое открытие, сделанное в Казани, где вынуждены ютиться некоторые московские лаборатории, эвакуированные туда на время войны. Там начинается одна из тех дорог, которые сойдутся потом здесь, в столице, в лаборатории Прохорова.

Известно, что железо можно намагнитить. Потом оно надолго сохранит волшебную притягательную силу. Но есть материалы, которые обретают ее лишь на тот срок, пока находятся в магнитном поле.

Будучи удалены из него, они сразу же утрачивают это свойство. К таким «калифам на час» относятся и парамагнетики. Именно их исследовал тогда в Казани Евгений Константинович Завойский.

Делая виток за витком по околоядерной орбите да еще и вращаясь к тому же вокруг своей оси, подобно нашей планете, электроны ведут себя как крошечные магнитики. Если они полностью гасят действие друг друга, то общий результат получается нулевым. Если не полностью, то у атома налицо собственный магнетизм, который, однако, отсутствует у вещества в целом: ведь оно состоит из бесчисленного множества частиц, а те расположены неупорядоченно, кто как, так что суммарный эффект оказывается опять-таки нулевым, хотя слагаемые по отдельности нулю не равны. Вот если бы атомы повернулись в одну сторону, будто стрелки компаса, тогда другое дело. Внешнее магнитное поле как раз и заставляет их поступить таким образом.

Пусть в атоме все магнитные силы, обусловленные вращением электронов вокруг ядра, скомпенсированы. А спиновые не все: один электрон не нашел себе пары. Но его спин (осевое вращение) придает частице свойства волчка. А значит, и гироскопическую устойчивость, упрямое желание сохранить свое положение в пространстве неизменным. Что же произойдет? Примерно то же, что с детской юлой на гладком полу: накренившись, она не падает под действием земного притяжения, только ось ее начинает неспешно бродить по кругу, описывая коническую поверхность около вертикали, исходящей из точки опоры.

Такой «танец» называется прецессией. Атом в магнитном поле тоже начинает выделывать бесконечные пируэты вокруг силовой линии, разве что стоит он на воображаемом пуанте — под ним нет пола, он взвешен в пространстве. Благодаря такому круговращению создается дополнительный, наведенный магнетизм — он тоже вступает в игру противоборствующих сил, причем частица стремится занять такое положение, когда энергия ее электронов минимальна. Это состояние наиболее выгодно; достигается же оно лишь в случае, если «стрелка» микрокомпаса смотрит в ту же сторону, что и внешнее поле.

Пусть теперь включено еще одно магнитное поле — перпендикулярное первоначальному, причем более слабое. Будь оно тоже статическим, его влияние почти не проявлялось бы. Но оно переменное.

Если эти регулярные колебания будут «трясти» каждый «волчок» несогласованно с его движением, такие толчки просто погасят друг друга и почти не исказят картину прецессии. Если же они действуют в такт, в резонанс с ней, значит они неотступно преследуют кружащуюся магнитную «стрелку», стремясь отклонить ее на все больший угол от оси вращения. Уступая столь настойчивому «нажиму», частица может повернуться против поля (статичного).

Иными словами, перейти в возбужденное состояние.

Если таких переходов много, то они сопровождаются поглощением энергии. Чтобы наблюдать этот эффект, очевидно, нужно синхронизировать оба колебательных процесса. Как? Можно, конечно, изменять периодичность переменного поля, однако Завойский поступил иначе: он подгонял к ней ритм самой прецессии, плавно варьируя напряженность поля постоянного. Так удобнее: ведь ток в обмотке электромагнита легко усилить или ослабить — достаточно покрутить ручку-регулятор. Генератор же колебаний обычно настроен на строго определенную частоту; зачем же сбивать его с заданного режима? Напротив, чем стабильнее он работает, тем лучше. Но вот резонанс достигнут. На зеленоватой светящейся черточке, пересекающей экран осциллографа, тотчас появляются всплески: поглощение энергии парамагнетиком резко возрастает! К этому, собственно, и сводится электронный парамагнитный резонанс (ЭПР), обнаруженный Е. К. Завойским в 1944 году. Открытие Евгения Константиновича отмечено Ленинской премией.

Явление ЭПР широко используется в радиоспектроскопии. Почему «спектроскопии»? Почему «радио»?

По той простой причине, что переменное магнитное поле в исследовательской практике заставляют колебаться с частотами радиодиапазона. Собственно, здесь имеют дело с радиоволнами. Их поглощение измеряется особым прибором, который вычерчивает спектр ЭПР — кривую с резким скачкообразным изгибом, соответствующим резонансу и, что очень важно, характерным для каждого вещества. Именно этим методом А. М. Прохоров и его аспирант А. А. Маненков изучили широкий круг кристаллов на предмет их годности в качестве сердечника для квантовых приборов. Так в 1955 году впервые были выявлены многообещающие способности рубина, который впоследствии сделался мировой знаменитостью: ведь именно он стал рабочим телом первого лазера. Он же применяется в парамагнитных усилителях. Одну из таких установок создали профессор М. Е. Жаботинский и А. В. Францессон. Оригинальные конструктивные решения позволили резко уменьшить габариты основных узлов. Магнит «исхудал» до килограмма — его вес в.90 раз меньше, чем у равномощного усилителя фирмы Белл, слывшего лучшим в мире. Такая миниатюризация сократила и расход охладителя — сжиженного гелия. Установка Жаботинского и Францессона по своим техническим характеристикам покамест вне конкуренции: ею оборудован большой радиотелескоп Пулковской обсерватории. А на радиоастрономической станции ФИАН в Пущино (близ Серпухова) вслушивается в космические радиошорохи другой парамагнитный усилитель, с еще меньшим магнитом, — он разработан коллективом ученых под руководством А. М. Прохорова.

В радиоспектроскопии используется и ЯМР — ядерный магнитный резонанс (ядро ведь тоже малюсенький магнитик), но он в тысячи раз слабее ЭПР.

Есть и другие виды резонанса. Разумеется, микроволновая спектроскопия и в отсутствие магнитного поля изучает поглощение радиоволн различными веществами — в основном газообразными. К тому же разреженными. При переходе их в конденсированное состояние взаимодействие между тесно сблизившимися молекулами становится настолько сильным, что спектральные линии, достаточно резкие для независимых частиц, расплываются, утрачивают четкость.

Тут-то и приходят на выручку магнитные свойства тел. Только упорядочив ориентацию «микроволчков» и организовав их прецессию с помощью постоянного поля, а затем подогнав ее частоту к той, на которой работает генератор электромагнитного излучения, Завойский резко усилил эффект и получил четкую картину поглощения.

Своим расцветом в СССР радиоспектроскопия во многом обязана усилиям Прохорова и «прохоровцев».

Вскоре после войны Александр Михайлович, возглавив группу молодых искателей, вплотную приступает к фронтальной разведке в этой новой тогда области.

Малоизученная, неустоявшаяся, она манила к себе неизведанными возможностями. И надо сказать, чутье не обмануло Прохорова.

В 1948 году в лабораторию колебаний ФИАНа поступает новый сотрудник. Ему двадцать шесть. Он еще учится в Московском механическом институте, и для Александра Михайловича он долгие годы просто Коля (впрочем, самому Александру Михайловичу чуть больше 30). Минет каких-нибудь пять лет — и недавний студент, досрочно получив диплом, защитит кандидатскую диссертацию, выполненную под руководством доктора физико-математических наук А. М. Прохорова. Собственно, во всем этом нет ничего особенного; молодость наших научных кадров, сочетание учебы с работой, увлеченность, не оставляющая ни минуты для «блаженного ничегонеделанья», быстрое признание заслуг учеников учителями — вещи вполне ординарные в советских исследовательских учреждениях.

Ничего необычного для нас нет и в том, что Басов в свои 20 лет уже изведал горечь военных страданий. Выпускник фельдшерской школы, он вдоволь натерпелся всего, чем памятен фронт, наслушался артиллерийской канонады и стонов раненых, а приняв участие в демонтаже заводов, где германские концерны фабриковали смертоносные химикалии для гитлеровских душегубок, перенес тяжелое отравление, едва не стоившее ему жизни. Сколько ученых, сколько будущих Прохоровых не вернулось в свои лаборатории? Сколько будущих Басовых, еще не начав путь в науке, осталось навсегда лежать на полях сражений? А разбомбленные институты, сожженные библиотеки, муки оккупации, невзгоды эвакуации, мобилизация всех людских и материальных ресурсов для нужд обороны и затем на восстановление хозяйства, на ликвидацию чудовищной разрухи — имеют ли обо. всем этом отчетливое представление американские и канадские коллеги советских физиков, создавшие квантовый генератор, как принято писать, «одновременно и независимо»?

Не в тепличных условиях зрели многие замечательные идеи советской науки, в том числе идея лазера.

В военное время, начиная с 1942 года, советский ученый В. Л. Гинзбург, а вслед за ним и американец Ван-Флек опубликовали серию работ, где доказали, что сантиметровые волны должны ослабляться парами воды, в изобилии наполняющими атмосферу.

Полоса особенно сильного поглощения простирается примерно от одного до полутора сантиметров, и — надо же! — как раз в эти пределы попадали сигналы боевых радаров. Пришлось срочно выискивать иные диапазоны — такие «окна», где невидимый электромагнитный щуп не гасился бы столь заметно.

Если в радиоспектроскопе аммиак или иной газ поглощает волны определенной длины, то он, видимо, может их же генерировать, испуская столь же согласованным потоком, даже направленным пучком, размышляли Прохоров и Басов. Если луч радиолокатора застревает в облаках, как бы впитывается ими, то почему бы водяным парам при некоторых условиях самим не стать источником такого же луча? Нельзя ли превратить скопище молекул из радиоприемника в радиопередатчик?

Уже говорилось: в радиоспектроскопе энергия высокочастотного поля идет на возбуждение атомов и молекул. С квантовомеханической точки зрения возбуждение частицы выглядит как ее переход в новое качество, как прыжок (воображаемый, конечно) с одного разрешенного уровня на другой, более высокий.

Такое «антраша» вызывается строго отмеренной дозой электромагнитного излучения, соответствующей расстоянию между уровнями.

«Совершенно ясно, что, если все атомы в возбужденном состоянии, такая система будет усиливать излучение, — говорил А. М. Прохоров в нобелевском докладе. — Некоторые ученые понимали это еще до 1940 года, однако никто не указал, что можно создать генераторы света… Нужны были определенные предпосылки. Они появились после второй мировой войны, когда начала бурно развиваться радиоспектроскопия».

Накал перед вспышкой

Да, квантовый генератор как прибор уходит своими истоками в радиоспектроскопию и отчасти в радиолокацию. А некоторые его принципы были известны теоретикам даже раньше — задолго до войны.

Возбужденный атом способен разрешиться от «бремени», от переполняющей его энергии двояко: либо добровольно, спонтанно, либо по принуждению — когда проносящийся мимо квант невежливо задевает частицу и пробуждает ее от оцепенения. Во втором случае речь идет об индуцированном (наведенном) излучении. Оно существенно отличается от самопроизвольного тем, что распространяется не куда угодно, а лишь в том направлении, которое задано внешним импульсом. В результате к кванту, наскочившему на атом, добавляется попутчик, устремляющийся в ту же сторону и имеющий ту же частоту: оба спутника, как говорят специалисты, когерентны. А ведь эта их характеристика была известна Дираку еще в 1927 году! Само же явление Эйнштейн предсказал в 1918 году.

Над заманчивой возможностью использовать «навязанную» радиацию размышляли и другие ученые.

«Установлено неизвестное ранее явление усиления электромагнитных волн при прохождении через среду, в которой концентрация частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниям, избыточна по сравнению с концентрацией в равновесном состоянии». Так говорится в дипломе, выданном в 1964 году Государственным комитетом по делам изобретений и открытий СССР Валентину Александровичу Фабриканту, Михаилу Мартыновичу Вудынскому и Фатиме Асланбековне Бутаевой. Мысль, сформулированная в дипломе, родилась у них в 1951 году. Более того: в двух шагах от одного из замечательнейших открытий XX века В. А. Фабрикант, ныне доктор физико-математических наук, стоял еще в 1939 году! Да, именно тогда Валентин Александрович, ученик академика С. И. Вавилова, защитил докторскую диссертацию, опубликованную годом позже, где содержалось теоретическое обоснование ныне всемирно известного явления. Оставалось провести решающий эксперимент, но тут грянула война…

Впрочем, как говорил академик А. М. Прохоров, квантовые генераторы вполне могли появиться и гораздо раньше. Могли. А вот поди ж ты…

Детально разобраться в теоретических и экспериментальных предпосылках, наметить конкретную цель поисков, четко, засучив рукава, разработать весь комплекс идей квантовой электроники, реализовать их, создать приборы и довести дело до конца сумели именно Александр Михайлович Прохоров, Николай Геннадьевич Басов и (одновременно с ними, но независимо от них) Ч. X. Таунс с Дж. Гордоном и X. Цайгером из Колумбийского университета да еще Дж. Вебер (Мэрилендский университет).

Широко известные ныне принципиальные схемы квантовых генераторов в диапазоне видимого света были предложены в 1957–1958 годах учеными СССР (Н. Г. Басов, Б. М. Вул, Ю. М. Попов) и США (Ч. Таунс, А. Шавлов).

Одним из барьеров, отделявших радиоволновые лазеры от оптических, была проблема резонаторов.

Говорят, будто пение тетивы боевого лука натолкнуло наших предков на мысль о сладкозвучных струнах. Потом к распоркам с туго натянутыми на них воловьими жилами приделали ящик с отверстием — звук стал громче, чище. А шедевры знаменитых скрипичных мастеров Страдивари, Амати, Гварнери ценятся именно за качество таких деревянных «ящиков», хотя, казалось бы, источником звука является только струна. Так вот: корпус гитары ли, скрипки ли — резонатор. Он выделяет и усиливает определенный тип вибраций, вызванных струной в воздухе. Примерно так действовал и металлический кожух, окружавший узкий молекулярный пучок («струну») в первом генераторе Прохорова и Басова. Настроенный на какую-то одну волну, он возбуждал и поддерживал именно ее, заставляя лавинообразно разрастаться поток одинаковых радиоквантов, исторгнутых возбужденными частицами. Для этого дистанция между его стенками подбиралась так, чтобы на ней укладывалась ровно одна половинка волны. Или две, три — лишь бы число их было целым.

Если же перейти от сантиметровых волн к миллиметровым, затем микронным (инфракрасный диапазон) и субмикронным (видимый свет), как тогда изготовить основной узел прибора? Неужто придется делать микроскопический ящичек?

В 1958 году А. М. Прохоров предлагает иное, принципиально новое конструктивное решение. Отражающие противоположные стенки, говорит он, могут быть раздвинуты на расстояние, которое в сотни и тысячи, если угодно, в сотни тысяч раз превосходит длину волны-коротышки. Надо лишь, чтобы на нем по-прежнему умещалось целое число полуволн. Чтобы выделить нужную разновидность колебаний, резонатор придется тонко юстировать. Ясно, что полировка торцов требуется идеальная: шероховатости не должны превышать длину падающей на них волны. А боковые стенки не нужны, от былой замкнутой трубки можно оставить лишь зеркальные донца. В наши дни все лазеры работают на основе открытых резонаторов. Боковые отражатели, имеющиеся в генераторах радиодиапазона, здесь отсутствуют. Путь наружу лучу преграждают только торцы. И кванты, которые устремились перпендикулярно к поверхности двух противолежащих зеркал, не смогут до какого-то момента выйти вон. Тысячекратно отражаясь, они будут при столкновении с частицами всякий раз вызывать вынужденное испускание фотона. Такой возвратно-поступательный поток начнет стремительно наращивать свою мощь.

Хорошо, а как же мечущийся туда-сюда луч-пленник вырвется наружу?

Сорок лет тому назад академик С. И. Вавилов и его сотрудник В. Л. Левшин описали замечательное явление. Желто-зеленое урановое стекло внезапно начинало лучше пропускать видимые лучи, когда яркость падающего на него света переваливала за какой-то предел. Правда, увеличение прозрачности не было большим, оно не превышало нескольких процентов, тем не менее открытие советских ученых имело огромное принципиальное значение: ведь коэффициент поглощения считался раньше величиной устойчивой, постоянной. На деле же оказалось, что он способен изменяться. Подобные эффекты нашли применение в лазерах. Созданы специальные оптические фильтры-затворы. Они не дают электромагнитному полю внутри резонатора разрядиться раньше срока. Но как только световой поток достигает огромной 176 мощности, он сам прокладывает себе «зеленую улицу» в веществе.

В других случаях одно из зеркал снабжается глазком — к нему луч, многократно отражаясь, подбирается постепенно.

Не так ли исподволь нараставший накал многочисленных исследований вылился в ослепительную вспышку изобретательской мысли, прорвавшуюся лазерным лучом через заслоны неизведанного?

Потоки когерентного света ведут себя совсем иначе, чем те, с которыми до сих пор имела дело оптика. В лазерном луче кванты равномощны и одинаково направлены; они наступают не редкой разношерстной толпой, не врассыпную, а тесно сомкнутыми шеренгами, как бы в ногу, плечом к плечу. Такая сплоченность боевых порядков способна утроить и учетверить ударную мощь многофотонной фаланги. То ли будет, когда (если!) появятся рентгеновские и гамма-лазеры!

Ультрафиолетовые уже существуют.

Луч можно перекрасить!

Зловонное исчадие выхлопных труб, тянущееся шлейфом позади автомобиля, на темном фоне кажется сизым. Но взгляните сквозь дым на снег: облачко неожиданно предстанет перед вашими глазами… бурым! Ясно, что скопище мельчайших крупинок не обладает собственным цветом — в отличие, скажем, от чернил. Его окраска обусловлена рассеянием света. Правда, облака тоже состоят из крохотных частичек. Между тем плывут над нами восхитительными белоснежными клубами. Вся хитрость тут вот в чем: составляющие их водяные капельки крупнее дымовых — тех, что образованы из дегтеподобной жидкости, возникающей при горении топлива. И рассеивают свет иначе — все волны примерно одинаково, без особого пристрастия к сиреневым тонам.

Открыв эти законы, английский физик Рэлей на грани нашего и минувшего века объяснил многократно воспетую лириками переменчивую окраску неба.

Ее виновники — молекулы воздуха, считал он. Они мельче крупинок дыма и, стало быть, рассеивая солнечный свет, еще пуще выметают из него голубизну, «насыщая» ею атмосферу. Потому-то полуденное небо и напоминает «синий шелк», а солнечный лик с земной поверхности кажется желтее, чем он есть на самом деле. Иное дело утром и вечером. Солнечные лучи по отношению к нам падают уже не отвесно, а косо. Путь, который пробегают они в атмосфере, отбирающей у них синеву, длиннее. Свет достигает наших глаз, уже растеряв по дороге почти весь свой «небесный цвет». Лишившись сине-фиолетового слагаемого своей семицветной гаммы, он проникает в наши зрачки покрасневшим (вспомните «бурый» дым!).

Базируясь на выводах Рэлея, патриарх квантовой физики Макс Планк создал стройную теорию, объяснившую ослабление света при его прохождении через прозрачную, оптически однородную среду. Минули годы, прежде чем обнаружилось: фундаментальная постройка, возведенная двумя крупнейшими зодчими физики, не что иное, как воздушный замок.

Мираж был рассеян нашим соотечественником, впоследствии академиком, видным советским физиком, а тогда совсем еще молодым доктором натуральной философии Леонидом Мандельштамом. Ученый убедился, что оптически однородная среда не способна рассеивать свет. Не отдельные молекулы, равномерно распределенные в объеме, обусловливают цвет неба, ибо они чересчур малы для этого, а их случайные скопления: в газовой среде беспрерывно возникают и тут же рассасываются, умирают и снова рождаются микронеоднородности, флуктуации, когда в одном месте «густо», а по соседству «пусто». Каждый такой мимолетный сгусточек (он меньше длины световой волны) действует под стать дымовой частице. Но если крупинка или капелька — образование устойчивое, долговечное, то локальное уплотнение в газе, напротив, эфемерно, неуловимо быстротечно. Периодически сменяясь разрежением, оно то сильнее, то слабее рассеивает свет. Эта искрометная рябь должна придавать воздушному океану игристость шампанского. Атмосфера должна мерцать! Но если даже газоразрядные лампы, моргающие относительно редко (периодичность — 50 герц) создают иллюзию непрерывного сияния, то стоит ли говорить о более высокочастотных и слабых, к тому же еще микроскопических небесных вспышках? Их не так-то просто обнаружить даже чувствительнейшей аппаратурой.

На чисто физические препятствия накладывались трудности иного толка — сугубо прозаические, материальные. В 1925 году, когда Мандельштам приступил к заведованию кафедрой на физическом факультете Московского университета, лаборатории не могли похвастать первоклассным оборудованием, как сейчас. Порой не хватало самых простых приборов, самых необходимых материалов. В такой обстановке сошлись пути двух советских ученых: Л. И. Мандельштама и Г. С. Ландсберга. Теоретическая зоркость первого и экспериментальное остроумие второго сделали возможным изящное исследование, которое привело к новому замечательному открытию.

Пусть мигания, порожденные уплотнениями, недоступны прямой регистрации. Но они должны проявляться косвенно — в изменении частоты рассеянного света. Именно этот эффект решили проанализировать Мандельштам и Ландсберг. Правда, не в воздухе. В кварце (хрустале). Ибо явление, которое они собирались изучать, универсально, оно имеет место в любых прозрачных средах, в кристалле же его скорее удастся выделить в наиболее чистом виде.

Геометрически правильной пространственной структуре твердого тела свойственны мимолетные самопроизвольные искажения, местные деформации. Всякое случайное уплотнение тотчас же передается, как по цепочке, вширь и вглубь, разбегаясь волной по всему объему. Это фононы («звуковые кванты»). Самого термина тогда еще не знали (его предложил И. Е. Тамм лишь в 1934 году), но периодические возмущения в кристалле были хорошо изучены. Именно они, коллективные движения, а не индивидуальные атомы кварца должны рассеивать свет. Расчеты показали: если впустить в кристалл не белый световой поток, а одноцветный (скажем, фиолетовый), то на его фотоны повлияют те фононы, частота которых равна примерно 10 тысячам мегагерц. Это в 70 тысяч раз меньше, чем у самой рассеиваемой волны (700 миллионов мегагерц), значит, ни о каком резонансном взаимодействии речи быть не может. Зато можно говорить о модуляции.

Воспользуемся акустической аналогией — пусть перед нами дрожит гитарная струна. Начните ритмично покачивать гриф инструмента — вы услышите «биения»: звук то замирает, то усиливается в такт вашим движениям. Наложив низкочастотное колебание на высокочастотное, вы осуществили модуляцию. Нечто подобное ожидалось Мандельштамом и Ландсбергом, разве только в области оптики: у них звуком модулировались электромагнитные колебания. Предполагалось, что рассеянный луч будет отличаться своей частотой (цветом) от первичного на мизерную величину — тысячные доли процента. Но случилось иначе.

Разница в длинах волн оказалась настолько резкой, что никак не укладывалась в рамки прежней теории. Не ошибка ли? Многократная перепроверка лишь подтвердила: налицо неизвестный эффект, которым полностью маскировался тот, ожидаемый.

Не сразу ученые нашли ему объяснение. А когда нашли, то, прежде чем заявить во всеуслышание о своем открытии, решили подвергнуть гипотезу всестороннему испытанию.

В начале 1928 года огромная работа была завершена. Мандельштам и Ландсберг направили описание своих опытов вместе с исчерпывающей теоретической интерпретацией полученных результатов в немецкий журнал «Натурвиссеншафтен» и одновременно в «Журнал русского физико-химического общества». Вскоре рукопись вернулась из Германии: редакция просила сократить ее. Авторы выполнили это требование и снова отослали статью. До выхода номера в свет оставалось несколько недель, как вдруг…

Просматривая мартовскую очередную тетрадь «Нэйчур», Мандельштам и Ландсберг увидели сводку экспериментальных результатов, похожую на их собственную! Сообщение в британский еженедельник пришло с берегов Ганга от Ч. В. Рамана и К. С. Кришнана. Да, они тоже столкнулись с аномальным увеличением длины волны в опытах по рассеянию света, только не в твердом теле, а в жидкостях и газах. Потом выяснилось: индусы, едва получив первые результаты, поспешили отправить в Лондон победную каблограмму. Но чем внимательней вчитывались москвичи в куцую заметку своих калькуттских коллег, тем яснее становилась ошибка индийских физиков. Сообщение называлось «Оптический вариант эффекта Комптона».

Еще в 1923 году американский ученый А. X. Комптон установил, что рентгеновы и гамма-лучи взаимодействуют с веществом не так, как видимые, которые менее энергичны. И уж тем более не так, как радиоволны, которые совсем слабосильны.

Известно, что электрон способен впитать угодившую в него порцию света, возбудиться, а потом, переходя в прежнее состояние, возвратить ее целиком в том же качестве и количестве. У фотона, выпущенного таким образом на свободу, частота (длина волны) остается той же, какой была до «пленения», изменяется лишь первоначальное направление его движения. Гамма-квант — мощнейший сгусток электромагнитного поля. Он не поглощается целиком, а теряет лишь жалкие крохи своей энергии, но и их достаточно, чтобы выбить электрон «из седла». Похоже, будто взаимодействуют не волна и частица, а две корпускулы, сшибаясь, как движущийся бильярдный шар с покоящимся. (Кстати, по словам Сергея Ивановича Вавилова, эффект Комптона есть не что иное, как осуществление лебедевского опыта по световому давлению, только не в макро-, а в микромасштабах — в элементарном процессе.)

Жесткое излучение, покинув атакованное им вещество, оказывается мягче; длина его волны увеличивается.

«Оптическое подобие эффекту Комптона очевидно, — писали Раман и Кришнан, — за исключением одного: мы имеем дело с гораздо большим изменением длины волны…» Вот именно: гораздо большим, чем благодаря эффекту Комптона…

Нет, здесь другой механизм! Перед нами совершенно новое явление, оно не имеет прецедентов среди уже известных науке. Так заявили в своей статье Мандельштам и Ландсберг. Причина кроется не в деформациях решетки, модулирующих световую волну, как считали раньше сами авторы, и не в упругом рассеянии фотонов электронами по Комптону, как думают Раман и Кришнан, а в вибрациях атомов внутри каждой молекулы, то растягивающих, то сжимающих пружинку химической связи. Этот процесс быстрее, энергичней, ему свойственна в сотни раз более высокая частота, чем фононам, — десятки миллионов мегагерц. Потому-то его влияние и сказывается намного заметнее. Частота внутримолекулярных колебаний либо приплюсовывается к модулируемой, либо вычитается из нее. Такая комбинация дает целый набор волн — у одних результирующая частота равна сумме первоначальной и модулирующей, у других — их разности, у третьих сохраняется неизменной. Вращение молекул также накладывает свой отпечаток на излучение, проходящее через прозрачную среду.

Комбинационным рассеянием назвали Мандельштам, и Ландсберг это исключительно важное для исследовательской практики явление, ими открытое и обоснованное. С их толкованием Раман и Кришнан сразу же и полностью согласились.

А в 1930 году Раману вручили Нобелевскую премию.

Вот как комментирует это событие автор исторических очерков о физике А. Ливанова: «Сыграли ли тут роль политические причины — ведь советским ученым в течение многих лет не присуждали Нобелевских премий — или какие-нибудь еще, но так или иначе премию получил один Раман. Решение Нобелевского комитета навсегда останется актом крайней несправедливости. Наши ученые раньше открыли явление, полнее его исследовали, точнее описали и правильнее объяснили». Кстати, знаменитый геттингенский теоретик Макс Борн в знак протеста против дискриминации советских физиков вышел из состава Нобелевского комитета.

Ныне комбинационное рассеяние света, широко используемое в спектроскопии молекул, нашло еще одно применение. Американская фирма «Хьюз эйркрафт» в декабре 1962 года испытала квантовый генератор нового типа. В нем рассеивающей средой служили органические жидкости — бензол и толуол. Прошедший сквозь них луч рубинового лазера подвергся частотному преобразованию, правда, по несколько иным законам, чем в классическом результате Мандельштама и Ландсберга.

Луч лазера вписал новый параграф в классическую главу физики — оптику.

Мощный когерентный поток, ворвавшийся в вещество, подобен цунами. Его электромагнитное поле с огромной силой раскачивает заряды во встречных атомах, изменяя оптические свойства среды в своем собственном ритме. Эти навязанные колебания не остаются в долгу. «Возмутитель спокойствия» тотчас испытывает их обратное воздействие: световая волна удваивает частоту. Она сама себя модулирует! Так с помощью специально подобранных кристаллов можно утроить и учетверить ее периодичность.

Представляете масштабы? Учетверить! В опытах Мандельштама и Ландсберга с кварцем ритм колебаний практически не учащался — увеличение темпа составляло жалкие доли процента. Здесь же — 300 процентов прироста! И надо думать, это не предел.

Уже удалось с помощью того же кварца преобразовать инфракрасный свет в зеленый, красный — в ультрафиолетовый. А если попытаться подобным же способом превратить ультрафиолетовые лучи квантового генератора в рентгеновы?

Лавирование в рентгеновском диапазоне требует нового типа резонаторов. Прежде всего потому, что жесткое излучение пройдет сквозь любые зеркала, не отражаясь и даже почти не «застревая» в них. Кроме того, резонансное поглощение для столь коротковолновых квантов много меньше во всех возбуждаемых средах, с которыми сейчас имеют дело физики. Но может, кто-то найдет принципиально иной подход?

Еще никому не ведома, еще никем не придумана та стратегема, с помощью которой ученые перехитрят упорствующую природу и создадут рентгеновский, а может и гамма-квантовый, генератор; но раз физика не налагает вето на такую возможность в принципе, то отчего же — она, несомненно, будет реализована. Впрочем, разве и без того мало перспектив у лазера?

Пистолет, стреляющий молнией

…Однажды в марте 1965 года с башни высотного здания МГУ раздался неслышный выстрел. Необычный пистолет был нацелен на один из домов в районе Зубовской площади — там находится подстанция Г-6 Арбатского телефонного узла. Над излучиной Москвы-реки протянулся тоненький, бесплотный, бесподобно прямолинейный кабель, состоявший из двух световых жилочек — вторая (обратная) тянулась от Г-6 к АВ-9.

Так началось приобщение лазерного луча к миру современной телефонии. Серийный отечественный газовый (гелий-неоновый) лазер типа ЛГ-34 дает непрерывный красный луч такой яркости, что хорошо виден даже днем. Свет улавливается фотоприемниками. Многие москвичи, говоря по телефону, даже и не догадываются, что их соединила световая линия…

«Качество передачи великолепное, — констатирует организатор эксперимента А. Г. Мурадян. — Мы надеемся вскоре создать целую сеть лазерных телефонных линий, возможно, даже с использованием Останкинской телебашни, откуда световые „провода“ протянутся ко всем узлам столицы».

Емкость светового диапазона баснословно велика: на полосе частот в 400 миллионов мегагерц, охватываемой им, можно одновременно передавать десятки миллионов радио- и телепрограмм, вести миллиарды телефонных переговоров (жителей на Земле сейчас 3 миллиарда).

Чего ж раньше никто не реализовал эти самоочевидные преимущества?

Отсутствовали источники когерентного, монохроматического излучения. Вернее, они имелись, но не в инфракрасной и оптической области спектра. Любая радиостанция дает высокоорганизованный, согласованный поток квантов-близнецов, если только можно назвать так упорядоченный цуг волн. Он способен служить безупречным носителем информации. Чтобы передать сигнал, остается отчеканить на этой череде колебаний определенные знаки в виде каких-то меток.

Вполне понятно, что чем меньше на переносчике естественных изъянов («шумов»), тем реже искажения, которым подвергаются передаваемые им сигналы. Колебания, порожденные квантовым генератором, почти идеальны: форма у них безупречна в своем плавном ритмическом однообразии.

В павильоне «Электроника» на ВДНХ демонстрируется опытная телевизионная установка, где изображение передается не радиоволнами от антенны к антенне, а многометровым световым лучиком, нацеленным в фотоприемник. Лучом серийного лазера ЛГ-24М — одного из многих типов, выпускаемых нашей промышленностью.

С каждым годом растет и разнообразится семья квантовых чудо-приборов, все многогранней становятся и их возможности.

Не далее как в июле 1960 года появился первенец квантовой электроники, работавший в оптическом диапазоне. Его сконструировал инженер американской фирмы «Хьюз эйркрафт» Теодор Мейман. Сердцем прибора был однородный рубиновый кристалл, по форме напоминавший сигарету, только тоньше и короче. Красная световая игла прошивала воздух короткими прерывистыми уколами.

Не прошло и трех лет, как наряду с импульсными появились лазеры непрерывного действия, наряду с кристаллическими — жидкостные и газовые; генерировались как невидимые (инфракрасные и ультрафиолетовые) лучи, так и видимые разных цветов, как мощные, так и слабые. Среди твердых материалов уже не только рубин использовался в качестве сердечника, но и шеелит, флюорит, а также другие минералы, наконец, стекло и пластмасса. В 1964 году на Международной лейпцигской ярмарке демонстрировались советские лазеры тринадцати типов. Сейчас большинство их сходит с конвейера, словно обычные электроосветительные аппараты.

Среди всего этого многообразия квантовых генераторов есть одна их категория, которая заслуживает особого внимания.

В конце 1962 года Н. Г. Басов и Б. М. Вул, объединив усилия своих лабораторий, создали одновременно с американскими учеными первые полупроводниковые лазеры, несмотря на явный скепсис, сквозивший всего несколько лет назад в выступлениях многих ученых на II Международной конференции по квантовой электронике.

Полупроводниковые представители лазерного семейства отнюдь не славятся мощностью. Напротив, они принадлежат к разряду «слабосильных», подобно газовым, только в отличие от них не обладают столь же высокой монохроматичностью генерируемого света. Да и луч их с расстоянием шире раздается в стороны, скорее теряет узость. Чем же тогда они интересны?

Прежде всего вот чем: их к. п. д. гораздо выше, чем у большинства других лазеров. Но это не все.

Мы уже имеем представление о размерах современных квантовых генераторов. Рубиновый «карандашик» в опытах Меймана был четырехсантиметровым коротышкой с диаметром 5 миллиметров. Бывают стержни и побольше. Трубки газовых лазеров достигают десятиметровой длины. Все равно не так много, не правда ли? Ну, а полупроводниковые лазеры — как вы думаете, каких размеров они могут быть?

Микронных. Хотите верьте, хотите нет: за работу примутся едва различимые глазом кристаллики, у которых расстояние между гладкими противолежащими гранями (зеркалами) будет доведено до тысячных долей миллиметра. Такой микроскопический резонатор, сравнимый с длиной волны, в ответ на внешнее «раздражение» способен в миллион раз скорее приходить в состояние «боевой готовности», чтобы выстрелить светом. Когда лазерные кристаллики станут ячейками электронного мозга, быстродействие «думающих» устройств возрастет в тысячи, если не в миллионы раз — до триллионов операций в секунду.

«Создание полупроводниковых квантовых генераторов, — заявил президент Академии наук СССР М. В. Келдыш, — открывает новые перспективы технического прогресса, в частности, в области автоматики и приборостроения».

В 1964 году за эти работы члену-корреспонденту АН СССР Б. М. Вулу, кандидатам физико-математических наук О. Н. Крохину, Ю. М. Попову, А. П. Шотову (все фиановцы), докторам физико-математических наук Д. Н. Наследову, С. М. Рывкину, научным сотрудникам А. А. Рогачеву и Б. В. Царенкову (все из Ленинградского физико-технического института имени А. Ф. Иоффе АН СССР) вручена Ленинская премия.

Однородный, без внутренних дефектов, правильно сформированный кубик из арсенида галлия с ребром в миллиметр — таким крошкой он выглядит уже сегодня, этот поистине драгоценный светоносный камень, сделанный искусными руками советских людей.

Каким он будет завтра?

Вчерашний первенец полупроводниковой квантовой электроники не одинок, у него уже появились собратья — другие карликовые источники неистового света, готовые затмить само Солнце. Соединения галлия, индия, свинца, кадмия с мышьяком, сурьмой, фосфором, селеном, теллуром — все богаче ассортимент лавирующих материалов, все пестрее палитра частот, перекрытых их лучами в видимом и инфракрасном диапазоне.

Множится и семья лазеров — «ветеранов». От синтетического рубина до простого стекла — список твердых тел, рождающих луч, пополняется из года в год.

А газы? Всего лет 13 назад заработал у Прохорова и Басова молекулярный генератор на аммиаке.

В 1960 году советские исследователи В. К. Аблеков, М. Е. Песин и И. Л. Фабелинский, пропустив электрический разряд через смесь ртутных и цинковых паров, десятикратно усилили поток излучения. Пары ртути, цезия, других металлов сейчас успешно применяются в лазерной технике. Гелий, неон, аргон, криптон, ксенон… Наряду с этой благородной когортой мощно засветились кислород, азот с двуокисью углерода, даже пары воды. Правда, в отличие от инертных газов все они испускают излучение не путем электронных переходов, а благодаря колебательным движениям атомов в молекуле — тем самым, которые обусловливают комбинационное рассеяние. Коэффициент усиления у них меньше, поэтому трубки таких лазеров напоминают стеклянные колонны длиной в метры.

Уж коли физики дошли до газов, которыми мы дышим, то не заставят ли они лазировать обыкновенный воздух? А творец первого генератора на инертных газах американский физик Али Джаван поговаривает о создании… огненного лазера! Он считает, что когерентное излучение удастся получить от пламени, возникающего при горении некоторых веществ.

Уж не гаринские ли «пирамидки» шагнут в действительность из утопии Алексея Толстого?

На первый взгляд гаринские чертежи могут показаться чуть ли не патентной заявкой на рецепт квантового генератора. На деле же они не имеют с этим изобретением решительно ничего общего, кроме чисто внешнего сходства. Но если Гарину не удалось предвосхитить принцип лазера, то нельзя отказать в прозорливости другому герою романа — коммунисту Шельге. Правда, слова Шельги касаются применения, а не изготовления прибора: «Опасность величайшая, неизмеримая грозит миру…»

«Икс-оружие», «пушки, стреляющие молнией», «лучи смерти» — за этими названиями, будто сошедшими со страниц фантастического романа, стоят вполне реальные ассигнования Пентагона на разработку наисовременнейших наступательных средств а-ля гаринский гиперболоид (проект «Дефендер»).

В марте 1962 года американский журнал, посвященный авиационной и космической технике, напечатал статью Б. Миллера «США приступают к программам лазерного вооружения».

Бесславно закончилась авантюра Гарина, употребившего гиперболоид на то, чтобы стать властелином мира. Несдобровать и тем, кто захочет сделать новое чудо света слугой тьмы, оружием насилия.

Трудно предугадать судьбы лазера, когда он возмужает, — ведь сейчас он переживает пору своего младенчества. Кто знал лет 60 назад, какое будущее ожидает радиоприемник или электронную лампу?

А вспомните стремительную поступь расщепленного атома и космической ракеты!

Или историю радиолокации.

Эхо приходит с донесением

…Это был настоящий плавучий город, многоэтажный, шумный, густонаселенный. На борту лайнера водоизмещением 60 тысяч тонн находилось 1316 пассажиров и 890 членов экипажа. Он вышел в свой первый трансатлантический рейс.

14 апреля 1912 года в 23 часа 40 минут с фор-марса раздался хриплый возглас вахтенного матроса:

— Прямо по носу айсберг!

Мало кто почувствовал толчок: удар о подводный выступ ледяной глыбы казался слабым. Между тем борт был располосован от носа до кормы; сквозь зияющую стометровую пробоину бурлящими потоками вливалась вода.

В 2 часа 20 минут «Титаник» пошел ко дну. Вместе с ним погибло полторы тысячи человек…

Если бы колесо истории повернулось вспять и капитан поставил наблюдателем самого опытного, самого зоркого в мире марсового, снабдив его лучшим биноклем и мощным прожектором, удалось бы избегнуть катастрофы? Такой гарантии нет. Массивная, неповоротливая махина, несущаяся с большой скоростью, не в этот раз, так в другой могла напороться на ледяной утес, на встречный корабль, незаметно подплывающий под покровом ночи или тумана; ведь физиологические возможности зрения, даже самого острого, даже при отличной погоде, не безграничны!

Навигационной технике было в пору хоть самой подавать сигналы «505». Ее выручила радиолокация.

…За стеклом иллюминатора — непроглядная мгла. Да еще туман и пурга. Сколько ни всматривайся в ночь, хоть до рези в глазах, — не видно ни зги. А кругом — плавучие льды. А позади — караван судов. Но атомоход «Ленин» уверенно держит путь. Перед штурманом круглое оконце, напоминающее не то иллюминатор, не то экран телевизора. По мерцающему зеленовато-голубому полю там и сям разбросаны светящиеся пятна. Здесь они образуют цепочку — это кромка берега. Точка чуть левее и выше — встречное судно. До него семь с половиной кабельтовых, до острова, что справа по борту, вдвое дальше — полторы мили. Непрерывно меняющаяся за бортом обстановка здесь как на ладони. И как стрелка по циферблату секундомера, только быстрее, все бегает и бегает по экрану индикатора неугомонный радиус-луч, прорисовывая объекты, выхваченные из тьмы и тумана. А на фок-мачте столь же неутомимо кружится решетчатая параболическая антенна — это она бдительно прощупывает пространство своим незримым лучом.

Весь советский флот дальнего плавания оснащен надежными всевидящими приборами отечественного производства.

Туго пришлось бы не только надводным кораблям, но также воздушным и космическим, если бы не радары. На самолетах, в портах и на аэродромах, на станциях слежения за спутниками — всюду исправно и неусыпно несут они свою верную службу.

А давно ли сама мысль о радиозрении, безотказно действующем в любое время суток и при любой погоде, казалась несбыточной мечтой?

Еще в 30-е годы широко в ходу были звукоулавливатели. Несколько громоздких раструбов, похожих на граммофонные, реагировали на сотрясение воздуха, донося до ушей «слухача» рокот мотора, — так удавалось узнать о приближении самолета, скрытого от глаз покровом ночи или облачной завесой. Удавалось с грехом пополам: ведь гул зачастую «сдувается» в сторону ветром, не слышен на больших расстояниях, да и доходит сравнительно медленно — на каждые 5 километров требуется целых 15 секунд; за это время даже «небесный тихоход» той эпохи успевал пройти больше километра.

И хотя начало 30-х годов ознаменовалось настоящим бумом вокруг автоматизированных «комбайнов», совмещавших в себе прожекторы со звукоулавливателями, постепенно складывалось трезвое мнение: как порознь, так и в виде новоиспеченных гибридов эти приборы обречены, они бесперспективны, сколько их ни совершенствуй. Но ничего лучшего пока не было в распоряжении ни у одной страны.

Ключ к решению проблемы лежит в радикально ином подходе. Зондирующее устройство должно полностью полагаться на собственное излучение, как прожектор, а не на «чужое», испускаемое объектом поисков, как в случае звукоулавливателя или теплопеленгатора. Только вместо световой надо найти другую энергию. Какую? Тоже электромагнитную, ибо она самая быстрая, самая дальнодействующая. Почему бы не использовать радиоволны?

Так примерно излагал свои мысли молодой инженер Павел Ощепков на совещании летом 1932 года. В Мурманске тогда уже действовала импульсная ионосферная станция, созданная в 1932 году под руководством профессора Михаила Александровича Бонч-Бруевича. Коротковолновое излучение, расходясь порциями от антенн во все стороны, достигало и верхних, «наэлектризованных», слоев атмосферы. Отразившись от них, оно частично возвращалось к земле, где улавливалось приемником. По длительности такого «радиорейса» определялась высота ионосферы, проводились и другие исследования.

А вот радиообнаружение сравнительно небольших объектов (самолетов, кораблей) многим казалось несерьезной затеей.

Радар… «Величайшим изобретением за последние полвека» назовет его после второй мировой войны Уинстон Черчилль, упирая на его боевой аспект и присовокупив, что его подарила миру именно британская нация. США будут оспаривать у Англии честь называться первооткрывателями. Не придя к единому мнению, историки напишут в официальном американском отчете: «Вероятно, эта идея возникла почти одновременно в Америке, Англии, Франции, Германии и даже в Японии».

СССР почему-то не окажется в списке. И лишь в 1946 году в журнале «Лук» появится статья Э. Реймонда и Дж. Хачертона (один из них бывший советник американского посольства в Москве), где прямо утверждается: «Советские ученые успешно разработали теорию радара за несколько лет до того, как радар был изобретен в Англии».

18 июня 1933 года П. К. Ощепков представил обстоятельный доклад на имя народного комиссара обороны, опубликованный после обсуждения в журнале «Сборник ПВО» за 1934 год. В докладе говорилось: «Если иметь источник генерирования ультракоротких, или дециметровых и даже сантиметровых электромагнитных волн, то, направляя луч на какой-либо предмет, можно всегда получить обратный электромагнитный луч. Приняв такой отраженный луч, можно весьма точно определить не только направление на отражающую поверхность, но и место ее нахождения».

Так впервые в мире со всей определенностью была поставлена задача, техническое решение которой стало одним из величайших завоеваний XX века.

В конце лета 1933 года на официальном собеседовании с наркомом обороны К. Е. Ворошиловым и его первым заместителем М. Н. Тухачевским обсуждался вопрос о правительственном финансировании работ по радиолокации. П. К. Ощепков назвал сумму 250–300 тысяч рублей. Попросив детализировать программу исследований, Тухачевский отдал распоряжение включить ее в план важнейших дел наркомата на ближайшие годы.

А вот справка из официальной американской истории радара: «В 1935 году по настоянию вице-адмирала Боуэна конгресс США ассигновал Морской исследовательской лаборатории 100 тысяч долларов на научные работы. Это была первая сумма, отпущенная для развития радиолокационной техники…»

7 октября 1934 года маршал Тухачевский направил секретарю ЦК ВКП(б) Сергею Мироновичу Кирову такое письмо: «Опыты по обнаружению самолетов с помощью электромагнитного луча подтвердили правильность положенного в основу принципа. Итоги проведенной научно-исследовательской работы делают возможным приступить к сооружению опытной разведывательной станции ПВО, обеспечивающей обнаружение самолетов в условиях плохой видимости, ночью, а также на больших высотах (до 10 тысяч метров и выше) с дальностью до 50–200 километров… Прошу Вас не отказать помочь инженеру-изобретателю тов. Ощепкову П. К. в продвижении и всемерном ускорении его заказов на ленинградских заводах „Светлана“, ЦРЛ и др.».

В США первый контракт с промышленными фирмами на изготовление шести станций для обнаружения самолетов был подписан в октябре 1939 года.

26 октября 1934 года один из советских заводов получил правительственные заказы «Вега» и «Конус» на постройку пяти таких станций — сразу же после опробования первой опытной установки «Рапид» в июле — августе того же года.

В 1936 году проходил полигонные испытания макет зенитного радиолокатора «Буря», вышедший из стен НИИ-9 (директор М. А. Бонч-Бруевич). Одна из двух параболических антенн посылала непрерывно 18-сантиметровые волны, другая принимала их «отзвук». Самолет «нащупывался» на расстоянии свыше 10 километров.

В 1937 году импульсную радиолокационную технику у нас представляло выпестованное Ощепковым многообещающее детище Физико-технического института и лаборатории, подведомственной Управлению ПВО. Сердцем прибора была импульсная генераторная лампа ИГ-8, созданная В. В. Цимбалиным. Всего через год за первой моделью последовала вторая — она «видела» самолеты на расстоянии 50 километров.

А в 1939 году в районе Севастополя заработала станция «Редут» с дальностью обзора 150 километров — на 20 километров больше, чем у радиолокатора «прибор Фрея», которым к этому времени располагали немцы. Вскоре появился ее вариант с одной антенной (приемной и передающей одновременно) — «Пегматит». Вместе с ним на вооружение поступила и модификация РУС-2. По свидетельству генерал-лейтенанта М. М. Лобанова, одного из пионеров отечественной радиолокации, РУС-2 и «Пегматит» простотой устройства и эксплуатации, надежностью в работе и экономичностью «значительно превосходили станции США, Англии и Германии аналогичного тактического назначения». Нашей промышленностью их было выпущено несколько сот экземпляров. А полученные в небольшом количестве по ленд-лизу американские и английские радары не оказали существенного влияния на усиление войск ПВО.

Бесспорно, тогдашняя аппаратура оставляла желать много лучшего — разве сравнить ее с теперешней? Но без практики не выявились бы и ее конструктивные недуги. Впрочем, в какой стране какой новорожденный смог избежать детских болезней?

Вот, Например, как обстояли дела у англичан в 1940 году. «Конструкция радаров не была еще окончательно отработана, — пишет Р. Кларк в книге „Рождение бомбы“. — …Передатчик БПО (береговая противолодочная оборона), работавший весьма успешно, изготовляли при помощи ножовки и некоторых других столь же „совершенных“ инструментов. Сами установки были чрезвычайно примитивными».

А ведь в тот момент англичане определенно лидировали, находясь «далеко впереди» заокеанских союзников, которые тогда же, как дает понять Кларк, воспользовались британским секретом «черного ящика» (конспиративный псевдоним радара), чтобы потом, уже после войны, отстаивать свой приоритет. Наконец, американцы пришли к такой формулировке: «Идея радиолокации возникла независимо у различных лиц и в разных странах мира после того, как импульсная техника оказалась пригодной для обнаружения таких объектов, как самолеты и корабли».

«После того, как…» Чтобы какая бы там ни было техника подошла для радиоразведки в небе и на море, ее предстояло сперва задумать и создать специально для этого, заранее, не говоря уж о необходимости поставить саму цель! Так что, пожалуй, ничего невероятного нет в предположении П. К. Ощепкова: «Первые наши успехи, по-видимому, и послужили толчком к тому, что „разные лица“ и „разные страны“ вдруг… возгорелись страстью к этой технике…»

Короткие волны — долгий путь

Радиолампам по причине их слабосильности долго и упорно отказывали в видах на сколько-нибудь значительное будущее. И вдруг в октябре 1919 года довольно странно прозвучало заявление, что они вопреки всеобщему скепсису со временем сыграют «весьма важную роль».

Это интересное пророчество высказал М. А. Бонч-Бруевич, который еще в 1915 году сконструировал первую в России вакуумную электронную лампу.

Семимильными шагами двинулась вперед наша электровакуумная промышленность после революции. В 1920 году на Ходынке уже эксплуатировался радиопередатчик, собранный на отечественных лампах. А через три года пришел заказ от знаменитой немецкой фирмы «Телефункен» на советские 25-киловаттные радиолампы, которые были в пять раз мощнее самых лучших германских.

Однако при освоении диапазона УКВ королева радиотехники, быстро завоевавшая симпатии во всем мире, внезапно объявила саботаж. Почему? Вспомните ее классическую схему: катод, анод, а между ними сетка. Промежуточный электрод добавлен для того, чтобы управлять электронами, несущимися от катода к аноду. Он играет роль шлюза, способного то задерживать поток частиц, то подгонять его, — так рождаются колебания. Длинноволновые и коротковолновые. По сравнению с их периодом время пробега электронов от катода к аноду пренебрежимо мало. Но при столь быстрых изменениях электромагнитного поля, как в области УКВ, система отказывает — здесь проявляется ее неповоротливость.

В 1935 году А. Н. Арсеньева построила первые электровакуумные приборы, исправно работавшие на сверхвысоких частотах, при которых классическая радиолампа бастовала, «захлебывалась». Так появился генератор, названный «клистроном» (в переводе с греческого — «морской прибой»). В нем роль колебательных контуров с их конденсаторами и катушками индуктивности, подключаемыми к обычному триоду снаружи, исполняют объемные резонаторы — полые медные «бублики», которые вмонтированы прямо в корпус лампы. Они опоясывают кольцами продолговатый цилиндрический баллон, внутри которого непрерывно течет электронная струя; в ней (опять-таки с помощью сеток) искусственно возбуждается своего рода «рябь», причем сгущения и разрежения, вызванные ускорением и замедлением частиц, чередуются здесь гораздо стремительней, нежели в обычном ламповом генераторе.

В 1937–1939 годах В. Ф. Коваленко и Н. Д. Девятков изобрели клистрон нового типа — уже не пролетный, а отражательный. Здесь модуляцию электронного пучка осуществляет особое «зеркало», поворачивающее поток частиц вспять.

Наряду с «лампой морского прибоя» решающую роль в развитии радиолокации сыграл магнетрон. В нем электронный поток напоминает уже не «ручеек», а «водоворот», регулируется он не электрическим, а магнитным полем. Катод, сделанный в виде трубки, окружен здесь массивным металлическим футляром-анодом, в котором симметричной розеткой высверлены фигурные отверстия — резонаторы. В них электронными вихрями порождаются электромагнитные колебания. Опять-таки сверхвысокочастотные: подобно клистрону, магнетрон способен генерировать волны вплоть до миллиметровых.

Этот мощный многорезонаторный прибор, ставший образцом для его современных разновидностей, впервые сконструирован В. П. Илясовым в 1937–1939 годах. Одновременно свою схему такого же магнетрона предложили инженеры Н. Ф. Алексеев и Д. Е. Маляров. В 1940 году они подробно описали свое изобретение в открытой печати (англичане держали в строжайшем секрете подобные разработки, считая их не менее важными, чем создание атомной бомбы).

Аттестуя изобретение радара как величайшее достижение за последние полвека, Черчилль имел в виду его военное значение. Да, локатор помогал нашим союзникам и нам обезвреживать тучи огнехлещущей фашистской саранчи. Но разве на этом окончилась его миссия?

В 1944 году, когда незримый электромагнитный щуп участвовал в битвах на суше, на море, в воздухе, советские физики Л. И. Мандельштам и Н. Д. Папалекси уже думали о его мирной судьбе, о его космических маршрутах. Теоретическими расчетами они обосновали возможность лоцировать Луну, хотя эта надежда по тем временам казалась оторванной от реальной почвы, если не сказать — просто безумной: до нашего естественного спутника около 400 тысяч километров.

«Мир. СССР. Ленин»… Три дорогих нам слова. В ноябре 1962 года их принесли электромагнитные волны, отраженные Венерой. Впервые в мировой практике установлена радиотелеграфная связь с использованием «утренней звезды» в качестве зеркала.

«Англия. Радастра. Маклесфилд. Ловеллу. Будем работать по Венере 8 и 9 января с 11 до 14. Котельников». Буднично и лаконично: работать, вести исследования, устанавливая контакт через посредство планеты, а что, собственно, тут особенного? Такую телеграмму в начале 1966 года отправил академик Владимир Александрович Котельников, директор Института радиотехники и электроники АН СССР, профессору Бернарду Ловеллу, директору британской обсерватории Джодрелл Бэнк. Вскоре пришел ответ: «Москва. Аэлита. Сигнал от Венеры принят». Космический радиомост продолжает действовать.

Если вылить стакан кипятку в море с европейского берега, а потом зачерпнуть то же количество воды где-то у Кубы, удастся ли определить, как нагрелся Мировой океан? По расчетам члена-корреспондента АН СССР В. И. Сифорова, сигнал, даже самый мощный, вернувшись с Венеры, примерно в такой же степени растеряет свою энергию, постепенно растворится в шорохах вселенной, будет забит собственными шумами приемной аппаратуры. Чтобы выделить его, нужны архичувствительные приемники, остроумные радиотехнические схемы.

Не удивительно, что попытки лоцировать Венеру, предпринятые в 1958 году США и в 1959-м Англией, окончились неудачей. Но, может, их и не стоило продолжать? Какой, собственно, прок от этой затеи?

В 1957 году советский спутник открыл эру освоения вселенной. Автоматические станции отправились к далеким планетам. Между тем точность, с какой астрономам известны расстояния до ближайших небесных тел и вообще масштабы солнечной системы, не удовлетворяет сегодняшнюю космонавтику. Погрешность в 0,2 процента вроде бы невелика. А ведь она, если речь идет о дистанции между Землей и Венерой, оборачивается доброй сотней тысяч километров! При запуске с такой ошибкой промах гарантирован. Только «радиодальномер» способен выручить в создавшейся ситуации. Однако этим не ограничиваются выгоды от локации.

«М. В. Ломоносов открыл, что Венера окружена атмосферой, — говорится в энциклопедии. — Период вращения Венеры вокруг оси точно не установлен». Да потому и не установлен, что окружена, и не просто атмосферой, а «знатной» пеленой облаков. Оптические методы наблюдения тут вынуждены спасовать. Луч же радара пронзает облака и туманы. О чем он может рассказать?

Космическое эхо рассказало, например, что суточное вращение у Венеры происходит не так, как у Земли и прочих планет солнечной системы: несется-то она по околосолнечной орбите вперед, а вот кружится при этом не как шар, катящийся от вас по бильярдному столу, а назад (так противоестественно ведут себя иногда колеса автомобиля на киноэкране). Это открытие член-корреспондент АН СССР И. С. Шкловский считает выдающимся достижением астрономии. Что же касается периода вращения, то, по последним данным, он составляет 247 суток 8 часов.

Впервые наш радиолуч ушел в сторону «утренней звезды» 18 апреля 1961 года. А приняв от Венеры радиограмму-бумеранг «Мир. СССР. Ленин», переданную с Земли точками и тире азбуки Морзе, советские исследователи в 100 раз точнее определили основу всех измерений современных «звездочетов» — астрономическую единицу (среднее расстояние от Земли до Солнца).

В 1964 году за радиолокационные исследования Марса, Венеры и Меркурия удостоены Ленинской премии академик В. А. Котельников, доктор технических наук М. Д. Кислик, научные сотрудники Института радиотехники и электроники В. М. Дубровин, В. А. Морозов, Г. М. Петров, О. Н. Ржига, А. М. Шаховской, начальник лаборатории Государственного научно-исследовательского института Министерства связи СССР кандидат технических наук В. П. Минашин.

И снова бросок — теперь уже к Юпитеру, на 600 миллионов километров! История радиолокации зарегистрировала небывалый рекорд дальности; прежний, установленный при осмотре Меркурия, был не просто побит, но и перекрыт в несколько раз.

То, о чем здесь рассказано, составляет предмет «активной» радиоастрономии. Между тем еще есть и «пассивная» — она занимается прослушиванием собственного «радиошепота» небесных тел, а не отраженных ими сигналов — зычных земных «ау».

Звезды, кресты и антенны

Еще в начале 40-х годов операторы военных радаров подметили одно странное явление. Когда антенны смотрели на восток, то станции начинали «барахлить», причем не когда-нибудь, а утром, на заре.

Поначалу думали, будто противник нарочно создает помехи. Не сразу установили: виновником шумов было само Солнце!

В 1948 году И. С. Шкловский высказал предположение, что Крабовидная туманность тоже должна быть щедрым поставщиком радиоизлучения. Год спустя австралийские ученые, обшаривая небо антеннами-приемниками, подтвердили эту догадку. Вскоре выяснились удивительные вещи. Если бы наше зрение обрело чувствительность не в оптическом, а в УКВ-диапазоне, то нам представилась бы совершенно непривычная картина: многие хорошо знакомые светила померкли, а те, что раньше прятались от глаз, вдруг заполыхали огненными факелами. Засияли бы новые звезды, причем две из них в сотни раз ярче нашего доброго старого Солнца!

Дозорные неба словно прозрели, лишний раз почувствовав, как беспомощно слепы были их предшественники всего 15–20 лет назад. Достаточно сказать, что остатки звезды Сверхновой Тихо Браге, сразу же с головой выдавшие себя своим радиоизлучением, до сего момента упорно скрываются от охотящихся за ними оптических телескопов.

Насколько проницательнее стал пытливый взгляд ученого после изобретения радиотелескопа!

И разве не достоин этот агрегат занять пьедестал, уготованный чуду света?

…Издали он выглядит как гриб со шляпкой набекрень. Вблизи же это могучая махина ростом с многоэтажный дом. «Ножкой» ее служит опорно-поворотное устройство, напоминающее карусель, — оно легко двигается с помощью электропривода. Ажурный скелет, составленный из трубчатых стальных «костей», поддерживает 65-тонную металлическую «шляпку» — антенну диаметром 22 метра.

Главные узлы этой замечательной машины рассчитывались в Физическом институте имени Лебедева АН СССР под руководством А. Е. Саломоновича и П. Д. Калачева. Место для нее выбрано в тихом подмосковном уголке около Серпухова, где отсутствуют источники сильных радиопомех. Осенью 1966 года, на берегу Голубого залива близ Симеиза (Крым) пущен усовершенствованный вариант того же радиотелескопа (РТ-22), также оснащенный парамагнитным усилителем. Он способен принимать излучение с длиной волны вплоть до 4 миллиметров, тогда как серпуховский — до 8. Необходимую точность обеспечить тем труднее, чем короче рабочая волна: десятая доля ее длины — верхний предел для размеров шероховатостей на внутренней глади зеркала. Значит, для Симеизского рефлектора этот допуск не превышал полумиллиметра! Нужно было, кроме того, соблюсти все предосторожности, чтобы тяжелая конструкция не прогибалась под действием собственного веса или под напором ветра, чтобы свести к минимуму влияние тепла и холода: ведь металл, как известно, при нагревании расширяется, а при остывании сжимается, причем периодически — от дня к ночи, от лета к зиме. РТ-22 среди установок своего класса не имеет себе равных. Во всяком случае, по разрешающей способности — главной характеристике, которая показывает, хорошо ли различает прибор слабые и близкие, почти сливающиеся для другого радиоизлучатели, четко ли определяет их границы, насколько точно он наводится на невидимую «мишень».

Погоня за более высокой чуткостью радиоуха, за его способностью улавливать самый тихий шепот небес породила настоящую гигантоманию. Есть параболические чаши и в 66 метров (Австралия), и в 76 (Англия), и даже 94 (США). А недавно в Пуэрто-Рико закончено строительство радиотелескопа в 300 метров поперечником! Правда, исполинское блюдце совершенно неподвижно; оно вмонтировано в кратер потухшего вулкана. Точностью обработки оно, как и другие перечисленные здесь колоссы, тоже уступает нашему РТ-22.

Увеличение габаритов усугубляет уже упомянутые трудности в решении инженерных проблем.

В стремлении обойти технические препоны ученые пошли на хитрость. В 1952 году советские физики С. Э. Хайкин и Н. Л. Кайдановский предложили новый принцип. Вместо того чтобы строить одну цельную «сверхчашу», можно как бы загодя расчленить ее на дольки, а те развернуть в каре на большой площади, словно кавалеристов на плацу. Отдельные антенны, а их можно разместить в виде концентрических колец, в шашечном порядке или любым иным способом, несут свой дозор согласованно: их наблюдения суммируются в целостную картину. Одно из таких решений осуществлено у нас в Харькове под руководством члена-корреспондента АН УССР С Я. Брауде. Другое — в Пулкове, близ Ленинграда, профессором С. Э. Хайкиным и Н. Л. Кайдановским: 90 тесно примыкающих друг к другу щитов образуют дугу протяженностью в 130 метров. А вот телескоп, сконструированный профессором В. В. Виткевичем и П. Д. Калачевым, имеет форму креста. Каждая из двух взаимно перпендикулярных шеренг протянулась на целый километр, причем ни ту, ни другую нельзя назвать многоэлементной — они представляют собой сплошные «корыта». Высота установок достигает 40 метров. Расположено это чудо техники на радиоастрономической станции ФИАНа рядом с тем же Серпуховом.

Если приземистая крестовина радиотелескопа находится у южного форпоста Московской области, то на северной окраине столицы стоит другой колосс, московский, весь в красных звездах предупредительных огней.

Фаросский маяк, чудо древнего мира, достигал в высоту 170 метров. Его давно превзошли здания нашей эры. МГУ на Ленинских горах — 230 метров. Ажурная пирамида инженера Эйфеля в Париже — 300. Небоскреб Эмпайр стэйт билдинг в Нью-Йорке — 408. И вот — колосс Останкинский…

Из телебашен самой долговязой до последнего времени была 480-метровая американская; ей уступала лишь японская. Среди мачт, которые отличаются от башен тем, что им необходимы растяжки, до сих пор лидирует американская — 564 метра. Московский полукилометровой игле не нужны расчалки или иные крепления: она надежно опирается десятью «ногами» на банкетки фундамента, сделанного из монолитного струнобетона — в его твердокаменных мышцах напряглись стальные жилы. Внутри узкого, как спиннинг, ствола натянуто 150 стальных тросов — ему не страшен даже десятибалльный шторм, вырывающий деревья с корнем. Применение сверхпрочных армированных материалов позволило сэкономить на весе всей конструкции. И все равно изящное, как тростинка, тело башни весит немало — 32 тысячи тонн!

Перед нами самое настоящее многоэтажное здание — с дверьми, со стенами, с окнами, с балконами, с лифтами, причем сверхскоростными, с телевизионными и радиостудиями, с метеорологическими лабораториями, даже со своим рестораном, который вращается вокруг оси башни. И конечно же, с радиотелевизионной антенной — пустотелой спицей длиной около 150 и диаметром 14 метров.

Авторы проекта — член-корреспондент Академии строительства и архитектуры СССР Н. В. Никитин, архитекторы Л. И. Баталов, Д. И. Бурдин и другие.

9 программ (из них 2 цветные) будет передавать новая московская цитадель телевидения.

Итак, перед нами две гигантские антенны: останкинская и серпуховская — одна буравит небо, другая припала к земле, первая передает сигналы для тех, кто внизу и поблизости от нее, вторая — принимает шумы сверху из дальних космических далей… Какой разительный контраст! Но и сходство тоже немалое. Оба чуда техники сотворены человеческим гением, чтобы управлять стихией электромагнитных волн. Это объединяет радиотелескопы и радиолокаторы, квантовые усилители и генераторы с телеантеннами. Правда, телевидение оперирует не только потоками радиоквантов. Оно — и прежде всего именно в этом его специфика — формирует в пучки скопища частиц — электронов. Организует их, чтобы управлять ими. Впрочем, так ли уж далеки друг от друга волна и частица?

Чего там говорить, давно стало трюизмом: четкой границы между частицей и волной нет. А коли так, то нельзя ли «генерировать» столь же высокоорганизованные, плотные и остронаправленные пучки частиц, как и поток когерентных фотонов, вырывающийся из лазера?

«Высокоразвитая цивилизация, — пишет член-корреспондент АН СССР И. С. Шкловский, — может обладать совершенно неизвестным нам способом „канализации“ жестких радиации (как фотонных, так и корпускулярных), позволяющим сосредоточить большие мощности в очень узких игольчатых пучках. Почему бы не представить, что при помощи системы мощных пучков сверхжесткой радиации можно осуществить контроль над течением ядерных реакций в звездах, то ускоряя, то замедляя их темп?»

Спрашивается: зачем? Чтобы сделать звезды «эффективным источником энергии для регулирующей ее цивилизации».

Разумеется, такие пучки пригодятся и в космосе и на Земле.

Канализация корпускулярных излучений… Ее уже использует человек. Где же?

Самопишущий карандаш электроники

В 1959 году в Сокольническом парке столицы открылась американская выставка. Один из ее гидов, председатель Международного общества медицинской электроники, директор исследовательского института В. К. Зворыкин, по приглашению профессора П. В. Шмакова посетил Ленинградский институт связи. Вот что рассказал в сборнике «Пути в незнаемое» за 1964 год инженер В. Узилевский: «Вспыхнули три телевизионных экрана. Передача была короткой — трехминутный видовой фильм. Я не мог разглядеть выражение лица Зворыкина. Но мне показалось, что он сильно взволнован. Что его взволновало — виды Ленинграда, который он навсегда покинул не то в шестнадцатом, не то в семнадцатом году, уехав в Америку военным представителем, или качество телевизионного изображения? Ведь он фактически основоположник американского телевидения и многие годы отдал цветному. Зворыкин заговорил:

— Чьи это телевизоры?

— Один ваш и два наших, — ответил Шмаков.

— Вот наш. — Зажгли свет. Мы убедились, что американский профессор угадал. — Не волнуйтесь, — успокоил он Шмакова. — Ваш приемник лучше, потому я и угадал. А мы надеялись вас удивить на выставке…

Потом Зворыкина водили по всем лабораториям кафедры телевидения. На четвертом этаже он долго смотрел на портрет человека с темными глазами и маленькой бородкой. Это был портрет Розинга.

— Учитель, — тихо произнес он. — Ему и Америка обязана телевидением… Мы вас недооценивали. У вас есть чему поучиться.

Я слушал Зворыкина, а смотрел на профессора Шмакова. Я почему-то был уверен, что в эти минуты профессор вспомнил годы блокады. Когда в холодных, нетопленных помещениях опухшие от голода сотрудники его кафедры делали ртутные взрыватели, обезвреживали неразорвавшиеся мины. Как с помощью разработанной в лаборатории аппаратуры спасали заваленных во время бомбежки людей… Выслушивая комплименты американского профессора по поводу цветной системы, профессор Шмаков помнил, как трудно далось все это».

Первую систему трехцветного телевидения в 1925 году предложил советский инженер И. А. Адамиан, а ее усовершенствованный вариант — Ю. С. Волков в 1929-м. Прошло сорок лет, но до сих пор ни одна европейская страна не организовала регулярных телепередач в красках, кроме разве что опытных, — проблема оказалась нелегкой.

В СССР для внедрения в опытное вещание выбрана так называемая одновременная совместимая система. Она позволяет смотреть красочные программы на экранах обычных приемников, правда, в черно-белых тонах; новым телевизорам доступны оба вида передач: и обычные и цветные. Впервые эта система у нас была опробована 31 марта 1955 года; в мае 1956 года она уже демонстрировалась советским и зарубежным специалистам.

…Еще в 1907 году преподаватель Петербургского технологического института Б. Л. Розинг получил «привилегию № 18076» на систему «электрической телескопии». Однако самое революционное нововведение ученого — управляемый электронный луч — не могло в полной мере проявить себя без других, столь же перспективных узлов. Любопытно: даже в 1922 году известный немецкий радиотехник Д. Михали в своей книге «Видение на расстоянии» скептически пожимал плечами: «Применение катодной трубки для телевидения практически неосуществимо».

Невзирая на пессимизм авторитетных оракулов, советские специалисты продолжали совершенствовать изобретение Розинга.

Механические узлы в системах передатчиков все еще сдерживали развитие телевидения. Выход из тупика в 1931 году независимо друг от друга нашли инженеры С. И. Катаев (СССР) и В. К. Зворыкин (США). Они, как и Розинг, заставили работать электронный луч — теперь уже не только в трубке — приемнике, но и в передатчике. Применение этого изумительно гибкого и эффективного инструмента упразднило громоздкие механические детали и позволило построить легкий компактный передатчик, упрятав его в небольшую стеклянную колбу. Так началась революция в телевидении.

Трубка Катаева (ее сегодняшние варианты называют иконоскопами) подняла четкость изображения, позволив увеличить количество строк в десятки раз.

Потом был имедж-иконоскоп. Так за границей именуют трубку, изобретенную в 1933 году П. В. Шмаковым и П. В. Тимофеевым. Идею имедж-иконоскопа подсказало авторам в какой-то мере изобретение инженера Л. А. Кубецкого — фотоумножитель (1930 год). Трубка Шмакова — Тимофеева оказалась в десять раз чувствительней, чем обычный иконоскоп.

Естественно, что в коротком рассказе одни фамилии встречаются чаще других, а иные и вообще отсутствуют. Как на экране телевизора: если кто-то дан крупно, значит прочие ушли на второй план или остались за кадром; если же панорама охвачена целиком, то все действующие лица одинаково мелки, так что ни людей, ни их поступков разобрать нельзя…

Можно было бы упомянуть, что русский физик А. Г. Столетов, учитель П. Н. Лебедева, заложил основы учения об электронной фотоэмиссии. Что эти идеи развивались советскими учеными П. И. Лукирским, С. С. Прилежаевым, Н. С. Хлебниковым, многими другими. Что все современные передающие трубки обязаны своим существованием и совершенством пионерским разработкам А. А. Чернышова (1925 год), А. П. Константинова (1930), С. И. Катаева (1931), П. В. Шмакова и П. В. Тимофеева (1933), Г. В. Брауде (1938). Этот список при желании легко продолжить.

Розинг, Столетов, Попов — они были каменщиками, заложившими первые кирпичи в фундамент, на котором поднялась в небо исполинская Останкинская телебашня. Поднялась потому, что наследие русских ученых попало в хорошие руки.

Профессор П. В. Шмаков тоже начинал свою научную деятельность до революции, и его слова звучат особенно убедительно: «Для создания той или иной телевизионной системы требуется тесное содружество математиков, физиков, химиков, оптиков, вакуумщиков, энергетиков, акустиков, механиков и радистов всех профилей. Такое содружество научных сил у нас в России стало возможным только в советскую эпоху, когда были созданы крупнейшие исследовательские институты и лаборатории, а также большое число высших учебных заведений. Поэтому все практические достижения в области телевидения относятся именно к советской эпохе. Ученые дореволюционной России, занимавшиеся вопросами телевидения, были одиночками, и охват всей проблемы в целом для них был невозможен».

Сейчас телевизор прочно вошел в наш быт. Каждый вечер вспыхивают голубые экраны в миллионах квартир. Аппараты советских марок пользуются спросом и за границей.

22 марта 1965 года между правительствами СССР и Франции подписано соглашение о сотрудничестве с целью внедрить единую систему цветного телевидения на основе хорошо зарекомендовавшего себя проекта «СЕКАМ».

Телекамеры ведут репортажи не только с поверхности Земли, но и с борта космических кораблей. В дни группового полета «Востока-3» и «Востока-4» родилось космовидение — изображение передавалось на миллионы голубых экранов не только СССР, но и других стран, подключенных к системам Интервидения и Евровидения.

Можно без конца рассказывать о триумфах электронного луча, создающего изображение на экранах телевизоров. Да и только ли телевизоров? А осциллографов? А радиолокаторных индикаторов? А электронных микроскопов?

Электронная оптика… Сейчас это обширнейшая область науки и техники, в основе которой лежит формирование заряженных частиц в организованные потоки — широкие ли пучки, узкие ли лучи — и управление ими. Немалый вклад в ее развитие внесли советские ученые А. А. Лебедев, Г. А. Гринберг, многие другие. Именно в лаборатории Лебедева, в Государственном оптическом институте, еще в 1940 году был построен первый советский электронный микроскоп, дававший увеличение в 10 тысяч раз. Сегодня эта цифра превзойдена более чем десятикратно.

Чтобы постигнуть смысл приведенных «холодных числ», достаточно сказать, что самый мощный оптический микроскоп, хотя его никак не назовешь подслеповатым, далеко уступает электронному в зоркости — в десятки и сотни раз. Именно благодаря электрическим и магнитным «линзам», фокусирующим электронные лучи, удалось разглядеть тонкую структуру клетки, даже увидеть отдельные «живые молекулы», а это привело, как известно, к настоящей революции в биологии.

Богатейшие возможности пучка частиц в роли волшебного карандаша уже проиллюстрированы на примере телевидения. Здесь корпускулярное излучение, как когда-то волновое (лазер!), доказало нам свою «ловкость», свою грациозную легкость, мобильность, гибкость. Между тем оно тоже способно быть мощным и разрушительным.

Согните его в бараний рог!

Под Серпуховом по соседству с крестообразным радиотелескопом построено еще одно чудо техники, кольцевидное. Его поперечник — около полукилометра, периметр — полтора. Ныне это самый большой, самый мощный ускоритель, какого еще не видывал свет. Представляете? Точнейшая, сложнейшая машина размером со стадион!

…О чудесах-пирамидах умолкнет пусть варварский Мемфис.

Посрамлена и кичливость всех Вавилонских твердынь.

Храмом Эфесским отныне не хвастают пусть ионийцы.

Взора не тешит уже славный Делосский алтарь.

Да не возносят теперь до небес, похваляясь, карлицы

Чудо свое — Мавзолей, что надменно вздымается ввысь.

Все уступают они творению…

Так и хочется продолжить:

…физиков русских —

Наш ускоритель-гигант славит людская молва.

Но в оригинале стихи звучат иначе:

…цезарей римских.

Больше всего Колизей славит людская молва.

Сей высокопарный панегирик принадлежит античному поэту Марциалу.

«А среди памятников, которые оставит после себя наш беспокойный век, быть может, наиболее яркими будут полуразрушенные и поросшие травой, старьте, заброшенные к тому времени гигантские ускорители, — так считает молодой журналист и ученый, кандидат технических наук В. П. Карцев. — Ускорители — вот те памятники, по которым потомки будут судить о нас, об уровне нашей техники и культуры. Ускорители — это наши пирамиды».

Среди литературных вариаций на эту тему чаще всего сталкиваешься именно с архитектурно-строительными ассоциациями. Вот, пожалуйста:

— Каждый вид ускорителей имеет собственный архитектурный стиль. Синхроциклотроны для меня — барокко. Протонные синхротроны выполнены, без сомнения, в романском стиле, хотя их изогнутые арки расположены горизонтально. Электронные синхротроны обладают той легкостью и грацией, которая присуща готике. А изохронный циклотрон с его вычурными полюсными наконечниками оформлен как бы в манере рококо…

Это говорит ученый. И не кто иной, как специалист, участвовавший в сооружении первых циклотронов, — Роберт Уилсон.

Незаметно для себя мы очутились среди отнюдь не царских «тронов», перенесясь сюда из мира «скопов», — помните? Кинескоп, иконоскоп, имедж-иконоскоп, электронный микроскоп… У всех у них, как и у клистронов, у магнетронов, есть немало общего с циклотронами, синхрофазотронами и прочими «тронами». Имена радиоламп-малюток и ускорителей-великанов созвучны неспроста.

В «лампе морского прибоя» электронным потоком управляют с помощью электрического поля, в магнетроне — магнитного. Управляют — это значит формируют частицы в прямолинейные пучки или закручивают их в вихри, разгоняют их на пути от катода к аноду, отклоняют и таким образом заставляют работать, эксплуатируют, добиваясь нужной цели. А разве в ускорителях происходит не то же самое, разве что в больших масштабах?

Потоки корпускул вполне правомерно рассматривать как лучи. Чем массивнее эти «пули» и чем сильнее они разогнаны электрическим полем, тем короче волна. Ее длину подбирают так, чтобы она была сравнимой с размерами исследуемого объекта. Ведь облучаемое вещество сообщит о себе что-то лишь в том случае, если оно как-то исказит нахлынувшую на него волну. Дмитрий Иванович Блохинцев, президент Международного союза чистой и прикладной физики, член-корреспондент АН СССР, так иллюстрирует эту закономерность:

— Представьте себе лодку на поверхности пруда. Гонимые ветром волны набегают на нее, отражаясь от одного, например левого, борта, а за другим, правым, возникает область штиля. По тени и отражению можно судить с? размерах и форме лодки, даже не видя ее саму. Зато если погрузить в воду вязальную спицу, то волны, чересчур большие в сопоставлении с нею, не возмутятся, не исказятся. Они попросту не заметят столь ничтожного препятствия, а мы о нем так ничего и не узнаем.

У протонных пучков дубненского синхрофазотрона длина волны составляет одну стотриллионную долю сантиметра, а это меньше нуклона. Значит, таким путем можно «прощупывать» внутреннюю структуру ядра и его «кирпичиков».

Еще выше разрешающая способность у серпуховского ускорителя. Частицы в нем удается разгонять до энергий в 70 миллиардов электрон-вольт — в семь раз больше, чем на дубненском. Однако, если учесть, что при ударе микротарана ядра обстреливаемой мишени податливо отступают назад, то, к сожалению, волна корпускулярного излучения укоротится не во столько же раз, а лишь в корень квадратный из 7, то есть примерно в два с половиной раза. Чтобы уменьшить ее вдесятеро, понадобилась бы машина, которая мощнее дубненской во сто крат.

Проект именно такого сверхгиганта выдвинут советскими учеными в августе 1963 года на Международной конференции, проходившей в Дубне. Тогда же их коллеги из Европейского центра ядерных исследований предложили ускорители в 3 раза меньшей, но все равно циклопической мощности — на 300 миллиардов электрон-вольт, а американцы — на 200.

Высокоэнергетические корпускулярные излучения… Их научную важность физики осознали еще до того, как научились получать их в лабораториях.

…Вот так сюрприз! Откуда он — столь необычный след? Все другие искривлены наподобие дуг, а этот — словно тетива лука. Тут было над чем призадуматься.

Физик Дмитрий Скобельцын оторвал глаза от вороха снимков и посмотрел на стоявшую перед ним камеру Вильсона. В ней действительно долгие годы наблюдались лишь прямолинейные треки. Вторгаясь в газовую среду, заполнявшую камеру, частица летела вперед, напролом, не отклоняясь, — да и с чего бы ей поворачивать? Правда, на ее пути попадалось множество препятствий — целая толпа встречных молекул. Но, обладая большей энергией, она их попросту калечила, разбивала вдребезги, упорно продолжая двигаться по прежнему направлению. Сзади оставались обломки — ионы и электроны. На них конденсировались водяные пары, присутствовавшие в газе. Образовывалась ниточка из мельчайших бусинок-капелек, хорошо видная в окуляр. Ее легко было и сфотографировать — на снимке получались крапинки, составлявшие не очень ровную, прерывистую, но все же явно прямую трассу. Так продолжалось до тех пор пока Скобельцын не поместил камеру Вильсона в постоянное магнитное поле, чтобы оно плавно изгибало маршрут заряженной корпускулы.

Еще в 1922 году в «Журнале русского физико-химического общества» («ЖРФХО») вышла статья, подписанная П. Л. Капицей и Н. Н. Семеновым, — «О возможности экспериментального определения магнитного момента атома». (Статья была помечена декабрем 1920 года. Но пока она добиралась до Берлина, где издавался «ЖРФХО», пока набиралась, печаталась, Штерн вместе с Герлахом поставили подобный же опыт. Впоследствии первый из них за эту работу удостоился Нобелевской премии.) Командированный тогда же в Англию, к самому Резерфорду, 29-летний Петр Капица защитил там докторскую диссертацию на тему «Прохождение альфа-лучей через материальную среду и методы получения сильных магнитных полей». Получил премию Максвелла, а через пять лет стал действительным членом Королевского общества. Здесь, в Кембридже, Капице пригодились идеи, сформулированные в той самой статье: молодой советский физик впервые предложил точно оценивать энергию частиц по степени их отклонения магнитным полем, куда помещалась камера Вильсона.

Так же поступил в 1927 году и Дмитрий Владимирович Скобельцын. Правда, он изучал иное явление — эффект Комптона. И треки, полученные им на снимках с помощью камеры Вильсона, принадлежали не ядрам гелия, как у Капицы, а электронам, выбитым из атома гамма-квантами. Но закономерность оставалась той же самой: чем круче вираж, тем податливее была описывавшая его частица, тем она слабосильнее.

Так вот, на некоторых кадрах в тех же условиях у Скобельцына почему-то запечатлелись прямолинейные черточки.

Чьи они? Комптоновских электронов? Нет! Какие-то иные пули, куда болеем стремительные и мощные, прошили камеру Вильсона насквозь, даже не обратив внимания на внешнее магнитное поле.

Тщательный критический анализ условий опыта, перебор всех предполагаемых источников окончательно убедил Скобельцына: зафиксировано всепроникающее космическое излучение.

Обнаруженное еще в 1912 году, оно интересовало в основном геофизиков, атомников же оставляло к себе равнодушными. Открытие советского ученого, как по сигналу тревоги, подняло канониров микромира. Еще бы: высокоэнергичные частицы, а их не умели тогда получать в лаборатории, обещали стать новыми, более мощными снарядами в штурме ядерного Измаила.

Сдвинуть с мертвой точки проблему космических лучей помог и другой способ их регистрации, предложенный в 1925 году нашими же учеными Л. В. Мысовским и А. П. Ждановым, — прямо на фотопластинку, без камеры Вильсона и ее тумана. Повреждая молекулы светочувствительного слоя, частица оставляет в эмульсии след, хорошо прорисовывающийся по проявлении. А монография Мысовского «Космические лучи» (1929 год) привлекла всеобщее внимание к новой области, которая до того времени лежала в стороне от столбовой дороги ядерной физики.

В 1929 году Скобельцын установил, что лучи, приходящие из вселенной, зачастую проявляют себя не в виде отдельных редких пуль, а целыми ливнями, наподобие шрапнельных осколков. Внедряясь в воздушную оболочку нашей планеты, походя круша встречные молекулы, они вызывают целый фейерверк микрокатастроф, сыплющий искрами по сторонам осколки атомов и новые, элементарные частицы. Стало очевидно: стремительный корпускулярный поток порождает качественно иные явления, которые невозможно или очень трудно наблюдать, если оперировать традиционными малыми энергиями — как при бомбардировке веществ обычными, сравнительно медленными ядерными частицами. Увы, новый инструмент исследования не только радовал своей невиданной мощью, но и огорчал грубостью. Нерегулярные по времени, неоднородные по энергии, разношерстные по составу, небесные пулеметные очереди все меньше устраивали ученых. Все настойчивей заявляла о себе потребность в иной канонаде — столь же сокрушительной, но к тому еще и хорошо организованной, легко поддающейся управлению.

Трудно сказать, кто, где и когда впервые подал мысль об ускорителе. Идея зрела исподволь во многих странах. В конце концов вакуумная трубка, с помощью которой Рентген в 1895 году открыл лучи, названные его именем, — тоже ускоритель, правда, линейный, не кольцевой. В нем электроны, срывавшиеся с катода, разгонялись электрическим полем и, проносясь мимо анода, с силой бились о мишень — об антикатод. Тормозясь в нем, они отдавали избыток своей энергии в виде всепроникающих квантов. Но там разность потенциалов не превышала 50 тысяч вольт. И, стало быть, пройдя ее, наша однозарядная частица обретала энергию не более 50 тысяч электрон-вольт, то есть в сотни раз меньше, чем требовалось для вторжения в атомное ядро.

В принципе, конечно, можно было создать длиннющую вакуумную трубку, равноценную десятку или хоть сотне обычных. Иной путь наметили харьковские физики (К. Д. Синельников и другие). Конструируя небольшой импульсный генератор на полтора миллиона вольт для получения быстрых ионов и электронов, они задались вопросом: а не лучше ли свернуть цепочку в кольцо, в спираль и таким образом обойтись меньшим количеством звеньев? В 1930 году они даже испытали устройство, напоминающее циклотрон. Но довести эту идею до логического конца суждено было другому. Должен же кто-то стать первым!

Первым стал Эрнест О. Лоуренс, доктор философии Калифорнийского университета (США). В 1932 году он соорудил свою установку.

В том же 1932 году по инициативе Л. В. Мысовского в Радиевом институте был заложен первый в Советском Союзе и Европе однометровый циклотрон. Он сыграл свою роль в развитии нашей ускорительной техники: его запуск и эксплуатация стали своеобразной генеральной репетицией накануне наших всемирно прогремевших премьер, начавшихся сооружением шестиметрового синхроциклотрона в Дубне.

Тем временем группа Лоуренса сконструировала новый ускоритель, рассчитанный на энергию частиц в 60 миллионов электрон-вольт. Увы, он не оправдал возлагавшихся на него надежд: не был способен сообщать частицам запланированную мощь. Самое большее, на что у него «хватало пороху», — разгонять их до энергии в 20 миллионов электрон-вольт — втрое меньше. И ничего тут нельзя было поделать, если бы не…

Спасательный круг, за который ухватился Лоуренс, — принцип автофазировки. Эта идея впервые сформулирована советским ученым В. И. Векслером в серии его статей, вышедших в 1944–1945 годах, и независимо от него американским физиком Э. Мак-Милланом.

Как пришпорили кентавра

«Циклоп» Лоуренса оказался слабосильным вот почему.

В нем протон или иной ион описывает Архимедову спираль. Трасса эта, похожая на пружину часового механизма, пролегает между двумя широкими и плоскими торцами (полюсами) постоянного магнита, поле которого, собственна, и закручивает ее в спираль. Протонная «карусель» организована в вакуумной камере внутри кожуха, напоминающего большую банку из-под гуталина, разрезанную надвое по диаметру. Обе половинки суть не что иное, как электроды (их называют дуантами). Между ними от края и до края проходит узкая щель. Раскручиваясь от центра «банки» к ее периферии, частица за один полный цикл дважды пересекает эту поперечную зону, причем во время первого полувитка она двигается через зазор в одну сторону, а в течение второго — в обратную, но электрическое поле тоже каждый раз меняет свое направление на противоположное, так что, когда частица пролетает через ускоряющий промежуток, оно всегда должно сопровождать ее бодрящим толчком в спину. Только вот всегда ли?

В соответствии с теорией относительности масса движущегося тела возрастает тем заметнее, чем ближе его скорость к световой, предельной — именно этот релятивистский эффект и сказался при переходе к большим энергиям. Утрачивая прежнюю легкость, частица становится менее поворотливой и уже не поспевает в урочный момент к тому участку, где ее должно подхлестнуть электрическое поле. Запоздав, она вместо подбадривающего толчка может встретить даже противодействие, тормозящее ее полет, — поле-то переменно! А нужно, чтобы периодичность, с какой она делает витки, равнялась частоте электромагнитного «погонялы» и оба колебательных процесса согласовались по фазе — четко «работали» в такт, совпадали по направлению. Как же сделать, ломали себе голову конструкторы, чтобы частицы не выбивались из ритма? Не подогнать ли к их нарастающим опозданиям расписание ударов электродного бича? Поначалу казалось: если постепенно увеличивать время между толчками, то все равно не удастся приспособиться к неаккуратному прибытию всех или даже большинства микротелец — нельзя же, право, для каждого из них подбирать свое удлинение периода!

Но при определенных условиях частицы сами будут дружно приспосабливаться к изменению частоты — к такому парадоксальному на первый взгляд выводу пришел Владимир Иосифович Векслер.

Пусть одна из спутниц отстала от своего роя и пожаловала к ускоряющей щели не в заданной фазе, так что получила вдогонку совсем слабый импульс. Значит, ее масса возрастет в меньшей степени, чем у остальных, и теперь уже начнут отставать от нее те, другие. Быстролетная странница, которая прежде плелась в хвосте, через несколько оборотов вырвется вперед и придет к зазору между дуантами раньше прочих. Если при этом разгоняющее поле наградит ее более чувствительным «тумаком», чем следующих за ней, она рано или поздно снова переместится из авангарда в арьергард.

Меняя темп, частицы будут колебаться около некой равновесной фазы. В результате такого саморегулирования вся «компания», невзирая на отдельные отклонения от общего правила, на некоторый внутренний разброд и даже отсев «отбившихся от стада», в среднем, в своем большинстве не утратит единства действий. Так что ее поведение (скажем, совместное отставание от первоначального расписания) может быть согласованным. И его удастся подчинить одному режиму, подобрав закон, по которому должна изменяться частота ускоряющего поля, — чтобы не нарушалась синхронность, согласованность во времени между круговращением всей «карусели» и толчками ее электрического «мотора».

Вскоре Лоуренс, усовершенствовав свое детище в соответствии с рекомендациями теоретиков, довел его мощность до 350 миллионов электрон-вольт. Проектная цифра оказалась превзойденной почти в шесть раз. Только прежнее устройство стало именоваться теперь синхроциклотроном, или фазотроном, ибо в нем частота на ускоряющем промежутке уже не оставалась постоянной, а регулировалась так, как того требовал новый режим. Через некоторое время все рекорды были побиты фазотроном в Дубне — чуть ли не 700 миллионов электрон-вольт!

В 1947, а затем и в 1949 году в Москве, в том же ФИАНе, появились сравнительно небольшие установки — первая на 30, вторая на 250 миллионов электрон-вольт. Созданные под руководством В. И. Векслера, они интересны тем, что в них периодичность электрического поля сохраняется одной и той же, зато напряженность магнитного меняется во времени. Их окрестили синхротронами. Если же варьируются оба параметра, получается «гибрид» — синхрофазотрон.

Таковым, например, является дубненский колосс. Он вступил в строй в апреле 1957 года. Во время его пуска у пульта управления стоял академик Векслер, воплотивший в замечательной советской машине свою идею автофазировки.

Большой победе нашей науки и техники предшествовал не только кропотливый анализ отечественного и зарубежного опыта, но и пионерский поиск, проведенный в ФИАНе группой ученых во главе с докторами физико-математических наук А. А. Коломенским и М. С. Рабиновичем. В 1953–1955 годах новые теоретические выводы тщательно проверялись на модели ныне действующего ускорителя, оттачивались его конструктивные узлы.

Некоторое представление о том, что это за «узлы», дает электромагнит. Он весит 36 тысяч тонн. А ведь он не сплошной, не дискообразный, как у циклотрона. Он сделан в форме пустотелой баранки, сердцевину которой составляет кольцевидная труба — вакуумная камера. Там, внутри, частицы движутся не по архимедовой спирали, не от центра к периферии, а по замкнутой круговой орбите одинакового радиуса. Такое решение сделала возможным остроумная идея — одновременно варьировать характеристики двух полей: напряженность магнитного и частоту электрического. Идея великолепная, но как нелегко было ее осуществить! Соответствие обоих параметров выдерживается с точностью до десятой доли процента. За их согласованностью строго следит специальное устройство. Оно непрерывно измеряет напряженность закручивающего поля и в случае малейшего ее отклонения подает сигнал, по которому корректируется частота поля разгоняющего, а она как-никак изменяется почти в 10 раз! Управление всем режимом ускорения полностью автоматизировано. С этими сложнейшими задачами блестяще справились специалисты Радиотехнического института АН СССР под руководством академика А. Л. Минца, Ф. А. Водопьянова, С. М. Рубчинского и других. Вакуумная камера, электромагнит и питающая его обмотку подстанция мощностью 140 тысяч киловатт (две Волховские ГЭС!) спроектированы исследовательским коллективом во главе с Д. В. Ефремовым, Е. Г. Комаром, Н. А. Моносзоном, А. М. Столовым.

Многолетний труд многолюдных исследовательских коллективов, мощный индустриальный базис, щедрые государственные ассигнования на развитие науки сделали реальностью еще одно чудо техники, сооружение которого под силу лишь стране с могучей экономикой и высокой культурой.

Решением нашего правительства эта уникальная установка поступила в распоряжение интернациональной семьи ученых, которыми в Объединенном институте ядерных исследований (ОИЯИ) представлено двенадцать разных стран. Там же находятся и другие ускорители. Есть они и в самой Москве, и в Новосибирске, и в Харькове, и в Томске, и в Ереване, и во многих других городах. Разные у них мощности, различны их типы. Но ученые и инженеры не устают искать, совершенствуя старые модели, изобретая новые, — покорение корпускулярного луча продолжается.

В 1953 году А. А. Коломенский, В. А. Петухов и М. С. Рабинович, а двумя годами позднее Окава и Саймон (США) предложили еще одну разновидность ускорителя — кольцевой фазотрон. В нем магнитное поле сохраняется постоянным во времени, а это, помимо прочих технических преимуществ, дает реальную перспективу в сотни раз повысить интенсивность пучка по сравнению с той, что достигнута равномощными ускорителями, где магнитное поле переменно.

Конечно, в обычном фазотроне разгонять частицы до энергий более одного миллиарда электрон-вольт нереально. Но именно в обычном. Ибо у него магнит сплошной. Его вес, как и его же потребность в электропитании, с увеличением мощности установки до семизначного числа возросли бы чудовищно.

Советские ученые придумали, однако, способ, как устранить, казалось бы, непреодолимую трудность.

Они пришли к выводу: магнит и здесь можно значительно облегчить, если сделать его в форме узкого кольца, собранного из отдельных секторов. При переходе от предшествующего сектора к последующему поле поочередно меняет свое направление на обратное и своими силовыми линиями «прижимает» вихляющуюся частицу к круговой орбите то с одного бока, то с другого. Так осуществляется жесткая фокусировка.

Нехитрая вроде бы мысль (впервые ее подал в. общих чертах греческий инженер Н. Кристофилос еще в 1950 году). А сотрудникам Брукхейвенской национальной лаборатории и их коллегам из Европейского центра ядерных исследований (ЦЕРН) понадобилось 8 лет напряженной теоретической и экспериментальной работы, чтобы спроектировать два синхрофазотрона, на 30 миллиардов электрон-вольт каждый.

Вдвое более мощный серпуховский ускоритель, созданный под руководством А. Л. Минца и В. В. Владимирского, также воплотил в себе эту замечательную идею. Его магнит, имея в 8 раз больший поперечник, намного легче, чем у дубненской машины, где применена мягкая (слабая) фокусировка.

Развивая далее принцип сильной фокусировки, коллектив физиков ОИЯИ во главе с В. П. Дмитриевским, В. П. Джелеповым и Б. И. Замолодчиковым построил модель изохронного циклотрона.

При всей ограниченности лоуренсовское изобретение позволяет получать самые густые рои разогнанных частиц. Как поднять его «потолок», не утратив его достоинств? Если сделать дискообразные торцы магнита не плоскими, а рельефными (по Уилсону — «в стиле рококо»), то в создаваемом ими поле появятся перемежающие друг друга сгущения и разрежения. Они-то и помогут частицам раскручиваться в заданном режиме, не сбиваясь с пути истинного.

Трудность заключается в том, чтобы с высокой точностью, до сотых долей процента, обеспечить нужное распределение силовых линий, их конфигурацию.

Наши ученые и инженеры успешно справились с этой сложной технической проблемой. Опыты с моделью вселили уверенность: новый циклотрон способен в 50 раз превзойти самый мощный классический — лоуренсовский! В Дубне уже спроектирована такая установка на 700 миллионов электрон-вольт.

Автофазировка и жесткая фокусировка привели к прорыву в область сверхвысоких энергий — в сотни миллиардов электрон-вольт. Еще дальше — за триллионный рубеж — позволят шагнуть автокоррекция — автоматическое исправление характеристик магнитной и ускоряющей системы по информации о «самочувствии» летящих частиц, поступающей от самого пучка. Эта идея высказана советскими учеными Э. Л. Бурштейном, А. В. Васильевым, А. Л. Минцем, В. А. Петуховым и Э. М. Рубчинским.

Растет мощность ускорителей, умножается их количество, ширится и качественное разнообразие их типов. Но какой от этого прок человечеству?

Оправдывают ли себя огромные средства, вложенные в сложнейшие, дорогостоящие машины?

Кудесники микромира

Ускорители еще в начале войны дали возможность измерить важнейшие ядерные константы, без которых немыслимо сооружение атомных котлов.

Именно ускорители приблизили эру ядерной энергетики. Говоря о необходимости капиталовложений в научные исследования, академик П. Л. Капица приводил такое сравнение: «Когда Колумб направлялся в экспедицию, результатом которой было открытие Америки, он ехал на простом маленьком фрегате, на лодчонке, с современной точки зрения.

Но чтобы освоить Америку как страну, потребовалось построить большие корабли, как „Лузитания“, „Титаник“, и это полностью себя оправдало».

Да, оправдало, даже несмотря на отдельные издержки: как известно, и «Титаник» и «Лузитания» пошли ко дну — первый столкнулся с айсбергом, вторую торпедировала германская подводная лодка.

В мае 1955 года американские физики опубликовали сообщение о синтезе элемента № 101, названного ими менделеевием «в признание ведущей роли великого русского химика Дмитрия Менделеева, который первым использовал для предсказания свойств еще не открытых элементов периодическую систему — принцип, явившийся ключом к открытию последних семи трансуранов». А в 1961 году пустая клетка под номером 103 заполнилась еще одним новичком — лоуренсием. Его окрестили так в честь изобретателя циклотрона. И разве не символично, что в таблице соседствуют имена Менделеева и Лоуренса?

1 марта 1969 года исполнится столетие с того дня, когда наука обогатилась эпохальным открытием: Дмитрий Иванович Менделеев сформулировал периодический закон. Исходя из своей классификации, в 1872 году, когда число известных элементов не превышало и семи десятков, он уже допускал существование по крайней мере пяти заурановых незнакомцев. Сколько же их всего? Где верхний предел менделеевской системы? Ответить на этот вопрос, один из кардинальнейших в современном естествознании, стало возможно лишь после появления ускорителей. Именно с их помощью алхимики XX века получили плутоний, кюрий, берклий, калифорний, эйнштейний, фермий, менделеевий, лоуренсий, некоторые иные элементы. И продолжают создавать рукотворные ядра.

Между клетками с менделеевием и лоуренсием в таблице примостился пустой квадрат. Одно время там стоял символ нобелия (No). Но вскоре физики заявили, что латинское сокращение очень хорошо отражает итог открытия: «No» по-английски означает «нет». Что случилось?

В 1957 году сотрудники Нобелевского института в Стокгольме поспешили объявить о синтезе еще одного кандидата в трансураны. Они облучали мишень из кюрия (№ 96) ионами углерода (№ 6), разогнанными в циклотроне. Ожидалось, что оба ядра сольются, образовав новое, соответствующее элементу № 102.

Американцы повторили опыты на линейном ускорителе Калифорнийского университета. Увы, выводы шведов не подтвердились. Открытие было «закрыто».

В том же 1957 году в Институте атомной энергии имени И. В. Курчатова группа Г. Н. Флерова (С. М. Поликанов, А. С. Карамян, А. С. Пасюк, Д. М. Парфанович, Н. И. Тарантин, В. А. Карнаухов, В. А. Друин, Б. В. Волков, А. М. Самчинова, Ю. Ц. Оганесян, В. И. Хализев, Г. И. Хлебников), бомбардируя плутоний (№ 94) ионами кислорода (№ 8), получила вещество, выбрасывавшее альфа-частицы. Характеристики излучения заставляли заподозрить, что его испускают новорожденные ядра сто второго элемента. Но советские ученые не торопились афишировать свое достижение. Предстояло тщательнейшим образом проверить результаты, чтобы отмести все сомнения, которых было немало.

Решили продолжить опыты в Дубне на циклотроне, запущенном в 1960 году. Эта машина до сих пор является лучшей в мире среди установок своего класса. И в мае 1963 года пришел подлинный успех.

Обстреливая уран ионами неона, Е. Д. Донец, В. А. Щеголев, В. А. Ермаков, сотрудники лаборатории ядерных реакций ОИЯИ (директор — член-корреспондент АН СССР Г. Н. Флеров) синтезировали, наконец, заветный сто второй, вернее, его изотоп с массовым числом 256, изучили его свойства.

Калифорнийские же исследователи, опровергнув шведов и отказавшись от их методики, пытались иным способом добиться цели. Они напечатали статью, где утверждалось, будто получен изотоп-254 элемента № 102. Но их результаты были гораздо менее надежны, что признал сам руководитель работы Гленн Сиборг, когда он посетил Дубну в 1963 году.

Все же до сих пор ведутся дискуссии, чьей стране по-настоящему принадлежит честь открытия, так что многострадальный новорожденный до сих пор остается безымянным.

Описанная эпопея с достаточной ясностью свидетельствует, сколь сложна вся эта проблема и сколь многое здесь зависит от качеств ускорителя.

Трехметровый циклотрон позволил флеровцам уточнить и заново определить константы ранее синтезированных трансуранов. Как известно, тот факт, что менделеевий появился на свет, американцам удалось зарегистрировать по распаду всего 17 его атомов. При столь мизерной продукции ни о каком изучении химических свойств вещества не могло быть и речи. Этот пробел восполнили сотрудники лаборатории ядерных реакций — более ощутимое количество менделеевия предоставил в их распоряжение великолепный ускоритель, который дает самые быстрые, самые плотные пучки тяжелых ионов.

В 1964 году всю мировую прессу облетела весть: в СССР искусственно изготовлен следующий за лоуренсием член трансуранового ряда. Всего было получено около 150 ядер — по одному за каждые 5–6 часов. Выяснилось, что обитатель клетки № 104 является химическим аналогом гафния, резко отличается от соседей-предшественников и открывает собой новую группу сверхтяжелых элементов, что лишний раз подтверждает правильность периодического закона Менделеева. Георгий Николаевич Флеров и его сотрудники предложили назвать новый элемент курчатовием.

Коллектив той же лаборатории, под тем же руководством и на том же циклотроне открыл два новых вида радиоактивности: самопроизвольное деление ядер из изомерного состояния (С. М. Поликанов и другие) и испускание протонов (В. А. Карнаухов, Г. М. Тер-Акопьян, В. Г. Субботин), теоретически предсказанное советскими физиками Б. С. Джелеповым, А. Б. Мигдалом, Б. Т. Гейликманом.

В 1967 году Г. Н. Флеров, В. А. Друин, И. Звара и С. М. Поликанов стали лауреатами Ленинской премии — за синтез трансурановых элементов и исследование их свойств.

Сколько удивительных возможностей предоставил исследователям ускоритель! Даже не очень могучий.

Например, трехметровая «праща» лаборатории Флерова наделяет раскручиваемый ею ион энергией не свыше 10 миллионов электрон-вольт (из расчета на каждый его нуклон).

Однако ученые хотят не только «лепить» невиданные ядра, но и получать новые элементарные частицы. Они намерены до тонкостей прощупать не только внутриядерную структуру, но и устройство входящих в атомы мельчайших «кирпичиков» мироздания.

Современная физика подтвердила пророческие слова Ленина: электрон столь же неисчерпаем, как и атом.

— Вообразите двух близнецов одинакового роста и сложения, с тем же цветом глаз и волос, даже характером схожих, только один весит в сотни раз больше другого, будто проглотил нечто сверхтяжелое. Именно с такой ситуацией мы встречаемся в случае мю-мезона и электрона: они отличаются по массе в 220 раз, но не удалось еще найти никакой иной разницы ни в их строении, ни в их свойствах, проявляющихся при взаимодействиях, — рассказывает член-корреспондент АН СССР Д. И. Блохинцев. — Не означает ли загадка мю-мезона, что вещество элементарной частицы сосредоточено где-то в ничтожно малой ее сердцевине, а мы изучаем пока лишь разреженную «атмосферу», окутывающую эту таинственную центральную область? Не похожи ли элементарные частицы на атомы, поведение которых во многом определяется крайне разреженной электронной оболочкой, в то время как вся их масса сконцентрирована в ядре?

Разрастается «зоопарк» элементарных частиц.

Не так давно его коллекция обогатилась новым экземпляром — анти-сигма-минус-гипероном. Его след на одной из 40 тысяч фотографий, снятых в пузырьковой камере дубненского синхрофазотрона, обнаружил молодой физик А. А. Кузнецов.

У каждой частицы есть свой двойник в антимире.

У электрона — позитрон, у нейтрино — антинейтрино, у сигма-минус-гиперона — частица, открытая Кузнецовым, и так далее. В познание законов такой симметрии огромный вклад внесен советскими учеными — лауреатом Нобелевской премии академиком Л. Д. Ландау, лауреатом Ленинской премии академиком Б. М, Понтекорво, многими другими.

До изобретения циклотрона было известно всего несколько частиц — сегодня их считают дюжинами.

Их открывают чуть ли не каждый год (как шутят физики — «один мезон в один сезон»), причем открывают не без помощи ускорителей. Назрела нужда в классификации элементарных частиц, подобной менделеевской систематике. Профессор Д. Д. Иваненко высказал гипотезу: все частицы суть различные формы одной простейшей. Но если так, то какой?

Сотни подобных вопросов одолевают ученых.

Чем мельче микрообъект, тем выше энергия, которой характеризуются процессы, протекающие в его недрах. Для нуклона она измеряется миллиардами электрон-вольт, что в тысячи раз больше, чем для ядра. И только самое жесткое корпускулярное излучение способно проникнуть в этот удивительный таинственный мир. Вот почему разведчики микрокосмоса так упорно бьются над созданием сверхмощных ускорителей.

Создание многокилометровых вакуумных тоннелей внутри кольцевидной магнитной муфты — путь проверенный, надежный, по нему можно идти без риска оступиться. И все же… Нельзя ли как-то иначе, в более скромных масштабах, повысить мощность пучка?

В ЦЕРНе и Брукхейвене пущены синхрофазотроны на 30 миллиардов электрон-вольт. Такую энергию приобретает поток протонов. Но, врезаясь в неподвижную мишень, он заставляет ее нуклоны пружинисто отпрянуть назад. Примерно так под ударом боксера отскакивает тренировочная груша. Из-за податливости вещества обрушивающиеся на цель микроснаряды проигрывают в силе настолько, что энергия взаимодействия фактически оказывается чуть ли не вчетверо меньшей — 8 миллиардов электрон — вольт. Иначе обстояло бы дело, если бы атакуемые частицы неслись навстречу нападающим. Будь они разогнаны до той же скорости, произошло бы столкновение с энергией в 60 миллиардов электрон-вольт.

Чтобы получить такой эффект при неподвижной мишени, потребовался бы ускоритель на 1800 миллиардов электрон-вольт!

Экономический выигрыш почти в 100 раз по сравнению с обычными установками равной мощности — вот что сулят встречные пучки. Этот перспективный метод разрабатывается в Институте ядерной физики в Академгородке под Новосибирском (директор — академик Г. И. Будкер). Там создано несколько ускорителей подобного типа. Один из них (ВЭПП-2) предназначен для получения встречных электрон-позитронных потоков, по 700 миллионов электрон-вольт каждый, а в сумме — почти 1,5 миллиарда.

Колоссальная энергия! Между тем габариты всего устройства не превышают нескольких метров. Проектируется и протон-протонная установка поперечником 2,5 метра на энергию в 3 миллиарда электрон-вольт.

В 1967 году академику Г. И. Будкеру, члену-корреспонденту АН СССР А. А. Наумову, доктору физико-математических наук А. Н. Скринскому, кандидату физико-математических наук В. А. Сидорову, доктору технических наук В. С. Панасюку за разработку метода встречных пучков присуждена Ленинская премия.

В Институте ядерной физики Сибирского отделения Академии наук ведутся также работы по созданию электромагнитов без тяжелых железных сердечников. Нелегкая это задача, зато ее решение, а оно будет найдено, существенно сократит вес и размеры ускорителей, усилив магнитное поле в десятки раз.

И — почем знать? — быть может, действительно отомрут со временем нынешние бронтозавры ускорительной техники, уступив место миниатюрным, но не менее могучим машинам-миллиардерам.

Получив в свое распоряжение корпускулярные пучки неслыханной мощности, человек сможет буквально творить чудеса.

Известно, что соударение двух быстрых нуклонов порождает целый фейерверк нуклонов, мезонов, других частиц. На фотографии появляется «звезда» с многочисленными лучами, выбегающими из эпицентра взрыва. А если столкнутся потоки нуклонов неимоверно огромной энергии? Тогда, как допускает Блохинцев, ливень микротелец окажется настолько обильным, что может образоваться макроскопическое, массивное тело, даже звезда, без кавычек, не в лабораторном смысле, а в астрономическом. Энергия превратится в материю…

Фантастическую власть над веществом и энергией обретает человек, покоряя корпускулярное излучение.

Лучи… лучи… лучи… Родившиеся в естественных условиях и созданные искусственно, видимые и незримые, слабые и мощные, созидающие и разрушительные, рвущиеся из ядерных недр и испускаемые галактиками, волновые и корпускулярные, а вернее — корпускулярно-волновые, прошли они перед нами нескончаемой, неразрывно связанной чередой.

Они раздвинули горизонты нашего познания.

Человек жадно ловит лучи; кропотливо выуживая из бессвязного лепета природы драгоценные крупицы информации. Он изобрел для этого хитроумные ловушки — миниатюрные квантовые усилители и гигантские радиотелескопы, сложные камеры, наполненные туманом, окруженные магнитным полем, и простые фотопластинки, покрытые толстым слоем эмульсии.

Человек сам формирует лучи, превращая их в рабочий инструмент, зондируя ими окружающий мир и переделывая его: Лазеры. Радиолокаторы.

Телевизоры. Электронные микроскопы. Ускорители. Словно искусный подмастерье, умело и расторопно выполняет луч самые разнообразные, самые нелегкие, самые сложные задания своего хозяина-творца — человека…

Кентавры… Мифическим образом диких полулюдей-полуконей воспользовался известный наш физик-теоретик М. А. Марков, чтобы подчеркнуть донельзя странное, непривычное для нашей повседневной интуиции сочетание противоречивых начал, беспрецедентное двуличие, присущее корпускулам-волнам. Дебройлевская концепция универсальной волнообразности давно уже утвердила себя в физике микромира, в описании поведения элементарных частиц. А теперь благодаря работам Прохорова, Басова, Таунса и других ученых квантовые, «корпускулярные» представления пронизывают и радиофизику, которая дольше других наук изъяснялась классической прозой.

Опознав «микрокентавров», изучив их повадки, человек укротил их и запряг цугом. Так появился луч.

У этого луча славное прошлое. Будущее его фантастически прекрасно.

Загрузка...