Время идет различным шагом с различными людьми.
Скажите «ученый» — и большинство людей сразу же вспомнят Эйнштейна. Альберт Эйнштейн — фигура культовая; многим ли физикам-теоретикам удавалось достичь такой степени известности, что их лица начинали печатать на футболках? Однако Эйнштейн — знаменитость далекая, пугающая. Большинство из тех, кто считает это имя знакомым, затрудняются назвать его конкретные достижения,[54] в отличие, например, от успехов Тайгера Вудса.[55] Нам всем знаком образ Эйнштейна как неуклюжего рассеянного профессора в мешковатом свитере и с всклокоченными волосами — образ человека, полностью посвятившего себя науке и равнодушного ко всему земному. А его работы — рассуждения об эквивалентности массы и энергии, искривлении пространства и времени и поиске окончательной теории — являют для нас вершину абстракции, бесконечно удаленную от каждодневных бытовых проблем.
Настоящий Эйнштейн куда интереснее этого устоявшегося образа. Во-первых, всклокоченный вид и прическа, как у Дона Кинга, стали фирменным стилем Эйнштейна уже в более позднем возрасте — вы вряд ли узнали бы знаменитого ученого в опрятном и ухоженном молодом человеке с пронзительным взором, не раз перевернувшем физику с ног на голову в начале XX века.[56] Во-вторых, теория относительности родилась не из пустых рассуждений о природе пространства и времени; ее источники кроются в абсолютно практичных задачах доставки людей и груза в правильное место в правильное время.
Рис. 4.1. Альберт Эйнштейн в 1912 году. «Удивительным годом» для него стал 1905 год, а исследования по общей теории относительности дали первые ощутимые результаты в 1915 году
Специальная теория относительности, объясняющая, каким образом скорость света может быть одной и той же для любых наблюдателей, появилась в самом начале XX века благодаря усилиям сразу нескольких исследователей. (Авторство общей теории относительности, которая интерпретирует гравитацию как результат искривления пространства—времени, практически всецело принадлежит Эйнштейну.) Крупнейший вклад в развитие специальной теории относительности внес французский математик и физик Анри Пуанкаре. Несмотря на то что именно Эйнштейн поставил окончательную точку, приняв, что «время», измеряемое любым движущимся наблюдателем, ничем не хуже «времени», измеряемого любым другим наблюдателем, оба ученых в своих исследованиях относительности пришли к очень похожим формальным выводам.[57]
Историк Питер Галисон в своей книге «Часы Эйнштейна, карты Пуанкаре: империя времени» («Einstein’s Clocks, Poincaré’s Maps: Empires of Time») излагает доводы в пользу того, что и на исследования Эйнштейна, и на исследования Пуанкаре одинаково повлияли как эзотерические размышления об архитектуре физики, так и обычные земные профессии ученых.[58] Эйнштейн в то время работал патентным клерком в Швейцарии, в Берне, где основной задачей считалось создание точных часов. Между европейскими городами вырастала сеть железных дорог, и решение проблемы синхронизации часов на больших расстояниях представляло огромный коммерческий интерес. Пуанкаре, будучи на два десятилетия старше, служил президентом французского Бюро долгот. Развитие морских перевозок и водных торговых путей требовало более точных методов определения долготы при нахождении в открытых водах — как для ориентирования отдельных кораблей, так и для составления точных карт.
И вот мы имеем то, что имеем: карты и часы. Пространство и время. В частности, теперь мы знаем, что важные вопросы — вовсе не «Где мы в действительности находимся?» или «Сколько сейчас в действительности времени?», а «Где мы находимся по отношению к другим объектам?» и «Какое время показывают наши часы?». Жесткое, абсолютное пространство и время ньютоновской механики превосходно согласуются с нашим интуитивным пониманием мира; теория относительности же требует перейти на совершенно иной уровень абстракции. Физикам, работавшим в начале прошлого столетия, удалось сделать этот критически важный шаг. Они поняли, что не следует пытаться запихнуть мир в рамки, навязываемые нашей интуицией, а нужно серьезно отнестись к тому, что поддается измерению реальными приборами.
Специальная теория относительности и общая теория относительности формируют основу современного представления о пространстве и времени, и в этой главе мы попробуем разобраться, что же скрывается за составляющей «время» в «пространстве—времени».[59] Мы постараемся ненадолго забыть и об энтропии, и о втором начале термодинамики, и о стреле времени, найдя прибежище в чистом, точном мире фундаментально обратимых законов физики. И все же без уверенного понимания теории относительности и понятия пространства—времени нам не удастся найти окончательное объяснение такого явления, как стрела времени.
В дзэн-буддизме существует такая концепция, как «сознание начинающего»: состояние, в котором человек свободен от любых предрассудков и готов принимать мир таким, какой он есть. Можно долго спорить, реально ли достичь такого состояния и есть ли вообще смысл пытаться, однако сама концепция может оказаться весьма полезной при знакомстве с теорией относительности. Так что давайте забудем все, что, как нам кажется, мы знаем о времени во Вселенной, и проведем несколько мысленных экспериментов (о результатах которых нам известно на основании реальных опытов). Наша цель — понять, что нового теория относительности может сказать про время.
Для этого представьте себе, что мы находимся внутри космического корабля, свободно парящего в космическом пространстве и не подверженного влиянию никаких звезд или планет. Мы обеспечены всеми необходимыми запасами: у нас есть вода, воздух и предметы первой необходимости. Кроме того, на борту имеется простейшее оборудование для проведения научных экспериментов в виде блоков, весов и т. п. Единственное ограничение — мы не можем выглянуть наружу и посмотреть на вещи, находящиеся за пределами корабля. В нашем эксперименте мы будем считать, что корабль оборудован различными датчиками, расположенными внутри и снаружи корабля.
Прежде всего, давайте подумаем, что мы можем узнать, находясь внутри корабля. У нас есть пульт управления, и мы можем вращать судно вокруг любой оси. Также мы можем запустить двигатели и переместиться в любом желаемом направлении. Итак, мы проводим время, вращая корабль в разные стороны и перемещаясь туда-сюда, не зная и не особо беспокоясь о том, в каком направлении мы движемся, и проводя заодно разнообразные эксперименты.
Рис. 4.2. Изолированный космический корабль. Слева направо: свободное падение, ускорение, вращение
Что мы можем узнать? Очевидно, что нам не составляет труда заметить ускорение корабля. Когда он движется без ускорения, наша любимая обеденная вилка невесома и свободно парит в воздухе. Однако как только мы запускаем двигатели, она падает вниз, где под «низом» понимается «направление, противоположное тому, в котором корабль ускоряется».[60] Если мы еще поэкспериментируем, то сможем даже научиться распознавать вращение космического корабля. В этом случае предмет сервировки, расположенный точно на оси вращения, продолжает свободно парить на одном месте; однако любые предметы, находящиеся на периферии, «притягиваются» к корпусу корабля и остаются там.
Таким образом, определенные сведения о состоянии корабля мы можем узнавать экспериментально, с помощью несложных опытов внутри судна. Тем не менее есть также вещи, которые мы понять попросту не можем. Например, мы не знаем, где находимся. Скажем, мы проводим несколько экспериментов внутри нашего неускоряющегося, невращающегося корабля. Затем мы включаем двигатели, куда-то стремительно переносимся и снова выключаем, — и вот мы опять в неускоряющемся и невращающемся корабле и можем повторить предыдущие эксперименты. При условии, что у нас есть хоть малейшие навыки проведения физических экспериментов, мы получим точно такие же результаты. Если мы потрудились записать величину ускорения и продолжительность работы двигателей, то, возможно, сумеем вычислить расстояние, на которое переместился корабль; однако, прибегая исключительно к локальным экспериментам, мы при всем желании не сможем отличить одно местоположение от другого.
Аналогично, нам не под силу отличить одну скорость от другой. Как только мы выключаем двигатели, корабль снова начинает свободно парить в пространстве, и совершенно неважно, какую скорость он успел набрать; необходимости замедляться нет. И ориентацию корабля мы тоже определить не можем — в пустынных бескрайних просторах межзвездного пространства все направления одинаковы. Можно понять, вращается судно или нет; однако если включить подходящие направляющие двигатели (или использовать соответствующие бортовые гироскопы) и прекратить вращение, то никакой локальный эксперимент не позволит нам определить угол, на который успел повернуться корабль.
Эти простые выводы открывают нам сокровенные тайны процессов, происходящих в реальном мире. Любые манипуляции, которые мы совершаем с нашим аппаратом, при условии, что они не влияют на результаты экспериментов, — мы меняем его местоположение, поворачиваем, заставляем двигаться с постоянной скоростью, — отражают симметрию законов природы. Принципы симметрии в физике играют важнейшую роль: именно они накладывают строгие ограничения на то, какую форму могут принимать законы природы и какого типа экспериментальные результаты мы можем получать.
Разумеется, у обнаруженных нами видов симметрии есть свои названия. Изменение местоположения объекта в пространстве называется «переносом», изменение ориентации в пространстве — это «поворот», а изменение скорости движения сквозь пространство — «буст». В контексте специальной теории относительности набор поворотов и бустов называется преобразованиями Лоренца, а полный комплект, включающий переносы, — преобразованиями Пуанкаре.
Главная идея, лежащая в основе этих преобразований симметрии, высказывалась учеными задолго до появления специальной теории относительности. Еще Галилео утверждал, что законы природы должны быть инвариантными относительно того, что мы сегодня называем переносами, поворотами и бустами. Даже без теории относительности, если бы Галилео и Ньютон оказались правы в своих утверждениях о законах механики, мы все равно были бы не в состоянии определять положение, ориентацию и скорость, находясь в изолированном свободно движущемся космическом корабле. Различие между теорией относительности и представлениями Галилео лежит лишь в области того, что происходит, когда мы перемещаемся в систему координат движущегося наблюдателя. Волшебство относительности заключается в том, что у изменения скорости много общего с изменением пространственной ориентации; буст — всего лишь пространственно-временная версия поворота.
Прежде чем начинать разбираться с этим, давайте остановимся на мгновение и спросим себя: а могли бы законы физики работать по-другому? Например, выше мы утверждаем, что абсолютное положение объекта не поддается определению — и абсолютная скорость тоже, однако абсолютное ускорение вполне измеримо.[61] Можно ли вообразить мир с такими физическими законами, в котором невозможно оценить абсолютное положение, однако абсолютная скорость поддается объективному измерению?[62]
Это совсем несложно. Представьте себе, что вы движетесь сквозь неподвижную среду, такую как воздух или вода. Если бы мы жили в бескрайнем водоеме, то нам не к чему было бы привязать свое местоположение, однако мы могли бы без труда измерять свою скорость по отношению к воде. Можно было бы даже предположить, что окружающее пространство тоже напитано подобной средой.[63] В конце концов, еще Максвелл в своих работах по изучению электромагнетизма доказал, что свет — это всего лишь тип волны. А если есть волна, вполне естественно думать, что есть и среда для ее распространения. Например, чтобы распространялся звук, нужен воздух — в космосе никто не услышит ваш крик. Однако свет успешно распространяется в безвоздушном пространстве, значит (следуя этой логике, которая окажется в итоге ошибочной), и там существует какая-то среда, сквозь которую он перемещается.
Таким образом, физики конца XIX века считали, что электромагнитные волны распространяются сквозь невидимую, но играющую невообразимо важную роль среду, которой они дали название «эфир». И ученые-экспериментаторы поставили себе целью найти доказательства существования этой субстанции. Однако они потерпели поражение, а их неудача подготовила почву для специальной теории относительности.
Представьте, что мы снова вернулись в космическое пространство, но на этот раз взяли с собой более изощренное оборудование для проведения экспериментов. В частности, у нас есть впечатляющая штуковина, сделанная по последнему слову лазерной техники и умеющая измерять скорость света. Для того чтобы откалибровать устройство, мы в свободном падении (без ускорения) проверяем, будет ли скорость света всегда одной и той же независимо от направления. Все правильно, это действительно так. Инвариантность относительно выбора направления — неотъемлемое свойство распространения света, как мы и подозревали.
Теперь пробуем измерить скорость света при движении с разными скоростями. Для этого мы проведем один тест, затем ненадолго включим двигатели и снова выключим их, чтобы набрать постоянную скорость относительно первоначального движения, и после этого повторим эксперимент. Поразительно — какую бы скорость мы ни набрали, значение скорости света, получаемое в результате измерений, всегда остается одинаковым. Если бы действительно существовала эфирная среда, сквозь которую свет распространялся бы так же, как звук распространяется по воздуху, то в зависимости от того, с какой скоростью по отношению к эфиру мы движемся, мы бы получали разные результаты. Однако этого не происходит. Можно было бы предположить, что свет получает какой-то толчок вследствие того, что источник его находится внутри движущегося космического судна. Для того чтобы проверить это, мы поднимем шторки на окнах и позволим проникнуть внутрь свету из внешнего мира. Однако измерение скорости света, источник которого находится снаружи, снова дает тот же результат: скорость света не зависит от скорости нашего космического корабля.
На практике этот эксперимент был выполнен в 1887 году Альбертом Майкельсоном и Эдвардом Морли. За неимением космического корабля с мощным двигателем они воспользовались лучшим, что у них было: движением Земли вокруг Солнца. Орбитальная скорость Земли составляет около 30 километров в секунду, так что зимой ее полная скорость примерно на 60 километров в секунду отличается от ее скорости летом, когда Земля движется в обратном направлении. Не так много по сравнению со скоростью света, которая равна примерно 300 000 километров в секунду, однако Майкельсон сконструировал хитроумное устройство, известное под названием интерферометра, чрезвычайно чувствительное к малейшим изменениям скорости в разных направлениях. Ученые получили тот же самый ответ, к которому пришли мы в своем мысленном эксперименте: скорость света всегда одна и та же, независимо от того, насколько быстро мы движемся.
Научные достижения редко бывают простыми и однозначными, и как правильно интерпретировать результат эксперимента Майкельсона—Морли, ученые также догадались не сразу. А вдруг Земля тянет за собой эфир, из-за чего наша относительная скорость оказывается совсем небольшой? После некоторого неистового теоретизирования с метанием от одной идеи к другой физики все же пришли к выводу, который сегодня считается единственно верным: скорость света представляет собой универсальную константу. Для любого наблюдателя скорость света всегда одна и та же, независимо от того, с какой скоростью он сам двигался при проведении измерений.[64] Всю суть специальной теории относительности можно свести к двум основным принципам:
• никакие локальные эксперименты не позволяют отличить наблюдателей, движущихся с постоянными скоростями;
• скорость света одинакова для всех наблюдателей.
Используя выражение «скорость света», мы неявно подразумеваем, что речь идет о скорости, с которой свет движется через пустое пространство. Ничуть не сложно заставить свет двигаться с другой скоростью — нужно всего лишь поместить на его пути прозрачную среду. Сквозь стакан с водой свет проходит медленнее, чем сквозь пустое пространство, однако это ничего особенного о законах физики не говорит. Действительно, в этой пьесе главную роль играет не свет как таковой. Для нас важнее всего то, что в пространстве—времени существует некоторая специальная скорость — просто так получилось, что свет распространяется с этой скоростью в пустом пространстве. Ключевой момент — это существование предела скорости, а не способность света двигаться настолько быстро.
Необходимо остановиться и осознать, насколько это все удивительно. Предположим, вы находитесь в космическом корабле, а ваш друг, также путешествующий в космосе, сигналит вам фонариком из иллюминатора своего космического судна. Вы измеряете скорость света от фонарика и видите, что она равна 300 000 километров в секунду. Затем включаете двигатели и начинаете ускоряться навстречу другу, пока не достигаете скорости 200 000 километров в секунду. Вы снова измеряете скорость света, излучаемого фонариком, и снова получаете тот же результат: 300 000 километров в секунду. Безумие какое-то! Любой человек в здравом уме ожидал бы, что результат будет равен 500 000 километров в секунду. Что же происходит?
Ответ, согласно специальной теории относительности, заключается в том, что от системы отсчета зависит не скорость света, а то, что мы понимаем под «километром» и «секундой». Когда мимо нас на большой скорости проносится линейка, мы наблюдаем эффект «сокращения длины» — кажется, что она короче такой же линейки, находящейся в покое относительно нашей системы координат. Аналогичным образом, если мимо нас на большой скорости проносятся часы, для них происходит «растяжение времени» — кажется, что они идут медленнее часов, находящихся в покое. Действуя совместно, эти явления точно компенсируют любое относительное движение, поэтому для любого наблюдателя скорость света всегда остается одной и той же.[65]
Существует важное следствие инвариантности скорости света: ничто не может двигаться быстрее света. Доказать это довольно просто; представьте, что вы в ракете пытаетесь перегнать свет, излучаемый фонариком. В начальный момент времени ракета неподвижна (в нашей системе координат), а свет движется со скоростью 300 000 километров в секунду. Затем ракета изо всех сил ускоряется, набирая колоссальную скорость. Когда команда ракеты измеряет скорость света от фонарика (теперь находящегося на большом удалении), они убеждаются, что свет все так же распространяется со скоростью 300 000 километров в секунду. Что бы они ни делали, как бы сильно и долго ни ускорялись, свет все равно движется быстрее, и его относительная скорость всегда одна и та же.[66] (В их системе отсчета, конечно. С точки зрения внешнего наблюдателя скорость ракеты постепенно приближается к скорости света, но никогда не достигает ее.)
Несмотря на то что сокращение длины и растяжение времени прекрасно согласуются со специальной теорией относительности, обычных людей эти явления могут ввести в заблуждение. Когда мы говорим о «длине» какого-то физического объекта, мы имеем в виду, что объект надо измерить от одного конца до другого. Но при этом мы подразумеваем, что измерение должно производиться одномоментно. (Если вы отметите на стене уровень пола, а затем вскарабкаетесь на стремянку и сделаете вторую отметку на уровне головы, то не сможете утверждать, что расстояние между двумя метками отражает ваш реальный рост.) Однако дух специальной теории относительности говорит нам, что не следует делать никаких заявлений относительно удаленных друг от друга событий, происходящих одновременно. Значит, давайте подойдем к проблеме с другой стороны и разложим по полочкам все, что знаем о таком понятии, как пространство—время.
Снова возвращаемся на космический корабль. На этот раз, однако, мы не ограничены экспериментами внутри изолированного корабля — у нас есть небольшой флот автоматических исследовательских аппаратов, оснащенных собственными двигателями и навигационными компьютерами. Мы можем программировать эти зонды, для того чтобы отправлять их наружу в полет и возвращать обратно. На каждом зонде также установлены очень точные атомные часы. Мы начинаем с того, что тщательно синхронизируем часы на всех исследовательских аппаратах с часами на нашем главном бортовом компьютере и проверяем, что все часы идут синхронно, не отставая и не забегая вперед.
Затем мы отправляем несколько зондов в окружающее пространство. Они должны полетать некоторое время и вернуться на борт. Когда машины возвращаются, мы сразу же замечаем, что показания установленных на них часов расходятся с данными бортового компьютера. Поскольку это мысленный эксперимент, мы уверены, что рассинхронизация произошла не из-за космических лучей, ошибки в программе или проделок шаловливых инопланетян, — для зондов действительно прошел другой период времени.
К счастью, это необычное явление легко объясняется. Время, которое показывают часы, — это не какая-то абсолютная величина, единая для всей Вселенной. Его нельзя измерить раз и навсегда, как расстояние между ярдовыми линиями на поле для американского футбола. Измеряемое часами время зависит от конкретной траектории перемещения этих часов — точно так же игрок может пересечь поле разными способами по траекториям разной длины. Вместо того чтобы засылать исследовательские аппараты, оборудованные часами, в космос, мы могли бы с наземной базы отправить колесных роботов покататься по округе. Во втором случае никто не удивится, увидев по возвращении на одометрах разных роботов разные значения. Суть в том, что часы похожи на одометры. Оба типа устройств предназначены для измерения пройденного пути (сквозь время или сквозь пространство) по определенной траектории.
Рис. 4.3. Время, измеренное зондами, которые покинули корабль и вернулись на него по разным траекториям, меньше, чем время, измеренное бортовыми часами космического корабля
Если часы — это аналог одометра, то время должно быть аналогом пространства. Вспомните, что до формулировки специальной теории относительности, если мы верили в абсолютное пространство и время а-ля Исаак Ньютон, ничто не мешало нам объединить их в единую сущность под названием «пространство—время». И для того чтобы обозначить любое событие во Вселенной, нам, как и сегодня, требовалось охарактеризовать его четырьмя числами (три из них задают положение в пространстве, а четвертое — во времени). Однако в ньютоновском мире пространство и время считались независимыми. Имея два индивидуальных события, например «выход из дома в понедельник утром» и «приход на работу чуть позднее тем же утром», мы могли совершенно независимо (и однозначно, не боясь двусмысленности) обсуждать расстояние между этими двумя событиями и время, прошедшее между ними. Специальная теория относительности утверждает, что это неправильно. Нельзя считать отдельными и независимыми такие вещи, как «расстояние в пространстве», измеряемое одометром, и «продолжительность во времени», измеряемую часами. Правильно говорить лишь об интервале в пространстве—времени, разделяющем два события. Он соответствует обычному расстоянию, если события разделены в основном пространственно, и продолжительности, измеряемой часами, если события разнесены в основном по времени.
Однако чем определяется это «в основном»? Скоростью света. Скорость измеряется в километрах в секунду или в любых других единицах расстояния в единицу времени; следовательно, существование особой скорости, зависящей исключительно от законов природы, помогает связать пространство и время. Когда вы перемещаетесь со скоростью, не превышающей скорость света, вы движетесь в основном сквозь время; если бы вы могли превысить скорость света (что у вас вряд ли получится), то вы двигались бы в основном сквозь пространство.
Давайте конкретизируем некоторые детали. Изучая показания часов на исследовательских аппаратах, мы замечаем, что, несмотря на разницу в показаниях, у всех у них есть одна общая особенность: они показываю время меньшее, чем время на стационарных часах с главного космического корабля. Это поразительно! Ведь только что мы говорили, что время аналогично пространству, а часы отражают путь, проделанный сквозь пространство—время. В старом добром пространстве произвольные перемещения туда-сюда всегда делают путь длиннее; кратчайшее расстояние между двумя точками в пространстве — это всегда прямая линия. Если наши часы говорят правду (а они не врут), то получается, что движение без ускорения (если угодно, прямая линия сквозь пространство—время) соответствует самому долгому периоду времени между двумя событиями.
А чего вы ожидали? Время во многом похоже на пространство, однако очевидно, что оно не повторяет его во всех мелочах (можно не опасаться, что какой-нибудь автомобильный навигатор попросит вас выполнить левый поворот во вчера). Даже не учитывая вопросы энтропии и стрелы времени, мы сумели открыть фундаментальную особенность, отличающую время от пространства: лишнее движение уменьшает время, проведенное между двумя событиями в пространстве—времени, но увеличивает расстояние, пройденное между двумя точками в пространстве.
Если перед нами стоит задача переместиться в пространстве из одной точки в другую, то мы можем сделать фактический путь до цели сколь угодно длинным, всего лишь описав кучу произвольных петель (или сделав несколько кругов, прежде чем выдвигаться к точке назначения). Однако рассмотрим случай перемещения между двумя событиями в пространстве—времени конкретными точками в пространстве в конкретные моменты времени. Если двигаться по «прямой линии» — все время перемещаться с постоянной скоростью без ускорения, то мы затратим на путешествие максимально возможное время. Но если заняться прямо противоположным — начать носиться туда-сюда со всей возможной скоростью, не забыв, однако, прибыть в точку назначения в строго определенное время, то продолжительность нашего путешествия окажется гораздо меньше. Если мы научимся перемещаться со скоростью, в точности равной скорости света, то какие бы петли мы ни выписывали, у нас это не будет занимать вообще никакого времени. Разумеется, это недостижимо, однако в наших силах подойти к этому рубежу бесконечно близко.[67]
Как раз в этом смысле время и похоже на пространство: пространство—время является обобщением понятия пространства с еще одним, временным, измерением, свойства которого слегка отличаются от свойств пространственных измерений. В повседневной жизни мы с этим не сталкиваемся, так как передвигаемся со скоростью намного ниже скорости света. А двигаясь с низкой — намного меньше скорости света — скоростью, мы ведем себя как защитник в американском футболе, который шагает строго вдоль футбольного поля, никогда не отклоняясь от прямой линии влево или вправо. Для такого игрока «пройденный путь» идентичен «набранному количеству ярдов», без всяких двусмысленностей. Именно так время проявляет себя в нашей повседневной жизни: поскольку мы и все наши друзья перемещаемся со скоростью, даже близко не приближающейся к скорости света, мы естественным образом считаем время универсальной характеристикой Вселенной, не задумываясь о том, что это всего лишь способ оценки длины пространственно-временного интервала вдоль конкретных траекторий.
В качестве одного из приемов, помогающих понять, как работает пространство—время согласно специальной теории относительности, можно использовать карту. Изобразите пространство и время и укажите, куда у вас есть возможность переместиться. Давайте для разминки начертим схему ньютоновского пространства—времени. Поскольку ньютоновские пространство и время абсолютны, мы на своей карте уникальным образом определим «моменты постоянного времени». Возьмем четыре измерения пространства и времени и порежем их на уникальные трехмерные экземпляры пространства в определенные моменты времени, как показано на рис. 4.4. (На странице книги мы можем рисовать лишь двумерные картинки; используйте свое воображение и представьте себе на каждом срезе мгновенный снимок трехмерного пространства.) Принципиально то, что ни у кого не возникает возражений относительно различий между пространством и временем; здесь нет никакого произвола.
Каждый ньютоновский объект (человек, атом, космический корабль) определяет мировую линию — путь, по которому этот объект движется сквозь пространство—время (даже когда вы сидите абсолютно неподвижно, вы все равно путешествуете через пространство—время, ведь вы непрерывно стареете, не так ли?[68]). И эти мировые линии подчиняются строгому правилу: пройдя через какой-то момент во времени, они не могут сделать пол-оборота назад и пройти через тот же самый момент второй раз. Ваша скорость может быть сколь угодно высокой — сейчас вы здесь, а секунду спустя уже на расстоянии миллиарда световых лет, но вы обязаны двигаться во времени только вперед, и ваша мировая линия пересекает каждый момент в точности один раз.
Рис. 4.4. Ньютоновские пространство и время. Вселенная нарезана на моменты постоянного времени, однозначно разделяющие время на прошлое и будущее. Мировые линии реальных объектов никогда не смогут вернуться назад по своим следам и пережить какой-то момент времени более одного раза
В теории относительности все совсем не так. На смену ньютоновскому правилу «вы обязаны двигаться вперед во времени» приходит новое правило: вы обязаны двигаться со скоростью меньше скорости света. (Если только вы не фотон или другая безмассовая частица; в таком случае ваша скорость в пустом пространстве всегда в точности совпадает со скоростью света.) А структура, в которую мы выше облекли ньютоновское пространство—время (набор слоев, представляющих уникальные моменты времени), заменяется структурой нового вида: световыми конусами.
Рис. 4.5. Пространство—время вблизи определенного события x. Согласно теории относительности, у каждого события есть световой конус, объединяющий все возможные пути, по которым свет мог бы прийти к этой точке или покинуть ее. События за пределами такого конуса невозможно однозначно отнести к «прошлому» или к «будущему»
Концептуально световые конусы довольно просты. Возьмите событие — одиночную точку в пространстве—времени — и вообразите всевозможные пути, которыми свет мог добраться до этого события или покинуть его; эти пути и образуют световой конус, связанный с данным событием. Гипотетические лучи света, исходящие из события, определяют световой конус будущего, а лучи, приходящие к событию, соответствуют световому конусу прошлого. Говоря «световой конус», мы имеем в виду оба этих конуса. Правило, гласящее, что вы не можете двигаться со скоростью, превышающей скорость света, эквивалентно заявлению о том, что ваша мировая линия не должна выходить за пределы световых конусов тех событий, через которые она проходит. Мировые линии, подчиняющиеся этому правилу и описывающие объекты со скоростями, не превышающими скорость света, называются времениподобными. Если каким-то образом вам удалось бы превысить скорость света, то ваша мировая линия стала бы «пространственноподобной», так как располагалась бы больше вдоль пространства, чем времени. Мировую линию объекта, движущегося в точности со скоростью света, можно назвать «светоподобной».
В ньютоновском пространстве—времени можно, начиная с одиночного события, определить поверхность постоянного времени, однозначно рассекающую Вселенную на две части. Для этого необходимо набор всех событий разделить на события в прошлом и в будущем (плюс «одновременные» события, расположенные точно на поверхности). В мире, подчиняющемся теории относительности, это невозможно. Световой конус, связанный с событием, разделяет пространство—время на прошлое данного события (события внутри светового конуса прошлого), будущее данного события (события внутри светового конуса будущего), сам световой конус и набор точек за его пределами, не относящихся ни к прошлому, ни к будущему.
Рис. 4.6. Световые конусы приходят на замену моментам постоянного времени из ньютоновского пространства—времени. Мировые линии массивных частиц должны приходить в событие через световой конус прошлого, а покидать его через световой конус будущего — это времениподобный путь. Пространственноподобные пути соответствуют движению быстрее света и, следовательно, недопустимы
Обычно окончательно запутывает людей именно этот, последний фрагмент. Подсознательно основываясь на ньютоновском способе мышления о мире, мы считаем, что события либо случились в прошлом, либо произойдут в будущем, либо происходят одновременно по отношению к некоторому событию на нашей собственной мировой линии. В мире теории относительности события, разделенные пространственноподобным интервалом (то есть находящиеся за пределами световых конусов друг друга) невозможно отнести ни к одной из перечисленных категорий. При желании мы могли бы по своему усмотрению начертить несколько поверхностей, рассечь ими пространство—время и обозначить их как поверхности постоянного времени. Это позволило бы использовать время как координаты в пространстве—времени (вспомните обсуждение в главе 1). Однако результат отражал бы наш личный выбор, а не реальные особенности Вселенной. В теории относительности понятие «одновременных удаленных событий» просто не имеет смысла.[69]
Когда вы рисуете карту пространства—времени, аналогичную изображенной на рис. 4.6, кажется естественным добавить на чертеж вертикальную ось, обозначенную «время», и горизонтальную (или даже две), обозначенную «пространство». Свою версию мы умышленно нарисовали без обозначения каких-либо осей. Смысл пространства—времени в общей теории относительности в том и заключается, что в нем отсутствует фундаментальное разделение на «время» и «пространство». Световые конусы, устанавливающие границы возможного прошлого и будущего для каждого события, не появляются дополнительно к ньютоновскому разделению пространства—времени на время и пространство; они полностью заменяют собой эту структуру. Время можно измерять вдоль каждой отдельной мировой линии, но недопустимо считать его неотъемлемым свойством всего пространства—времени.
С нашей стороны было бы безответственно продолжать обсуждение, не уделив особого внимания еще одному различию между временем и пространством: у времени только одно измерение, тогда как пространство трехмерно.[70] Мы не можем точно сказать, почему это так. Я имею в виду, что мы еще недостаточно глубоко понимаем фундаментальные законы физики, для того чтобы с уверенностью говорить о существовании причин, по которым у времени не может быть более одного измерения или, если уж на то пошло, почему их не может быть ноль. Мы знаем только, что жизнь была бы совсем другой, если бы у времени было несколько измерений. При наличии единственного измерения физическим объектам (движущимся по времениподобным путям) не остается ничего другого, кроме как перемещаться в единственно возможном направлении. Если бы измерений было несколько, не было бы ничего, что заставило бы нас двигаться вперед во времени; мы могли бы, например, ходить кругами. Остается открытым вопрос, можно ли в этом случае построить согласованную физическую теорию, но наша жизнь точно была бы совершенно иной.
Опубликованная в 1905 году основная статья Эйнштейна «К электродинамике движущихся тел», в которой он изложил принципы специальной теории относительности, заняла тридцать страниц в Annalen der Physik, ведущем немецком научном журнале того времени. Вскоре после этого ученый опубликовал двухстраничную статью под заголовком «Зависит ли инерция тела от содержащейся в нем энергии?»,[71] в которой указывал на очевидный, но интересный вывод из первой, более длинной работы: энергия объекта, находящегося в покое, пропорциональна его массе. (Понятия «масса» и «инерция» здесь взаимозаменяемы.) По сути, в этом и состоит идея, несомненно, самого знаменитого уравнения в истории:
E = mc2.
Постараемся как следует осмыслить это уравнение, ведь зачастую его понимают не совсем верно. Множитель c2 — это, разумеется, скорость света в квадрате. Заметив в уравнении скорость света, физики сразу подумают: «Ага! Значит, здесь не обошлось без теории относительности». Множитель m — это масса рассматриваемого объекта. В некоторых источниках вы можете прочитать о «релятивистской массе», которая увеличивается, когда объект находится в движении, но это не самая удобная характеристика. Лучше считать m единственной и постоянной массой объекта, которой тот обладает в состоянии покоя. Наконец, E — это не совсем «энергия». В данном уравнении эта величина обозначает энергию покоящегося объекта. Если объект начнет движение, его энергия, конечно же, возрастет.
Таким образом, знаменитое уравнение Эйнштейна утверждает, что энергия объекта, находящегося в покое, равна произведению массы данного объекта на квадрат скорости света. Обратите внимание на, казалось бы, безобидный термин «объект». В мире есть не только объекты. Например, мы уже упоминали темную энергию, ответственную за ускорение Вселенной. Непохоже, чтобы она представляла собой множество частиц или других объектов; темная энергия равномерно наполняет пространство—время. Поэтому если речь идет именно о темной энергии, уравнение E=mc2 неприменимо. Аналогично, некоторые объекты (такие, как фотоны) попросту не могут находиться в состоянии покоя, так как они всегда перемещаются со скоростью света. В таких случаях уравнение Эйнштейна также неприменимо.
Каждому известен практический смысл данного уравнения: даже небольшой объем вещества, обладающего массой, эквивалентен огромному запасу энергии (по сравнению со значениями, с которыми мы имеем дело в обычной жизни, скорость света — огромное число). Существует много разных форм энергии, и специальная теория относительности утверждает, что масса — это одна из форм, которую может принимать энергия. Энергия может переходить из одной формы в другую и обратно, и это происходит постоянно. Область применения формулы E = mc2 не ограничивается покрытыми тайнами сферами ядерной физики и космологии; она распространяется на все типы покоящихся объектов — хоть на Марсе, хоть в вашей гостиной. Если взять лист бумаги и сжечь его, позволив получившимся фотонам улететь вместе со своим запасом энергии, то оставшийся пепел вместе с другими продуктами горения будет весить чуть меньше (как бы мы ни старались собрать их все), чем исходный лист бумаги плюс участвовавший в горении кислород. E = mc2 — это не только атомные бомбы, это важнейшая характеристика круговорота энергии в окружающем мире.
Вселенная вечна потому, что она живет не для себя; преображаясь, она дает жизнь другим.
Основным стимулом к разработке специальной теории относительности стали не труднообъяснимые результаты экспериментов (хотя эксперимент Майкельсона—Морли, определенно, относится к этой категории), а очевидный конфликт между двумя существовавшими теоретическими подходами.[72] С одной стороны, у нас была ньютоновская механика — основа всего, что мы знали о физических законах, на базе которой строились последующие теории, с другой — предложенная в середине XIX века Джеймсом Клерком Максвеллом теория, объединяющая электричество и магнетизм, которая объяснила впечатляющий диапазон экспериментальных явлений. Проблема заключалась лишь в том, что эти две удивительно успешные теории не сочетались друг с другом. Ньютоновская механика подразумевала, что относительная скорость двух объектов, движущихся мимо друг друга, всегда равна векторной сумме их скоростей; максвелловский электромагнетизм утверждал, что скорость света — исключение из этого правила. Специальная теория относительности сумела объединить эти две теории в единое целое, предоставив новый формализм для механики, где скорость света действительно занимает особое место, а медленные частицы все так же подчиняются правилам ньютоновской модели.
Триумф специальной теории относительности, как и многих других идей, кардинально поменявших актуальную картину мира, имел свою цену. В данном случае теория тяготения, безупречно объяснявшая движение планет, — величайший успех ньютоновской физики — оказалась выброшенной на обочину. Поскольку гравитация, как и электромагнетизм, — самая очевидная сила во Вселенной, Эйнштейн поставил себе целью описать ее на языке теории относительности. Казалось бы, это должно было означать модификацию пары-тройки уравнений, для того чтобы согласовать формулу Ньютона с инвариантностью относительно буста, однако попытки проследовать по этому пути печальнейшим образом провалились.
В конечном итоге Эйнштейна, конечно же, осенила блестящая догадка. По сути, это произошло благодаря тому же эксперименту с космическим кораблем, который мы рассматривали в предыдущей главе (он придумал его первым). Описывая наше путешествие в этом гипотетическом изолированном корабле, я специально несколько раз упомянул, что мы находимся вдалеке от любых гравитационных полей, поэтому нам не приходится беспокоиться о возможности падения на звезду или о том, что наши зонды притянет к себе ближайшая планета. Однако как изменились бы условия задачи, если бы мы находились поблизости от сильного гравитационного поля? Представьте себе, что наш корабль кружит по околоземной орбите. Как бы это повлияло на эксперименты, проводимые внутри космического судна?
Ответ Эйнштейна был таким: гравитационное поле никак не повлияло бы на результаты экспериментов при условии, что мы ограничимся относительно небольшими областями пространства и короткими интервалами времени. Мы можем проводить любые эксперименты, какие только нам заблагорассудится: измерять скорости химических реакций, ронять мячи и смотреть, как они будут падать, наблюдать за поведением весов на пружинах — и при этом получать на околоземной орбите в точности такие же результаты, как если бы мы улетели далеко в межзвездное пространство. Разумеется, если подождать достаточно долго, мы могли бы догадаться, что движемся по орбите. Предположим, мы позволили вилке и ложке свободно парить по кабине, причем из двух предметов чуть ближе к Земле оказалась вилка. Следовательно, гравитационное притяжение на вилку действует чуть сильнее, чем на ложку. Таким образом, вилка будет постепенно отдаляться от ложки, но для того, чтобы заметить это, необходимо, чтобы прошло достаточно много времени. Если же ограничиться достаточно маленькими областями пространства и времени, то какие бы эксперименты мы ни проводили, ни один не укажет на действие силы тяжести, не дающей кораблю покинуть околоземную орбиту.
Сравните сложность обнаружения гравитационного поля с легкостью обнаружения, например, электрического поля. Последнее сделать проще простого: возьмите те же самые вилку и ложку, но придайте вилке положительный заряд, а ложке — отрицательный. Электрическое поле будет толкать противоположно заряженные предметы в противоположные стороны — благодаря этому совсем несложно проверить, есть ли поблизости какие-нибудь электрические поля.
В случае гравитации отличие заключается в том, что не существует такого понятия, как отрицательный гравитационный заряд. Гравитация универсальна — все во Вселенной реагирует на ее воздействие одинаково. Следовательно, ее невозможно обнаружить в небольшой области пространства—времени только по различиям в ее воздействии на объекты в разных событиях пространства—времени. Эйнштейн поднял это наблюдение до статуса закона природы, принципа эквивалентности: никакие локальные эксперименты не позволяют обнаружить существование гравитационного поля.
Рис. 5.1. Гравитационное поле планеты локально неотличимо от результата ускорения ракеты
Я знаю, о чем вы думаете: «Да у меня нет никаких проблем с обнаружением силы тяготения. Я сижу в своем кресле, а не парю по комнате только благодаря гравитации». Но откуда вы знаете, что это гравитация? Проверить это можно, лишь выглянув в окно и убедившись, что вы все еще на поверхности Земли. Если бы вы находились внутри ускоряющегося космического корабля, вас точно так же вдавливало бы в кресло. Как свободное падение в межзвездном пространстве ничем не отличается от свободного падения на околоземной орбите, постоянное ускорение в космическом корабле абсолютно аналогично сидению в кресле в гравитационном поле Земли. Именно об этой «эквивалентности» и идет речь в эйнштейновском принципе: видимое воздействие силы притяжения эквивалентно нахождению в ускоряющейся системе координат. То, что вы чувствуете, сидя в кресле, — это не сила притяжения; это сила реакции кресла подталкивает вас в мягкое место. Согласно общей теории относительности, свободное падение — это естественное, непринудительное состояние движения, и лишь реакция поверхности Земли сбивает нас с пути, не позволяя следовать в заданном направлении.
Вы или я, догадавшись в результате долгих размышлений о природе гравитации до великолепного принципа эквивалентности, просто кивнули бы с чувством выполненного долга и продолжили жить дальше. Однако Эйнштейн был куда умнее — он в полной мере осознал, какое важное открытие в действительности сделал. Если силу притяжения невозможно обнаружить с помощью локальных экспериментов, то это на самом деле вовсе никакая и не «сила» — в том смысле, в каком мы считаем силами электричество и магнетизм. Поскольку сила притяжения универсальна, гораздо логичнее думать о ней как о некотором свойстве самого пространства—времени, а не представлять себе гравитацию как силовое поле, растянувшееся на все пространство—время.
В частности, догадался Эйнштейн, гравитацию можно считать проявлением искривления пространства—времени. Мы уже много раз обсуждали роль пространства—времени как обобщения понятия пространства и говорили о том, что время, прошедшее вдоль определенной траектории, — это мера пройденного расстояния в пространстве—времени. Однако пространство не обязательно должно быть жестким, плоским и прямолинейным; оно может искривляться, растягиваться и деформироваться. Эйнштейн утверждает, что то же самое может происходить и с пространством—временем.
Проще всего визуализировать двумерное пространство с помощью модели, например, выполненной из листа бумаги. Плоский лист бумаги не искривлен, и причина, по которой мы в этом уверены, заключается в том, что он подчиняется принципам старой доброй евклидовой геометрии. Две параллельные линии, например, никогда не пересекутся, и расстояние между ними никогда не увеличится и не уменьшится.
И наоборот, рассмотрим двумерную поверхность сферы. В первую очередь нам необходимо обобщить понятие прямой линии, поскольку для сферы данное понятие совсем не так очевидно. В евклидовой геометрии, которую мы изучали в школе, прямая линия соответствует кратчайшему расстоянию между двумя точками. Поэтому давайте сформулируем аналогичное определение: «прямой линией» в искривленной геометрии мы будем называть самую короткую кривую, соединяющую две точки. Такая кривая на сфере представлена дугой большой окружности. Если взять на сфере два исходно параллельных пути, идущих вдоль больших окружностей, то они в итоге пересекутся. Это доказывает, что принципы евклидовой геометрии более не имеют силы, и это один из способов проверить, что геометрия на поверхности сферы действительно искривлена.
Рис. 5.2. Плоская геометрия, где параллельные прямые никогда не пересекаются, и геометрия искривленной поверхности, на которой первоначально параллельные прямые в конце концов пересекаются
Эйнштейн предположил, что четырехмерное пространство—время может быть искривлено, — в точности как поверхность двумерной сферы. Однако в отличие от сферы кривизна пространства—времени не обязательно везде одинакова, величина и форма кривизны могут меняться от точки к точке. Но самая соль вот в чем: даже когда мы видим, что планета «отклоняется от прямого направления силой притяжения», Эйнштейн заявляет, что в действительности эта планета движется по прямой линии. По крайней мере, настолько прямой, насколько это возможно в кривом пространстве—времени, сквозь которое путешествует планета. Так как траектория прямолинейного равномерного движения соответствует максимальному времени, которое часы могут замерить между двумя событиями, можно сказать, что прямая линия сквозь пространство—время — та, которая максимизирует показания на часах, точно так же, как прямая линия в пространстве минимизирует показания одометра.
Давайте, если можно так выразиться, опустимся на Землю. Рассмотрим спутник, движущийся по орбите и оборудованный часами. Также возьмем другие часы и установим их на вершине башни такой же высоты, как и вращающийся спутник. В момент, когда спутник проходит мимо башни, часы синхронизируются. Какие показания мы увидим на обоих часах, когда спутник совершит один оборот? (В целях этого абсолютно нереального мысленного эксперимента мы проигнорируем вращение Земли.) С точки зрения общей теории относительности часы на спутнике движутся без ускорения; они находятся в состоянии свободного падения, и их траектория сквозь пространство—время максимально приближена к прямой линии. В то же время часы, установленные на башне, движутся с ускорением: сила, с которой на них действует башня, не дает им перейти в состояние свободного падения. Следовательно, при следующей встрече спутника с башней часы на спутнике покажут больше времени, чем часы на башне. Таким образом, часы на свободно падающем спутнике идут быстрее, чем часы на набирающей ускорение башне.
Рис. 5.3. Для часов на башне пройдет меньше времени, чем для часов на спутнике, так как траектория первых соответствует движению с ускорением
Не существует башен, способных вершиной коснуться спутника на околоземной орбите. Однако здесь, на поверхности Земли, есть много часов, которые регулярно обмениваются сигналами с часами на спутниках. Это — основной механизм системы глобального позиционирования (Global Positioning System, GPS), позволяющей в режиме реального времени оказывать помощь в навигации водителям автомобилей. Ваш личный GPS-приемник получает сигналы сразу с нескольких спутников, вращающихся вокруг Земли, и определяет свое местоположение, сравнивая время в разных сигналах. Если бы в расчетах не учитывалось гравитационное растяжение времени, обусловленное общей теорией относительности, то они бы потеряли всякую связь с реальностью. Для GPS-спутника на околоземной орбите продолжительность дня приблизительно на 38 микросекунд больше, чем для предметов на поверхности Земли. Чтобы не обучать приемники уравнениям общей теории относительности, инженеры придумали намного более простое решение: они настраивают часы на спутниках так, чтобы те шли чуть-чуть медленнее, обеспечивая, таким образом, согласованность времени на спутниках и на Земле.
Говорят, каждая формула в книге вдвое сокращает объем ее продажи. Надеюсь, эта страница запрятана достаточно глубоко, и никто не обратит на нее внимания до покупки, потому что я все же поддамся искушению и добавлю одно уравнение, а именно уравнение Эйнштейна для гравитационного поля в общей теории относительности:
Именно это уравнение сразу приходит на ум любому физику, когда речь заходит об уравнении Эйнштейна; знакомое всем соотношение E = mc2 — всего лишь частная форма другого глобального закона. Вышеприведенное уравнение выражает основополагающий закон физики — оно показывает, как под воздействием материи во Вселенной пространство—время искривляется, создавая, таким образом, гравитацию. Как слева, так и справа от знака равенства в данном уравнении стоят не простые числа, а тензоры — геометрические объекты, объединяющие сразу несколько величин (если представлять их себе как массивы чисел размером 4 × 4, вы будете недалеки от истины). Левая часть уравнения характеризует кривизну пространства—времени. Правая часть включает всевозможные величины, заставляющие пространство—время искривляться: энергию, импульс, давление и т. п. Одним махом уравнение Эйнштейна объясняет, как любой отдельно взятый набор частиц и полей во Вселенной создает кривизну пространства—времени определенного типа.
Согласно Исааку Ньютону, источником гравитации является масса; более тяжелые объекты порождают более сильные гравитационные поля. Во Вселенной Эйнштейна дело обстоит несколько сложнее. Центральное место занимает не масса, а энергия, а также важную роль в искривлении пространства—времени играют другие величины. Энергия вакуума, например, характеризуется не только энергией, но и натяжением — чем-то вроде отрицательного давления. В растянутой струне или резиновой ленте возникает натяжение, которое не расталкивает объект, а, наоборот, стягивает его обратно в исходное состояние. Именно комбинированное воздействие энергии и натяжения заставляет Вселенную ускоряться в присутствии энергии вакуума.[73]
Взаимодействие энергии с искривлением пространства—времени порождает удивительное следствие: в общей теории относительности энергия не сохраняется. Не каждый эксперт согласится с данным утверждением, и вовсе не потому, что это противоречит прогнозам теории, а потому, что мнения людей относительно того, как определять «энергию» и «сохранение», в значительной степени расходятся. В ньютоновском абсолютном пространстве—времени существует хорошо определенное понятие энергии отдельных объектов, которую мы можем суммировать для получения полной энергии Вселенной, и эта величина никогда не меняется (остается одной и той же в каждый момент времени). Однако в общей теории относительности, которая рассматривает пространство—время динамически, при движении пространства—времени энергия может закачиваться в вещество или высасываться из него. Например, при расширении Вселенной плотность энергии вакуума остается абсолютно постоянной. Это означает, что энергия кубического сантиметра постоянна, а количество кубических сантиметров увеличивается, — следовательно, энергия растет. И наоборот, во Вселенной, где преобладает излучение, полная энергия уменьшается, так как каждый фотон теряет энергию вследствие космологического красного смещения.
Казалось бы, уйти от вывода, что энергия не сохраняется, совсем несложно — нужно просто учесть «энергию гравитационного поля». Однако не все так просто. Оказывается, что однозначного локального определения энергии в гравитационном поле не существует (и неудивительно, ведь гравитационное поле не поддается локальному обнаружению). Приходится стиснув зубы признать, что в общей теории относительности энергия действительно не сохраняется, за исключением некоторых особых случаев.[74] Однако не следует думать, что, признавая это, мы смиряемся с погружением мира во тьму хаоса; зная искривление пространства—времени, можно точно предсказать видоизменение любого интересующего нас источника энергии.
Вероятно, самое занимательное и впечатляющее предсказание общей теории относительности — существование черных дыр. Им часто дают довольно приземленное определение: «Объекты, гравитационное поле которых настолько сильно, что покинуть их не могут даже кванты света». В действительности все намного интереснее.
Даже в ньютоновской теории гравитации ничто не мешает нам рассматривать настолько массивные и плотные объекты, что скорость убегания от них будет выше скорости света, — это, по сути, «черные» тела. Данная идея не нова — ее рассматривали, в частности, британский геолог Джон Митчелл в 1783 году и Пьер-Симон Лаплас в 1796-м.[75] В то время ее жизнеспособность вызывала определенные сомнения, ведь никто не мог однозначно сказать, влияет ли гравитация на свет, а скорость света еще не приобрела ту фундаментальную значимость, которая ей приписывается в теории относительности. Однако еще важнее то, что, казалось бы, незначительно отличающиеся формулировки «скорость убегания выше скорости света» и «кванты света не могут покинуть» на самом деле скрывают огромные различия в базовых понятиях. Скорость убегания — это скорость, с которой объект должен начать двигаться вверх, для того чтобы вырваться из гравитационного поля тела без какого-либо дополнительного ускорения. Если я захочу запустить бейсбольный мяч в космическое пространство, мне придется бросить его в воздух со скоростью, превышающей скорость убегания. Но почему бы мне, с другой стороны, не поместить тот же самый мячик в ракету и не отправить в космос путем постепенного ускорения? В таком случае мне даже не придется заботиться о том, чтобы достичь скорости убегания. Другими словами, не обязательно достигать скорости убегания для того, чтобы фактически покинуть гравитационное поле тела; если у вас достаточно топлива, вы можете перемещаться с той скоростью, которая вам удобна, даже если она будет намного ниже.
Однако настоящая черная дыра, согласно общей теории относительности, — штука куда более суровая. Это настоящая область невозврата: оказавшись в черной дыре, вы уже не сможете ее покинуть, какие бы технологические диковинки ни находились в вашем распоряжении. Причина в том, что общая теория относительности, в отличие от ньютоновской гравитации и специальной теории относительности, допускает искривление пространства—времени. В каждой точке пространства—времени присутствуют световые конусы, делящие пространство на прошлое, будущее и области, достичь которых невозможно. Однако, в отличие от специальной теории относительности, в общей теории относительности световые конусы не закреплены и не выстроены; они могут наклоняться и растягиваться, а пространство—время искривляется под действием вещества и энергии. Световые конусы, находящиеся вблизи тяжелого объекта, наклоняются в его сторону в полном соответствии с утверждением о том, что объекты притягиваются гравитационными полями. Черная дыра — это область пространства—времени, в которой световые конусы наклонились так сильно, что покинуть ее соответствующие объекты смогли бы, только превысив скорость света. Несмотря на сходство формулировок, это намного более серьезное заявление, чем «скорость убегания больше скорости света». Граница, определяющая область черной дыры и отделяющая области, из которых у вас еще есть шанс сбежать, от областей, где вам ничего не остается, кроме как продолжать погружаться в глубь неизвестности, называется горизонтом событий.
Рис. 5.4 Световые конусы наклоняются вблизи черной дыры. Горизонт событий, определяющий границу черной дыры, — это место, где конусы наклоняются так сильно, что единственной надеждой на побег становится движение со скоростью, превышающей скорость света
В реальном мире черные дыры могут образовываться разными способами, но стандартным сценарием считается коллапс достаточно массивной звезды. В конце 1960-х годов Роджер Пенроуз и Стивен Хокинг доказали одно поразительное свойство общей теории относительности: когда гравитационное поле становится достаточно сильным, обязательно образуется сингулярность.[76] Возможно, вам это кажется само собой разумеющимся, ведь сила притяжения становится все больше и больше и в итоге стягивает вещество в одну точку. Однако в ньютоновской гравитационной теории все происходит совсем не так. Если очень сильно постараться, то добиться сингулярности, конечно, можно, но в общем случае вещество при сжатии всего лишь достигает максимальной плотности, и больше ничего не происходит. В противоположность этому, в общей теории относительности плотность и кривизна пространства—времени возрастают неограниченно до тех пор, пока не образуют сингулярность бесконечной кривизны. Подобную сингулярность можно найти в любой черной дыре.
Было бы неверно считать, что сингулярность находится в «центре» черной дыры. Если внимательно рассмотреть схему на рис. 5.4, иллюстрирующую пространство—время вблизи черной дыры, то мы увидим, что световые конусы внутри горизонта событий продолжают наклоняться в сторону сингулярности. Нам уже известно, что световые конусы определяют то, что наблюдатель в данном событии называет «будущим». Таким образом, как и сингулярность Большого взрыва в прошлом, сингулярность черной дыры в будущем — это момент во времени, а не место в пространстве. И оказавшись за горизонтом событий, вы не сможете повернуть назад: сингулярность станет вашей суровой, но неизбежной судьбой, потому что она находится впереди во времени, а не по какому-то направлению в пространстве. Уклониться от попадания в сингулярность так же нереально, как уклониться от попадания в завтра.
Рис. 5.5. Объект приближается к горизонту событий, но удаленному наблюдателю кажется, что он всего лишь замедляется и краснеет. Момент на мировой линии объекта, когда он пересекает горизонт, — это последнее мгновение, когда его можно увидеть снаружи
Пересекая горизонт событий, вы вряд ли заметите что-то необычное. Это не какой-то силовой барьер, не энергетическая стена, проходя сквозь которую вы понимаете, что попали в черную дыру.[77] Это всего лишь уменьшение числа вариантов развития событий; вариант «возвращение во внешнюю Вселенную» становится невозможным, а единственно доступным остается «нырок в сингулярность». Вообще, зная массу черной дыры, вы могли бы даже точно рассчитать, сколько времени (согласно вашим часам) пройдет до момента достижения сингулярности, когда вы прекратите существовать. В черной дыре, масса которой равна массе Солнца, это займет около одной миллионной доли секунды. Возможно, вы попробовали бы отсрочить ужасную гибель и сбежать от сингулярности, запустив ракетный двигатель, однако на самом деле это сыграло бы против вас. Согласно теории относительности, движение без ускорения максимизирует время между двумя событиями. Пытаясь бороться с неизбежным, вы лишь ускорили бы приближение конца.[78]
Момент на вашей траектории, когда вы, падая, пересекаете горизонт событий, определяется однозначно. Предположим, что вы отправляете своему другу, находящемуся за пределами черной дыры, непрерывный поток радиосигналов. Он получит только те сигналы, которые вы успели отправить до прохождения горизонта событий, и ни одного сигнала изнутри черной дыры. Но при этом вы не исчезнете внезапно из его поля зрения. Он продолжит получать ваши радиосигналы — просто через все более долгие интервалы и в искаженном виде, поскольку из-за большего красного смещения длина волны сигналов также будет постоянно возрастать. Последний момент вашего падения перед пересечением горизонта с точки зрения внешнего наблюдателя вообще будет «заморожен», хотя картинка и будет с течением времени становиться все более тусклой и краснеть.
Если вдуматься, во всей этой истории с черными дырами есть кое-что очень интригующее — выраженная асимметрия времени. В предыдущем обсуждении мы то и дело играючи вворачивали выражения, предполагающие направленность времени: мы говорили «стоит вам зайти за горизонт событий, вы уже не сможете вернуться» — но не «выйдя за пределы горизонта событий, вы уже не сможете вернуться». И это не проявление нашей лингвистической беспечности — сама природа черной дыры подразумевает асимметричность во времени. Сингулярность всегда в вашем будущем, а не в прошлом, и на этот счет не может быть двух мнений.
Это не проявление каких-то основополагающих физических законов. Общая теория относительности идеально симметрична во времени: для каждого пространства—времени, представляющего решение уравнения Эйнштейна, существует другое решение, которое идентично предыдущему, но обладает обратным ходом времени. Черная дыра — это одно из решений уравнения Эйнштейна, поэтому существуют и эквивалентные решения, «живущие в другую сторону», — белые дыры.
Для того чтобы получить определение белой дыры, нужно всего лишь взять описание черной дыры и заменить все слова, относящиеся ко времени, терминами с противоположным значением. В таком случае сингулярность окажется в прошлом, из которого появляются световые конусы. Горизонт событий будет лежать в будущем относительно сингулярности, а еще дальше будет находиться внешний мир. Горизонт обозначает место, выйдя за пределы которого вы уже никогда не сможете вернуться в область белой дыры.
Однако почему мы постоянно слышим о черных дырах во Вселенной, а о белых практически никто не говорит? Начнем с того, что «создать» белую дыру невозможно. Поскольку мы находимся во внешнем мире, сингулярность и горизонт событий белой дыры обязательно остались у нас в прошлом. Так что нас вообще не должен волновать вопрос, как сконструировать белую дыру. Если мы когда-либо обнаружим такой объект, это будет означать, что он существовал во Вселенной с самого начала.
Рис. 5.6. Пространство—время белой дыры — это отраженная во времени версия черной дыры
Если подходить к вопросу со всей серьезностью, то нас должно насторожить слово «создать». Почему в мире, живущем в соответствии с обратимыми законами физики, мы мыслим в терминах «создания» вещей, которые продолжают существовать в будущем, но не вещей, способных попасть в прошлое и занять достойное место там? По той же причине, почему мы верим в свободу воли: условие низкой энтропии в прошлом ставит жесткие ограничения на то, что могло произойти раньше, а отсутствие подобных граничных условий в будущем оставляет практически бесконечное число возможностей дальнейшего развития событий.
Следовательно, ответ на вопрос «Почему процесс образования черной дыры кажется достаточно понятным, а белые дыры мы если и найдем во Вселенной, то уже в готовом состоянии?» должен быть очевидным: потому что энтропия черной дыры больше, чем энтропия тех вещей, из которых ее можно было бы сделать. На самом деле вычислить значение энтропии весьма непросто; при этом необходимо принимать во внимание излучение Хокинга (мы поговорим об этом в главе 12). Ключевой момент для нас — то, что энтропия черной дыры чрезвычайно велика. Именно черные дыры способны пролить свет на связь между гравитацией и энтропией — двумя важнейшими ингредиентами окончательного объяснения стрелы времени.
О да, мой сын, в пространстве время здесь!
Все знают, как выглядит машина времени: это такие стимпанковские сани с красным бархатным креслом, переливающимися огоньками и гигантским вращающимся штурвалом позади. Для представителей юного поколения сносной заменой будет навороченный спортивный автомобиль, увешанный хитрыми приспособлениями, а наши британские читатели наверняка отдадут предпочтение лондонской полицейской будке в стиле 50-х годов.[79] Функциональные подробности могут разниться от модели к модели, но одно известно точно: отправляясь в путешествие во времени, машина обязана дематериализоваться в облаке спецэффектов, для того чтобы возникнуть где-то за многие тысячелетия в прошлом или будущем.
Однако на самом деле все происходит совсем не так. Не потому, что путешествия во времени невозможны, а сама идея выглядит нелепицей; реальны или нереальны путешествия во времени — вопрос куда более сложный и неопределенный, чем вы можете себе вообразить. Я много раз подчеркивал сходство времени с пространством. Продолжим эту мысль: если вам повезет наткнуться на рабочую машину времени в лаборатории какого-нибудь сумасшедшего изобретателя, то вы увидите обычную «машину пространства» — банальное транспортное средство того или иного рода, предназначенное для перемещения из одного места в другое. Если уж вам хочется визуализировать путешествие в машине времени, представляйте себе ее старт как запуск космического корабля, а не как исчезновение в клубах дыма.
Так что же в действительности подразумевает путешествие во времени? Для нас интерес могут представлять два случая: путешествие в будущее и путешествие в прошлое. В будущее попасть легко: как сидели в кресле, так и продолжайте сидеть. Каждый час вы будете перемещаться ровно на час в будущее. Вы возразите: «Но ведь это скучно! Я хочу попасть далеко в будущее и как можно быстрее, а не переползать за каждый час всего лишь на один час вперед. Я хочу увидеть двадцать четвертый век еще до обеда!» Однако нам известно, что невозможно двигаться со скоростью, превышающей один час в час относительно часов, которые путешествуют вместе с вами. Вы можете попытаться перехитрить себя, погрузившись в сон или в искусственную кому, но время идти не перестанет.
С другой стороны, вы можете изменить промежуток времени, затрачиваемый на прохождение вдоль вашей мировой линии по сравнению с мировыми линиями других людей. В ньютоновской Вселенной это невозможно, так как время универсально и вдоль всех мировых линий, соединяющих одни и те же два события, проходит один и тот же период времени. Однако специальная теория относительности позволяет нам управлять промежутками времени путем перемещения в пространстве. Движению без ускорения соответствует самый длинный временной интервал между двумя событиями; поэтому если вы желаете быстро (с вашей точки зрения) попасть в будущее, вам нужно всего лишь двигаться сквозь пространство—время по сильно искривленному пути. Вы можете улететь в межзвездное пространство на скорости, близкой к скорости света, а затем вернуться или, если запас топлива на вашей ракете достаточно велик, просто летать кругами на сверхвысокой скорости, никогда особенно не удаляясь от стартовой точки в пространстве. Когда вы приземлитесь и выйдете из космического корабля, помимо головокружения у вас будет понимание, что вы «переместились в будущее», или, точнее, что вдоль вашей мировой линии прошло меньше времени, чем вдоль мировых линий всех тех людей, с которыми вы попрощались при старте. Путешествовать в будущее просто, а как быстро вы будете перемещаться — вопрос исключительно ваших технологических возможностей. Это абсолютно не противоречит фундаментальным законам физики.
Однако в какой-то момент вам захочется вернуться обратно, и тут вы столкнетесь с настоящими трудностями. Главные проблемы путешествия во времени связаны как раз с путешествием в прошлое.
Несмотря на уроки, которые мы извлекли из фильмов о Супермене, путешествие назад во времени не означает изменения направления вращения Земли на обратное. В этом должно участвовать само пространство—время. Если только, разумеется, вы не решите сжульничать, начав двигаться со скоростью выше скорости света.
В ньютоновской Вселенной вопрос путешествия назад во времени вообще не ставится. Мировые линии пронзают пространство—время, которое однозначно разделяется на трехмерные моменты равного времени, и правило о том, что мировые линии не могут менять направление и возвращаться назад, нерушимо. В специальной теории относительности дела обстоят не намного лучше. Определение «моментов равного времени» во Вселенной достаточно произвольно, однако в каждом событии мы сталкиваемся с ограничениями, накладываемыми световыми конусами. Будучи существами, сделанными из обычной материи, мы вынуждены двигаться из любого события вперед, внутрь светового конуса. Поэтому у нас нет никакого шанса вернуться во времени назад; на диаграмме пространства—времени мы неустанно шагаем вверх.
Если бы мы были сделаны из чего-то необычного, например тахионов — частиц, скорость движения которых всегда превышает скорость света, ситуация была бы немного интереснее. К сожалению, мы состоим не из тахионов, и есть веские основания полагать, что тахионы вообще не существуют. В отличие от обычных частиц, тахионы всегда вынуждены двигаться за пределами светового конуса. В специальной теории относительности объект, движущийся вне светового конуса, с точки зрения некоторых наблюдателей перемещается во времени назад. Кроме того, световые конусы — единственные структуры, определенные в пространстве—времени теории относительности; такого понятия, как «пространство в какой-то момент времени», попросту нет. Таким образом, если вы с какой-то частицей оказываетесь в одном и том же событии и она вылетает за пределы вашего светового конуса (быстрее света), это означает, что относительно вас она может перемещаться в прошлое. Остановить ее невозможно.
Получается, что тахион способен совершить нечто пугающее и непредсказуемое: «стартовать» из некоего события на мировой линии обычного, движущегося медленнее скорости света объекта (мы помним, что событие определяется некоторым положением в пространстве и некоторым моментом времени) и проследовать по пути, который приведет его в предыдущую точку на той же самой мировой линии. Вооружившись фонариком, испускающим тахионы, вы (по идее) могли бы сконструировать хитрую систему зеркал и отправлять световые сигналы азбукой Морзе в прошлое самому себе. Вы могли бы предостеречь себя в прошлом, что вот в то посещение ресторана креветки заказывать не стоит, или что не нужно идти на свидание со странноватой коллегой, или что неразумно вкладывать все свои сбережения в акции Pets.com.
Рис. 6.1. Если бы тахионы существовали, они могли бы испускаться обычными объектами и улетать, для того чтобы быть поглощенными в прошлом. В каждом событии на своей траектории тахион двигается за пределом светового конуса
Очевидно, что путешествия назад во времени порождают возможность возникновения парадоксов, а это способно любого человека выбить из колеи. Однако вернуть все на свои места совсем несложно: объявите, что тахионы, скорее всего, не существуют, а также несовместимы с законами физики.[80] Это одновременно и продуктивно, и недалеко от истины, по крайней мере до тех пор, пока вы не выходите за рамки специальной теории относительности. Когда в игру вступит искривленное пространство—время, все станет куда запутаннее и увлекательнее.
Траектории в пространстве—времени тех из нас, кто сделан не из тахионов, ограничены скоростью света. Начиная с события, определяющего наше текущее местоположение — каким бы оно ни было, мы можем двигаться только «вперед во времени», навстречу какому-то другому событию внутри нашего светового конуса. Говоря научным языком, мы движемся сквозь пространство—время по времениподобной траектории. Это локальное требование, распространяющееся не на всю Вселенную, а лишь на некоторую окрестность вокруг нас. Но в общей теории относительности пространство—время искривлено. Это означает, что световые конусы в нашей окрестности не обязательно смотрят «в ту же сторону», что и световые конусы где-то вдалеке, — они могут быть наклонены по отношению друг к другу. Вспомните обсуждение из предыдущей главы, где световые конусы наклонялись в сторону черной дыры, — здесь мы говорим о точно таком же явлении.
Теперь представьте себе, что, вместо того чтобы наклоняться в сторону сингулярности и создавать черную дыру в нашем пространстве—времени, световые конусы формируют окружность, как показано на рис. 6.2. Очевидно, что это потребовало бы наличия чрезвычайно сильного гравитационного поля, но мы можем позволить себе принять такое допущение. Если бы пространство—время было искривлено таким способом, то это бы порождало потрясающее следствие: мы могли бы следовать по времениподобному пути всегда вперед, в световой конус будущего, но в конечном счете встречаться с самими собой в каком-то момент в прошлом. Иными словами, наша мировая линия описывала бы в пространстве замкнутую окружность, пересекающую саму себя, благодаря чему мы в какой-то момент своей жизни сталкивались бы с собой образца какого-то другого момента.
Рис. 6.2. В искривленном пространстве—времени световые конусы могли бы выстраиваться в окружность, формируя закрытые времениподобные пути
Такая мировая линия — всегда движущаяся вперед с локальной точки зрения, но умудряющаяся пересечься с самой собой в прошлом — называется замкнутой времениподобной кривой, или ЗВК. Именно ее мы имеем в виду, когда говорим о «машине времени» в рамках общей теории относительности. Для перемещения вдоль замкнутой времениподобной кривой вам потребуется обычное средство передвижения через пространство, скажем космический корабль. Возможно, сойдет и что-нибудь более приземленное: например, продолжать сидеть «без движения» в собственном кресле. Искривление пространства—времени само приведет вас в момент прошлого. Это центральное свойство общей теории относительности, которое сыграет важную роль позже, когда мы вернемся к обсуждению зарождения Вселенной и проблемы энтропии: пространство—время не высечено в мраморе, оно может меняться (даже появляться или исчезать), реагируя на воздействие материи и энергии.
В общей теории относительности легко найти пространство—время, и даже не одно, в котором встречаются замкнутые времениподобные кривые. Еще в 1949 году математик и логик Курт Гёдель нашел решение уравнения Эйнштейна, описывающее «вращающуюся» Вселенную. Его решение содержало замкнутые времениподобные кривые, проходящие через каждое событие. Гёдель подружился с бывшим уже в возрасте Эйнштейном во время работы в Институте перспективных исследований в Принстоне, и идея решения возникла из бесед между двумя учеными.[81] В 1963 году новозеландский математик Рой Керр нашел точное решение, описывающее вращающуюся черную дыру; поразительно, что в этом случае сингулярность принимает форму быстро вращающегося кольца, в окрестности которого находятся замкнутые времениподобные кривые.[82] А в 1974 году Франк Типлер доказал, что бесконечно длинный, состоящий из вещества вращающийся цилиндр, при условии, что он обладает достаточной плотностью и вращается достаточно быстро, будет создавать вокруг себя замкнутые времениподобные кривые.[83]
Однако для того чтобы сконструировать пространство—время с замкнутыми времениподобными кривыми, совсем не обязательно прилагать такие усилия. Возьмите самое заурядное плоское пространство—время, знакомое вам еще по специальной теории относительности. А теперь представьте, что времениподобное направление (определяемое каким-то конкретным движущимся без ускорения наблюдателем) представляет собой окружность, а не простирается вперед в бесконечность. В такой Вселенной объект, движущийся вперед во времени, будет снова и снова возвращаться к одному и тому же моменту в истории Вселенной. В фильме Гарольда Рамиса «День сурка» герой Билла Мюррея каждое утро просыпается в одной и той же обстановке и в течение дня оказывается ровно в тех же ситуациях, которые уже пережил днем раньше. Вселенная с циклическим временем, о которой мы говорим здесь, приблизительно так и выглядит. Однако имеются два важных исключения: во-первых, все дни были бы совершенно одинаковыми, включая действия и поступки главного героя, а во-вторых, вырваться из этого круга было бы невозможно. В частности, даже завоевание Энди Макдауэлл вас бы не спасло.
Рис. 6.3. Вселенная с циклическим временем, сконструированная путем отождествления двух моментов в плоском пространстве—времени. Показаны две замкнутые времениподобные кривые: первая замыкается за один проход (из a в a'), а вторая описывает две петли (из b в b', затем из b'' в b''')
Вселенная с циклическим временем — не только игровая площадка для создателей фильмов; она также представляет собой точное решение уравнения Эйнштейна. Как вы помните, выбрав движущуюся без ускорения систему координат, мы можем «нарезать» четырехмерное плоское пространство—время на трехмерные моменты одинакового времени. Возьмем два таких среза: скажем, полночь 2 февраля и полночь 3 февраля — два момента во времени, распространенные на всю Вселенную (в данном конкретном случае плоского пространства—времени в данной конкретной системе координат). Теперь возьмем этот отрезок пространства—времени длиной в один день между двумя срезами, а все остальное отбросим. Наконец, отождествим время начала и время конца, то есть сформулируем правило, согласно которому как только мировая линия доходит до какой-то точки в пространстве 3 февраля, она моментально заново появляется из соответствующей точки пространства в прошлом, 2 февраля. По сути, это то же самое, что скатать в трубочку лист бумаги и склеить края. В любом событии, даже в полночь 2 и 3 февраля, все выглядит совершенно гладко. Пространство—время плоское: время представляет собой окружность, а все точки на окружности абсолютно равноправны и ничем не отличаются друг от друга. Это пространство—время изобилует замкнутыми времениподобными кривыми, как показано на рис. 6.3. Возможно, у нас получилась не самая реалистичная Вселенная, однако мы убедились в том, что сами по себе правила общей теории относительности не противоречат существованию замкнутых времениподобных кривых.
Есть две основные причины, почему большинство людей, хотя бы немного времени посвятивших обдумыванию возможности путешествий во времени, поместили их на полку «Научная фантастика», а не «Серьезные исследования». Во-первых, трудно представить, как на практике создать замкнутую времениподобную кривую, несмотря на то что, как мы увидим далее, определенные идеи все же были высказаны. Во-вторых, и это куда более основательная причина, в действительности практически невозможно придумать разумное толкование такого явления, как «путешествие во времени». Стоит нам согласиться с возможностью путешествий в прошлое, и мы сможем легко привести массу примеров абсурдных и парадоксальных ситуаций.
Для того чтобы прояснить это утверждение, рассмотрим следующий простой пример машины времени: врата во вчерашний день (с тем же успехом мы могли бы взять «врата в завтра» — просто перемещаться нужно было бы в противоположную сторону). Представьте себе, что в поле стоят волшебные ворота. Это совершенно обычные, ничем не примечательные ворота, за одним важным исключением: когда вы проходите в них «спереди», то оказываетесь на том же самом поле с другой стороны ворот, но на день раньше — по крайней мере с точки зрения «фонового времени», измеряемого внешними наблюдателями, которые никогда не проходят сквозь ворота. (Предположим, что в поле установлены фиксированные часы, которые никто не проносит сквозь ворота, и эти часы синхронизированы с покоящейся системой координат самого поля.) И наоборот, когда вы проходите сквозь ворота «сзади», вы оказываетесь перед ними, но на день позже того момента, когда вы собрались перешагнуть порог.
Рис. 6.4. Врата во вчера и одна из возможных мировых линий. Путешественник проходит через ворота спереди (a) (на рисунке это справа) и оказывается позади ворот на один день раньше (a’). Он проводит половину дня, гуляя по полю, а затем снова проходит через ворота опять спереди (b) и переносится на один день назад (b’). После этого он выжидает целый день и проходит через ворота сзади (c), появившись в итоге перед воротами через один день в будущем
Это все звучит удивительно и волшебно, но в действительности мы всего лишь описали частный тип необычного пространства—времени, идентифицировав набор точек в пространстве в разные моменты времени. Никто не исчезает в клубах дыма; с точки зрения любого конкретного наблюдателя его мировая линия непрерывно продвигается в будущее, секунда за секундой. Заглядывая в ворота спереди, вы не натыкаетесь взором на чернильно-черную пустоту или всполохи психоделических цветов; вы видите поле, простирающееся с другой стороны ворот, — точно так же, как если бы посмотрели на него сквозь любую другую дверь. Единственное отличие заключается в том, что вы видите, как это поле выглядело вчера. Если вы наклоните голову и посмотрите на поле сбоку от ворот, то увидите, как оно выглядит сегодня, тогда как взгляд сквозь ворота спереди дает вам представление о вчерашнем состоянии поля. Аналогично, если обойти ворота и посмотреть сквозь них сзади, то вы увидите другую часть поля — в том состоянии, в котором она будет находиться завтра. Ничто не мешает вам пройти сквозь ворота и сразу же вернуться назад и проделывать это столько раз, сколько вам заблагорассудится. Более того, вы можете даже поставить ноги по обе стороны ворот и стоять так сколь угодно долго. Вы не будете чувствовать никакого странного покалывания, и у вас не возникнет никаких других необычных ощущений. Все будет казаться совершенно нормальным, за исключением точных часов, закрепленных по обеим сторонам ворот: разница показаний на этих часах будет составлять ровно одни сутки.
Пространство—время с вратами во вчера совершенно определенно содержит замкнутые времениподобные кривые. Все, что вам нужно сделать, — это пройти через ворота спереди, для того чтобы вернуться на один день назад, затем обойти ворота, снова оказавшись перед ними, и терпеливо подождать. Ровно через день вы обнаружите себя в том же месте и моменте пространства—времени, в котором вы находились сутки назад (по вашим персональным часам), и, разумеется, вы встретитесь там с копией себя образца прошлых суток. При желании вы сможете обменяться любезностями с собой из прошлого и обсудить подробности прошедшего дня. В этом и заключается суть замкнутой времениподобной кривой.
И здесь в игру вступают парадоксы. По какой-то причине физикам нравится делать свои мысленные эксперименты как можно более жестокими и беспощадными; вспомните, к примеру, Шрёдингера и его несчастного кота.[84] Когда дело доходит до путешествий во времени, стандартный сценарий включает перемещение в прошлое и убийство своего дедушки до того, как тот успеет встретиться с бабушкой, чтобы, таким образом, предотвратить собственное рождение. Парадокс, порождаемый этим деянием, очевиден: если ваши дедушка с бабушкой так и не встретились, то как вы могли появиться на свет, а потом отправиться в прошлое и убить одного из своих предков?[85]
Однако не обязательно воображаемые события должны быть настолько драматичными. Вот более простой и мирный пример парадокса. Вы подходите к вратам во вчера и замечаете, что вас там ждет ваша копия, выглядящая примерно на день старше, чем вы сейчас. Поскольку вам известно о существовании замкнутых времениподобных кривых, вы не слишком удивляетесь такому повороту событий: очевидно, что ваша копия просто бродила вокруг ворот в ожидании встречи с вами, для того чтобы пожать руку своей версии из прошлого. Итак, вы двое мило беседуете некоторое время, а затем вы покидаете компанию своей копии и проходите через ворота спереди, попадая в результате во вчерашний день. Но после этого — исключительно из упрямства — вы решаете, что более не желаете придерживаться традиции. Вместо того чтобы болтаться на этом поле, готовясь к встрече со своей более молодой копией, вы уходите оттуда, ловите такси в аэропорт и садитесь на рейс до Багамских островов. Вы даже не встречаетесь с той копией себя, которая первой прошла через ворота. Однако та копия встречалась со своей копией из будущего — ведь вы храните воспоминания об этой встрече. Что же происходит?
Существует простое правило, разрешающее все возможные парадоксы путешествий во времени.[86] Оно гласит: парадоксов не бывает.
Вот так. Проще простого.
Пока что ученые не обладают достаточными знаниями для того, чтобы говорить, допускают ли физические законы существование макроскопических замкнутых времениподобных кривых. Если нет, то и необходимости беспокоиться о парадоксах тоже нет. Но гораздо интереснее такой вопрос: всегда ли замкнутые времениподобные кривые приводят к возникновению парадоксов? Если это так, то их существование невозможно и вопрос закрыт.
Однако вполне возможно, что парадоксы не являются непременными спутниками замкнутых времениподобных кривых. Мы все согласны, что события, противоречащие логике, происходить не могут. В частности, в классической физике, с которой мы работаем в данный момент (в противоположность квантовой механике[87]), существует один-единственный верный ответ на вопрос «Что произошло в окрестности данного события в пространстве—времени?». В каждой области пространства—времени что-то происходит: вы проходите сквозь ворота, вы находитесь в одиночестве, вы встречаете кого-то еще, вы почему-то не приходите на встречу, — что угодно. И это что-то является именно тем, чем является, и было именно тем, чем было, и будет именно тем, чем будет, сейчас и всегда. Если в каком-то событии пространства—времени ваш дедушка заигрывал с вашей бабушкой, то именно это и происходило в том событии. Вы никак не сможете это изменить, потому что это уже случилось. Одинаково невозможно повлиять на события в прошлом как пространства—времени, содержащего замкнутые времениподобные кривые, так и пространства—времени, где таких кривых нет.[88]
Очевидно, что непротиворечивые истории возможны, причем даже в пространствах—временах с замкнутыми времениподобными кривыми. На рис. 6.4 изображена мировая линия одного бесстрашного путешественника, который дважды перепрыгивает назад во времени, а затем ему становится скучно, и он делает один прыжок в будущее, прежде чем уйти от волшебных ворот. Его перемещения не таят никаких парадоксов. Точно так же мы могли бы взять сценарий из предыдущего раздела и немного переделать его, чтобы исключить парадоксы. Вы подходите к воротам, видите свою копию, которая старше вас на один день; вы обмениваетесь любезностями, а затем проходите через ворота спереди и оказываетесь во вчерашнем дне. Однако вместо того чтобы демонстрировать упрямство и уходить прочь, вы выжидаете один день и встречаетесь со своей более молодой копией, с которой обмениваетесь любезностями, прежде чем пойти по своим делам. Какой бы участник событий ни описал происходящее, его версия будет превосходно согласована.
Мы могли бы придумать массу куда более драматичных историй, которые тем не менее будут безупречно согласованы. Вообразите, что нас назначили Стражами Врат, и наша работа — неусыпно наблюдать за проходящими сквозь ворота. Однажды, стоя по сторонам от ворот, мы замечаем незнакомца, вышедшего из ворот с тыльной стороны. Ничего странного; это всего лишь означает, что незнакомец завтра войдет (или уже вошел? — в нашем языке нет подходящих конструкций для описания путешествий во времени) в ворота спереди. Продолжая бдительно охранять ворота, мы видим, что этот незнакомец бродит по округе в течение дня, а затем, спустя ровно двадцать четыре часа, спокойно проходит через ворота спереди. Никто больше ниоткуда не появлялся, а незнакомцы, один из которых вошел в ворота, а другой вышел из них, формируют замкнутый цикл — эти двадцать четыре часа и есть полное время жизни незнакомца. История может показаться жутковатой и невероятной, однако в ней отсутствуют парадоксы и нет никаких логических противоречий.[89]
Вопрос же, который интересует нас больше всего, — что произойдет, если мы попытаемся мутить воду? Если решим, что не хотим следовать предписанному плану? В истории, где вы встречаетесь со своей копией старше вас на один день, а затем пересекаете порог врат и оказываетесь в прошлом, есть потенциальная развилка. Кажется, что после того, как вы прошли сквозь врата, у вас есть выбор: вы можете послушно выполнить свое предназначение или же взбунтоваться и уйти прочь. Итак, если вы все же решите пойти наперекор, что вас остановит? Вот здесь вся эта история с парадоксами и становится по-настоящему серьезной.
Мы знаем ответ: парадоксы невозможны. Если вы встретились со своей старшей копией, то мы можем утверждать с абсолютной метафизической уверенностью, что как только вы достигнете этого возраста, вы обязаны будете встретиться со своим более молодым дублем. Представьте себе, что мы убрали из условий задачи непослушные человеческие создания и рассматриваем простые неодушевленные объекты, например последовательность биллиардных шаров, прокатывающихся сквозь ворота. Существует масса наборов согласованных явлений, которые могли бы происходить в различных событиях пространства—времени, но только один из наборов произойдет в действительности.[90] Согласованные истории случаются, несогласованные — нет.
Если заглянуть в самую суть вещей, то станет очевидно, что в действительности нас волнуют вовсе не законы физики: главная проблема — свобода воли. Мы живем с уверенностью, что над нами не может довлеть никакое предопределение, согласно которому мы так или иначе сделаем то, чего делать не хотим. Трудно сохранять такое ощущение, увидев, что мы уже делаем это.
Иногда наша свободная воля порабощается законами физики. Если выбросить человека из окна на верхнем этаже небоскреба, то он со свистом пронесется вниз и ударится о землю, как бы сильно ему ни хотелось улететь и безопасно приземлиться где-нибудь подальше. С таким вариантом предопределения мы смириться в состоянии. Однако принять намного более детализированное предопределение, навязываемое замкнутыми времениподобными кривыми, куда труднее. Создается впечатление, что существование непротиворечивой истории в пространстве—времени исключает возможности проявления свободной воли, которые были бы доступны в противном случае. Конечно, если бы мы были убежденными детерминистами, то верили бы, что атомы наших тел вступают в сговор с внешним миром и, подчиняясь непреложным законам ньютоновской механики, заставляют нас действовать во избежание парадоксов в точности по предписанному сценарию. Однако это все же не согласуется с тем, как мы привыкли мыслить о себе и своем месте в этом мире.[91]
Суть проблемы заключается в том, что при условии наличия замкнутых времениподобных кривых существование согласованной и непротиворечивой стрелы времени становится невозможным. Общая теория относительности меняет формулировку утверждения: «Мы помним прошлое, но не будущее»; теперь оно звучит так: «Мы помним события из светового конуса прошлого, но не из светового конуса будущего». Однако на замкнутой времениподобной кривой есть события, принадлежащие как световому конусу прошлого, так и световому конусу будущего — ведь эти два конуса перекрываются. Так что же, должны мы помнить такие события или нет? Мы могли бы согласовать события на замкнутой времениподобной кривой с законами физики на микроскопическом уровне, однако они не могут быть совместны с непрерывным увеличением энтропии вдоль кривой.
Для того чтобы в полной мере осознать значимость этого утверждения, подумайте о гипотетическом незнакомце, который выходит из ворот, а затем, сутки спустя, снова в них входит, но уже с другой стороны. Таким образом, история всей его жизни — это однодневный цикл, повторяющийся снова и снова, до бесконечности. Задумайтесь, какой непревзойденный уровень точности необходим, чтобы воспроизводить этот цикл день за днем (если считать, что цикл начинается в некоторой «стартовой» точке). Каждый день в одно и то же время незнакомец должен убеждаться, что каждый атом его тела занял именно то положение, в котором будет возможно его плавное слияние с самим собой из прошлого. Он должен проверять, например, что на его одежде не осело ни единой новой пылинки, которой не было сутки назад, что содержимое его пищеварительной системы в точности такое же, как день назад, и что его волосы и ногти абсолютно такой же длины. Мягко говоря, это несовместимо с нашим представлением о том, как происходит увеличение энтропии, даже это не есть прямое нарушение второго начала термодинамики (так как незнакомец не является закрытой системой). Если бы он просто пожал руку своей копии из прошлого, вместо того чтобы становиться ею, это бы не потребовало такого невообразимого уровня точности; однако в любом случае необходимость находиться в правильном месте в правильное время накладывает чрезвычайно строгие ограничения на возможные действия в будущем.
Наша концепция свободной воли тесно связана с идеей о том, что прошлое увековечено на скрижалях истории, тогда как будущее мы творим сами по своему разумению. Даже если верить, что законы физики точно фиксируют изменение какого-то конкретного состояния Вселенной, мы все равно не знаем, что это за состояние, так что в реальном мире увеличение энтропии приводит к бесконечному числу вариантов будущего. Тот тип предопределения, к которому приводит непротиворечивая эволюция в присутствии замкнутых времениподобных кривых, абсолютно аналогичен предопределению во Вселенной, где задано граничное условие в будущем, приводящее там к низкой энтропии — только в локальном масштабе.
Другими словами, если бы замкнутые времениподобные кривые существовали, то непротиворечивая эволюция в их присутствии казалась бы нам такой же странной и неестественной, как кино, прокручиваемое в обратном направлении, или любой другой пример развития событий по сценарию уменьшения энтропии. Это не невозможно — просто крайне маловероятно. Таким образом, либо замкнутые времениподобные кривые не существуют, либо большие макроскопические объекты не могут перемещаться сквозь пространство—время по действительно замкнутым путям — ну, или все, что, как нам кажется, мы знаем о термодинамике, неверно.
Жизнь на замкнутой времениподобной кривой кажется ужасающе предопределенной: если система движется по замкнутому контуру вдоль этой кривой, то она обязана каждый раз возвращаться точно в то состояние, с которого движение началось. При этом с точки зрения внешнего наблюдателя замкнутые времениподобные кривые также поднимают проблему, казалось бы, совершенно противоположной природы: исходное состояние Вселенной не позволяет однозначно предсказать, что будет происходить на этих кривых. Получается, что у нас есть очень строгое ограничение, в соответствии с которым движение вдоль замкнутых времениподобных кривых должно происходить самосогласованно, но в то же время число таких самосогласованных и непротиворечивых движений чрезвычайно велико, и никакие законы физики не в состоянии дать точный ответ, какое из них выберет система.[92]
Мы обсуждали различия между взглядом на Вселенную презентистов, которые считают реальным лишь текущий момент, и этерналистов — приверженцев концепции блочной Вселенной, в соответствии с которой все события на протяжении всей истории Вселенной одинаково реальны. Это интересный философский спор — какой взгляд представляет более плодотворную версию реальности; для физика они, однако, практически идентичны. Принято считать, что законы физики работают как компьютер: вы даете им на вход текущее состояние, а они сообщают, каким это состояние станет мгновение спустя (или было мгновением раньше, если интересно). Повторяя этот процесс много-много раз, мы можем получить предсказание для всей истории Вселенной от начала и до конца. В этом смысле всестороннее знание текущего состояния подразумевает полное знание всей истории Вселенной.
Замкнутые времениподобные кривые делают подобные «программы» невозможными; чтобы убедиться в этом, достаточно простого мысленного эксперимента. Еще раз обратим наше внимание на незнакомца, вышедшего из врат во вчера, который сутки спустя снова вошел в них с другой стороны, сформировав замкнутый цикл. Нет никакого способа предсказать существование такого незнакомца, отталкиваясь от какого-то более раннего состояния Вселенной. Предположим, что мы начинаем свой эксперимент во Вселенной, в которой в этот конкретный момент не существует замкнутых времениподобных кривых. Предполагается, что законы физики позволяют предсказать, что произойдет в будущем этого момента. Однако если кто-то создаст замкнутую времениподобную кривую, мы лишимся такой возможности. Как только во Вселенной появляется возможность существования замкнутых времениподобных кривых, загадочные незнакомцы и прочие случайные объекты начинают появляться тут и там и перемещаться вдоль этих кривых… или нет. Невозможно предсказать, что произойдет дальше, исходя лишь из полного знания состояния Вселенной в один из предыдущих моментов времени.
Другими словами, мы сколько угодно можем говорить о том, что происходящее в присутствии замкнутых времениподобных кривых непротиворечиво, а парадоксы отсутствуют. Однако это не делает происходящее также и предсказуемым, то есть не дает нам возможности предсказать будущее с помощью законов физики, начиная с состояния Вселенной в какой-то конкретный момент времени. Более того, замкнутые времениподобные кривые делают несостоятельным само определение «Вселенной в какой-то конкретный момент времени». В предыдущем нашем обсуждении пространства—времени критически важным моментом была возможность «нарезки» четырехмерной Вселенной на трехмерные «моменты времени», которые мы помечали соответствующими значениями временной координаты. Однако в присутствии замкнутых времениподобных кривых мы, по сути, не в состоянии этого сделать.[93] Локально — в ближайшей окрестности любого интересующего нас события — деление пространства—времени на «прошлое» и «будущее» с помощью световых конусов абсолютно такое же. Глобально мы не сможем последовательно разделить Вселенную на моменты времени.
Следовательно, в присутствии замкнутых времениподобных кривых нам придется позабыть о понятии «детерминизма» — идее о том, что состояние Вселенной в любой конкретный момент времени определяет ее состояния во все остальные моменты. Так ли высоко мы ценим детерминизм, чтобы эта проблема заставила нас полностью отвергнуть возможность существования замкнутых времениподобных кривых? Совсем не обязательно. Можно просто по-другому представлять себе работу законов физики — не как компьютера, вычисляющего состояние в следующий момент на основании текущего состояния. Например, мы можем считать физические законы неким набором условий, которые наложены на историю Вселенной в целом. Пока что неясно, что это могут быть за условия, но нельзя отбрасывать эту идею исключительно на основании умозрительных заключений.
Все эти метания из стороны в сторону могут казаться неуместными, однако они иллюстрируют важный урок. Частично наше понимание времени базируется на логике и известных законах физики, однако отчасти мы также руководствуемся бытовым удобством и кажущимися правдоподобными предположениями. Мы думаем, что возможность единственным образом предсказывать будущее на основании знаний о текущем состоянии важна, но у реального мира могут быть совсем иные мысли на этот счет. Если бы замкнутые времениподобные кривые могли существовать, то вечному спору между этерналистами и презентистами пришел бы конец: победа была бы обеспечена блочной Вселенной этерналистов. Очевидно, что возникающие то тут, то там замкнутые времениподобные кривые не позволили бы поделить Вселенную на последовательность «состояний настоящего».
Окончательный ответ на загадку замкнутых времениподобных кривых заключается в том, что они, вероятно, попросту не существуют (и не могут существовать). И если это действительно так, то причина в том, что законы физики не позволяют пространству—времени искривляться в достаточной мере, для того чтобы формировать подобные кривые, а не в том, что подобные кривые открыли бы путь к убийству наших предков. Так что менять нужно физические законы.
Замкнутые времениподобные кривые предлагают нам интересную лабораторию для мысленных экспериментов по исследованию природы времени. Тем не менее для того, чтобы всерьез воспринимать их, нам необходимо понять, возможно ли существование этих кривых в реальном мире, по крайней мере согласно правилам общей теории относительности.
Ранее были перечислены несколько решений уравнения Эйнштейна, включающих замкнутые времениподобные кривые: Вселенная с циклическим временем, Вселенная Гёделя, внутренняя область рядом с сингулярностью вращающейся черной дыры и вращающийся бесконечный цилиндр. Однако ни одно из них не помогает найти способ «построить» настоящую машину времени — создать замкнутую времениподобную кривую там, где ее не было. Во Вселенной с циклическим временем, Вселенной Гёделя и Вселенной с вращающимся цилиндром подразумевается, что замкнутые времениподобные кривые существуют с самого начала.[94] Настоящий вопрос звучит так: «Можем ли мы своими силами создавать замкнутые времениподобные кривые в локальной области пространства—времени?»
Обратившись вновь к рис. 6.2, легко понять, почему все эти решения включают вращение того или иного рода: недостаточно всего лишь наклонить световые конусы, нужно «положить их на бок», выстроив в замкнутую цепочку. Итак, если сесть и подумать, как же создать в пространстве—времени замкнутую времениподобную кривую, то первым делом на ум приходит какой-нибудь вращающийся объект — если не бесконечный цилиндр или черная дыра, то, возможно, достаточно длинный цилиндр или всего лишь массивная звезда. Результат может быть еще более впечатляющим, если взять два гигантских массивных тела и запустить их навстречу друг другу с громадной относительной скоростью. А затем, если повезет, гравитационное притяжение этих тел в достаточной степени повлияет на ориентацию окружающих их световых конусов, чтобы сформировать замкнутую времениподобную кривую.
Все это как-то слишком просто. Действительно, мы немедленно сталкиваемся с различными сложностями. Общая теория относительности — сложная штука, причем не только концептуально, но и технически; уравнения, описывающие искривление пространства—времени, невероятно сложны для решения в любой ситуации, возникающей в реальном мире. Все известные нам точные предсказания теории связаны с сильно идеализированными случаями, обладающими высокой симметрией, такими как статическая звезда или совершенно однородная Вселенная. Расчет кривизны пространства—времени, образовавшейся в результате пролета двух черных дыр мимо друг друга со скоростью, близкой к скорости света, лежит за пределами наших возможностей (хотя методы расчетов улучшаются с каждым днем).
С целью сильного упрощения мы можем задать вопрос, что произойдет, если два массивных объекта пройдут близко друг от друга на высокой относительной скорости, но во Вселенной с трехмерным пространством—временем, где вместо трех измерений пространства и одного измерения времени, как в нашем реальном четырехмерном пространстве—времени, будут всего лишь два измерения пространства и одно измерение времени.
Отбрасывая для простоты одно измерение пространства, мы совершаем достойный признания шаг. Эдвин Э. Эббот в своем романе «Флатландия» описывал существ, живущих в двумерном пространстве. Он пытался показать, что и в нашем мире может быть более трех измерений, попутно высмеивая Викторианскую культуру.[95] Мы позаимствуем терминологию Эббота и будем называть Вселенную с двумя пространственными измерениями и одним временным Флатландией, даже если на самом деле она вовсе не такая плоская,[96] так как нас интересуют случаи искривления пространства—времени, когда световые конусы могут наклоняться, а времениподобные кривые — замыкаться.
Рассмотрим ситуацию, показанную на рис. 6.5: два массивных объекта с высокой скоростью проносятся мимо друг друга во Флатландии. В трехмерной Вселенной прекрасно то, что в ней уравнение Эйнштейна упрощается на несколько порядков, позволяя найти точное решение задачи, которая в реальной четырехмерной Вселенной была бы невообразимо сложной. В 1991 году астрофизик Ричард Готт закатал рукава и рассчитал искривление пространства—времени для этой ситуации. В частности, он обнаружил, что во Флатландии тяжелые объекты, проходя мимо друг друга, действительно создают замкнутые времениподобные кривые — при условии, что движутся они с достаточно высокой скоростью. Для каждого конкретного значения массы двух тел Готт рассчитал скорость, с которой те должны двигаться, чтобы в нужной степени наклонить окружающие световые конусы и предоставить возможность путешествия во времени.[97]
Рис. 6.5. Машина времени Готта во Флатландии. Если два объекта пройдут мимо друг друга с достаточно высокой относительной скоростью, то возникнет замкнутая времениподобная кривая, обозначенная на рисунке пунктирной линией. Обратите внимание, что показанная здесь плоскость на самом деле двумерная — это не проекция трехмерного пространства
Интересный результат, но это не считается за «построение» машины времени. В пространстве—времени Готта все предопределено: объекты в самом начале разнесены на большое расстояние, затем проходят в непосредственной близости друг от друга, а после этого снова разлетаются в стороны. В конечном счете замкнутые времениподобные кривые просто не могут не образоваться; во всей истории развития системы не найдется такой точки, где их появления можно было бы избежать. Итак, вопрос остается на повестке дня: можем ли мы своими руками построить машину времени Готта? Например, пусть во Флатландии есть два массивных объекта, находящихся друг относительно друга в покое. К каждому из этих объектов мы приделаем ракетные двигатели (не забывайте повторять про себя: «Это мысленный эксперимент»). Сможем ли мы придать объектам достаточно высокую скорость, чтобы это привело к образованию замкнутых времениподобных кривых? Это можно было бы заслуженно назвать построением машины времени, пусть даже в не очень реалистичных обстоятельствах.
Ответ на этот вопрос чрезвычайно интересен, и мне повезло оказаться в первых рядах зрителей, когда этот поразительный результат был достигнут.[98] В 1991 году, когда был опубликована статья Готта, я был аспирантом в Гарварде и работал в основном со своим научным руководителем Джорджем Филдом. Как и многие другие студенты Гарварда, я часто пользовался подземной линией Red Line, чтобы доехать до Массачусетского технологического института (MIT) и прослушать курсы, которых не было в моем университете (множество студентов MIT ездили в противоположную сторону по аналогичной причине). Среди интересовавших меня лекций были великолепный курс по теоретической физике элементарных частиц Эдварда (Эдди) Фари и курс по космологии ранней Вселенной Алана Гута. Эдди был молодым парнем с типичным акцентом жителей Бронкса и весьма серьезным отношением к физике (насколько это возможно для человека, работы которого носят названия вроде «Можно ли создать Вселенную в лаборатории путем квантово-механического туннелирования?»[99]). Алан — исключительно здравомыслящий физик, заслуживший мировую известность как изобретатель инфляционного сценария развития Вселенной. Оба они были дружелюбными и увлеченными людьми, ребятами, с которыми было интересно проводить время, даже когда у нас не происходило увлекательных бесед о физике.
Итак, я был счастлив и горд тем, что эти двое пригласили меня поучаствовать в поиске ответа на вопрос, можно ли построить машину времени Готта. Над той же проблемой работала еще одна команда теоретиков в составе Стэнли Дезера, Романа Джакива и нобелевского лауреата Герарда ’т Хоофта. Они открыли интересное свойство двух движущихся тел во Вселенной Готта: несмотря на то что каждый объект в отдельности перемещается со скоростью, меньшей скорости света, совокупный импульс системы, включающей оба эти объекта, такой же, как у тахиона. Словно система двух совершенно обычных частиц является новой частицей, которая движется быстрее света. В специальной теории относительности, где сила притяжения не учитывается, а пространство—время совершенно плоское, это было бы невозможно: совокупный импульс любого числа частиц, скорость которых ниже скорости света, при любых условиях будет соответствовать движению медленнее скорости света. За такой интересный результат сложения скоростей двух объектов мы должны благодарить особые свойства искривленного пространства—времени. Однако для нас это открытие еще не поставило финальную точку в вопросе; кто сказал, что особенности искривленного пространства—времени не позволяют создавать тахионы?
Мы решили добавить к условиям задачи космический корабль, для того чтобы взять объекты, движущиеся с небольшой скоростью, и разогнать их так сильно, чтобы создать машину времени. Возможно ли это? В такой формулировке ответ кажется очевидным: легко! Главное, чтобы ракета была достаточно большая и мощная.
В действительности во Вселенной попросту не хватит для этого энергии. Для начала мы решили рассматривать «открытую Вселенную» — поверхность во Флатландии, по которой двигались наши частицы, простиралась до бесконечности. Однако одной из своеобразных особенностей силы притяжения во Флатландии является существование безусловного верхнего предела на полную энергию, которая способна поместиться в открытую Вселенную. Попробуйте добавить еще немного, и пространство—время искривится настолько, что Вселенная замкнется на саму себя.[100] В четырехмерном пространстве—времени во Вселенной может находиться сколько угодно энергии; каждая порция энергии искривляет ближайшую окрестность пространства—времени, однако на большом удалении от источника эффект ослабевает. В противоположность этому в трехмерном пространстве—времени влияние силы притяжения не может ослабевать — оно лишь усиливается. Следовательно, в открытой трехмерной Вселенной существует максимальный возможный объем энергии — и его недостаточно для построения машины Готта с нуля.
Получается, Природа предусмотрела интересный способ, как избежать создания машины времени. Мы написали две статьи: в первой мы изложили разумное обоснование этого результата, ее авторами стали мы втроем. Вторая статья была написана в соавторстве с Кеном Олумом, там было представлено более общее доказательство. Однако во время поисков мы заметили кое-что очень интересное. Действительно, верхний предел энергии существует — но для открытой Вселенной Флатландии; а что насчет закрытой? Если попытаться запихнуть слишком много энергии в открытую Вселенную, то она замкнется на саму себя. Но попробуем превратить эту проблему в характерную особенность и рассмотрим закрытые Вселенные, где пространство выглядит скорее как сфера, а не как плоскость.[101] В них существует одно-единственное допустимое значение полной энергии и никакого пространства для маневров. Суммарная кривизна пространства должна быть равной кривизне сферы, а это в два раза больше, чем может поместиться в открытую Вселенную.
Мы сравнили полную энергию закрытой Вселенной во Флатландии с энергией, необходимой для создания машины времени Готта, и обнаружили, что этого количества достаточно. Это произошло уже после того, как была подготовлена и принята к публикации в Physical Review Letters, ведущем журнале в этой области, наша первая статья. Однако журналы позволяют до публикации вставлять в статьи небольшие примечания: «добавлено при проверке», и мы воспользовались этой возможностью, указав, что, вероятно, машину времени можно было бы построить в закрытой Вселенной Флатландии, несмотря на то что в открытой Вселенной это совершенно точно невозможно.
Рис. 6.6. Движущиеся частицы в закрытой Вселенной Флатландии, обладающей топологией сферы. Представьте себе муравьев, ползающих по поверхности пляжного мяча
Мы сглупили (в такой ситуации очень удобно быть молодым ученым, работающим в компании знаменитых старших коллег; ты всегда можешь оправдаться: «Если даже эти ребята пропустили такую ошибку, может быть, она и не настолько глупая»). Нам показалось забавным, что Природа так изобретательно предотвращает создание машин времени Готта в открытых Вселенных, но при этом в закрытых Вселенных, судя по всему, никаких проблем с машинами времени не существует. Определенно, в закрытой Вселенной хватит энергии, чтобы разогнать объекты до желаемых скоростей — что может пойти не так?
Очень скоро Герард ’т Хоофт выяснил, что закрытая Вселенная, в отличие от открытой, обладает конечным общим объемом (хотя, поскольку у нас только два пространственных измерения, то «конечной общей площадью», но смысл вы поняли). Он продемонстрировал, что если заставить частицы двигаться в закрытой Вселенной Флатландии таким образом, чтобы инициировать возникновение машины времени Готта, то объем Вселенной начнет очень быстро сокращаться. По сути, Вселенная стремительно помчится навстречу Большому сжатию. Как только вам на ум придет эта мысль, вы сразу же поймете, каким образом пространство—время избегает машин времени: оно схлопывается до нулевого объема еще до того, как появляются замкнутые времениподобные кривые. Уравнения не лгут; так что Эдди, Алан и я признали это и отправили в Physical Review Letters уведомление об ошибке. Научный прогресс продолжил движение вперед, пусть и получив по пути небольшое ранение.
С учетом нашего результата, описывающего открытые Вселенные, и догадки ’т Хоофта о закрытых Вселенных становится очевидно, что во Флатландии ни при каких условиях невозможно создать новую машину времени Готта, то есть машину, которой до нас там не существовало. Может показаться, что большая часть аргументов, посредством которых мы пришли к этому результату, применима только в нереалистичном случае трехмерного пространства—времени, — и это действительно так. Однако совершенно ясно, что общая теория относительности пытается донести до нас простую мысль: замкнутые времениподобные кривые ей не по нраву. Можете сколько угодно пытаться создавать их, но каждый раз что-нибудь да пойдет не так. Определенно, нам было очень интересно, насколько это заключение применимо к реальному миру с четырехмерным пространством—временем.
Весной 1985 года Карл Саган работал над своим романом «Контакт», в котором астрофизик Элли Эрроуэй (позднее ее роль в экранизации романа сыграет Джоди Фостер) осуществляет первый контакт с инопланетной цивилизацией.[102] Сагану нужно было придумать способ быстрого перемещения на космические расстояния, однако он не хотел идти по ленивому пути писателей научной фантастики и использовать варп-двигатель, который заставил бы ракету лететь быстрее света. Поэтому он поступил так, как поступил бы на его месте любой уважающий себя автор: он бросил свою героиню в черную дыру в надежде, что она выскочит, целая и невредимая, за двадцать шесть световых лет от места сброса.
Маловероятно. Бедную Элли точно не выбросило бы на безопасный берег; приливные силы, действующие вблизи сингулярности черной дыры, сделали бы из нее спагетти — весьма печальный конец. Нельзя сказать, что Саган не был осведомлен о физике черных дыр; он имел в виду вращающиеся черные дыры, где световые конусы не заставляют вас на полной скорости врезаться в сингулярность, — по крайней мере, такую возможность оставляло точное решение, обнаруженное Роем Керром еще в шестидесятых. Однако он понимал, что точно не является мировым экспертом в области черных дыр, и в своем романе старался подходить к научным вопросам со всей тщательностью. К счастью, он дружил с человеком, которого без тени сомнения можно назвать мировым экспертом в этой области, — Кипом Торном, физиком-теоретиком из Калтеха, признанным авторитетом в вопросах общей теории относительности.
Торн с большим интересом прочитал рукопись Сагана и заметил одну проблему: современные исследования указывают, что в реальном мире черные дыры ведут себя совсем не так прилично, как в первоначальном решении Керра. Настоящая черная дыра, которую можно было бы создать с помощью физических процессов в нашей Вселенной, — неважно, вращающаяся или нет, — зажевала бы бесстрашного астронавта и не выбросила бы наружу ни косточки. Но есть альтернативная идея: кротовая нора.
В отличие от черных дыр, которые практически стопроцентно существуют в реальном мире и наличие которых подтверждается огромным количеством подлинных эмпирических данных, кротовые норы — это целиком и полностью гипотетические игрушки физиков-теоретиков. Смысл кротовых нор примерно понятен из названия: они позволяют воспользоваться преимуществами динамической природы пространства—времени в общей теории относительности и соединить две разные области пространства коротким «мостом».
Рис. 6.7. Кротовая нора соединяет две удаленные области пространства. Хотя на рисунке это показать невозможно, длина «моста» в кротовой норе может быть намного меньше обычного расстояния между двумя ее устьями
Типичная кротовина показана на рис. 6.7. Плоскость символизирует трехмерное пространство, а что-то вроде трубы под ней — это и есть кротовая нора, что-то типа трубы, представляющей собой короткий путь между двумя удаленными областями пространства. Места, в которых кротовая нора соединяется с внешним пространством, называются «устьями», а сама труба — «горловиной». Она не выглядит как кратчайший путь; более того, исходя из вида картинки можно подумать, что путешествие по кротовой норе займет больше времени, чем традиционное перемещение от одного устья к другому в обычном пространстве. Однако это объясняется исключительно нашей манерой рисовать интересные искривленные пространства, погружая их в нашу скучную локально трехмерную область. Мы будем рассматривать вариант геометрии, допускающий фигуры вроде показанной на рисунке, но в которой длина кротовой норы может быть какой угодно — в том числе намного меньшей, чем расстояние между устьями в обычном пространстве.
На самом деле есть намного более интуитивно понятный способ представить себе кротовую нору. Вообразите себе обычное трехмерное пространство и «вырежьте» в нем две сферические области равного размера. Затем отождествите поверхности сфер, то есть объявите, что любой объект, входящий в первую сферу, немедленно появляется на противоположной стороне второй. Результат показан на рис. 6.8; каждая сфера представляет собой одно из устьев кротовой норы. Это кротовая нора нулевой длины; пересекая поверхность первой сферы, вы мгновенно появляетесь из второй (на слове «мгновенно» у вас в голове должен сработать сигнал тревоги: мгновенно для кого?).
Рис. 6.8. Кротовая нора в трехмерном пространстве, сформированная путем отождествления двух сфер, внутренность которых была удалена. Все, что проходит внутрь одной сферы, моментально появляется на противоположной стороне другой сферы
Кротовая нора заставляет вспомнить наш предыдущий пример с вратами во вчера. Если вы заглянете в кротовую нору с одного конца, то не увидите психоделических цветовых завихрений; вашему взору предстанет то, что фактически находится на противоположном конце, как если бы вы разглядывали этот пейзаж через своеобразный перископ (или увидели его на мониторе, подключенном к камере на другом конце кротовой норы). И вы с легкостью могли бы протянуть руку или даже прыгнуть сквозь кротовую нору, если она окажется достаточно большой.
Такой тип кротовой норы позволяет срезать путь через пространство—время, соединяя две удаленные области моментальным переходом. Он обеспечивает возможность исполнить трюк, который Сагану требовался для его романа, и по совету Торна автор переписал соответствующий раздел (в кинематографической версии, к сожалению, вы увидите и психоделические завихрения, и переливающиеся огоньки). Однако вопрос Сагана дал толчок развитию целой серии идей, результатом которых стало новаторское научное исследование, а не только точный с научной точки зрения рассказ.
Кротовая нора — это короткий путь через пространство—время; она позволяет добраться из одного места в другое намного быстрее, чем если бы вы воспользовались прямым маршрутом через обычное пространство—время. С вашей, локальной точки зрения ваша скорость никогда не превышает скорость света, однако вы добираетесь до точки назначения быстрее, чем это смог бы сделать свет в отсутствие кротовой норы. Мы знаем, что перемещения со сверхсветовой скоростью открывают нам двери к путешествиям в прошлое. Проход через кротовую нору — не в точности тот же самый, хотя и похожий процесс. В конечном счете Торн, работая совместно с Майклом Моррисом и Ульви Юртсевером, обнаружил способ, как при помощи кротовой норы создать замкнутую времениподобную кривую.[103]
Секрет заключается вот в чем: когда мы бросаемся заявлениями вроде «кротовая нора соединяет две удаленные области пространства», мы не должны забывать о том, что в действительности это означает, что она соединяет два набора событий в пространстве—времени. Представим себе, что пространство—время абсолютно плоское (за исключением кротовой норы) и что мы определили «фоновое время» в некоторой покоящейся системе координат. Отождествляя две сферы для того, чтобы создать кротовую нору, мы делаем это «одновременно» по отношению к этой конкретной координате фонового времени. В какой-то другой системе координат соответствующие моменты времени не совпадали бы.
Теперь примем серьезное допущение: разрешим себе перемещать любое из устьев кротовины независимо от противоположного. Для того чтобы оправдать такое допущение в глазах других ученых, вам пришлось бы провести немало часов в жарких спорах, но в целях нашего мысленного эксперимента все совершенно нормально. Теперь пусть одно устье так и сидит себе спокойно на траектории, соответствующей движению без ускорения, а второе мы будем перемещать туда и сюда на очень высокой скорости.
Для того чтобы понять, чем это обернется, вообразите, что и к одному и к другому устью мы прикрепили часы. Часы на стационарном устье идут с той же скоростью, что и часы, отсчитывающие координату фонового времени. Однако для часов на движущемся устье времени проходит намного меньше — так происходит в теории относительности с любым движущимся объектом. В результате, когда мы снова располагаем устья рядом друг с другом, часы на том конце, который мы перемещали с большой скоростью, здорово отстают по сравнению с часами, которые оставались на одном месте.
Попробуем рассмотреть ту же ситуацию с точки зрения наблюдателя, глядящего сквозь кротовую нору. Вспомните, что, заглянув в горловину, вы не увидите ничего пугающего — только то, что находится на противоположном конце кротовой норы. Когда мы смотрим в устье кротовой норы, нам кажется, что часы на обоих концах неподвижны друг относительно друга. Причина в том, что длина горловины всегда остается неизменной (в нашем упрощенном примере она равна нулю), даже когда мы передвигаем одно из устий. Для наблюдателя, находящегося возле кротовой норы, эти двое часов всего лишь стоят рядом друг с другом совершенно неподвижно. Следовательно, идут они абсолютно синхронно, и оба циферблата показывают точное время.
Как двое часов могут показывать одинаково точное время, если часы, прикрепленные к подвижному устью, в конце эксперимента должны сильно отставать? Легко! Когда на часы смотрит внешний наблюдатель, показания на них отличаются, а если смотреть на часы сквозь кротовую нору, то время они показывают одинаковое. Этот загадочный феномен объясняется очень просто: как только два устья начинают двигаться по разным путям через пространство—время, с точки зрения внешнего наблюдателя они больше не принадлежат одному и тому же моменту времени. Сфера, представляющая одно устье, по-прежнему отождествлена со сферой, представляющей второе устье, но теперь они отождествлены в разные моменты времени. Проходя сквозь одно устье, вы перемещаетесь в прошлое — относительно фонового времени; проходя по кротовой норе в обратную сторону, вы снова переноситесь в будущее.
Следовательно, такой тип кротовой норы абсолютно идентичен вратам во вчера. Манипулируя входами кротовой норы с коротким туннелем, мы соединили две разные области пространства—времени, «живущие» в совершенно разных временах. Теперь мы можем проходить сквозь кротовую нору и перемещаться во времени точно так же, как по замкнутым времениподобным кривым, и снова начинать беспокоиться о всевозможных парадоксах. Если бы эту процедуру можно было воспроизвести в реальном мире, то результат, несомненно, можно было бы считать построением настоящей машины времени, отвечающей требованиям из нашего предыдущего обсуждения.
При обсуждении машины времени на основе кротовой норы создается впечатление, что замкнутые времениподобные кривые могли бы существовать в реальном мире. Казалось бы, проблема исключительно в технологических возможностях, а вовсе не в ограничениях, налагаемых законами физики. Нам всего лишь нужно найти кротовую нору, научиться удерживать ее в открытом состоянии, передвинуть одно из устьев в правильном направлении… Нет, наверное, это все же нереально. Как вы наверняка подозревали с самого начала, оказывается, что существует масса причин, почему кротовые норы нельзя рассматривать в качестве практичных инструментов построения машин времени.
Рис. 6.9. Машина времени на основе кротовой норы. Двунаправленные стрелки обозначают отождествление сферических устьев кротовой норы. Сначала устья находятся по соседству и отождествляются в один и тот же момент фонового времени. Одно устье остается неподвижным, а другое уносится в сторону со скоростью, близкой к скорости света. Когда оно возвращается, устья отождествляются в совершенно разные моменты фонового времени
Во-первых, кротовые норы не растут на деревьях. В 1967 году физик-теоретик Роберт Герош задался вопросом, насколько реально создать кротовую нору. Он доказал, что для этого необходимо не только скрутить пространство—время совершенно определенным способом, но и на одном из промежуточных шагов этого процесса создать замкнутую времениподобную кривую. Другими словами, прежде чем приступать к построению машины времени с использованием кротовой норы, нужно построить машину времени, которая позволит создать кротовую нору.[104] Однако даже если вам повезет и вы совершенно случайно наткнетесь на существующую кротовую нору, то у вас на пути встанет новое препятствие: не так-то просто удерживать ее открытой. Действительно, это считается единственным серьезным доводом, позволяющим опровергнуть возможность построения машины времени на основе кротовой норы.
Проблема в том, что для удержания кротовой норы в открытом состоянии требуется отрицательная энергия. Гравитация означает притяжение: гравитационное поле, создаваемое обычным объектом с положительной энергией, заставляет вещи притягиваться друг к другу. Но взгляните еще раз на рис. 6.8: какой эффект кротовая нора оказывает на проходящие сквозь нее частицы? Она «дефокусирует их», разделяя частицы, которые первоначально перемещались все вместе, и заставляя их двигаться в разные стороны. Это прямая противоположность традиционному поведению гравитации и знак того, что в процессе должна принимать участие отрицательная энергия.
Существует ли отрицательная энергия в природе? Вероятно, нет; по крайней мере, не в той форме, которая потребовалась бы для поддержания работоспособности макроскопической кротовой норы. Тем не менее пока что мы не можем быть в этом уверены. Высказывались предположения о том, что квантовая механика способна помочь в создании «карманов» отрицательной энергии, однако они не были подкреплены достаточными обоснованиями. Трудность в том, что этот вопрос включает как гравитацию, так и квантовую механику, а мы пока что не очень хорошо понимаем, как пересекаются эти две теории.
Однако и это еще не все; даже если бы мы нашли кротовую нору и сумели удержать ее открытой, скорее всего, она вела бы себя чрезвычайно нестабильно. Малейшее возмущение — и кротовая нора сколлапсировала бы в черную дыру. Это связано с еще одним вопросом, на который не так-то просто найти однозначный ответ, но базовая идея заключается в том, что любое крошечное возмущение энергии может увеличиваться, перемещаясь в окрестности замкнутой времениподобной кривой произвольно большое число раз. Согласно современной точке зрения, такие повторяющиеся перемещения неизбежны по крайней мере для некоторых небольших возмущений. Кротовая нора не просто чувствует массу единичной пылинки, пролетающей сквозь нее, — она ощущает это влияние снова и снова, создавая громадное гравитационное поле, размер которого достаточно велик для того, чтобы в конечном итоге разрушить нашу потенциальную машину времени.
Таким образом, природа прилагает массу усилий, для того чтобы не позволить нам построить машину времени. Накопленные косвенные улики заставили Стивена Хокинга высказать предположение, которое теперь носит название гипотезы защиты хронологии: законы физики (какими бы они ни были) запрещают создание замкнутых времениподобных кривых.[105] Мы располагаем множеством свидетельств того, что эти строки хотя бы отчасти правдивы, даже если надежных доказательств в нашем арсенале пока что нет.
Идея путешествий во времени завораживает нас — в том числе потому, что она открывает двери для парадоксов и ставит под вопрос наше понимание свободы воли. В то же время велика вероятность того, что путешествия во времени невозможны, а проблемы, связываемые с ними, по большей части надуманны (если только вы не сценарист из Голливуда — тогда они могут стать вашим хлебом). Стрела времени, с другой стороны, является неотъемлемой составляющей окружающей нас реальности, и поднимаемые ее существованием вопросы требуют ответов. Эти два явления связаны между собой: самосогласованная стрела времени во Вселенной может существовать лишь потому, что здесь нет замкнутых времениподобных кривых, а многие рассуждения, запрещающие такие кривые, порождаются их несовместимостью со стрелой времени. Отсутствие машин времени — обязательное условие, однако ни в коем случае не достаточное объяснение самосогласованности стрелы времени. Мы проделали огромную подготовительную работу, а это означает, что сейчас самое время, вооружившись вновь обретенными знаниями, пойти в прямое наступление на загадку направления времени.