Авторы статей в Wikipedia (2009). Настоящий фрагмент представляет собой перевод приведенного автором отрывка из англоязычной статьи на русский язык и может не соответствовать содержимому русскоязычного варианта статьи, существовавшему на тот момент времени. — Примеч. пер.
Здесь необходимо сделать акцент на направлениях, так как в них очень легко запутаться: энтропия измеряет беспорядок, а не порядок, и она со временем увеличивается, а не уменьшается. На бытовом уровне мы привыкли думать, что «все замедляется и постепенно сходит на нет», но правильно говорить, что «энтропия увеличивается».
Для того чтобы не казаться слишком абстрактными, мы периодически будем использовать выражения, указывающие на направленность времени: «время течет», «мы перемещаемся в будущее» и т. д. Строго говоря, одна из наших задач — объяснить, почему подобный язык кажется таким естественным, в противовес формулировкам наподобие «существует настоящее, а также существует будущее», которые кажутся слишком напыщенными. Гораздо проще и полезнее иногда позволять себе некоторые вольности в изложении; это также дает нам возможность дополнительно поразмыслить над достоверностью предположений, на которых базируются привычные речевые обороты.
Поскольку орбиты планет представляют собой эллипсы, а не идеальные окружности, скорость их обращения вокруг Солнца нельзя считать строго постоянной, и точный угол, отмечающий положение Земли, находится на своей орбите каждый раз, когда Марс завершает свой оборот, зависит от времени года. Мы без особого труда учтем подобные детали, как только аккуратно определим единицы измерения времени.
Число колебаний кристалла в секунду зависит от его размера и формы. Кристалл в часах специально выбирается таким образом, чтобы он совершал 32 768 колебаний в секунду (это двойка в пятнадцатой степени). Значение намеренно выбрано так, чтобы электроника часов с помощью последовательного деления на два получила частоту, равную одному колебанию в секунду, которая необходима для перемещения секундной стрелки часов.
Роман Алана Лайтмана «Сны Эйнштейна» состоит из серии зарисовок о мирах с совершенно иной концепцией времени, отличной от наблюдаемой в окружающей нас реальности.
См., например: Barbour, J. The End of Time: The Next Revolution in Physics. Oxford University Press, 1999.; Rovelli, C. (2008). Forget Time. http://arxiv.org/abs/0903.3832.
Авторству Эйнштейна приписывают известную шутку: «Когда молодой человек проводит с симпатичной девушкой один час, для него он пролетает как одна минута. Но посадите его на горячую плиту, и одна минута покажется ему дольше часа. Это и есть относительность». Не уверен, что эти слова действительно сказаны Эйнштейном. Однако я точно знаю, что это не относительность.
Если бы мы задались целью восстановить научную целостность фантазии Бейкера, то могли бы прибегнуть к такой оговорке: возможно, время в окружающем мире не остановилось окончательно, а всего лишь чрезвычайно сильно замедлилось, и даже оставшейся скорости течения времени хватает для того, чтобы свет мог отражаться от объектов, на которые смотрит Арно, и фиксироваться его зрением. Близко, но все же мимо. Даже если все произойдет именно так, уменьшение скорости света приведет к огромному красному смещению: то, что в обычном мире воспринимается как видимый свет, для Арно превратится в радиоволны, которые наши несовершенные глаза попросту не в состоянии ухватить. Не исключено, что рентгеновское излучение вследствие красного смещения приблизится к видимой длине волны, однако наткнуться на вспышки рентгеновских лучей в повседневной жизни не так просто. (Несмотря на вышеизложенное, книга все же заставляет задуматься, насколько интересным был реалистичный сценарий описанных в ней событий.)
Временно́й — принадлежащий или относящийся к времени. Это превосходное понятие, и мы будем часто его использовать.
Ради соблюдения исторической справедливости стоит отметить, что хотя Эйнштейн сыграл ключевую роль в формулировке специальной теории относительности, по сути, она стала результатом совместной работы множества физиков и математиков, включая Джорджа Фицджеральда, Хендрика Лоренца и Анри Пуанкаре. В конечном итоге Герман Минковский сумел представить теорию Эйнштейна в терминах четырехмерного пространства—времени, которое теперь зачастую называют просто «пространством Минковского». Широко известно высказывание Минковского, датируемое 1909 годом: «Представления о пространстве и времени, с которыми я хочу вас познакомить, сформировались на почве экспериментальной физики, и в этом их сила. Они радикальны. Отныне время само по себе и пространство само по себе становятся пустой фикцией, и только единение их хранит независимую реальность».
Пёрсиг, Р. Дзен и искусство ухода за мотоциклом / Пер. с англ. М.: АСТ; «Астрель», 2012 (Pirsig, R. M. Zen and the Art of Motorcycle Maintenance. New York: Bantam, 1974).
Price, H. Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time. New York: Oxford University Press, 1996.
Воннегут К. Колыбель для кошки. Бойня номер пять, или Крестовый поход детей. Дейч, 2008 (Vonnegut, K. Slaughterhouse-Five. New York: Dell, 1969).
Блаженный Августин. Исповедь / Пер. с англ. Библиотека Вехи, 2000 (Augustine, Saint. Confessions / Trans. by H. Chadwick. Oxford: Oxford University Press, 1998).
Отличные обсуждения на эту тему можно найти в работах: Callender, C. Introducing Time / Illust. by Ralph Edney. Cambridge: Totem Books, 2005; Lockwood, M. The Labyrinth of Time: Introducing the Universe. Oxford: Oxford University Press, 2005; Davies, P. C. W. About Time: Einstein’s Unfinished Revolution. New York: Simon & Schuster, 1995.
Философы часто обсуждают эти разные концепции времени в терминах, сформулированных Мактаггартом в его знаменитой статье «Нереальность времени» McTaggart, J. M. E. The Unreality of Time, «A Quarterly Review of Psychology and Philosophy», 1908, 17, p. 456. Здесь Мактаггарт выделяет три разных понятия времени, называя их «рядами» (см. также Lockwood, M. The Labyrinth of Time: Introducing the Universe. Oxford: Oxford University Press, 2005). Ряд А — это последовательность событий, движущихся сквозь время и измеряемых по отношению к настоящему. Например, «один год назад» отмечает не фиксированный момент, а момент, меняющийся с течением времени. Ряд B представляет собой последовательность событий с постоянными временными метками, таких как «12 октября 2009 года». А ряд C — это всего лишь упорядоченный список событий, которым не присвоены никакие временные отметки: «x произошло перед y, но после z». Мактаггарт утверждает — в очень приблизительном описании, — что ряды B и C представляют собой фиксированные массивы, в которых отсутствует критически важный элемент изменения, и, следовательно, их недостаточно для описания времени. Однако ряд A сам по себе беспорядочен, так как любое конкретное событие можно одновременно классифицировать как «прошлое», «настоящее» и «будущее» в зависимости от того, по отношению к какому моменту времени оно рассматривается (момент вашего рождения для вас находится в прошлом, однако он был в будущем для ваших родителей, когда они только познакомились). Следовательно, делает вывод Мактаггарт, время не существует. Если у вас создалось впечатление, что это предполагаемое противоречие в большей степени следствие неудачного выбора слов, чем неотъемлемая характеристика самой природы времени, то вы на верном пути. Физик не видит никакого противоречия между выходом за пределы Вселенной с целью охватить взглядом все пространство—время сразу и признанием, что с точки зрения конкретного человека, находящегося внутри Вселенной, время действительно течет мимо.
Эмис М. Стрела времени, или Природа преступления / Пер. с англ. М.: Астрель, 2011 (Amis, M. Time’s Arrow. New York: Vintage, 1991).
Фицджеральд Ф. Загадочная история Бенджамина Баттона / Пер. с англ. М.: Эксмо-Пресс, 2010 (Fitzgerald, F. S. The Curious Case of Benjamin Button // Collier’s Weekly, May 1922, p. 27.
Кэрролл Л. Алиса в Зазеркалье / Пер. с англ. М.: АСТ, 2010 (Carroll, L. Alice’s Adventures in Wonderland and Through the Looking Glass. New York: Signet Classics, 2000)
Очевидно.
Дидрик (Diedrick, J. Understanding Martin Amis. Charleston: University of South Carolina Press, 1995) перечисляет еще несколько произведений, помимо упомянутых мной, в которых в той или иной форме используется прием обратного течения времени: «Сильвия и Бруно» Льюиса Кэрролла, «Завещание Орфея» Жана Кокто, «Никогда в жизни» Брайана Олдиса и «Время, назад» Филипа Дика. Для Мерлина, героя романа-эпопеи Теренса Уайта «Король былого и грядущего», время течет задом наперед, хотя Уайт не пытался использовать этот прием последовательно. Среди более свежих иллюстраций использования данной техники — «Гиперион» Дэна Симмонса; кроме того, тема обратного хода времени положена в основу «Исповеди Макса Тиволи» Эндрю Шона Грира и рассказа «Дневник, посланный за сотню световых лет» Грега Игана. В «Бойне номер пять» Воннегута приводится краткое описание «наоборот» бомбежки Дрездена зажигательными бомбами — Эмис упоминает его в послесловии к «Стреле времени».
Стоппард Т. Аркадия. М.: Иностранка, 2008 (Stoppard, T. Arcadia, in Plays: Five. London: Faber and Faber, 1999).
Помимо первого начала термодинамики («в любом физическом процессе полная энергия сохраняется») и второго начала («энтропия замкнутой системы никогда не уменьшается»), есть также и третье начало: существует минимальное значение температуры (абсолютный ноль), при котором энтропия также находится на минимальном уровне. Эти три закона умещаются в простом высказывании: «Ты не можешь выиграть; не можешь остаться при своих; не можешь даже выйти из игры». Однако также есть нулевое начало: если две системы находятся в термодинамическом равновесии с третьей системой, то они находятся в термодинамическом равновесии друг с другом. Попробуйте здесь самостоятельно придумать какую-нибудь забавную аналогию.
Eddington, A. S. The Nature of the Physical World (Gifford Lectures). Brooklyn: AMS Press, 1927.
Сноу Ч. П. Две культуры и научная революция. Цитата воспроизведена по изданию: Сноу Ч. П. Портреты и размышления / Пер. с англ. М.: Прогресс, 1985. (Snow, C. P. The Two Cultures. Cambridge: Cambridge University Press, 1998).
В действительности справедливо было бы признать, что зачатки понятия энтропии и второго начала термодинамики были впервые озвучены отцом Сади Карно — французским математиком и офицером вооруженных сил Лазаром Карно. В 1784 году Лазар Карно написал трактат о механике, в котором утверждал, что создание вечного двигателя невозможно, так как в любой реальной машине полезная энергия будет рассеиваться вследствие дребезжания и тряски ее составляющих частей. Позднее он стал успешным предводителем армии революционной Французской Республики.
На самом деле это не совсем верно. Общая теория относительности Эйнштейна, объясняющая гравитацию в терминах искривления пространства—времени, подразумевает, что «энергия» в привычном понимании этого термина не остается постоянной, например, в расширяющейся Вселенной. Мы подробнее поговорим об этом в главе 5. При рассмотрении же большинства двигателей внутреннего сгорания расширением Вселенной можно пренебречь, и для них энергия действительно остается постоянной.
Конкретнее, под формулировкой «мера количества расстановок отдельных частей» мы подразумеваем «пропорциональность логарифму количества перестановок отдельных частей». Подробное обсуждение логарифмов вы найдете в приложении, а в девятой главе детально рассматривается статистическое определение энтропии.
В англоязычной литературе универсальное обозначение «log» используется для обозначения любых логарифмов — как десятичных, так и натуральных. Это неудобно, поэтому десятичный логарифм иногда обозначают «lg», а натуральный — «ln». — Примеч. пер.
Температура поверхности Солнца составляет приблизительно 5800 кельвинов (один кельвин равен одному градусу Цельсия, только нулевая отметка по шкале Кельвина соответствует отметке –273 градусов по шкале Цельсия и представляет собой абсолютный ноль — минимальную возможную температуру). Комнатная температура — около 300 кельвинов. Температура космического пространства — или, точнее, фонового космического излучения, заполняющего космос, — около трех кельвинов. Интересное обсуждение роли Солнца как горячего пятна на холодном небе можно найти в книге: Пенроуз Р. Новый ум короля. О компьютерах, мышлении и законах физики. — Изд-во ЛКИ, 2008 (Penrose, R. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford: Oxford University Press, 1989).
Иногда вам могут встречаться заявления креационистов о том, что эволюция, как ее описывал Дарвин в своей теории естественного отбора, несовместима с принципом увеличения энтропии, поскольку история жизни на Земле — это история непрерывно усложняющихся организмов, предположительно происходящих из намного более простых форм. Эти бредовые заявления запросто разбиваются в пух и прах множеством доводов. На простейшем уровне: второе начало термодинамики относится к замкнутым системам, а организм (или вид, или биосфера) — это не замкнутая система. Мы чуть подробнее поговорим об этом в главе 9, но, по сути, этого достаточно.
Thomson, W. On the Age of the Sun’s Heat // Macmillan’s, 1862, 5, p. 288–293.
Пинчон Т. Энтропия / Пер. с англ. С. Кузнецова // Иностранная литература, 1996, No 3 (Pynchon, T. Slow Learner. Boston: Back Bay Books, 1984).
«Жаркие споры» в данном случае — совсем не образное выражение; «Большой спор» между астрономами Харлоу Шепли и Гербером Кёртисом случился в 1920 году в Смитсоновском институте в Вашингтоне, США. Позиция Шепли заключалась в том, что Млечный Путь — это и есть вся Вселенная, тогда как Кёртис утверждал, что туманности (по крайней мере некоторые, в частности Туманность Андромеды М31) сами по себе являются отдельными галактиками. Хотя в итоге Шепли оказался на проигравшей стороне в этих великих дебатах, он был абсолютно прав, утверждая, что Солнце находится не в центре Млечного Пути.
Это небольшая поэтическая вольность. Как мы узнаем позже, космологическое красное смещение принципиально отличается от эффекта Доплера, несмотря на кажущееся сходство. Причина красного смещения — расширение пространства, через которое движется свет, тогда как эффект Доплера создают объекты, движущиеся сквозь пространство.
Десятилетия героического труда не пропали даром — современным астрономам наконец-то удалось зафиксировать точное значение этого важного космологического параметра: 72 км/с за мегапарсек (Freedman, W. L. et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant // Astrophysical J., 2001, vol. 553, No. 1, P. 47–72). Это означает, что каждому миллиону парсеков, отделяющих нас от какой-либо галактики, соответствует видимая скорость удаления, равная 72 км/с. Для сравнения: текущий размер наблюдаемой Вселенной — около 28 миллиардов парсеков. Парсек равен приблизительно 3,26 светового года, или 30 триллионам километров.
Строго говоря, в этой фразе не хватает уточнения, что речь идет о галактиках, разнесенных на достаточное расстояние. Соседние галактики под действием взаимного гравитационного притяжения могут объединяться в пары, группы или скопления. Такие структуры, как и любые другие связанные системы, не расширяются вместе со Вселенной; принято говорить, что они «вырвались из потока Хаббла».
Согласен, это утверждение может показаться спорным. Всего лишь две сноски назад я сообщил, что диаметр обозримой Вселенной составляет «28 миллиардов парсеков». С момента Большого взрыва прошло 14 миллиардов лет, поэтому, казалось бы, логично предположить, что нас от края обозримой Вселенной отделяет 14 миллиардов световых лет. Умножая на два, получаем, что диаметр Вселенной — 28 миллиардов лет, или около 9 миллиардов парсеков, так? Или где-то вкралась опечатка? Как эти данные согласуются между собой? На самом деле оценку расстояний сильно усложняет тот факт, что Вселенная расширяется, и этот процесс непрерывно ускоряется благодаря темной энергии. В настоящее время самые удаленные галактики в нашей обозримой Вселенной находятся от нас гораздо дальше, чем в 14 миллиардах световых лет. Если выполнить все необходимые вычисления, то станет понятно, что расстояние от нас до самой далекой точки, когда-либо принадлежавшей обозримой части Вселенной, сейчас составляет около 46 миллиардов световых лет, или 14 миллиардов парсеков.
Хочу особо подчеркнуть: заявление о том, что частицы не рождаются из пустого пространства, — это всего лишь предположение, хотя и достаточно обоснованное, по крайней мере в современной Вселенной. (Позже мы узнаем, что в ускоряющейся Вселенной, в ходе процесса, аналогичного излучению Хокинга в окрестности черных дыр, частицы могут возникать из вакуума, хотя и крайне редко.) Бытовавшая некогда теория стационарной Вселенной основывалась на противоположном предположении, но ей веры нет: для того чтобы она реально работала (хотя в действительности этого никогда не было), ее последователям пришлось выдумать несколько новых типов физических процессов.
Для того чтобы соблюсти должную точность, следует отметить, что термин «Большой взрыв» употребляют в двух разных значениях. Один из них мы только что рассмотрели: Большим взрывом зовется гипотетический момент бесконечной плотности в самом начале существования Вселенной или, по крайней мере, состояние Вселенной, когда она была очень, очень близка к этому моменту. Однако мы также говорим о модели Большого взрыва, представляющей собой общий формализм описания расширяющейся Вселенной от горячего плотного состояния в соответствии с правилами общей теории относительности (при этом слово «модель» мы иногда опускаем). Вам может попасться на глаза газетная статья, рассказывающая, как специалисты по космологии «тестируют предсказания Большого взрыва». Но невозможно проверить предсказания какого-то момента во времени, можно лишь протестировать предсказания модели. Таким образом, эти два понятия достаточно независимы. Позднее в этой книге мы приведем доводы, что полная теория Вселенной должна предложить что-то более совершенное вместо привычной сингулярности Большого взрыва, но модель Большого взрыва, описывающая развитие Вселенной на протяжении последних 14 миллиардов лет, обоснована, подтверждена и никуда не денется.
История открытия реликтового излучения полна недоразумений. Георгий Гамов, Ральф Альфер и Роберт Херман в конце 1940-х — начале 1950-х годов написали серию статей, в которых со всей очевидностью предсказывали существование реликтового микроволнового излучения, доставшегося нам в наследство от Большого взрыва, однако об этих работах впоследствии каким-то образом забыли. В 1960-е годы Роберт Дик в Принстонском университете, а также Андрей Дорошкевич и Игорь Новиков в Советском Союзе независимо друг от друга заявили о существовании и возможности обнаружения такого излучения. Дик даже собрал группу талантливых молодых космологов (включая Дэвида Уилкинсона и Филлипа Пиблса, которые сегодня по праву считаются ведущими специалистами в этой области), для того чтобы построить антенну и самостоятельно заняться поисками фонового излучения. Их опередили находящиеся всего в нескольких милях Пензиас и Уилсон, которые к тому же даже не подозревали о работе, проводимой молодыми учеными. Гамов скончался в 1968 году, и до сих пор остается загадкой, почему предсказания Альфера и Хермана не были отмечены Нобелевской премией. Они изложили свое видение истории в совместной книге «Genesis of the Big Bang» (Alpher and Herman, Oxford: Oxford University Press, 2001). В 2006 году премию получили Джон Мазер и Джордж Смут за измерение спектра и температурной анизотропии реликтового излучения. Они использовали спутник NASA под названием COBE (Cosmic Background Explorer, «исследователь космического фона»).
Фаррелл рассказывает эту историю целиком (Farrell, J. The Day Without Yesterday: Lemaître, Einstein, and the Birth of Modern Cosmology. New York: Basic Books, 2006.)
Bondi, H., Gold, T. The Steady-State Theory of the Expanding Universe // Monthly Notices of the Royal Astronomical Society, 1948, 108, p. 252–270; Hoyle, F. A New Model for the Expanding Universe // Monthly Notices of the Royal Astronomical Society, 1948, 108, p. 372–382.
См., например: Wright, E. L. Errors in the Steady State and Quasi-SS Models (2008). http://www.astro.ucla.edu/~wright/stdystat.htm
Само собой, это всего лишь упрощение, а реальная история куда интереснее. Считается, что сверхновые типа Ia появляются в результате катастрофического гравитационного коллапса белых карликов. Белый карлик — это звезда, израсходовавшая все свои запасы ядерного топлива. Она тихонько висит на небе благодаря лишь тому факту, что электроны занимают определенное место. Однако у некоторых белых карликов есть звезды-компаньоны, вещество с которых может постепенно просачиваться на белого карлика. В конечном счете карлик достигает критического состояния — предела Чандрасекара (названного так в честь Субраманьяна Чандрасекара), когда направленное наружу давление, создаваемое электронами, оказывается не в силах соперничать с силой притяжения, и звезда схлопывается в нейтронную звезду, отбрасывая внешние слои и производя вспышку сверхновой. Поскольку предел Чандрасекара примерно одинаков для всех белых карликов во Вселенной, яркость взрыва всех сверхновых типа Ia также практически одна и та же (существуют и другие типы сверхновых, но они не имеют никакого отношения к белым карликам). Кроме того, астрономы научились корректировать разницу в яркостях, используя тот эмпирический факт, что после достижения пикового значения светимости более яркие сверхновые угасают дольше. Историю о том, как астрономы искали сверхновые и как они в итоге сумели обнаружить ускорение Вселенной, можно прочитать в следующих книгах: Goldsmith, D. The Runaway Universe: The Race to Find the Future of the Cosmos. New York: Basic Books, 2000; Kirshner, R. P. The Extravagant Universe: Exploding Stars, Dark Energy, and the Accelerating Cosmos. Princeton, NJ: Princeton University Press, 2004; Gates, E. I. Einstein’s Telescope. New York: W. W. Norton, 2009. Исходные статьи: Riess, A. et al., Supernova Search Team. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant // Astronomical J., 1998, 116, p. 1009–1038; Perlmutter, S. et al., Supernova Cosmology Project. Measurements of Omega and Lambda from 42 High Redshift Supernovae // Astrophysical J., 1999, 517, p. 565–586.
Еще один тонкий момент, требующий разъяснения. Скорость расширения Вселенной оценивается с помощью константы Хаббла, связывающей расстояние с красным смещением. В действительности это не «константа» — в ранней Вселенной расширение происходило намного быстрее, поэтому значение того, что правильнее было бы называть параметром Хаббла, было тогда значительно больше. Казалось бы, можно ожидать, что фраза «Вселенная ускоряется» подразумевает: «значение параметра Хаббла увеличивается», однако это не так: это всего лишь означает, что «значение параметра Хаббла не очень сильно уменьшается». Термин «ускорение» относится к увеличению с течением времени видимой скорости любой отдельно взятой галактики. Однако эта скорость равна параметру Хаббла, умноженному на расстояние, а расстояние с расширением Вселенной увеличивается. Таким образом, нельзя утверждать, что в ускоряющейся Вселенной увеличивается значение параметра Хаббла; ускоряющаяся Вселенная — это та, в которой увеличивается произведение параметра Хаббла на расстояние до некоторой галактики. Оказывается, даже с учетом космологической постоянной значение параметра Хаббла в действительности не увеличивается; просто скорость его уменьшения снижается по мере того, как Вселенная расширяется и разреживается. В конечном итоге, когда все вещество разлетится и не останется ничего, кроме космологической постоянной, параметр Хаббла достигнет постоянного значения.
Не помешает также сделать замечание о необходимости различать две формы энергии, играющие наиболее важную роль в развитии современной Вселенной: «энергию вещества», то есть медленно движущихся частиц, разбегающихся в стороны по мере расширения Вселенной, и «темную энергию» — какую-то загадочную штуку, которая совсем не разреживается, а, наоборот, сохраняет постоянную плотность энергии. Помимо этого, само вещество может принимать две разные формы: «обычное вещество», включающее все типы частиц, которые когда-либо были экспериментальным путем обнаружены на Земле, и «темное вещество» — какой-то другой вид частиц, который не может быть ничем, что нам уже доводилось непосредственно наблюдать. Масса (и, следовательно, энергия) обычного вещества в основном сосредоточена в ядрах атомов — протонах и нейтронах, однако и электроны также вносят свой вклад. Обычное вещество включает вас, меня, Землю, Солнце, звезды и весь газ, пыль и камни во Вселенной. Мы знаем, сколько всего этого вещества, и его совершенно точно недостаточно для того, чтобы объяснить все обнаруженные в галактиках и кластерах гравитационные поля. Таким образом, должно существовать некое темное вещество. Никакие известные нам частицы его не образуют, зато физики-теоретики составили впечатляющий список возможных кандидатов, включая «аксионы», и «нейтралино», и «частицы Калуцы—Клейна». При всем при этом обычное вещество составляет приблизительно 4 % энергии во Вселенной, темное вещество — примерно 22 %, а темная энергия — оставшиеся 74 %. Создание или непосредственное обнаружение темной материи — важнейшая задача современной экспериментальной физики. Подробнее об этом — в работах: Hooper, D. Dark Cosmos: In Search of Our Universe’s Missing Mass and Energy. New York: HarperCollins, 2007; Carroll, S. M. Dark Matter and Dark Energy: The Dark Side of the Universe / Лекции на DVD. Chantilly, VA: Teaching Company, 2007; Gates, E. I. Einstein’s Telescope. New York: W. W. Norton, 2009.
Итак, как много энергии содержится в этой темной энергии? Примерно 0,03 калории в кубическом километре. Здесь надо заметить, что для измерения калорийности продуктов обычно используются килокалории (1000 калорий). Если, например, мы возьмем весь объем озера Мичиган (около 5000 км3), то полная величина темной энергии, заключенной в этом объеме, будет меньше энергетической ценности одного Биг-Мака. Или еще пример: если преобразовать всю темную энергию из всех кубических сантиметров, составляющих объем Земли, в электричество, то получится примерно столько же, сколько потребляет за год средний американец. Суть в том, что темной энергии в одном кубическом сантиметре вообще-то совсем немного — она размазана тонким слоем по всей Вселенной. Разумеется, преобразовать темную энергию ни в какую полезную форму энергии невозможно, она абсолютно бесполезна. (Почему? Потому что она находится в состоянии с высокой энтропией.)
В действительности Планк не занимался квантовой гравитацией. В 1899 году при попытке разобраться с некоторыми загадками излучения черного тела он столкнулся с необходимостью в новой фундаментальной константе, описывающей законы природы. Сегодня эта константа носит название постоянной Планка и обозначается символом ħ. Планк взял эту новую величину и принялся умножать и делить ее разными способами на скорость света c и ньютоновскую гравитационную постоянную G. В результате он пришел к системе фундаментальных единиц измерения, которые сегодня считаются общепринятыми характеристиками квантовой гравитации: планковская длина LP = 1,6∙10−35 метра, планковское время tP = 5,4∙10−44 секунды и планковская масса MP = 2,2∙10−8 килограмма, а также энергия Планка. Интересный факт: Планк первым делом предположил, что универсальная природа этих величин — основанная на законах физики, а не определенная в соответствии с какими-то человеческими условностями — однажды поможет нам в общении с внеземными цивилизациями.
Фред Адамс и Грег Лафлин посвятили этому целую книгу, и я настоятельно рекомендую вам с ней ознакомиться (Adams, F., Laughlin, G. The Five Ages of the Universe: Inside the Physics of Eternity. New York: Free Press, 1999).
Хью Прайс очень уверенно раскритиковал эту тенденцию (Price, H. Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time. New York: Oxford University Press, 1996). Он обвинил космологов в двойных стандартах, так как к ранней Вселенной применяются критерии естественности, которые никто не стал бы использовать для поздней Вселенной, и наоборот. По мнению Прайса, непротиворечивая космология, управляемая симметричными во времени законами, должна описывать симметричную во времени эволюцию. Учитывая, что у Большого взрыва была низкая энтропия, в будущем должен случиться симметричный коллапс — Большое сжатие, также имеющее низкую энтропию. В такой Вселенной — она называется Вселенной Голда в честь Томаса Голда, знаменитого своей поддержкой теории стационарной Вселенной, — стрела времени изменила бы направление, как только Вселенная достигла бы максимального размера, и энтропия начала бы уменьшаться по направлению к Сжатию. Поскольку мы уже открыли темную энергию, подобный сценарий сейчас кажется совсем маловероятным. (В этой книге мы все же ответим на вызов Прайса, попытавшись представить, что время во Вселенной действительно симметрично на больших масштабах, и в далеком прошлом, точно так же, как в далеком будущем, у Вселенной высокая энтропия — что, очевидно, может быть правдой только в том случае, если история Вселенной начинается гораздо раньше Большого взрыва.)
На самом деле Вселенная не сколлапсирует в одну большую черную дыру. Как мы уже обсуждали выше, она попросту опустеет. Примечательно, однако, что в присутствии темной энергии даже у пустого пространства есть энтропия, и мы получаем то же значение (10120) для максимальной энтропии наблюдаемой Вселенной. Обратите внимание, что 10120 — это также величина расхождения между теоретической оценкой энергии вакуума и ее наблюдаемым значением. Это очевидное совпадение двух разных величин — уже знакомое нам совпадение между текущей плотностью вещества (связанной с максимальной энтропией) и плотностью энергии вакуума. В обоих случаях численное значение равно квадрату размера наблюдаемой Вселенной — примерно 10 миллиардов световых лет, разделенному на квадрат планковской длины.
С другой стороны, какими достижениями объясняется популярность Пэрис Хилтон, остается не меньшей загадкой.
Элдрик Тонт (Тайгер) Вудс — знаменитый американский гольфист. — Примеч. ред.
В 1905 году — в свой «удивительный год» — Эйнштейн опубликовал серию работ, каждая из которых в отдельности способна была вознести карьеру практически любого ученого до невероятных высот: окончательная формулировка специальной теории относительности, объяснение фотоэлектрического эффекта (подразумевающее существование фотонов и закладывающее основы квантовой механики), построение теории броуновского движения в терминах случайных столкновений на атомном уровне и открытие эквивалентности массы и энергии. Большую часть следующего десятилетия он посвятил разработке теории гравитации; свой окончательный ответ — общую теорию относительности — Эйнштейн получил в 1915 году, когда ему было тридцать шесть лет. Скончался Эйнштейн в 1955 году в возрасте семидесяти шести лет.
Необходимо также вспомнить нидерландского физика Хендрика Антона Лоренца, который еще в 1892 году высказал идею о том, что время и расстояние для объектов, движущихся со скоростью, близкой к скорости света, становятся иными, и разработал «преобразования Лоренца» — соотношения, устанавливающие связь между измерениями, полученными движущимися один относительно другого наблюдателями. Лоренц измерял скорости относительно некоего фона — эфира; Эйнштейн первым догадался, что эфир — ненужная выдумка.
Galison, P. Einstein’s Clocks, Poincaré’s Maps: Empires of Time. New York: W. W. Norton, 2003. По прочтении книги Галисона может создаться впечатление, что он находит работу Пуанкаре более интересной, чем исследования Эйнштейна. Тем не менее когда автору выпадает возможность поставить фамилию Эйнштейна в заглавие книги, она обычно оказывается на первом месте. Эйнштейн — залог успешных продаж.
Джордж Джонсон (Johnson, G. The Theory That Ate the World // New York Times, 2008, August 22, BR16) в своей рецензии на книгу Леонарда Сасскинда «Битва при черной дыре» (Susskind, L. The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. New York: Little, Brown, 2008) жалуется на несчастную судьбу современного читателя научно-популярных книг по физике: «Мне не терпелось узнать, каким же образом Сасскинд и компания показали, что Хокинг, вероятно, не совсем прав, — что информация действительно сохраняется. Однако для начала мне пришлось пройти 66-страничный ускоренный курс теории относительности и квантовой механики. Создается впечатление, что без этого не обходится ни одна книга о современной физике, — а каково тем, кто интересуется темой и прочитал куда больше одной? (Представьте себе, что в предвыборной кампании президента каждое выступление начинается с доклада об истоках афинской демократии и наследии французского просвещения.)» Решение очевидно: основы теории относительности и квантовой механики должны входить в стандартный курс среднего образования наравне с истоками афинской демократии и наследием французского просвещения, а до тех пор эта глава будет служить частью неизбежного ускоренного курса. Хорошие новости: мы в основном сосредоточимся на роли «времени» и, таким образом, постараемся избежать в своих рассуждениях избитых истин и банальных аналогий.
Создатели научно-популярных фильмов и сериалов по большей части относятся к этому закону природы с ужасающим пренебрежением — в основном потому, что имитировать невесомость чрезвычайно трудно. (В одной из серий фильма «Звездный путь: Энтерпрайз» есть уморительная сцена, в которой космический корабль «потерял гравитацию» как раз в тот момент, когда капитан Арчер принимал душ.) Искусственная гравитация, позволяющая капитану и команде целеустремленно вышагивать по капитанскому мостику, не совместима с законами физики в том виде, какими мы их знаем. Если вы не ускоряетесь, то единственный способ создать необходимую силу тяжести — таскать с собой предмет массой с небольшую планету, что, как вы понимаете, не совсем практично.
Скорость — это всего лишь темп изменения положения, а ускорение — темп изменения скорости. В терминах дифференциального исчисления скорость — это первая производная положения, а ускорение — вторая. Важное свойство классической механики состоит в том, что положение и скорость полностью задают состояние частицы, ускорение же определяется локальными условиями и соответствующими законами физики.
Упражнение для читателей: можно ли вообразить мир, в котором абсолютная ориентация в пространстве поддается точному определению? А как насчет мира, в котором нельзя определить абсолютное положение, скорость и ускорение, но зато темп изменения ускорения является наблюдаемым?
Проигрывая возможные ситуации, постарайтесь все же не слишком увлекаться. Сегодня мы твердо убеждены, что никакой среды, пронизывающей все пространство и относительно которой мы могли бы измерять нашу скорость, не существует. Однако в конце XIX века люди верили в ее существование, называя такую среду эфиром. С другой стороны, мы верим в существование в каждой точке пространства полей, причем некоторые поля (например, поле Хиггса) в пустом пространстве могут даже иметь ненулевые значения. Сегодня мы верим, что волны — электромагнитные и иные — это распространяющиеся колебания этих полей. Однако поле не считается настоящей «средой» по двум причинам: во-первых, оно может иметь нулевое значение, а во-вторых, невозможно измерить скорость по отношению к нему. Кроме того, вполне вероятно, что мы многого не знаем. Некоторые отличающиеся богатым воображением физики-теоретики всерьез задаются вопросом, а нет ли вокруг нас каких-то новых полей, которые задают абсолютную систему координат, относительно которой мы могли бы измерять свою скорость (см., например: Mattingly, D. Modern Tests of Lorentz Invariance // Living Reviews in Relativity, 2005, 8, p. 5). Подобные поля иронично называют «эфиром», но это совершенно не тот эфир, о котором говорилось в XIX веке. В частности, они никак не связаны с распространением электромагнитных волн и прекрасно согласуются с основными принципами теории относительности.
Некоторую историческую информацию вы найдете в книге Miller, A. I. Albert Einstein’s Special Theory of Relativity. Emergence (1905) and Early Interpretation (1905–1911). Reading: Addison-Wesley, 1981.
Для того чтобы в реальности испытать сокращение длины или растяжение времени, нам потребуются либо невероятно точные измерительные приборы, либо аппарат, позволяющий перемещаться со скоростью, близкой к скорости света. В нашей жизни ни подобные приборы, ни подобные аппараты на каждом углу не встречаются, из-за чего вся эта специальная теория относительности кажется нам такой нелогичной и непонятной. Несомненно, тот факт, что большинство окружающих нас объектов движутся с малыми относительными скоростями по сравнению со скоростью света, — интересная особенность окружающего мира, и полная теория Вселенной должна попытаться ее объяснить.
Вероятно, вам кажется, что этот пример не доказывает невозможность движения со скоростью, превышающей скорость света, — только невозможность разогнать медленный объект, то есть придать ему ускорение, позволяющее достигнуть и превысить скорость света. Возможно, существуют какие-то объекты, всегда движущиеся со скоростью выше скорости света, и их даже не требуется для этого как-то специально ускорять. Такая логическая возможность действительно существует; соответствующие гипотетические частицы называют тахионами. Однако, насколько нам известно, в реальном мире тахионы не существуют, и это даже хорошо: возможность отправлять сигналы со скоростью выше скорости света подразумевала бы возможность отправлять сигналы в прошлое, а это бы повергло в хаос все наши представления о причинно-следственных связях.
Иногда вам будут попадаться утверждения о том, что специальная теория относительности не способна справиться с ускорением тел и для того, чтобы учесть ускорение, требуется общая теория относительности. Это полная чепуха. Необходимость в общей теории относительности возникает тогда (и только тогда), когда важную роль начинает играть сила притяжения, а пространство—время искривляется. Вдалеке от любых гравитационных полей, когда пространство—время плоское, прекрасно действуют законы специальной теории относительности, независимо от того, что происходит с участниками событий, — пусть даже они ускоряются. Траектории равномерного прямолинейного движения (без ускорения) в специальной теории относительности действительно имеют особый статус, так как все они равноправны. Однако совершенно недопустимо на основании этого делать вывод о том, что траектории движения с ускорением вообще не поддаются описанию на языке специальной теории относительности.
Прошу прощения за некрасивое проявление временно́го шовинизма (в моем предположении, что человек движется вперед во времени), не говоря уже о том, что я не устоял перед метафорой «движения» сквозь время. Фраза «каждый объект движется сквозь пространство—время» полна предвзятости, и гораздо правильнее было бы сказать «история каждого объекта описывает мировую линию, протянувшуюся сквозь пространство—время». Однако иногда такая педантичность попросту надоедает.
Один из способов связать общую теорию относительности с ньютоновским пространством—временем — вообразить, что скорость света внезапно стала бесконечно большой. В этом случае световые конусы на нашей схеме расширятся до предела, а пространственноподобная область сожмется и превратится в поверхность — в точности как в ньютоновском случае. Это соблазнительный путь, но все же неприемлемый. Как минимум, мы всегда можем выбрать такие единицы измерения, в которых скорость света будет равна единице; просто попробуйте измерять время в годах, а расстояние — в световых годах. В действительности в этой ситуации мы пытаемся изменить все существующие в природе константы, для того чтобы остальные скорости по сравнению со скоростью света уменьшились. Даже если бы нам это удалось, процесс был бы неоднозначным, ведь мы выбрали предел, переводящий световые конусы в какие-то конкретные поверхности постоянного времени.
Имеется в виду, что у пространства не менее трех измерений. Вполне возможно (и считается само собой разумеющимся в некоторых сообществах физиков-теоретиков), что в пространстве существуют дополнительные измерения, невидимые для нас, по крайней мере при низких энергиях, которые могут непосредственно наблюдаться. Дополнительные измерения могут быть спрятаны несколькими способами, см., например: Greene, B. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. New York: Vintage, 2000; Randall, L. Warped Passages: Unraveling the Mysteries of the Universe’s Hidden Dimensions. New York: HarperCollins, 2005. Существование скрытых времениподобных измерений куда менее вероятно, однако ничего нельзя утверждать наверняка.
Оба повторно опубликованы в сборнике: Einstein, A., ed. The Principle of Relativity / Translated by W. Perrett and G. B. Jeffrey. Mineola: Dover, 1923.
Специальная теория относительности появилась вследствие несовместимости ньютоновской механики с максвелловской электродинамикой, а общая теория относительности, в свою очередь, родилась благодаря несочетаемости специальной теории относительности с ньютоновской силой тяготения. Сегодня физика решает очередной вопрос критической несовместимости, и на этот раз в главных ролях общая теория относительности и квантовая механика. Мы искренне надеемся, что однажды у нас получится объединить их в общей теории квантовой гравитации. По состоянию на текущий момент самый обнадеживающий кандидат — теория струн, однако до конца еще ничего не ясно.
Кажется нелогичным, что натяжение, заставляющее вещи стягиваться все ближе друг к другу, также ответственно за ускорение Вселенной, вследствие которого они разлетаются. Все очень просто: натяжение темной энергии одинаково во всех точках пространства, так что прямой эффект стягивания отсутствует. Мы имеем дело всего лишь с косвенным влиянием темной энергии на искривление пространства—времени, заключающимся в постоянном подталкивании Вселенной (мы знаем, что плотность темной энергии не уменьшается).
Можно думать об этом так: тот факт, что в ньютоновской механике энергия остается постоянной, отражает базовую симметрию этой теории — инвариантность относительно сдвига во времени. Фоновое пространство—время, в котором движутся частицы, зафиксировано раз и навсегда. Однако в общей теории относительности это уже не так: пространство становится динамическим и принимается подталкивать вещи то туда, то сюда, меняя их энергию.
См. Michell, J. Philosophical Transactions of the Royal Society (London), 74 (1784), p. 35–57; эссе Лапласа переиздано в форме приложении к книге Hawking, S. W., Ellis, G. F. R. The Large-Scale Structure of Spacetime — Cambridge: Cambridge University Press, 1974. Многие ученые любят напоминать (под многозначительный шепот и выразительное поднимание бровей) о том, что радиус «черной звезды», вычисленный в ньютоновской гравитации, в точности совпадает с гравитационным радиусом черной дыры (радиусом Шварцшильда) в общей теории относительности (2GM/c2, где G — ньютоновская гравитационная постоянная, M — масса объекта, а c — скорость света). Это совпадение абсолютно случайно и образовалось в основном потому, что существует не так много способов сконструировать величину размерности длины, используя только G, M и c.
В целях этой главы мы будем считать истинной классическую общую теорию относительности. В то же время мы прекрасно понимаем, что для объяснения сингулярностей ее необходимо заменить новой, более общей теорией. Подробнее об этом говорится в книгах Hawking, S. W. A Brief History of Time: From the Big Bang to Black Holes. — New York: Bantam, 1988; Thorne, K. S. Black Holes and Time Warps: Einstein’s Outrageous Legacy. — New York: W. W. Norton, 1994.
Совсем недавно, уже после публикации этой книги на английском языке, некоторые ученые неожиданно изменили свое мнение — см., например, работу Almheiri A., Marolf D., Polchinski J., Sully J. Black Holes: Complementarity or Firewalls? JHEP 1302 (2013) 062. Информационный парадокс, связанный с физикой черных дыр, заставил их предположить, что старые (существующие уже некоторое время) черные дыры покрыты огненными стенами — пучками высокоэнергичных частиц, движущихся вдоль горизонта. Если это предположение верно, то наблюдатель, падающий в черную дыру, сгорит в момент пересечения горизонта. — Примеч. науч. ред.
Какую мораль из этого извлечь — решать вам.
Как вы догадались, мы намекаем на машины времени из снятого в 1960 году Джорджем Палом по роману Герберта Уэллса фильма «Машина времени», из фильма Роберта Земекиса «Назад в будущее» (1985 год) и из давнишнего сериала BBC «Доктор Кто» соответственно.
В интересах нашей истории мы относимся к тахионам не совсем беспристрастно. Допущение о существовании объектов, путешествующих быстрее света, открывает двери для парадоксов — но мы не обязаны проходить сквозь них. Мы можем в своем воображении строить модели, включающие в том числе и тахионы, но только если они не будут содержать противоречий. Некоторые подробности вы найдете в работах: Feinberg, G. Possibility of Faster-Than-Light Particles // Physical Review, 1967, 159, p. 1089–1105; Nahin, P. J. Time Machines: Time Travel in Physics, Metaphysics, and Science Fiction. New York: Springer-Verlag, 1999. Чтобы еще больше запутать ситуацию, в квантовой теории поля термин «тахион» часто используют для описания мгновенной нестабильной конфигурации поля, в которой в действительности ничего не движется со скоростью, превышающей скорость света.
Gödel, K. An Example of a New Type of Cosmological Solution of Einstein’s Field Equations of Gravitation // Reviews of Modern Physics, 1949, 21, p. 447–450. Проводя исследования в ходе подготовки к написанию своего грандиозного учебного пособия «Гравитация» (1973), Чарльз Мизнер, Кип Торн и Джон Уилер посетили Гёделя с намерением побеседовать об общей теории относительности. Однако Гёделя в первую очередь интересовало, позволили ли современные астрономические наблюдения обнаружить какие-либо доказательства вращения Вселенной. Ему все так же хотелось знать, насколько его решение применимо к реальному миру.
Kerr, R. P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics // Physical Review Letters, 1963, 11, p. 237–238. Решение Керра на техническом уровне разбирается во всех современных учебниках по общей теории относительности, а популярную интерпретацию можно найти в книге Thorne, K. S. Black Holes and Time Warps: Einstein’s Outrageous Legacy. New York: W. W. Norton, 1994. Торн рассказывает о том, чем закончилось представление Керром своего решения на первом Техасском симпозиуме по релятивистской астрофизике: присутствующие астрофизики полностью (и можно даже сказать весьма грубо) его проигнорировали, чрезмерно увлекшись спорами о квазарах. Справедливости ради заметим, что в то время сам Керр не понимал, что это решение описывает черную дыру, хотя у него не вызывало сомнений, что это вращающееся решение уравнения Эйнштейна. Позднее астрофизики поняли, что квазары питаются энергией вращающихся черных дыр, описываемых пространством—временем Керра.
Tipler, F. J. Rotating Cylinders and the Possibility of Global Causality Violation // Physical Review, 1974, D 9, p. 2203–2206. Решение для кривизны пространства—времени вокруг бесконечного цилиндра в действительности было найдено в 1937 году Виллемом Якобом ван Стокумом, нидерландским физиком (и пилотом бомбардировщика). Однако ван Стокум не заметил, что его решение содержит замкнутые времениподобные кривые. Превосходный разбор обоих исследований, возможности существования машины времени в общей теории относительности, а также образа путешествий во времени в художественной литературе можно найти в книге Nahin, P. J. Time Machines: Time Travel in Physics, Metaphysics, and Science Fiction. New York: Springer-Verlag, 1999.
Эрвин Шрёдингер, один из пионеров квантовой механики, предложил знаменитый мысленный эксперимент, иллюстрирующий экстравагантную природу квантового принципа суперпозиции. Вообразите, что кота поместили в герметичную камеру, содержащую радиоактивное вещество, которое с вероятностью 50 % через какой-то фиксированный интервал может распасться и активировать источник, выпускающий в камеру ядовитый газ. Согласно традиционным представлениям квантовой механики, полученная в результате система представляет собой равную суперпозицию «живого кота» и «мертвого кота», по крайней мере до тех пор, пока кто-то не откроет камеру и не проверит состояние животного. Подробнее об этом говорится в главе 11.
Кип Торн заметил, что «парадокс дедушки» кажется чрезмерно изощренным — с этим дополнительным поколением и прочими сложностями, не говоря уже о том, что он совершенно точно патриархален. Торн предложил вместо этого рассматривать парадокс «матереубийства».
Это правило иногда повышают до статуса принципа; см. обсуждение в книгах: Новиков И. Д. Эволюция вселенной. — М.: Наука, 1983. или Horwich, P. Asymmetries in Time: Problems in the Philosophy of Science. Cambridge, MA: MIT Press, 1987. Такие философы, как Ганс Рейхенбах («Философия пространства и времени». Либроком, 2009) и Хилари Патнэм (Putnam, H. It Ain’t Necessarily So // Journal of Philosophy 59, no. 22 (1962): 658–71), также подчеркивали, что замкнутые времениподобные кривые не обязательно провоцируют возникновение парадоксов, — при условии, что события в пространстве—времени согласованы между собой. Действительно, это всего лишь здравый смысл. Совершенно очевидно, что в реальном мире парадоксов не бывает; вопрос лишь в том, как Природе удается их избегать.
В главе 11, когда мы будем обсуждать квантовую механику, мы немного отойдем от этого утверждения. Квантовая механика предполагает, что в реальном мире может быть несколько классических историй, а не одна-единственная. Дэвид Дойч («Структура реальности» / Пер. с англ. М.; Ижевск, 2001) предложил использовать существование множества историй в своих интересах, выбрав одну, в которой мы прошли через Ледниковый период, и другую, в которой мы в него не попадали (а также бесконечное число иных).
«Назад в будущее» — вероятно, один из наименее правдоподобных фильмов о путешествии во времени среди всех, когда-либо снятых. Марти Макфлай переносится из 1980-х годов обратно в 1950-е и начинает менять прошлое направо и налево. Хуже того, каждый раз, когда он вмешивается в события, которые, предположительно, уже произошли, последствия этих изменений «моментально» распространяются в будущее, отражаясь даже на семейной фотографии, которую Марти носит с собой. Трудно представить, каким разумным способом можно было бы объяснить принцип «моментальности». Не то чтобы это было невозможно, но пришлось бы положить в основу объяснения существование дополнительного измерения, обладающего многими свойствами обычного времени. Сквозь это измерение индивидуальное сознание Марти будет проходить вследствие совершения им разнообразных действий. Наверняка кто-то должен был написать докторскую диссертацию на тему «К согласованной онтологии времени и памяти в трилогии “Назад в будущее” и далее». Непонятно только, на каком факультете ее можно было бы защитить.
Более или менее окончательное слово о самосогласованных историях в присутствии замкнутых времениподобных кривых было сказано Робертом Хайнлайном в книге «Все вы зомби…» (1959). Путем нескольких прыжков во времени и одной операции по смене пола главный герой умудряется стать собственным отцом, матерью и вербовщиком временных войск. Обратите внимание, однако, на то, что история жизни героя не замкнута в цикл: по ходу изложения он стареет.
Обсуждение этого утверждения вы найдете в работе Friedman, J. et al. Cauchy Problem in Space-times with Closed Timelike Curves // Physical Review, 1990, D 42, p. 1915–1930.
На самом деле, мы и есть убежденные детерминисты. Человеческие существа состоят из частиц и полей, беспрекословно подчиняющихся законам физики, и в теории (но точно не на практике) мы могли бы забыть о своих человеческих качествах и рассматривать себя как сложные наборы элементарных частиц. Однако это не означает, что нам остается лишь сложить оружие перед лицом причудливой проблемы свободной воли в присутствии замкнутых времениподобных кривых.
Это несколько более самоуверенное заявление, чем то, что физики способны доказать в действительности. В некоторых сильно упрощенных ситуациях можно продемонстрировать, что будущее полностью определяется предшествующими событиями, — даже в присутствии замкнутых времениподобных кривых (см. Friedman, J., Higuchi, A. Topological Censorship and Chronology Protection // Annalen der Physik, 2006, 15, p. 109–128). Кажется (по крайней мере, мне) весьма вероятным, что в более реалистичных и сложных моделях такого счастья нам не будет; но все же окончательного ответа у нас пока нет.
Иногда можно нарезать пространство—время на моменты постоянного времени даже в присутствии замкнутых времениподобных кривых: например, это возможно в простой Вселенной с циклическим временем. Однако это совершенно уникальный случай, а в произвольном пространстве—времени с замкнутыми времениподобными кривыми было бы невозможно найти такой вариант «нарезки», который бы обеспечил последовательное деление всей Вселенной.
Исключение, очевидно, составляет вращающаяся черная дыра. Не составляет труда вообразить создание подобной дыры в результате коллапса вращающейся звезды, однако встает другая проблема: замкнутые времениподобные кривые скрыты за горизонтом событий. Получается, что невозможно попасть на такую кривую, не покинув раз и навсегда внешний мир. Далее мы обсудим, можно ли считать это вариантом эвакуации при чрезвычайных обстоятельствах. Пожалуй, еще важнее то, что найденное Керром решение, описывающее вращающуюся черную дыру, применимо только в идеализированной ситуации, когда пространство—время не содержит вообще никакого вещества. Черной дырой должно быть все пространство—время — это не одна из тех черных дыр, которые получаются в результате коллапса звезды. Большинство экспертов по общей теории относительности полагают, что в реальном мире ни одна схлопнувшаяся звезда не способна породить замкнутые времениподобные кривые, даже за горизонтом событий.
Abbot, E. A. Flatland: A Romance of Many Dimensions. Cambridge: Perseus, 1899; также см. Randall, L. Warped Passages: Unraveling the Mysteries of the Universe’s Hidden Dimensions. New York: HarperCollins, 2005.
Название «Флатландия» образовано от английского flat — плоский. — Примеч. пер.
Первоначальное описание решения приведено в работе Gott, J. R. Closed Timelike Curves Produced by Pairs of Moving Cosmic Strings: Exact Solutions // Physical Review Letters, 1991, 66, p. 1126–1129. Также перу автора принадлежит научно-популярная книга на ту же тему: Gott, J. R. Time Travel in Einstein’s Universe: The Physical Possibilities of Travel Through Time. Boston: Houghton Mifflin, 2001. Почти во всех расчетах, с которыми вы познакомитесь в этих работах, говорится не о «массивных телах, перемещающихся во Флатландии», а об «идеально прямых параллельных космических струнах, движущихся в четырехмерном пространстве—времени». Однако суть в том, что эти ситуации абсолютно равнозначны. Космическая струна — это гипотетический реликтовый объект, зародившийся еще в ранней Вселенной, который может быть микроскопически тонким, но растянутым на космологические расстояния. Идеализированная струна может быть абсолютно прямой и бесконечной, однако в реальном мире космические струны должны извиваться и изгибаться разными сложными способами. Но если бы струна была идеально прямой, то в пространстве-времени существовало бы направление, совпадающее с направлением этой струны, вдоль которого вообще ничего бы не менялось. Говоря языком физиков, пространство—время было бы инвариантным относительно переноса и буста вдоль струны. По сути, это означает, что направление вдоль струны не играет абсолютно никакой роли, и мы можем с чистым сердцем его игнорировать. Если отбросить одно измерение, то бесконечно длинная струна в трехмерном пространстве превратится в двумерную точечную частицу. То же самое относится к набору из нескольких струн — при условии, что все они идеально прямые и на всем своем протяжении остаются параллельными друг другу. Разумеется, мысль поиграть с бесконечно длинными и идеально прямыми струнами почти так же экстравагантна, как предложение вообразить, что мы живем в трехмерном пространстве—времени. Но это нормально. Мы всего лишь делаем нереалистичные предположения, чтобы приблизить наши теории к краю постижимого и чтобы отделить то, что невозможно в принципе, от того, что пока что недостижимо вследствие технических сложностей.
Вскоре после публикации статьи Готта известный физик Курт Катлер (Cutler, C. Global Structure of Gott’s Two-String Spacetime // Physical Review D 45 (1992): 487–94) доказал, что замкнутые времениподобные кривые должны простираться до бесконечности, — еще одно свидетельство того факта, что данное решение в действительности нельзя считать построением машины времени (поскольку «построение» для нас — это действие, совершаемое в некоей локальной области). Дезер, Джакив и ’т Хоофт (Deser, S., Jackiw, R., and ’t Hooft, G. Physical Cosmic Strings Do Not Generate Closed Timelike Curves // Physical Review Letters 68 (1992): 267–69.) исследовали решение Готта и обнаружили, что соответствующий суммарный импульс должен быть равен импульсу тахиона. Мы вместе с Фари, Гутом и Олумом (Carroll, S. M., Farhi, E., and Guth, A. H. An Obstacle to Building a Time Machine // Physical Review Letters 68 (1992): 263–66; Erratum-Ibid., 68 (1992): 3368; Energy Momentum Restrictions on the Creation of Gott Time Machines // Physical Review D 50 (1994): 6190–6206) показали, что в открытой Вселенной Флатландии никогда бы не нашлось достаточно энергии, чтобы с нуля создать машину времени Готта. ’т Хоофт (’t Hooft, G. Causality in (2+1)-Dimensional Gravity // Classical and Quantum Gravity 9 (1992): 1335–48) доказал, что закрытая Вселенная Флатландии схлопнется в сингулярность еще до того, как у замкнутой времениподобной кривой появится шанс на зарождение.
Farhi, E., Guth, A. H., Guven, J. Is It Possible to Create a Universe in the Laboratory by Quantum Tunneling? // Nuclear Physics, 1990, B 339, p. 417–490.
Представьте себе плоскость: при взгляде из любой конкретной точки она простирается вокруг на 360 градусов. Во Флатландии каждая дополнительная порция энергии уменьшает общий угол этой «развертки». Будем говорить, что любое материальное тело связано с «дефицитом угла»; наличие такого материального тела «вычитает» из развертки соответствующий угол. Чем больше тело, тем больший угол вычитается. Получившаяся геометрическая фигура на большом удалении выглядит как конус, а не как плоский лист бумаги. Однако больше 360 градусов мы вычесть не сможем, поэтому общая энергия, которая может существовать в открытой Вселенной, ограничена снизу.
Мы говорим «выглядит как», потому что речь идет о топологии пространства, а не его геометрии. Не следует понимать, что кривизна пространства—времени всегда соответствует идеальной сфере, — мы лишь утверждаем, что его можно плавно преобразовать в сферу. Сферическая топология подразумевает, что «дефицит угла» равен в точности 720 градусам — вдвое больше верхнего предела открытой Вселенной. Представьте себе куб (являющийся топологическим эквивалентом сферы). У него восемь вершин, каждой из которых соответствует дефицит угла 90 градусов, — итого 720.
Sagan, C. Contact. New York: Simon and Schuster, 1985. Историю о том, как вопросы Сагана вдохновили Кипа Торна на исследование кротовин и путешествий во времени, вы найдете в работе Thorne, K. S. Black Holes and Time Warps: Einstein’s Outrageous Legacy. New York: W. W. Norton, 1994.
Если свериться с датами, станет очевидно, что исследование машины времени на основе кротовой норы предшествовало работам, связанным с изучением Флатландии. Однако оно описывает немного более непривычную физику, чем использовалась для описания идеи Готта, поэтому логично обсуждать эти гипотезы именно в таком порядке. Первоначальные сведения о кротовых норах, служащих машинами времени, вы найдете в статье Morris, M. S., Thorne, K. S., Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition // Physical Review Letters 61 (1988): 1446–49. Подробное исследование, насколько непротиворечивыми были бы путешествия во времени, использующие кротовые норы, приводится в работе Friedman, J. et al. Cauchy Problem in Space-times with Closed Timelike Curves // Physical Review, 1990, D 42, p. 1915–1930, а на популярном уровне история изложена в книге Thorne, K. S. Black Holes and Time Warps: Einstein’s Outrageous Legacy. New York: W. W. Norton, 1994.
Однажды мне выпала честь представлять Боба Героша аудитории перед одним из его выступлений. В такой ситуации полезно рассказать о человеке какую-нибудь забавную историю, поэтому я заранее воспользовался помощью Google. Мне повезло: я наткнулся на замечательную вещь — сайт фанатов сериала «Звездный путь», на котором была размещена карта галактики. В глаза сразу же бросался объект под ярким названием «Кротовая нора Героша». (Судя по всему, этот объект соединял квадрант «Бета» с квадрантом «Дельта» и стал причиной неприятной стычки с ромуланцами.) Я распечатал копию карты на прозрачке и продемонстрировал ее во время вступления, немало развеселив аудиторию. Позднее Боб признался, что решил поначалу, будто бы я сам все это выдумал и нарисовал, и что ему было приятно увидеть подтверждение того, что его исследование кротовых нор принесло практическую пользу внешнему миру. Прочитать о том, почему для создания кротовой норы сперва необходимо сконструировать замкнутую времениподобную кривую, можно в работе Geroch, R. P. Topology Change in General Relativit // Journal of Mathematical Physics, 1967, 8, p. 782.
Hawking, S. W. The Chronology Protection Conjecture // Physical Review, 1991, D 46, p. 603. В заключение Хокинг также заявляет о наличии эмпирических данных, доказывающих невозможность путешествия назад во времени, приводя в качестве одного из доказательств тот факт, что наше время не наводнено учеными-историками из будущего. Он пошутил (во всяком случае, я так думаю). Даже если бы построение замкнутых времениподобных кривых с нуля было возможно, мы не смогли бы с помощью них попасть в прошлое — в то время, когда замкнутых времениподобных кривых еще не существовало. Таким образом, нельзя говорить об эмпирических доказательствах невозможности построения машины времени — а всего лишь об отсутствии доказательств того, что кому-то это уже удалось.
См. O’Connor, J. J., Robertson, E. F. Pierre-Simon Laplace. MacTutor History of Mathematics Archive, 1999. (http://www-groups.dcs.st-and.ac.uk/~history/Biographies/ Laplace.html); Rouse Ball, W. W. A Short Account of the History of Mathematics. Mineola, NY: Dover, 1908; 4-е изд., 2003. Вы должны помнить Лапласа как одного из тех людей, кто начал говорить о черных дырах задолго до появления общей теории относительности.
Очевидно, Наполеон нашел это чрезвычайно забавным. Он передал остроумные слова Лапласа Жозефу Лагранжу, другому выдающемуся физику и математику того времени. Лагранж ответил: «О, но это же превосходная гипотеза; она объясняет так много всего» (Rouse Ball, W. W. A Short Account of the History of Mathematics. Mineola, NY: Dover, 1908; издание 4-е, 2003).
Лаплас П. С. Опыт философии теории вероятностей. М., 1908, с.9 (Laplace, P.-S. A Philosophical Essay on Probabilities / Trans. by F. W. Tuscott, F. L. Emory; переиздание. New York: Cosimo Classics, 2007).
Не стоит беспокоиться, будто демон Лапласа может жить где-то во Вселенной, самодовольно предсказывая каждое наше движение. Как минимум, он должен быть размером со всю Вселенную и обладать такими же вычислительными возможностями, как Вселенная в целом.
Стоппард Т. Аркадия / Пер. с англ. // ИЛ. 1996. No 2 (Stoppard, T. Arcadia, in Plays: Five. London: Faber and Faber, 1999). Валентайн, по всей видимости, имеет в виду, что идея детерминизма подрывается таким явлением, как хаос. Хаотическое движение, которое реально и существует в нашем мире, происходит, когда небольшие возмущения в начальных условиях приводят к огромным изменениям в дальнейшей эволюции. На практике это означает, что предсказание будущего для хаотичных систем (не все системы являются таковыми) превращается в невероятно трудную задачу, так как в понимание текущего состояния системы непременно будут закрадываться ошибки — хотя бы самые ничтожные. Не уверен, что этот довод имеет смысл использовать в спорах относительно демона Лапласа. С практической точки зрения невозможно даже предполагать, что мы когда-либо сможем получить полную информацию о состоянии всей Вселенной, не говоря уже о том, чтобы научиться предсказывать будущее. Эта концепция всегда была и останется лишь мысленным экспериментом. И перспектива хаотического развития совершенно не меняет картину.
Согласен, мы никогда не встретили бы настоящих физиков на подобной шахматной доске — их появление там невозможно по вполне понятной антропологической причине: условия в постановке задачи слишком просты для зарождения и развития сложных структур, которые мы могли бы назвать разумными наблюдателями. Эта удушающая простота выражается в том числе в отсутствии интересных «взаимодействий» между разными элементами. В тех шахматных мирах, которые мы будем рассматривать, основную роль будут играть простые предметы одного вида (например, вертикальные или диагональные линии), которые не меняются на своем протяжении. Интересный мир — это такой, в котором предметы могут существовать в течение более или менее длительного периода, постепенно меняясь под воздействием других предметов из этого же мира или вследствие взаимодействия с ними.
Сценарий, в котором мы продвигаемся «по одному моменту времени за раз», далек от идеала. Реальный мир (насколько нам известно) не делится на дискретные моменты времени. Время непрерывно, оно плавно течет из одного момента в другой, проходя через все моменты, заключенные между ними. Однако это нам не мешает; у нас есть подходящие математические инструменты, позволяющие продвигаться вперед во времени «шаг за шагом», несмотря на то что само время не дискретно.
Обратите внимание на то, что перенос в пространстве и пространственная инверсия (зеркальное отражение) также являются идеальными симметриями. При взгляде на картинку это кажется неочевидным, но лишь потому, что сами состояния (шаблоны из нулей и единицы) не инвариантны относительно смещений и отражений в пространстве. Чтобы вы не думали, что эти симметрии взяты с потолка, замечу, что некоторые виды симметрии, которые вроде бы и могли существовать в рассматриваемом мире, в действительности отсутствуют. Невозможно, например, поменять ролями время и пространство. В целом чем больше симметрий существует в системе, тем она проще.
Глобальная идея, одной из частных реализаций которой являются миры шахматной доски, носит название клеточных автоматов. Клеточный автомат — это дискретная решетка, на которой состояние следующей строки можно определить в соответствии с определенными правилами исходя из состояния предыдущей строки. Клеточные автоматы начал изучать еще в 1940-х годах Джон фон Нейман, математик, одним из достижений которого стала догадка о том, как энтропия должна вести себя в квантовой механике. Множество причин делает клеточные автоматы захватывающей темой для исследований, и большая их часть никак не связана со стрелой времени. Клеточные автоматы — чрезвычайно сложные системы, способные функционировать как универсальные компьютеры. См.: Poundstone, W. The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge. New York: W. W. Norton, 1984; Shalizi, C. R. Notebooks, 2009. http://www.cscs.umich.edu/~crshalizi/notebooks/. Мы не только проявляем крайнее неуважение к клеточным автоматам, всего лишь используя их для иллюстрации парочки несложных свойств течения времени и сохранения информации, но также отказываемся говорить на традиционном языке знатоков клеточной автоматизации. Как минимум, в этой области направлением течения времени принято считать направление сверху вниз. Но ведь это безумие! Каждый знает, что на диаграммах время увеличивается снизу вверх. Более того, хотя мы и утверждаем, что каждый квадратик может находиться лишь в одном состоянии — «белый» или «серый», мы только что сами признали, что для надежного прогнозирования будущего в примере B необходимо хранить намного больше информации. Однако это не проблема; это означает лишь то, что мы имеем дело с автоматом, где «клетки» могут находиться более чем в двух состояниях. Можно было бы даже выйти за пределы набора из двух цветов и допустить существование клеток четырех разных цветов. Но для наших текущих целей это слишком высокий уровень сложности, и мы не будем его явно вводить.
В случае недетерминистических физических законов — законов, включающих какой-то случайный элемент, — мы называем «предсказанием» будущего развития не набор неизбежных событий, а набор вероятностей. Суть в том, что состояние включает всю информацию, необходимую для того, чтобы описать эволюцию максимально точно, — с учетом действующих законов физики.
Некоторые люди выделяют модели теории относительности в отдельный класс, разделяя «классическую механику» и «релятивистскую механику», но так бывает редко. Для многих задач удобно говорить, что теория относительности — это новый вид классической механики, не новый тип мышления. В релятивистской механике мы описываем состояние системы практически так же, как в ньютоновской. В то же время квантовая механика действительно ни на что не похожа. Таким образом, употребляя прилагательное «классическая», мы противопоставляем некоторое понятие чему-то квантовому (если не указано иное).
Неизвестно — по крайней мере я не в курсе, — играл ли в бильярд Ньютон, хотя сама игра, определенно, в то время уже была распространена в Англии. А вот Иммануилу Канту в студенческие годы бильярд (а также карты) даже служил источником карманных денег.
Таким образом, импульс — это не просто число. Это вектор, изображаемый чаще всего в виде небольшой стрелки. Вектор может определяться величиной (длиной стрелочки) и направлением, а может задаваться в виде суммы подвекторов (компонентов вектора), указывающих в разных направлениях. Например, можно говорить об «импульсе вдоль оси x».
Это хороший вопрос, над которым я размышлял в течение многих лет. Когда мы изучали классическую механику, периодически возникали ситуации, когда преподаватели начинали беззаботно описывать импульсы, совершенно несовместимые с фактической траекторией системы. В чем же дело? Проблема в том, что когда нас впервые знакомят с понятием «импульс», звучит определение: импульс — это результат умножения массы на скорость. Но время идет, и вот мы уже проникаем в эзотерические сферы классической механики, а то, что раньше было определением, становится следствием, которое несложно вывести из основополагающей теории. Другими словами, мы начинаем воспринимать суть понятия «импульс» как «некоторый вектор (с величиной и направлением), определенный в каждой точке траектории частицы», а затем выводить уравнения движения, из которых следует, что импульс должен быть равен массе, умноженной на скорость (это называется гамильтоновым подходом к динамике). Именно в таком стиле мы рассуждаем сейчас, говоря об изменении направления времени. Импульс — это независимая величина, часть состояния системы; он равен произведению массы на скорость только в том случае, если физические законы соблюдаются.
Дэвид Альберт (Albert, D. Z. Time and Chance. Cambridge, MA: Harvard University Press, 2000) выдвинул совершенно новую теорию на этот счет. Он заявляет, что определять «состояние» следует с указанием лишь положений частиц, но не положений и импульсов (это он называет «динамическим состоянием»). Альберт оправдывает данное определение тем, что состояния должны быть логически независимыми в каждый момент времени, что и происходит. Переформулировав все подобным образом, он получил возможность пользоваться самым тривиальным определением инвариантности относительно обращения времени: «последовательность состояний, воспроизведенная в обратную сторону, все так же подчиняется исходным физическим законам». Это утверждение не включает в себя никакие непонятные преобразования. Однако ему пришлось заплатить за это высокую цену: несмотря на то что, согласно данному определению, ньютоновская механика инвариантна относительно обращения времени, практически ни о какой другой теории, включая классический электромагнетизм, этого не скажешь. И Альберт это признает; он утверждает, что посеянное еще Максвеллом традиционное убеждение об инвариантности электромагнетизма попросту неверно. Как и можно было ожидать, его точка зрения повлекла за собой целую череду обличительных выступлений; см., например: Earman, J. What Time Reversal Is and Why It Matters // International Studies in the Philosophy of Science, 2002, 16, p. 245–264; Arntzenius, F. Time Reversal Operations, Representations of the Lorentz Group, and the Direction of Time // Studies in History and Philosophy of Science, 2004, Part B 35, p. 31–43; Malament, D. B. On the Time Reversal Invariance of Classical Electromagnetic Theory // Studies in History and Philosophy of Science, 2004, Part B 35, p. 295–315. Большинство физиков скажут, что это просто не имеет значения. Не существует единственного верного значения термина «инвариантность относительно отражения времени», скромно дожидающегося того момента, когда мы, наконец-то, додумаемся до него и разберемся в его сути. Есть лишь набор понятий, которые могут пригодиться или не пригодиться в размышлениях на тему того, как устроен мир. Ни у кого не возникает альтернативных мнений относительно движения электронов в присутствии магнитного поля; разногласия касаются лишь терминов, с помощью которых следует описывать данную ситуацию. Физикам часто трудно понять, почему философы так трепетно относятся к выбору слов. Философов, с другой стороны, раздражают физики, которые постоянно жонглируют словами, но не понимают, что же эти слова в действительности означают.
Существуют две разновидности элементарных частиц: «частицы материи», называемые фермионами, и «частицы силы», именуемые бозонами. Среди известных нам бозонов — фотон, переносящий электромагнитную силу, глюон, переносящий сильное взаимодействие, и W- и Z-бозоны, переносчики слабого взаимодействия. Известные фермионы подразделяются на два типа: шесть видов кварков, которые под влиянием сильного взаимодействия образуют составные частицы, такие как протоны и нейтроны, и шесть видов лептонов, на которые сильное взаимодействие не распространяется, благодаря чему они свободно перемещаются по произвольным траекториям. Фермионы также можно дополнительно разделить на четыре набора по три частицы в каждом: есть три кварка с электрическим зарядом +2/3 (верхний (u), очарованный (c) и истинный (t) кварки), три кварка с электрическим зарядом –1/3 (нижний (d), странный (s) и прелестный (b)), три лептона с электрическим зарядом –1 (электрон, мюон и тау) и три лептона с нулевым зарядом (электронное нейтрино, мюонное нейтрино и тау-нейтрино). Чтобы еще больше запутать ситуацию, каждому типу кварков и лептонов соответствует античастица с противоположным электрическим зарядом: например, существует верхний антикварк с зарядом –2/3 и т. п. Все это позволяет нам чуть более конкретно говорить о процессе распада нейтрона (два нижних кварка и один верхний): в действительности при этом появляется протон (два верхних кварка и один нижний), электрон и электронное антинейтрино. Важно понимать, что это именно антинейтрино, так как суммарное число лептонов не меняется. Электрон считается за один лептон, а антинейтрино — за минус один; таким образом, они компенсируют друг друга. Физикам еще не доводилось наблюдать процесс, в котором менялось бы суммарное число лептонов или суммарное число кварков, хотя есть подозрение, что такие процессы должны существовать. В конце концов, в реальном мире кварков намного больше, чем антикварков (у нас нет возможности точно оценить суммарное количество лептонов, так как находить нейтрино во Вселенной чрезвычайно сложно; вполне возможно, что антинейтрино может быть куда больше).
«Проще всего» означает, что этот способ позволяет сделать самую легкую частицу. Чем тяжелее частица, тем больше энергии требуется для ее создания; к тому же тяжелые частицы распадаются быстрее. Самые легкие типы кварков — это верхний (с зарядом, равным +2/3) и нижний (с зарядом, равным –1/3). Однако соединив верхний кварк с нижним антикварком, мы не получим нейтральную частицу; следовательно, придется воспользоваться более тяжелыми кварками. Следующий по массе — странный кварк, обладающий зарядом –1/3, и мы можем получить каон, если объединим его с нижним антикварком.
Angelopoulos, A. et al. (CPLEAR Collaboration). First Direct Observation of Time Reversal Noninvariance in the Neutral Kaon System // Physics Letters, 1998, B 444, p. 43–51. Группа KTeV из лаборатории Fermilab под Чикаго провела похожий эксперимент. Его целью также была оценка с помощью нейтральных каонов инвариантности относительно обращения времени, но выполнен он был немного другим способом (Alavi-Harati, A. et al. (KTeV Collaboration). Observation of CP Violation in KL → π+π-e+e- Decays // Physical Review Letters, 2000, 84, p. 408–411).
Процитировано из работы Maglich, B. Adventures in Experimental Physics, Gamma Volume. — Princeton, NJ: World Science Communications, 1973. Первоначальные публикации: Lee, T. D., Yang, C. N. Question of Parity Conservation in Weak Interactions, // Physical Review, 1956, 104, p. 254–258; Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D., Hudson, R. P. Experimental Test of Parity Nonconservation in Beta Decay // Physical Review, 1957, 105, p. 1413–1415. В полном соответствии с опасениями Ву другие физики сумели очень быстро воспроизвести достигнутый ею результат. Действительно, еще одна группа ученых Колумбийского университета поспешно провела эксперимент, подтвердивший правильность первоначальных выводов, и их статья была опубликована немедленно после выхода работы Ву и др. (Garwin, R. L., Lederman, L. L., Weinrich, M. Observation of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon // Physical Review, 1957, 105, p. 1415–1417).
Christenson, J. H., Cronin, J. W., Fitch, V. L., Turlay, R. Evidence for the 2π Decay of the K20 Meson // Physical Review Letters, 1964, 13, p. 138–140. В стандартной модели физики элементарных частиц существует общепринятый способ учета нарушения CP-инвариантности, разработанный Макото Кобаяси и Тосихидэ Масукава (Kobayashi, M., and Maskawa, T. CP-Violation in the Renormalizable Theory of Weak Interaction // Progress of Theoretical Physics 49 (1973): 652–57), которые обобщили идею Николы Кабиббо. Кобаяси и Масукава удостоились Нобелевской премии в 2008 году.
Здесь мы также делаем пару предположений: во-первых, мы считаем, что физические законы инвариантны относительно сдвига по времени (то есть не меняются от одного момента к другому), а во-вторых, что они детерминированы (будущее можно предсказать абсолютно точно, а не просто с какой-то вероятностью). Если любое из этих предположений оказывается неверным, то определение, является ли интересующий нас набор законов инвариантным относительно направления времени, становится несколько сложнее.
Почти такой же пример рассматривается Уилером в Wheeler, J. A. Time Today / In: Physical Origins of Time Asymmetry / J. J. Halliwell, J. Pérez-Mercader, W. H. Zurek, eds. — Cambridge: Cambridge University Press, 1994, p. 1–29. В этой книге авторство эксперимента приписывается Паулю Эренфесту. В сосуде, который Уилер называет «урной Эренфеста», на каждом шаге ровно одна частица перелетает на противоположную сторону, тогда как в нашем обсуждении у каждой частицы есть небольшой шанс пролететь сквозь отверстие в перегородке.
Когда справа находятся две молекулы, первой из них может быть любая из 2000, а второй — любая из оставшихся 1999. Таким образом, логично предположить, что существует 1999 × 2000 = 3 998 000 подобных комбинаций. Однако здесь кроется ошибка, так как две молекулы справа не должны там появиться в каком-то определенном порядке (заявление о том, что «справа находятся молекулы под номерами 723 и 1198» эквивалентно заявлению, что «справа находятся молекулы 1198 и 723»). Следовательно, первоначальный результат нужно поделить на два, и тогда мы получим правильный ответ: существует 1 999 000 способов перенести две молекулы в правую часть, оставив в левой 1998. Если мы перемещаем в правую половину три молекулы, то порядок вычислений следующий: 1998 × 1999 × 2000 необходимо разделить на 3 × 2 различных последовательностей. Вы уже видите закономерность: для четырех частиц произведение 1997 × 1998 × 1999 × 2000 следует разделить на 4 × 3 × 2 и т. д. У величин, которые мы получаем в результате, есть особое название: «биномиальный коэффициент». Они представляют собой число способов, которыми можно выбрать определенное количество объектов из более крупного набора.
Разумеется, здесь мы подразумеваем логарифм по основанию 10, так как в общем случае в качестве основания может использоваться любое число. «Логарифм по основанию 2» от 8 (то есть 23) равен 3; логарифм по основанию 2 от 2048 (то есть 211) равен 11. Захватывающие подробности вы найдете в приложении.
В числовом выражении k составляет около 3,2∙10-16 эрг на кельвин, где эрг — единица энергии, а кельвин, конечно же, — единица температуры (в большинстве справочников вам будет встречаться другое значение; причина в том, что мы используем логарифмы по основанию 10, а формулу чаще всего записывают с использованием натуральных логарифмов). Говоря «температура есть мера средней кинетической энергии движущихся в веществе молекул», в действительности мы имеем в виду, что «средняя энергия на степень свободы составляет половину произведения температуры на постоянную Больцмана».
Мы обозначили логарифм «lg», так как он десятичный. Для обозначения логарифма по другому основанию, например по основанию 2, в русскоязычной литературе применяется обозначение «log». — Примеч. пер.
Настоящая история физики куда запутаннее, чем базовые понятия, удивляющие своей красотой. Больцман додумался до идеи S = klgW, но для ее описания он использовал совсем другие символы. В знакомую нам форму ее облек Макс Планк, также предложивший выгравировать уравнение на могильном камне Больцмана; кроме того, именно Планк впервые предложил использовать константу, которую мы сегодня зовем постоянной Больцмана. И чтобы окончательно все запутать, скажу, что уравнение на могильном камне представляет собой совсем не то, что обычно называют «уравнением Больцмана». Под этим понимается другое открытое Больцманом уравнение, описывающее эволюцию распределения большого числа частиц в пространстве состояний.
Для того чтобы данное определение имело реальный смысл, должно выполняться важное требование: мы должны уметь подсчитывать микросостояния разного типа и определять, сколько из них соответствуют тому или иному макросостоянию. Когда микросостояния формируют дискретный набор (как распределения частиц между двумя половинами одного контейнера), это звучит достаточно просто; намного сложнее справляться с непрерывными пространствами состояний (такими, как состояния реальных молекул с их положениями и импульсами или практически любых других объектов из реального мира). К счастью, в контексте двух важнейших описаний динамики — классической механики и квантовой механики — существует превосходно определенная «мера» пространства состояний, что позволяет нам вычислить величину W, по крайней мере, в принципе. В некоторых конкретных примерах наше понимание пространства состояний может размываться, и тогда следует соблюдать особую осторожность.
Feynman, R. P. The Character of Physical Law. Cambridge, MA: MIT Press, 1964.
Я знаю, о чем вы думаете: «Не знаю, как вы, но когда я вытираюсь, большая часть воды оказывается на полотенце; совсем не пятьдесят на пятьдесят». Это действительно так, но причина в том, что структура волокон хорошего пушистого полотенца предоставляет намного больше места для размещения молекул воды, чем ваша гладкая кожа. По той же самой причине высушить полотенцем волосы намного сложнее, чем кожу, а попытка вытереться листком бумаги далеко не столь эффективна, как применение полотенца.
Не всегда, но по крайней мере в определенных обстоятельствах. Представьте себе, что в нашем контейнере с газом каждая молекула в левой части «желтая», а каждая молекула в правой части «зеленая». По всем остальным параметрам они абсолютно идентичны. Энтропия такой конфигурации довольно низка, но если бы мы позволили двум цветам смешиваться, то она бы быстро повысилась. И все же никакой полезной работы в данной системе не происходило бы.
Трение и шум в реальной жизни вездесущи, и за это нужно благодарить все то же второе начало термодинамики. При столкновении двух бильярдных шаров молекулы, из которых они состоят, взаимодействуют друг с другом, и существует лишь крайне ограниченный набор вариантов, когда все молекулы реагируют так, что шары упруго отскакивают друг от друга, никак не затрагивая окружающий мир. В подавляющем большинстве случаев молекулы шаров также взаимодействуют с окружающим их воздухом, в результате чего мы слышим звук соударения двух шаров. Любые личины, которые рассеяние энергии принимает в повседневной жизни, — трение, сопротивление воздуха, шум и т. д. — все это проявления тенденции к увеличению энтропии.
Поразмыслите еще вот над чем: в следующий раз, когда вам захочется сыграть в лотерею, где нужно выбрать пять чисел от 1 до 36 в надежде, что во время розыгрыша пронумерованные шары выпадут в выбранной вами последовательности, поставьте на «1, 2, 3, 4, 5». Выпадение этой последовательности настолько же вероятно, как выпадение любой другой «случайной» последовательности чисел. (Разумеется, ваш выигрыш повлечет за собой огромный общественный протест, так как люди будут уверены, что результаты подтасовали. Так что обогатиться вам, скорее всего, так и не удастся, даже если вам действительно повезет.)
Строго говоря, поскольку для каждой частицы существует бесконечное количество возможных положений и бесконечное количество возможных импульсов, число микросостояний, соответствующих каждому макросостоянию, также бесконечно. Однако все возможные положения и импульсы частицы в левой половине контейнера можно поставить во взаимооднозначное соответствие возможным положениям и импульсам в правой половине; несмотря на то что оба этих множества бесконечны, это «одинаковые бесконечности». Таким образом, мы имеем полное право говорить об одинаковом количестве возможных состояний каждой частицы в любой половине контейнера. То, чем мы занимаемся, в действительности называется вычислением «объема пространства состояний» для конкретного макросостояния.
Несмотря на риск увлечься излишними абстракциями, попробую немного раскрыть это утверждение. Альтернативой поиску среднего в небольшой области физического пространства мог бы стать поиск среднего в небольшой области пространства импульсов, то есть мы могли бы говорить о среднем положении частиц с определенным значением импульса, но не наоборот. Однако это безумие: такую информацию невозможно получить путем обычных макроскопических наблюдений. Причина кроется в том, что в реальном мире частицы взаимодействуют (сталкиваются друг с другом), когда они находятся поблизости друг от друга в пространстве, но когда две разнесенные на достаточное расстояние частицы обладают одинаковыми импульсами, ничего особенного не происходит. Две соседние частицы способны взаимодействовать независимо от того, каковы их относительные скорости; обратное неверно (никакого заметного взаимодействия между двумя частицами, разделенными несколькими световыми годами пространства, не будет, какими бы ни были их импульсы). Таким образом, сами законы физики выбирают «изменение средних свойств в небольшом регионе пространства» как самый естественный подход к изучению мира.
Схожее доказательство приводит в своей книге математик Норберт Винер (Wiener, N. Cybernetics: or the Control and Communication in the Animal and the Machine. Cambridge, MA: MIT Press, 1961.).
Однако есть одна лазейка. Вместо того чтобы проводить тонкую настройку первоначальных условий системы, подготавливая почву для уменьшения энтропии, а затем разрешать ей взаимодействовать с внешним миром, мы могли бы с самого начала задаться таким вопросом: учитывая, что система не избежит общения с внешним миром, какое состояние нам следует создать в ней прямо сейчас, чтобы в будущем энтропия уменьшилась? Такой тип граничного условия в будущем можно себе представить. Однако это не совсем то, о чем идет речь. В данном случае мы имеем дело не с автономной системой с естественным образом обращенной стрелой времени, а с тонкой подстройкой всех частиц Вселенной так, чтобы энтропия некоторой подсистемы уменьшалась. Эта подсистема не будет выглядеть обычным объектом Вселенной, отличающимся от всех остальных объектов лишь направлением времени; наоборот, нам будет казаться, будто весь мир сговорился и подталкивает ее в состояние с низкой энтропией.
Обратите внимание на это маленькое замечание: «при комнатной температуре». Здесь кроется хитрость. При достаточно высокой температуре смеси (температуре, при которой начинается испарение) скорость отдельных молекул настолько возрастает, что вода перестает прилипать к маслу, и конфигурация с хорошо перемешанными ингредиентами снова становится высокоэнтропийной. Статистическая механика в полном беспорядка реальном мире — ужасно сложная штука, и лучше оставить ее профессионалам.
Вот эта формула: для каждого возможного микросостояния x определим px как вероятность того, что система находится в этом микросостоянии. Тогда энтропия представляет собой сумму по всем возможным микросостояниям x величин kpx lgpx, где k — постоянная Больцмана.
Больцман действительно вычислял величину H, представляющую собой разницу между максимальной и фактической энтропией, — отсюда и название теоремы. Однако это название было присвоено ей позднее, и сам Больцман не использовал букву H. Он называл эту величину E, что делает ситуацию еще более непонятной. Первоначальная версия статьи Больцмана об H-теореме датируется 1872 годом; обновленная версия, в которой он учел критику Лошмидта и других, была опубликована в 1877 году. Мы не в силах должным образом оценить занимательное историческое развитие этих идей; с различными точками зрения вы можете ознакомиться в работах: Von Baeyer, H. C. Warmth Disperses and Time Passes: The History of Heat. — New York: Modern Library, 1998; Lindley, D. Boltzmann’s Atom: The Great Debate That Launched a Revolution in Physics. — New York: Free Press, 2001; Cercignani, C. Ludwig Boltzmann: The Man Who Trusted Atoms. — Oxford: Oxford University Press, 1998. Более математический подход изложен в работах Ufflink, J. Boltzmann’s Work in Statistical Physics. The Stanford Encyclopedia of Philosophy (редакция Winter 2008) / Edward N. Zalta (ed.), 2004 (http://plato.stanford.edu/archives/win2008/entries/statphys-Boltzmann/); Brush, S. G. (ed.). The Kinetic Theory of Gases: An Anthology of Classic Papers with Historical Commentary. — London: Imperial College Press, 2003. В частности, любой выпускник Йельского университета будет горестно оплакивать недолгую жизнь, отведенную вкладу Гиббса; для восстановления душевного равновесия см. Rukeyser, M. Willard Gibbs. — Woodbridge: Ox Bow Press, 1942.
Обратите внимание, что Лошмидт не говорит о равном числе процессов с увеличивающейся и уменьшающейся энтропией, удовлетворяющих одним и тем же начальным условиям. Рассматривая обращение времени, мы меняем местами начальные и конечные условия; таким образом, Лошмидт указывает лишь на то, что существует одинаковое количество процессов с увеличивающейся и уменьшающейся энтропией. Если же ограничиваться исключительно множеством низкоэнтропийных начальных условий, то можно успешно доказать, что энтропия в большинстве случаев будет увеличиваться. Но при этом мы не уходим от идеи асимметричности времени — она присутствует здесь благодаря тому, что мы берем именно начальные состояния, но не конечные, с низкой энтропией.
Albert, D. Z. Time and Chance. — Cambridge, MA: Harvard University Press, 2000; см. также Price, H. On the Origins of the Arrow of Time: Why There Is Still a Puzzle about the Low Entropy Past, в Contemporary Debates in Philosophy of Science / C. Hitchcock (ed.) — Malden: Wiley-Blackwell, 2004, p. 240–255 (и множество других прекрасных примеров). Несмотря на то что я преподношу гипотезу о прошлом как нечто (надеюсь) абсолютно очевидное, ее статус по сей день остается темой дебатов. Щепотку скептицизма вы найдете в работах Callender, C. There Is No Puzzle About the Low Entropy Past, в Contemporary Debates in Philosophy of Science / C. Hitchcock (ed.) — Malden: Wiley-Blackwell, 2004, p. 240–255; Earman, J. The ‘Past Hypothesis’: Not Even False // Studies in History and Philosophy of Modern Physics, 2006, 37, p. 399–430.
Читатели, изучавшие статистическую механику, могут задаваться вопросом, почему в действительности им не приходилось заниматься ничем подобным. Ответ прост: это не имеет никакого значения при условии, что мы пытаемся прогнозировать будущее. При применении статистической механики для предсказания будущего поведения системы предсказания, базирующиеся на сочетании принципа безразличия с гипотезой о прошлом, неотличимы от предсказаний, которые мы получаем, исходя из одного лишь принципа безразличия. Пока мы не делаем никаких предположений о специальных граничных условиях в будущем, все в порядке.
Процитировано из работы Tribus, M., McIrvine, E. Energy and Information // Scientific American, 1971, August, p. 179.
Пруст М. По направлению к Свану. М.: Республика, 1992 (Proust, M. Swann’s Way: In Search of Lost Time. V. 1 (Du côté de chez Swann: À la recherche du temps perdu) / Trans. by L. Davis. New York: Penguin Classics, 2004).
Однако с каждым днем мы узнаем все больше и больше. В работе: Schacter, D. L., Addis, D. R., Buckner, R. L. Remembering the Past to Imagine the Future: The Prospective Brain // Nature Reviews Neuroscience, 2007, 8, p. 657–661 вы найдете обзор последних достижений нейробиологии, доказывающих, что при реконструкции воспоминаний в человеческом мозге происходят процессы, удивительно похожие на те, с помощью которых мы представляем себе будущее.
Albert, D. Z. Time and Chance. Cambridge, MA: Harvard University Press, 2000.
Роулинг Дж. Гарри Поттер и Принц-полукровка. Махаон, 2015 г. (Rowling, J. K. Harry Potter and the Half-Blood Prince. New York: Scholastic, 2005.)
Callender, C. There is No Puzzle about the Low Entropy Past / In: Contemporary Debates in Philosophy of Science / C. Hitchcock (ed.). Malden: Wiley-Blackwell, 2004, p. 240–255. В версии Каллендера это не вы умираете, а Вселенная завершает свое существование, — просто мне не хотелось смешивать эту историю со сценарием Большого сжатия. На самом деле хотелось бы видеть больше описаний мысленных экспериментов, в которых будущее граничное условие выглядит как «вы влюбляетесь» или «вы выигрываете в лотерею».
Дэвис (Davis, J. A. The Logic of Causal Order. Thousand Oaks, CA: Sage Publications, 1985, p. 11) пишет: «Я сформулирую четыре правила, каждое из которых в действительности представляет собой специфичное приложение великого принципа причинно-следственного порядка: “после” не может стать причиной “до”… не существует способа изменить прошлое… время пронзают однонаправленные стрелы».
Вы найдете гораздо более подробную историю демона Максвелла в других источниках. Лефф и Рекс (Leff, H. S., Rex, A. F. (eds.). Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. Bristol: Institute of Physics, 2003) собрали несколько оригинальных работ. Фон Баэйер (Von Baeyer, H. C. Warmth Disperses and Time Passes: The History of Heat. New York: Modern Library, 1998) использует демона в качестве проводника по истории термодинамики. Зайфе (Seife, C. Decoding the Universe: How the New Science of Information Is Explaining Everything in the Cosmos, from Our Brains to Black Holes. New York: Viking, 2006) замечательно разъясняет основы теории информации и говорит о ее роли в поисках разгадки этой головоломки. Сами Беннетт и Ландауэр написали о своей работе в журнале Scientific American (Bennett, Landauer, 1985; Bennett, 1987).
Этот сценарий можно развить. Представьте себе, что контейнер погружен в термальную баню с газом при температуре T, а стенки контейнера пусть обладают теплопроводностью. Таким образом, молекула внутри контейнера находится в тепловом равновесии с газом снаружи. Если бы мы продолжали получать обновленную информацию о том, в какой половине контейнера пребывает молекула, мы могли бы непрерывно извлекать из нее энергию, искусно вставляя поршень с нужной стороны. Потеряв энергию вследствие столкновения с поршнем, молекула снова получала бы ее из бани. То, что мы сейчас описали, — это вечный двигатель, работающий исключительно на гипотетическом бесконечном притоке информации (и это в очередной раз подтверждает тот факт, что бесплатной информации не бывает). Силард сумел даже дать точную количественную оценку энергии, которую можно извлечь из одного бита информации: kT lg2, где k — постоянная Больцмана.
Удивительно, но как и в начале XIX века, когда множество передовых исследований в области термодинамики было проведено людьми, которые ставили перед собой исключительно практические цели, такие как построение лучших паровых двигателей, прорыв в информационной теории в XX веке тоже случился благодаря практичным умам, целью которых было создание лучших коммуникационных систем и компьютеров.
И это заявление тоже можно развить. Так же как Гиббс пришел к определению энтропии, основанному на вероятности пребывания системы в различных состояниях, мы можем определить «информационную энтропию» пространства возможных сообщений в терминах вероятности того, что сообщение примет ту или иную форму. Оказывается, формулы для энтропии Гиббса и информационной энтропии совершенно одинаковые, несмотря на то что используемые в них символы трактуются немного по-разному.
О новейших исследованиях вы можете прочитать в работах: Morange, M. Life Explained / Trans. by M. Cobb, M. DeBevoise. New Haven, CT: Yale University Press, 2008; Regis, E. What Is Life?: Investigating the Nature of Life in the Age of Synthetic Biology. Oxford: Oxford University Press, 2009.
Следующий аргумент позаимствован из работы Bunn, E. F. Evolution and the Second Law of Thermodynamics, 2009, http://arxiv.org/abs/0903.4603, а вдохновением для этого источника послужила работа Styer, D. F. Entropy and Evolution // American Journal of Physics, 2008, 76, p. 1031–1033. Подробности и дополнительные соображения вы также сможете найти в статье Lineweaver, C. H., Egan, C. A. Life, Gravity, and the Second Law of Thermodynamics // Physics of Life Reviews, 2008, 5, p. 225–242.
Crick, F. What Mad Pursuit: A Personal View of Scientific Discovery. — New York: Basic Books, 1990.
Шрёдингер Э. Что такое жизнь? / Пер. с англ. М.: Изд-во иностранной литературы, 1947 (Schrödinger, E. What Is Life? Cambridge: Cambridge University Press, 1944).
«От существующего к возникающему» — это название популярной книги (1980 г.) бельгийского лауреата Нобелевской премии Ильи Пригожина, который известен как первооткрыватель диссипативных структур и самоорганизующихся систем в статистической механике. См. также: Prigogine, I. Thermodynamics of Irreversible Processes. New York: John Wiley, 1955; Kauffman, S. A. The Origins of Order: Self-Organization and Selection in Evolution. Oxford: Oxford University Press, 1993; Avery, J. Information Theory and Evolution. Singapore: World Scientific, 2003.
Одно из новейших и очень хороших изданий на эту тему: Nelson, P. Biological Physics: Energy, Information, Life (издание дополненное и исправленное). New York: W. H. Freeman, 2007.
В наше время он бы еще больше опасался этого термина. Поиск в Google по запросу «свободная энергия» дает множество ссылок на схемы вечных двигателей, а также на ресурсы, посвященные экологически чистой энергии.
На самом деле неформальные понятия «полезной» и «бесполезной» энергии появились, конечно же, задолго до Гиббса; его вклад состоял в том, что он связал эти идеи с конкретными формулами, которые в дальнейшем были доработаны немецким физиком Германом Гельмгольцем. В частности, то, что мы называем «бесполезной энергией», — это всего лишь (в формулировке Гельмгольца) температура тела, умноженная на его энтропию. Таким образом, свободная энергия представляет собой разность между общим объемом внутренней энергии тела и этой величиной.
В 1950-х годах Клод Шэннон построил «совершенную машину», в основе которой лежала идея, высказанная Марвином Минским. В спящем состоянии машина выглядит как коробка с единственным переключателем на передней панели. Если щелкнуть этим переключателем, то раздастся громкое жужжание. Затем крышка приоткроется, и вылезшая наружу механическая рука переведет переключатель обратно в исходное положение. После этого рука снова спрячется в коробке, и жужжание прекратится. Какова мораль этой истории? Например, такова, что стойкость может быть хорошей штукой сама по себе.
В частности, более массивные организмы, которые чаще всего и более сложные, так как включают большее число подвижных частей, потребляют больше свободной энергии на единицу массы, чем более мелкие. См., например, работу Chaisson, E. J. Cosmic Evolution: The Rise of Complexity in Nature. Cambridge, MA: Harvard University Press, 2001.
Этот и другие количественные характеристики связывают с именами таких ученых, как Андрей Колмогоров, Рэй Соломонофф и Грегори Хайтин. Подробное обсуждение см., например, в работе Gell-Mann, M. The Quark and the Jaguar: Adventures in the Simple and Complex. New York: W. H. Freeman, 1994.
Некоторые мысли на эту тему изложены в Dyson, F. J., Time Without End: Physics and Biology in an Open Universe, Reviews of Modern Physics 51 (1979): 447–60; и Adams, F., Laughlin, G., The Five Ages of the Universe: Inside the Physics of Eternity, New York: Free Press, 1999.
Ницше Ф. Веселая наука. — М.: Фолио, 2013 (Nietzsche, F. W. Die Fröhliche Wissenshaft). Со всеми этими демонами — демоном Паскаля, демоном Максвелла и демоном Ницше — начинает создаваться впечатление, будто мы с вами читаем не научное произведение, а «Ад» «Божественной комедии» Данте. Ранее в «Веселой науке» Ницше затрагивает физику в более явной форме, хотя и в несколько ином контексте: «Мы же сами стремимся стать тем, что мы в действительности из себя представляем, — новыми, обособленными, несравнимыми законодателями для самих себя, творцами самих себя! И к тому же мы должны лучше других открывать и учить тому, что является законным, необходимым в этом мире: мы должны быть физиками для того, чтобы стать в этом смысле творцами, — в то время как до сих пор все ценности и идеалы воздвигались или при пренебрежении физикой, или в противоречии с ней. А потому: да здравствует физика! И еще больше: да здравствует та сила, которая принуждает нас обратиться к ней, — наше чистосердечие!»
Подчеркну также, что если бы каждый цикл был идеальной копией всех предыдущих, то у вас не сохранялось бы никаких воспоминаний об опыте проживания любой из предыдущих версий жизни (поскольку у вас не было таких воспоминаний ранее, следовательно, они не могли появиться в точной копии). Не совсем понятно, в чем заключалось бы отличие, если бы цикл повторялся только один раз.
Подробнее об этой истории см. книгу Galison, P. Einstein’s Clocks, Poincaré’s Maps: Empires of Time. New York: W. W. Norton, 2003. Работа Пуанкаре: Poincaré, H. Sur les problème des trois corps et les équations de la dynamique // Acta Mathematica, 1890, 13, p. 1–270. Перевод избранных отрывков в Brush (2003, vol. 2). On the Three-Body Problem and the Equations of Dynamics, p. 194–202.
Вторая тонкость состоит в том, что, хотя система гарантированно вернется к начальной конфигурации, никто не гарантирует, что она побывает во всех возможных конфигурациях. Идея о том, что достаточно сложная система может побывать во всех возможных состояниях, эквивалентна идее об эргодичности системы, о чем мы говорили в главе 8 в контексте обоснования подхода Больцмана к статистической механике. Для некоторых систем это действительно так, но не для всех, и даже не для каждой интересной системы.
Это моя книга, так что Плутон все еще считается.
Грубо говоря, время возврата равно экспоненте максимальной энтропии системы в единицах типичного времени, необходимого системе для перехода в следующее состояние. (Мы подразумеваем, что существует фиксированное определение того, как сильно два состояния должны различаться, чтобы их можно было считать разными.) Вспомните, что энтропия равна логарифму числа состояний, а экспонента снимает логарифм. Другими словами, время возврата всего лишь пропорционально полному количеству состояний, в которых может находиться система, что вполне имеет смысл, если система проводит в каждом из допустимых состояний приблизительно одинаковое время.
Больцман Л. Избранные труды. М.: Наука, 1984 (Poincaré, H. Le mécanisme et l’expérience // Revue de Metaphysique et de Morale, 1893, 4. Перевод в Brush (2003, vol. 2) под названием Mechanics and Experience.
Zermelo, E. Über einen Satz der Dynamik und die mechanische Warmtheorie // Annalen der Physik 1896, 57, S. 485. Перевод в Brush (2003) под названием On a Theorem of Dynamics and the Mechanical Theory of Heat, 382.
Больцман Л. Избранные труды. М.: Наука, 1984 (Boltzmann, L. Entgegnung auf die wärmetheoretischen Betrachtungen des Hern. E. Zermelo [ответ на замечания Цермело о теории теплоты] // Annalen der Physik, 1896, 57, S. 773.
Zermelo, E. Über mechanische Erklärungen irreversibler Vorgänge // Annalen der Physik, 1896, 59, S. 793. Перевод в Brush (2003) под названием On the Mechanical Explanation of Irreversible Processes, 403; Boltzmann, L. Zu Hrn. Zermelo’s Abhandlung ‘Über die mechanische Erklärung irreversibler Vorgänge’ [ответ на статью Цермело On the Mechanical Explanation of Irreversible Processes] // Annalen der Physik, 1897, 60, S. 392.
Boltzmann, L. Zu Hrn. Zermelo’s Abhandlung ‘Über die mechanische Erklärung irreversibler Vorgänge’ [ответ на статью Цермело On the Mechanical Explanation of Irreversible Processes] // Annalen der Physik, 1897, 60, S. 392.
«По меньшей мере» три способа — потому что человеческий разум весьма изобретателен. Но все же вариантов не так много; еще одним могла бы служить идея о том, что фундаментальные законы физики по своей природе необратимы.
Больцман Л. Избранные труды. М.: Наука, 1984 (Boltzmann, L. Entgegnung auf die wärmetheoretischen Betrachtungen des Hern. E. Zermelo [ответ на замечания Цермело о теории теплоты] // Annalen der Physik, 1896, 57, S. 773).
Мы полагаем, что теорема о возвращении верна по своему духу, а не по букве. Для того чтобы доказать теорему о возвращении, необходимо рассматривать ограниченное движение частиц, — возможно, это планеты, движущиеся по замкнутым орбитам вокруг Солнца, или молекулы газа, заключенные в непроницаемый контейнер. Ни один из этих случаев, разумеется, не соответствует реальной Вселенной, но никто и не говорит, что это может быть правдой. Если бы Вселенная состояла из конечного числа частиц, движущихся внутри бесконечного пространства, то мы бы ожидали, что часть из них будет просто навсегда улетать от нас и никаких возвращений не будет. Однако если мы имеем дело с бесконечным числом частиц в бесконечном пространстве, то это дает нам возможность оценить фиксированную конечную среднюю плотность — число частиц на (к примеру) кубический световой год. В этом случае флуктуации в той форме, как показано выше, непременно будут происходить, — а они во всех отношениях похожи на возвращения Пуанкаре.
Больцман Л. Избранные труды. М.: Наука, 1984 (Boltzmann, L. Zu Hrn. Zermelo’s Abhandlung ‘Über die mechanische Erklärung irreversibler Vorgänge’ [ответ на статью Цермело On the Mechanical Explanation of Irreversible Processes] // Annalen der Physik, 1897, 60, S. 392). Весьма похожее предположение он сделал в одной из более ранних статей (1895), приписав авторство своему «давнему ассистенту доктору Шутцу». Неясно, впрочем, следует считать это щедрым приглашением разделить полагающуюся славу или предусмотрительным перекладыванием вины на чужие плечи.
Обратите внимание на то, что рассуждения Больцмана в действительности выходят за рамки непосредственных выводов из теоремы о возвращении. Теперь центральная идея заключается не в том, что любое конкретное низкоэнтропийное начальное состояние будет бесконечно много раз повторено в будущем, — хотя это также верно, а в том, что в форме случайных флуктуаций будут проявляться аномально низкоэнтропийные состояния всевозможных видов.
Имя Эпикура связывают с эпикурейством — философским учением, предшествовавшим утилитаризму. В представлении обывателей «эпикурейство» неизменно ассоциируется с гедонизмом и плотскими удовольствиями, особенно завязанными на еду и напитки. И хотя сам Эпикур полагал удовольствие величайшим добром, его понятие об «удовольствии» было ближе к «уютно свернуться в кресле с хорошей книгой», чем «буйствовать на вечеринке ночь напролет» или «объедаться до отказа».
Большая часть оригинальных произведений, написанных последователями теории атомизма, была утеряна; в частности, Эпикур был автором тридцатисемитомного трактата о природе. Но единственные его сочинения, сохранившиеся до наших дней, — это три письма, воспроизведенные в «О жизни, учениях и изречениях знаменитых философов» Диогена Лаэртского. Атеистический подтекст их материалистического подхода не всегда находил понимание у последующих поколений.
Точное количественное понимание вероятностей различных типов флуктуаций было достигнуто лишь сравнительно недавно в форме так называемой флуктуационной теоремы (Evans, D. J., Searles, D. J. The Fluctuation Theorem // Advances in Physics, 2002, 51, p. 1529–1589). Но центральная идея была уяснена уже довольно давно. Вероятность того, что энтропия системы испытает случайный скачок вниз, пропорциональна экспоненте изменения энтропии со знаком «минус». Это всего лишь затейливый способ сказать: небольшие флуктуации случаются часто, а крупные флуктуации чрезвычайно редки.
Вы можете возразить: но ведь чрезвычайно маловероятно, чтобы бесформенный объем молекул газа в равновесии испытал такую флуктуацию, при которой образовался бы тыквенный пирог, в то время как совсем нетрудно вообразить появление тыквенного пирога в мире, где есть пекарь и остальные условия. Это правда. Но как бы ни была редка флуктуация с появлением пирога самого по себе, гораздо более редкой является такая флуктуация, в которой был бы заодно и пекарь, и тыквенная грядка. Большинство пирогов, появляющихся на свет при таких предположениях, — в вечной Вселенной, колеблющейся вокруг равновесия, — обречены в этой Вселенной на одиночество. Тот факт, что знакомый нам мир работает совсем не так, — это лишь подтверждение того, что что-то в этих предположениях неверно.
Eddington, A. S. Nature, 1931, 127, p. 3203. Переиздание в работе Danielson, D. R. (ed.). The Book of the Cosmos: Imagining the Universe from Heraclitus to Hawking. Cambridge: Perseus Books, 2000. 406 p. Обратите внимание на то, что в действительности здесь главную роль играет не вероятность значительного падения энтропии в целой Вселенной, а вопрос об условиях: «Учитывая, что одно подмножество Вселенной испытало падение энтропии, чего нам следует ожидать от оставшейся части?». При условии, что рассматриваемое подмножество слабо связано со всем остальным, ответ вполне ожидаем, и с ним соглашается Эддингтон: энтропия оставшейся части Вселенной, скорее всего, останется такой же высокой, как и до этого. Обсуждения (на сложном математическом уровне) в контексте классической статистической механики см. в работах Dembo, A., Zeitouni, O. Large Deviations Techniques and Applications. New York: Springer-Verlag, 1998; Ellis, R. S. Entropy, Large Deviations, and Statistical Mechanics. New York: Springer-Verlag, 2005. Связанные вопросы в контексте квантовой механики рассматриваются в работе Linden, N., Popescu, S., Short, A. J., Winter, A. Quantum Mechanical Evolution Towards Thermal Equilibrium, 2008. http://arxiv.org/abs/0812.2385.
Albrecht, A., Sorbo, L. Can the Universe Afford Inflation? // Physical Review, 2004. D 70, 63528.
Feynman, R. P., Leighton, R., Sands, M. The Feynman Lectures on Physics. New York: Addison Wesley Longman, 1970.
Это обсуждение вдохновлено следующим источником: Hartle, J. B., Srednicki, M. Are We Typical? // Physical Review, 2007, D 7, 123523. См. также: Olum, K. D. The Doomsday Argument and the Number of Possible Observers // Philosophical Quarterly, 2002, 52, p. 164–184; Neal, R. M. Puzzles of Anthropic Reasoning Resolved Using Full Non-Indexical Conditioning, 2006. http://arxiv.org/abs/math/0608592; Page, D. N. Typicality Derived // Physical Review, 2008, D 78, 023514; Garriga, J., Vilenkin, A. Prediction and Explanation in the Multiverse // Physical Review, 2008, D 7, 043526; Bousso, R., Freivogel, B., Yang, I.-S. Boltzmann Babies in the Proper Time Measure // Physical Review, 2008, D 7, 103514.
Когда мы начинам сравнивать разные типы наблюдателей в очень большой Вселенной, сразу же возникает пара тесно связанных вопросов. Один из них — это «аргумент об имитации» (Bostrom, N. Are You Living in a Computer Simulation? // Philosophical Quarterly, 2003, 53, p. 243–255), утверждающий, что развитая цивилизация без труда может построить мощнейший компьютер, имитирующий огромное количество разумных существ, и, следовательно, с большой вероятностью мы живем внутри компьютерной модели. Второй вопрос — это «аргумент о Судном дне» (Leslie, J. Is the End of the World Nigh? // Philosophical Quarterly, 1990, 40, p. 65–72; Gott, J. R. Implications of the Copernican Principle for Our Future Prospects // Nature, 1993, 363, p. 315–319), согласно которому человеческая раса вряд ли просуществует долго, поскольку если так случится, те из нас, кто живет (сейчас) при зарождении человеческой цивилизации, будут очень нетипичными наблюдателями. Это весьма провокационные аргументы, а степень их убедительности я предлагаю оценить читателю самостоятельно.
См. Neal, R. M. Puzzles of Anthropic Reasoning Resolved Using Full Non-Indexical Conditioning, 2006, http://arxiv.org/abs/math/0608592, где данный подход называется полной неиндексной постановкой условий (Full Non-indexical Conditioning). Под «постановкой условий» подразумевается, что мы делаем предсказания исходя из ответа на вопрос, как будет выглядеть оставшаяся часть Вселенной в случае, когда выполняются определенные условия (например, условие о том, что мы — наблюдатели с определенными свойствами). «Полная» означает, что мы используем все данные, имеющиеся в нашем распоряжении, а не только такие грубые свойства, как «мы — наблюдатели». А «неиндексный» означает, что мы учитываем все реализации, в которых условия выполняются, а не только одну конкретную, обозначенную «мы».
Описание путешествий Больцмана было переиздано в книге Cercignani, C. Ludwig Boltzmann: The Man Who Trusted Atoms. Oxford: Oxford University Press, 1998. 231 p. Больше подробностей о его жизни и смерти, в дополнение к предыдущей работе, вы найдете в книге Lindley, D. Boltzmann’s Atom: The Great Debate That Launched a Revolution in Physics. New York: Free Press, 2001.
Цитата из работы Von Baeyer, H. C. Information: The New Language of Science. Cambridge, MA: Harvard University Press, 2003, p. 12–13.
Я не утверждаю, что древние буддисты не обладали мудростью, однако в основе их мудрости лежал не провал классического детерминизма на атомных масштабах; точно так же они не предвосхищали современную физику ни на каком содержательном уровне, за исключением неизбежных случайных совпадений при выборе слов для обсуждения глобальных космических понятий. (Однажды мне довелось прослушать лекцию, в которой утверждалось, что базовые идеи первичного ядерного синтеза были изложены еще в Торе; если размыть определения достаточно сильно, то пугающие сходства можно обнаружить где угодно.) Игнорировать настоящие различия между их целями и методами и нашими в попытке сплести осязаемые связи из поверхностных аналогий было бы абсолютным неуважением по отношению как к древним философам, так и к современным физикам.
Совсем недавно для этой цели начали вербовать собак. См. Orzel, C. How to Teach Physics to Your Dog. New York: Scribner, 2009.
Мы все еще продолжаем обходить молчанием один технический момент: истина в действительности на один шаг сложнее, чем можно было бы понять из предыдущего описания, однако это не та сложность, без которой нам не достичь наших текущих целей. На самом деле квантовые амплитуды — это комплексные числа, и это означает, что в состав каждого значения амплитуды входят два числа: вещественное и мнимое (мнимое число — это то, что вы получаете, когда извлекаете квадратный корень из отрицательного вещественного числа; то есть «мнимая двойка» — это квадратный корень из минус четырех, и т. д.). Комплексные числа принимают форму a+bi, где a и b — это вещественные числа, а i — квадратный корень из минус единицы. Если амплитуда, связанная с определенной возможностью, равна a+bi, то соответствующая вероятность равна просто a2 + b2, что гарантированно больше нуля или равно нулю. Вам придется поверить мне на слово: этот дополнительный инструментарий чрезвычайно важен для работы квантовой механики. Если же вы не готовы довериться мне, то приступайте к изучению математических подробностей теории (если честно, то мне сложно представить менее оправдывающий себя способ потратить собственное время).
Тот факт, что любая конкретная последовательность событий приписывает положительные или отрицательные амплитуды двум возможностям, — это всего лишь предположение, которое мы делаем в целях нашего мысленного эксперимента, а не глубинная характеристика правил квантовой механики. В любой задаче из реального мира точные значения амплитуды определяются деталями рассматриваемой системы, но мы пока что не углубляемся в технические подробности настолько сильно. Обратите также внимание на то, что конкретные амплитуды в наших примерах принимают значение 0,7071 со знаком «плюс» или «минус» — это числа, дающие при возведении в квадрат значение 0,5.
В 1997 году на симпозиуме, собравшем авторитетных исследователей, занимающихся вопросами квантовой механики, Макс Тегмарк провел заведомо антинаучный опрос, попросив участников назвать интерпретации квантовой механики, которым они отдают предпочтение (Tegmark, M. The Interpretation of Quantum Mechanics: Many Worlds or Many Words? // Fortschritte der Physik, 1998, 46, S. 855–862). Копенгагенская интерпретация заняла первое место, набрав тринадцать голосов, тогда как многомировая пришла второй с восемью голосами. Оставшиеся девять голосов распределились между несколькими другими альтернативами. Любопытнее всего то, что восемнадцать голосов было отдано за пункт «ничто из перечисленного/не определился». И это эксперты.
Здесь и далее речь идет о так называемых идеализированных измерениях. Реальные измерения не абсолютно точны и оказывают более сложное влияние на волновую функцию системы. — Примеч. науч. ред.
А что же произойдет, если мы повесим камеры наблюдения, но не станем просматривать пленки? Совершенно не важно, смотрим мы запись или нет; камера все так же считается наблюдением, поэтому шанс увидеть кошку под столом будет. В копенгагенской интерпретации мы бы сказали, что «камера представляет собой классический измерительный прибор, воздействие которого приводит к коллапсу волновой функции». В многомировой интерпретации, как мы вскоре узнаем, объяснение звучит так: «волновая функция камеры запутывается с волновой функцией кошки, поэтому альтернативные истории декогерируют».
Многие люди предлагали изменить правила квантовой механики таким образом, чтобы это было не так; было предложено несколько так называемых теорий со скрытыми переменными, которые не вписывались в стандартную концепцию квантовой механики. В 1964 году физик-теоретик Джон Белл доказал важную теорему: никакая локальная теория со скрытыми переменными не в состоянии воспроизвести предсказания квантовой механики. Это не остановило людей от исследования нелокальных теорий — таких, в которых отдаленные события могут мгновенно воздействовать друг на друга. Но мода на подобные теории не получила распространения; большинство современных физиков полагают, что квантовая механика просто-напросто верна, даже если пока нам непонятно, как ее интерпретировать.
Мы даже можем сделать несколько более сильное заявление. В классической механике состояние определяется положением и скоростью, так что можно предположить, что квантовая волновая функция связывает вероятности со всеми возможными сочетаниями положений и скоростей. Однако в действительности это работает не так. Укажите амплитуду для каждого возможного положения, и работа на этом будет закончена: вы полностью и целиком определите квантовое состояние. Но что же произошло со скоростью? Оказывается, можно записать ту же волновую функцию в терминах амплитуд для каждой возможной скорости, полностью исключив из описания положение. Это не два разных состояния; просто два разных способа описания в точности одного и того же состояния. На самом деле существует даже стандартный способ преобразования между этими двумя представлениями, известный под названием преобразования Фурье. Зная амплитуды для всех возможных положений, вы можете выполнить преобразование Фурье, для того чтобы определить амплитуды всех возможных скоростей, и наоборот. В частности, если волновая функция находится в собственном состоянии, сконцентрированная вокруг одного конкретного значения положения (или скорости), то ее преобразование Фурье будет полностью рассредоточено по всем возможным скоростям (или положениям).
Einstein, A., Podolsky, B., Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? // Physical Review, 1935, 47, p. 777–780.
Everett, H. Relative State Formulation of Quantum Mechanics // Reviews of Modern Physics, 1957, 29, p. 454–462. Обсуждение с разных точек зрения см. в работах: Deutsch, D. The Fabric of Reality: The Science of Parallel Universes — And Its Implications. New York: AllenLane, 1997; Albert, D. Z. Quantum Mechanics and Experience. Cambridge, MA: Harvard University Press, 1992; Ouellette, J. The Physics of the Buffyverse. New York: Penguin, 2007.
Обратите внимание на то, насколько важную роль играет в этой истории запутывание. Если бы запутанности не было, то внешний мир все так же существовал бы, но альтернативы, доступные Китти, абсолютно не зависели бы от происходящего во внешнем мире. В этом случае можно было бы совершенно спокойно приписать волновую функцию одной только Китти. Вот и отлично; благодаря этому мы можем применять формальный подход квантовой механики к индивидуальным атомам и прочим простым изолированным системам. Произвольные объекты не обязательно всегда запутаны с чем-нибудь еще; будь это так, было бы невозможно получить сколько-нибудь полную информацию ни о какой конкретной подсистеме нашего мира.
Bekenstein, J. D. Black Holes and Entropy // Physical Review, 1973, D 7, p. 2333–2346.
Hawking, S. W. A Brief History of Time: From the Big Bang to Black Holes. New York: Bantam, 1988, 104 p. Или, словами Денниса Овербая: «В Кембридже гипотезу Бекенштейна подняли на смех. Хокинг был разгневан. Он был уверен, что все это чушь». (Overbye, D. Lonely Hearts of the Cosmos. New York: HarperCollins, 1991.)
По поводу свойств черных дыр звездной массы см. работу Casares, J. Observational Evidence for Stellar-Mass Black Holes. Black Holes from Stars to Galaxies — Across the Range of Masses / V. Karas & G. Matt (eds.) / Proc. IAU Symposium #238, p. 3–12. Cambridge: Cambridge University Press, 2007; по поводу сверхмассивных черных дыр в других галактиках см. работу Kormendy, J., Richstone, D. Inward Bound — The Search for Supermassive Black Holes in Galactic Nuclei // Annual Review of Astronomy and Astrophysics, 1995, 33, p. 581. Черная дыра в центре нашей галактики с источником радиоизлучения известна под названием «объект Стрелец А*»; см. работу Reid, M. J. Is There a Supermassive Black Hole at the Center of the Milky Way? (2008). http://arxiv.org/abs/0808.2624.
Согласен, для некоторых было бы еще интереснее на них посмотреть.
На самом деле намного больше. По состоянию на январь 2009 года, ссылки на оригинальную работу Хокинга (Hawking, S. W. Particle Creation by Black Holes // Communications in Mathematical Physics, 1975, 43, p. 199–220; список ошибок и опечаток: там же, 1976, 46, p. 206) содержались в более чем 3000 других научных работ.
Пока что нам еще не удавалось засечь непосредственно сами гравитационные волны, хотя косвенных свидетельств их существования (предполагается, что это следует из потери энергии системой, состоящей из двух нейтронных звезд, известной как «двойной пульсар») Джозефу Тейлору и Расселу Халсу оказалось достаточно, для того чтобы в 1993 году получить Нобелевскую премию. Прямо сейчас несколько гравитационно-волновых обсерваторий работают над прямым обнаружением таких волн, возможно, порожденных слиянием двух черных дыр.
Площадь горизонта событий пропорциональна квадрату массы черной дыры; действительно, если площадь равна A, а масса равна M, то A = 16πG2M2/c4, где G — гравитационная постоянная Ньютона, а c — скорость света.
Аналогия между механикой черных дыр и термодинамикой подробно разобрана в работе Bardeen, J. M., Carter, B., Hawking, S. W. The Four Laws of Black Hole Mechanics // Communications in Mathematical Physics, 1973, 31, p. 161–70.
Один из способов понять, почему поверхностная гравитация не бесконечна, — серьезно отнестись к замечанию «с точки зрения наблюдателя, находящегося очень далеко». Прямо рядом с черной дырой сила очень велика, но если измерять ее с бесконечно далекого расстояния, она подвергается гравитационному красному смещению, в точности так, как любой убегающий фотон. Сила бесконечно велика, но с точки зрения удаленного наблюдателя красное смещение также бесконечно, и комбинация этих двух эффектов дает конечное значение поверхностной гравитации.
Точнее, Бекенштейн предположил, что энтропия пропорциональна площади горизонта событий. Позднее Хокинг определил коэффициент пропорциональности.
Hawking, S. W. A Brief History of Time: From the Big Bang to Black Holes. New York: Bantam, 1988, p. 104–105.
Возможно, вы задаетесь вопросом, почему в качестве примеров для обсуждения мы всегда выбираем электромагнитное и гравитационное поля, но не поле электронов или кварковое поле. Причина кроется в различиях между фермионами и бозонами. Фермионы, такие как электроны и кварки, — это частицы материи, отличительным качеством которых является то, что они не могут нагромождаться друг на друга. Бозоны, например фотоны и гравитоны, — это частицы силы, способные скапливаться в любых количествах. Когда мы наблюдаем классическое макроскопическое поле, в действительности мы видим совокупность огромного количества бозонов. Фермионы, такие как электроны и кварки, просто не в состоянии образовывать подобные скопления, поэтому вибрации их полей проявляют себя исключительно в виде индивидуальных частиц.
Overbye, D. Lonely Hearts of the Cosmos. New York: HarperCollins, 1991. 109 p.
Для справки, планковская длина равна (Għ/c3)1/2, где G — гравитационная постоянная Ньютона, ħ — постоянная Планка из квантовой механики, а c — скорость света. (Мы приняли постоянную Больцмана равной единице.) Таким образом, энтропия может быть выражена как S = (c3/4ħG)A. Площадь горизонта событий связана с массой M черной дыры через равенство A = 8πG2M2. Собрав все это вместе, находим, что энтропия выражается через массу следующим образом: S = (4πGc3/ħ)M2.
Все частицы и античастицы — «частицы», если можно так выразиться. Иногда термин «частица» используют специально, для того чтобы подчеркнуть отличие частицы от античастицы, но чаще всего этим словом называют любые точечные элементарные объекты. Никто не подвергнет вас критике, если вы скажете, что позитрон — это частица, а электрон — его античастица.
Обратите внимание на это уточнение: «известной нам». Космологи допускают возможность того, что какой-то неизвестный процесс, возможно, в самом начале существования Вселенной, мог создать большое количество очень маленьких черных дыр, может быть, даже связанных с темной материей. Если эти черные дыры достаточно мелкие, они не могут быть такими уж черными; они должны испускать все больше и больше хокинговского излучения, а финальные взрывы должны быть достаточно заметными, чтобы мы могли обнаруживать их.
Существует интересная умозрительная идея о том, что мы могли бы создать черную дыру в ускорителе частиц, а затем наблюдать, как она распадается, испуская хокинговское излучение. При обычных обстоятельствах этот план был бы безнадежно нереалистичным; гравитация — невероятно слабое взаимодействие, и мы никогда не смогли бы построить достаточно мощный ускоритель частиц, чтобы сделать хотя бы микроскопическую черную дыру. Однако некоторые современные сценарии, включающие скрытые измерения пространства—времени, предполагают, что гравитация становится намного сильнее, чем обычно, на коротких расстояниях (см. Randall, L. Warped Passages: Unraveling the Mysteries of the Universe’s Hidden Dimensions. New York: HarperCollins, 2005). В этом случае перспектива создания и наблюдения маленькой черной дыры переходит из категории безумных в категорию еще умозрительных, но уже не совершенно безумных. Уверен, Хокинг надеется, что однажды это произойдет. К сожалению, за идею рождения микроскопических черных дыр ухватилась группа паникеров, распространяющих ужасающие предсказания, согласно которым Большой адронный коллайдер, новый ускоритель частиц в лаборатории института CERN в Женеве, неизбежно уничтожит мир. Даже если шансы такого исхода невелики, уничтожение мира — довольно неприятная штука, поэтому надо быть осторожнее, не так ли? Но тщательное исследование всех возможных вариантов развития событий (Ellis, J., Giudice, G., Mangano, M. L., Tkachev, I., Wiedemann, U. Review of the Safety of LHC Collisions // Journal of Physics, 2008, G 35, 115004) показало, что БАК не в состоянии сделать ничего такого, что бы уже не происходило множество раз в разных уголках Вселенной; если катастрофа и планируется, то мы должны видеть признаки этого в других астрофизических объектах. Конечно же, всегда есть вероятность того, что все люди, участвующие в этих исследованиях, делают непреднамеренные математические ошибки того или иного сорта. Но возможно всякое. Не исключено, что в следующий раз, открыв банку томатной пасты, вы выпустите на волю мутировавший патогенный микроорганизм, который сотрет жизнь с лица Земли. Не исключено, что за нами наблюдает оценивающим взором раса суперразвитых инопланетных существ, способных разозлиться и разрушить Землю в наказание за то, что мы смирились с необоснованными судебными исками и не включаем БАК. Когда вероятности становятся такими крошечными, как те, о которых мы сейчас ведем речь, можно решиться на рисковый шаг и взять на себя ответственность за собственные жизни.
Идея глубже копнуть в этом направлении может показаться довольно многообещающей — возможно, информация копируется и поэтому одновременно содержится и в книге, падающей в сингулярность, и в излучении, покидающем черную дыру? Однако в квантовой механике был получен результат (известный под названием теоремы о запрете клонирования), согласно которому этого не может быть. Информация не только не уничтожается, она также не может дублироваться.
Прескилл рассказывает историю заключенных им пари на своем веб-сайте: http://www.theory.caltech.edu/people/preskill/bets.html. Более глубокое объяснение парадокса о потере информации в черных дырах вы найдете в работе Susskind, L. The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. New York: Little, Brown, 2008.
Возможно, вы подумали, что это ограничение можно обойти, снова призвав на помощь фотоны, ведь фотоны — это частицы с нулевой массой. Однако у фотона есть энергия, и энергия его тем больше, чем меньше его длина волны. Поскольку мы имеем дело с контейнером определенного фиксированного размера, у каждого содержащегося там фотона есть минимальная допустимая энергия; в противном случае он просто не сможет находиться внутри. А энергия всех фотонов посредством чуда E = mc2 вносит свой вклад в массу контейнера. (Ни один фотон не обладает массой, но у контейнера с фотонами масса есть, и она определяется как сумма энергий всех фотонов, деленная на квадрат скорости света.)
Площадь поверхности сферы равна произведению 4π на квадрат ее радиуса. Площадь горизонта событий черной дыры вполне предсказуемо равна произведению 4π на квадрат радиуса Шварцшильда. В действительности это и есть определение радиуса Шварцшильда, так как сильно искривленное пространство—время внутри черной дыры не позволяет дать разумное определение расстояния от сингулярности до горизонта (вспомните, это расстояние во времени!). Таким образом, площадь горизонта событий пропорциональна квадрату массы черной дыры. Все это относится к черным дырам с нулевым угловым моментом и отсутствием электрического заряда; если дыра вращается или заряжена, формулы становятся немного сложнее.
Голографический принцип обсуждается в книге Susskind, L. The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. New York: Little, Brown, 2008; технические детали вы найдете в работе Bousso, R. The Holographic Principle // Reviews of Modern Physics, 2002, 74, p. 825–874.
Maldacena, J. M. The Large N Limit of Superconformal Field Theories and Supergravity // Advances in Theoretical and Mathematical Physics, 1998, 2, p. 231–252. Название статьи Малдасены «Предел большого N в теориях суперконформного поля и супергравитации» не передает и доли восторга, порождаемого этим результатом. Когда Хуан в 1997 году приехал в Санта-Барбару для проведения семинара, я остался в офисе и продолжал работать, совершенно не заинтригованный названием. Если бы доклад был озаглавлен «Эквивалентность пятимерной теории с гравитацией и четырехмерной теории без гравитации», я бы, вероятно, нашел время, чтобы посетить семинар. Позднее стало понятно, что я пропустил нечто совершенно грандиозное — такие оживленные разговоры звучали после доклада в коридорах, так взволнованно, словно в исступлении, орудовали мелом ученые, покрывая формулами доски.
В теории струн хорошо то, что она выглядит уникальной; плохо же то, что у нее, похоже, много разных фаз, которые сами по себе кажутся совершенно разными теориями. Так же как вода в зависимости от обстоятельств может принимать форму льда, жидкости или пара, в теории струн само пространство—время может пребывать во множестве разных фаз с разными типами частиц и даже с разным числом различимых измерений пространства. И когда мы говорим «множество», это не шутка — ученые называют такие значения, как 10500 разных фаз, и с большой вероятностью их число может быть вовсе бесконечным. Таким образом, теоретическая уникальность теории струн не сильно помогает в практическом понимании частиц и взаимодействий, существующих в нашем конкретном мире. Обзор теории струн см. в работах Greene, B. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. New York: Vintage, 2000; Musser, G. The Complete Idiot’s Guide to String Theory. New York: Alpha Books, 2008. Обсуждение (на оптимистической ноте) проблемы множества разных фаз вы найдете в работе Susskind, L. The Cosmic Landscape: String Theory and the Illusion of Intelligent Design. New York: Little, Brown, 2006.
Strominger, A., Vafa, C. Microscopic Origin of the Bekenstein—Hawking Entropy // Physics Letters, 1996, B 379, p. 99–104. Объяснение на популярном уровне см. в книге Susskind, L. The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. New York: Little, Brown, 2008.
Хотя работа Строминджера—Вафы подразумевает, что пространство состояний черной дыры в теории струн обладает подходящим размером, чтобы дать объяснение энтропии, в ней не говорится в точности, как эти состояния должны выглядеть при включенной гравитации. Самир Матур и его коллеги предположили, что это должны быть «пушистые клубки» (fuzzball) — конфигурации осциллирующих струн, заполняющие объем черной дыры внутри горизонта событий (Mathur, S. D. The Fuzzball Proposal for Black Holes: An Elementary Review // Fortschritte der Physik, 2005, 53, S. 793–827).
В XVIII веке Готфрид Вильгельм Лейбниц поставил Изначальный экзистенциальный вопрос: «Почему существует что-то, а не ничего?» (на что можно было бы ответить: «А почему бы, собственно, и нет?»). Впоследствии несколько философов пытались доказать, что само существование Вселенной должно казаться нам чем-то неожиданным и поразительным, аргументируя это тем, что «ничто» проще «чего-то» (Swinburne, R. The Existence of God. Oxford: Oxford University Press, 2004). Однако это утверждение предполагает верным несколько сомнительное определение «простоты», так же как и идею о том, что данный конкретный вариант простоты — это свойство, которым Вселенная просто обязана обладать. Ни опыт, ни логика ничего из этого не подтверждают и не гарантируют. Подробное обсуждение см. в работе Grünbaum, A. The Poverty of Theistic Cosmology // British Journal for the Philosophy of Science, 2004, 55, p. 561–614.
Кто-то может утверждать, что роль Вселенской Курицы, которая создала Вселенную в низкоэнтропийном начальном состоянии, сыграл Бог. Это не кажется минимальным подходом к объяснению чего-либо, кроме того, совершенно неясно, почему энтропия должна была быть именно такой низкой, а также (помимо прочего) зачем было начинять Вселенную сотнями миллиардов галактик. Еще важнее то, что мы, будучи учеными, стремимся объяснять максимум, предполагая минимум, и если мы сумеем в итоге прийти к натуралистическим теориям, объясняющим низкую энтропию нашей наблюдаемой Вселенной, не прибегая к помощи ничего иного, помимо законов физики, это будет настоящим триумфом. История подтверждает, что данная стратегия всегда оказывается наиболее успешной; в противоположность этому, попытки указывать на «пробелы» в натуралистических объяснениях мира, заявляя, что только Бог способен их заполнить, приводят к довольно печальным результатам.
Это не совсем верно, хотя и близко к тому. Если определенный тип частиц очень слабо взаимодействует с остальной материей и излучением Вселенной, их взаимное влияние может в какой-то момент прекратиться, после чего этот тип частиц выпадет из окружающей равновесной конфигурации. Этот процесс называется «вымораживанием», и он чрезвычайно важен для космологов, например, когда у них возникает необходимость подсчитать распространенность частиц темной материи, которая, вероятно, выморозилась в ранней Вселенной. В действительности материя и излучение поздней (сегодняшней) Вселенной выморозились уже очень давно, и наше состояние нельзя называть равновесным, даже если полностью игнорировать гравитацию. (Температура космического микроволнового фона составляет около 3 кельвинов, так что если бы мы находились в равновесии, то все вокруг нас пребывало бы при температуре около 3 кельвинов.)
Отношение скорости света к постоянной Хаббла определяет «длину Хаббла», которая в современной Вселенной равна 14 миллиардам световых лет. Для тех, кто не столь придирчиво относится к космологическим деталям, данная величина практически равна возрасту Вселенной, умноженному на скорость света, поэтому эти величины можно считать взаимозаменяемыми. Поскольку Вселенная в разные периоды времени расширяется с разной скоростью, текущий размер нашего сопутствующего объема может быть несколько больше длины Хаббла.
См., например, статью Kofman, L., Linde, A., Mukhanov, V. Inflationary Theory and Alternative Cosmology // Journal of High Energy Physics, 2002, 0210, p. 57. Она была написана в ответ на статью Голландса и Уолда (Hollands, S., Wald, R. M. An Alternative to Inflation // General Relativity and Gravitation, 2002, 34, p. 2043–2055), в которой поднимаются вопросы, схожие с теми, которые мы исследуем в данной главе, в узком контексте инфляционной космологии. Обсуждение на популярном уровне, придерживающееся схожей точки зрения, вы найдете в книге Chaisson, E. J. Cosmic Evolution: The Rise of Complexity in Nature. Cambridge, MA: Harvard University Press, 2001.
Действительно, Эрик Шнайдер и Дорион Саган (Schneider, E. D., Sagan, D. Into the Cool: Energy Flow, Thermodynamics, and Life. Chicago: University of Chicago Press, 2005) утверждали, что «смысл жизни» заключается в увеличении скорости производства энтропии путем сглаживания градиентов во Вселенной. Предположение, подобное этому, вряд ли может быть точным, и на то существует множество причин. Как минимум, хотя второе начало термодинамики утверждает, что энтропия стремится к увеличению, нет такого закона природы, согласно которому энтропия должна была бы увеличиваться с максимально возможной скоростью.
А также в противоположность гравитационным эффектам источников плотности энергии, отличных от «частиц». Эта лазейка важна для реального мира из-за присутствия в нем темной материи. Темная энергия — это не набор частиц; это однородное поле, распространяющееся на всю Вселенную, и его гравитационное воздействие заключается в том, что оно расталкивает объекты. Никто и не говорил, что это будет просто.
Прочие подробности также важны. В ранней Вселенной обычная материя ионизирована: электроны способны перемещаться свободно, не будучи привязанными к атомным ядрам. Давление в ионизированной плазме обычно больше, чем внутри набора атомов.
Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe. New York: Knopf, 2005, p. 706. Более раннюю версию этого рассуждения вы найдете в книге Penrose, R. Singularities and Time-Asymmetry. В General Relativity, and Einstein Centenary Survey / S. W. Hawking, W. Israel (eds.), p. 581–638. Cambridge: Cambridge University Press, 1979.
Большая часть материи во Вселенной — от 80 до 90 % ее общей массы — это темная материя, не состоящая из обычных атомов и молекул. Нам неизвестно, что такое темная материя, и существует гипотеза, что она имеет форму маленьких черных дыр. Но с этой идеей связаны определенные проблемы, включая, как минимум, то, что создать так много черных дыр чрезвычайно сложно. Поэтому большинство космологов все же склонны верить, что темная материя, скорее всего, состоит из каких-то новых элементарных частиц (одного или нескольких видов), которые просто еще не были открыты.
Энтропия черной дыры стремительно возрастает по мере того, как черная дыра набирает массу, — она пропорциональна квадрату массы черной дыры. (Энтропия шкалируется как площадь, которая пропорциональна квадрату радиуса, а радиус Шварцшильда пропорционален массе.) Таким образом, энтропия, которой обладала бы черная дыра массой в 10 миллионов солнечных масс, была бы в 100 раз больше, чем энтропия, обеспечиваемая одним миллионом солнечных масс.
Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe. New York: Knopf, 2005. 707 p.
Следующее разъяснение — это, по сути, выдержка из статьи, которую мы написали в сотрудничестве с Дженнифер Чен (Carroll, S. M., Chen, J. Spontaneous Inflation and the Origin of the Arrow of Time (2004). http://arxiv.org/abs/hep- th/0410270).
См., например, статью Zurek, W. H. Entropy Evaporated by a Black Hole // Physical Review Letters, 1982, 49, p. 1683–1686.
Кроме того, это утверждение совсем не из тех, с которыми безоговорочно соглашаются все физики. Я не говорю, что существует какой-то другой общепринятый ответ на вопрос: «Как выглядят состояния с самой высокой энтропией, когда в расчет также принимается гравитация?» помимо «Мы не знаем». Но, надеюсь, мне удалось убедить вас, что «пустое пространство» — это наилучший вариант среди тех, что имеются в нашем распоряжении в настоящее время.
Немного забегу вперед: обратите внимание на то, что в эту игру можно играть также, повернув время вспять. Пусть вначале у нас есть какая-то конфигурация материи во Вселенной, срез пространства—времени в какой-то момент времени. В одних местах мы видим расширение и разреживание, а в других — сжатие, коллапс и в конце концов испарение. И мы спрашиваем, что произойдет, если проэволюционировать это «начальное» в обратном направлении во времени, используя все те же обратимые законы физики. Ответ, разумеется, таков: мы обнаружим тот же самый тип поведения. Области, расширяющиеся по направлению к будущему, сжимаются по направлению к прошлому, и наоборот. Однако в конечном итоге пространство все равно будет опустошено, когда «расширяющиеся» области одержат победу. Очень далекое прошлое выглядит точно так же, как очень далекое будущее: это пустое пространство.
Здесь, в нашей ближайшей окрестности, NASA нередко применяет схожий трюк — «гравитационный маневр» — для придания дополнительной скорости космическим зондам, которые направляются к удаленным объектам нашей Солнечной системы. Если космический летательный аппарат маневрирует специальным образом возле массивной планеты, он может «подхватить» часть энергии движения этой планеты. Планета настолько велика, что для нее такая потеря абсолютно незаметна, но космический аппарат может продолжать движение с намного более высокой скоростью.
Wald, R. W. Asymptotic Behavior of Homogeneous Cosmological Models in the Presence of a Positive Cosmological Constant // Physical Review, 1983, D 28, p. 2118–2120.
В частности, мы можем определить «горизонт» вокруг каждого наблюдаемого участка пространства де Ситтера, так же как делали это для черных дыр. Тогда формула энтропии для этого участка полностью совпадет с формулой энтропии черной дыры — это площадь поверхности такого горизонта в планковских единицах, деленная на четыре.
Если H — это параметр Хаббла в пространстве де Ситтера, то температура равна , где ħ — постоянная Планка, а k — постоянная Больцмана. Впервые это соотношение было выведено Гэри Гиббонсом и Стивеном Хокингом (1977).
Возможно, вам кажется, что это слишком смелое предсказание, основанное на неточной экстраполяции в режимы применения физики, которые мы в действительности не совсем понимаем. Никто не спорит с тем, что у нас действительно нет прямого экспериментального доступа к вечной Вселенной де Ситтера, но обрисованный выше сценарий основывается лишь на паре довольно надежных принципов: существование теплового излучения в пространстве де Ситтера и относительная частота появления различных видов случайных флуктуаций. В частности, любопытно было бы поставить вопрос, является ли тип флуктуаций, порождающих Большой взрыв, каким-то особенным и может ли быть так, что подобный тип флуктуаций более вероятен, чем флуктуация, порождающая больцмановский мозг. Не исключено, что так действительно происходит согласно окончательным, самым правильным законам физики, — и мы сделаем предположение в этом стиле чуть далее в этой книге, — но это абсолютно точно не то, что может быть при условиях, которые мы здесь предполагаем. Что приятно в термодинамических флуктуациях в вечном пространстве де Ситтера, так это то, что мы очень хорошо в них разбираемся и можем точно рассчитать, как часто будут происходить те или иные флуктуации. В частности, флуктуации, предполагающие серьезные изменения энтропии, несоизмеримо менее вероятны, чем флуктуации, ведущие лишь к незначительному ее изменению. Всегда будет проще флуктуировать в мозг, чем во Вселенную, если только не случится какого-то значительного отклонения от вышеописанного сценария.
Dyson, L., Kleban, M., Susskind, L. Disturbing Implications of a Cosmological Constant // Journal of High Energy Physics, 2002, 210, p. 11; Albrecht, A., Sorbo, L. Can the Universe Afford Inflation? // Physical Review, D 70, 2004, p. 63528.
Toulmin, S. The Early Universe: Historical and Philosophical Perspectives / In: The Early Universe. Report of NATO Advanced Study Institute / W. G. Unruh, G. W. Semenoff (eds.). Dortrecht: D. Reidel, 1988, p. 393. (Доклады Института перспективных исследований НАТО на конференции, прошедшей в Виктории (Канада) с 17 по 30 августа 1986 г.).
См. Guth, A. H. The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Reading: Addison-Wesley, 1997; Overbye, D. Lonely Hearts of the Cosmos. New York: HarperCollins, 1991.
Первая рабочая модель инфляции была предложена Алексеем Старобинским в 1980 году (A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99–102), хотя спектр проблем, которые решают инфляцинные сценарии, был осознан Гутом лишь позже. Модель Старобинского (в отличие от модели Гута) не является самопротиворечивой и все еще не исключена экспериментально. — Примеч. науч. ред.
Пространство может быть искривлено даже в том случае, когда пространство—время плоское. Пространство с отрицательной кривизной, размер которого при расширении увеличивается пропорционально времени, соответствует абсолютно плоскому пространству—времени. Точно так же пространство может быть плоским в искривленном пространстве—времени; если пространственно плоская Вселенная расширяется (или сжимается) во времени, то пространство—время определенно будет искривлено. (Смысл в том, что такое расширение вносит свой вклад в общую кривизну пространства—времени, но кривизна пространства также вкладывает. Вот почему расширяющееся пространство с отрицательной кривизной может соответствовать пространству—времени с нулевой кривизной; вклад пространственной кривизны имеет знак «минус» и может точно сократить положительный вклад от расширения.) Когда космологи упоминают «плоскую Вселенную», они имеют в виду пространственно плоскую Вселенную; так же надо понимать «Вселенную с положительной или отрицательной кривизной».
Их сумма составляет менее 180 градусов.
Один из способов измерить кривизну Вселенной — сделать это косвенно, используя уравнение Эйнштейна. Общая теория относительности подразумевает существование взаимосвязи между кривизной, скоростью расширения и количеством энергии во Вселенной. В течение многих лет астрономы измеряли скорость расширения Вселенной и количество материи в ней (подразумевалось, что материя вносит наиболее существенный вклад в общую энергию). Получаемые данные свидетельствовали о том, что Вселенная чрезвычайно близка к плоскому состоянию, но все же должна обладать крошечной отрицательной кривизной. С открытием темной энергии все изменилось; оказалось, что темная энергия отвечает ровно за такое количество энергии, которое подразумевает, что Вселенная абсолютно плоская. Впоследствии астрономам удалось непосредственно измерить кривизну, используя картину температурных флуктуаций в космическом микроволновом излучении как своего рода гигантский треугольник (Miller, A. D. et al., TOCO Collaboration. A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400 // Astrophysical Journal Letters, 1999, 524, L1–L4; de Bernardis, P. et al., BOOMERanG Collaboration. A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation // Nature, 2000, 404, p. 955–959; Spergel, D. N. et al., WMAP Collaboration. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters // Astrophysical Journal Supplement, 2003, 148, p. 175). Этот метод уверенно доказывает, что Вселенная действительно пространственно плоская — приятное соответствие результатам предыдущих косвенных выводов.
Никто больше так ее не называет. Поскольку данная форма темной энергии введена для того, чтобы происходила инфляция, предполагается, что она возникает из гипотетического поля, носящего название «инфлатон». Было бы прекрасно, если бы поле инфлатона служило какой-то иной цели или уютно вписывалось в какую-то более полную теорию физики элементарных частиц, но пока нам известно слишком мало, чтобы делать еще какие-либо заявления.
Возможно, вы думаете, что поскольку Большой взрыв сам по себе — тоже точка, световые конусы прошлого любых событий во Вселенной должны обязательно пересекаться в момент Большого взрыва. Однако это заблуждение. Как минимум, Большой взрыв — это не точка в пространстве, а момент во времени. Но еще важнее то, что в классической общей теории относительности Большой взрыв представляет собой сингулярность и не должен даже считаться частью пространства—времени; мы имеем право говорить только о том, что происходит после Большого взрыва. И даже если мы включим в рассмотрение моменты времени, непосредственно последовавшие за Большим взрывом, световые конусы прошлого все равно не пересекутся.
Исходные статьи: Linde, A. D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems // Physics Letters, 1981, B 108, p. 389–393; Albrecht, A., Steinhardt, P. J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking // Physical Review Letters, 1982, 48, p. 1220–1223. Обсуждение на доступном языке см. в работе Guth, A. H. The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Reading: Addison-Wesley, 1997.
См., например, Spergel, D. N., et al., WMAP Collaboration. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters // Astrophysical Journal Supplement, 2003, 148, p. 175.
См. Vilenkin, A. The Birth of Inflationary Universes. Physical Review, D 27, 1983, p. 2848–2855; Linde, A. D. Eternally Existing Selfreproducing Chaotic Inflationary Universe. Physics Letters, B 175, 1986, p. 395–400; Guth, A. H. Eternal Inflation and Its Implications // Journal of Physics, A 40, 2007, p. 6811–6826.
Данный сценарий получил слегка дезинформирующее название открытой инфляции (Bucher, M., Goldhaber, A. S., Turok, N. An Open Universe from Inflation // Physical Review, D 52, 1995, p. 3314–3337). В тот период, когда темная энергия еще не была обнаружена, космологи понемногу начинали волноваться: создавалось впечатление, что инфляция надежно предсказывает пространственную плоскостность Вселенной, в то время как наблюдения плотности материи упорно указывали на то, что для осуществления такого предсказания энергии попросту недостаточно. Кто-то уже паниковал и пытался изобретать модели инфляции, не обязательно предсказывающие плоскую Вселенную. Но оказалось, что необходимости в этом нет, — темная энергия предоставляет как раз недостающую часть плотности энергии, для того чтобы сделать Вселенную плоской, и наблюдения за космическим микроволновым фоновым излучением уверенно подтверждают, что Вселенная действительно плоская (Spergel, D. N., et al., WMAP Collaboration. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters // Astrophysical Journal Supplement, 148, 2003, p. 175). Так что все в порядке, потому что благодаря панике родилась умная идея — как сделать реалистичную Вселенную внутри пузыря, заключенного в фоновый ложный вакуум.
В действительности первые статьи по вечной инфляции были написаны в контексте новой инфляции, а не «старой инфляции с новой инфляцией в пузырях». В сценарии новой инфляции на самом деле вечная инфляция представляет собой куда более удивительный факт, так как поле, по идее, должно просто скатиться вниз с холма его потенциальной энергии. Однако необходимо также помнить, что скатывающееся поле содержит квантовые флуктуации; если условия окажутся подходящими, то эти флуктуации могут быть довольно большими. Действительно, они могут быть настолько крупными, что в некоторых областях пространства поле будет двигаться вверх по холму, хотя в среднем, разумеется, оно будет катиться вниз. Области с движением вверх редки, но они расширяются быстрее, потому что плотность энергии в них выше. Результат таких процессов очень похож на всю эту историю со старой инфляцией: в огромной части Вселенной инфлатон скатывается вниз и преобразуется в материю и излучение, но все больший и больший объем застревает на инфляционном этапе, и в итоге инфляция никогда не прекращается.
См. Susskind, L. The Cosmic Landscape: String Theory and the Illusion of Intelligent Design. New York: Little, Brown, 2006 или Vilenkin, A. Many Worlds in One: The Search for Other Universes. New York: Hill and Wang, 2006. Более ранняя, но связанная версия ландшафта различных состояний вакуума рассмотрена в работе Smolin, L. The Life of the Cosmos. Oxford: Oxford University Press, 1993.
В исходных работах, посвященных инфляции, неявно предполагалось, что частицы в ранней Вселенной пребывали в состоянии, близком к термодинамическому равновесию. Описанный здесь сценарий, кажущийся более достоверным, носит название хаотической инфляции и впервые был предложен Андреем Линде (Linde, A. D. Chaotic Inflation // Physics Letters, B 129, 1983, p. 177–181; Linde, A. D. Eternally Existing Selfreproducing Chaotic Inflationary Univers // Physics Letters, B 175, 1986, p. 395–400).
См., например, Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe. New York: Knopf, 2005; Hollands, S., Wald, R. M. An Alternative to Inflation. General Relativity and Gravitation, 34, 2002, p. 2043–2055.
Это не означает, что мы обязаны случайным образом выбрать конфигурацию Вселенной среди всех возможных допустимых состояний или что существует причина полагать, что нечто подобное действительно произошло. Скорее, если состояние Вселенной совершенно точно было выбрано не случайно, то существуют конкретные правила, определяющие, как это произошло; это всего лишь зацепка, которую нам хотелось бы использовать, чтобы понять, как работает Вселенная.
Вы можете возразить, что существует и другой кандидат на роль «высокоэнтропийного состояния»: хаотичное месиво, в которое наша Вселенная эволюционирует, если позволить ей сжаться. (Или, что эквивалентно, если взять типичное микросостояние, совместное с текущим макросостоянием Вселенной, и прокрутить часы в обратную сторону.) Действительно, такое состояние намного более комковатое, чем наша текущая Вселенная, так как в процессе сжатия формируются сингулярности и черные дыры. Но в этом-то и суть: даже среди тех состояний, которые упаковывают всю текущую Вселенную в очень маленькую область, лишь невероятно малая доля принимает форму гладких участков, где доминирует темная суперэнергия, то есть выполняются условия, необходимые для инфляции. Большинство подобных состояний, наоборот, характеризуются условиями, в которых квантовая теория поля неприменима, поскольку их абсолютно невозможно описать без квантовой гравитации. Однако заявление: «мы не знаем, как описывать такие состояния» — это совершенно не то же самое, что «такие состояния не существуют» или даже «мы можем игнорировать такие состояния, если перечислим все возможные начальные состояния Вселенной». Если динамика обратима, у нас нет другого выбора, кроме как относиться к подобным состояниям со всей серьезностью.
См., например, Guth, A. H. The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Reading: Addison—Wesley, 1997.
Pascal, B. Pensées. Translated by A. J. Krailsheimer. New York: Penguin Classics, 1995.
Было бы еще лучше, если бы какой-нибудь молодой человек или девушка прочитали эту книгу, уверовали бы, что это серьезная проблема, стоящая нашего внимания, и принялись бы за ее решение. Хотя и не обязательно молодой — возраст на самом деле совершенно не важен. В любом случае, если вы вдруг придумаете объяснение стрелы времени, которому удастся заслужить одобрение всего физического сообщества, пожалуйста, дайте мне знать, есть ли в этом какая-либо заслуга моей книги.
Пожалуй, ближайшей аналогией будет сценарий «голографической космологии», в защиту которого выступают Том Бэнкс и Вилли Фишлер (Banks, T., Fischler, W. Holographic Cosmology 3.0 // Physica Scripta, 2005, T117, p. 56–63; см. также Banks, T. Entropy and Initial Conditions in Cosmology (2007). http://arxiv.org/abs/ hep- th/0701146). Они предполагают, что эффективные динамические законы квантовой гравитации могут очень сильно отличаться в разных пространствах—временах. Другими словами, сами законы физики могут зависеть от времени. Это спекулятивный сценарий, но на него стоит обратить внимание.
Похожая стратегия заключается в том, чтобы постулировать определенную форму волновой функции Вселенной, как сделали, например, Джеймс Хартл и Стивен Хокинг (Hartle, J. B., Hawking, S. W. Wave Function of the Universe // Physical Review D, 1983, 28, p. 2960–2975). Они полагаются на подход, известный под названием евклидовой квантовой гравитации (но попытки оценить преимущества и недостатки данного подхода уведут нас слишком далеко от вопросов, которыми мы интересуемся в настоящий момент). Согласно их предположению, из волновой функции Хартла—Хокинга следует, что наша Вселенная должна быть однородной вблизи Большого взрыва, что объясняет стрелу времени (Halliwell, J. J., Hawking, S. W. Origin of Structure in the Universe // Physical Review D, 1985, 31, p. 1777), но верность приближения, используемого для получения данного результата, не совсем ясна. Лично я подозреваю, что волновая функция Хартла—Хокинга предсказывает, что мы должны жить в пустом пространстве де Ситтера — точно к такому же результату мы пришли, когда рассматривали энтропию обычным образом.
Penrose, R. Singularities and Time-Asymmetry / In: General Relativity, and Einstein Centenary Survey / S. W. Hawking, W. Israel (eds.). Cambridge: Cambridge University Press, 1979, p. 581–638. Если глубже копнуть математический формализм, описывающий искривленность пространства—времени, вы обнаружите, что кривизна бывает двух видов: есть «кривизна Риччи», названная так в честь итальянского математика Грегорио Риччи-Курбастро, и «кривизна Вейля», получившая свое название в честь немецкого математика Германа Вейля. Кривизна Риччи тесно связана с материей и энергией в пространстве—времени: если хоть какое-то вещество есть, кривизна Риччи отлична от нуля, а если ничего нет, то и кривизна Риччи пропадает. Кривизна Вейля, с другой стороны, может существовать сама по себе; например, гравитационная волна свободно распространяется сквозь пространство, порождая кривизну Вейля, но не кривизну Риччи. Гипотеза кривизны Вейля утверждает, что сингулярностям в одном направлении во времени всегда соответствует нулевая кривизна Вейля, тогда как сингулярности в противоположном направлении ничем не ограничены. Можно даже использовать такие описательные характеристики, как начальные и конечные сингулярности, так как направлению с низкой кривизной Вейля всегда будет соответствовать низкая энтропия.
Еще одна проблема — очевидная опасность появления больцмановских мозгов, если Вселенная в будущем войдет в вечную фазу де Ситтера. Кроме того, концепция «сингулярности» из классической общей теории относительности вряд ли в теории квантовой гравитации сохранит свой первоначальный вид. Более реалистичная версия гипотезы кривизны Вейля должна быть сформулирована на языке квантовой гравитации.
Gold, T. The Arrow of Time // American Journal of Physics, 1962, 30, p. 403–410.
В течение небольшого периода времени Стивен Хокинг полагал, что его подход к квантовой космологии предсказывает, будто стрела времени на самом деле развернется в обратную сторону в случае повторного сжатия Вселенной (Hawking, S. W. The Arrow of Time in Cosmology // Physical Review D, 1985, 32, p. 2489). Дон Пейдж убедил его, что это не так — согласно правильной интерпретации, у волновой функции две ветви, ориентированные в противоположных направлениях во времени (Page, D. N. Will Entropy Decrease If the Universe Recollapses? // Physical Review D, 1985, 32, p. 2496). Хокинг позже назвал это своим «величайшим промахом» — по аналогии с величайшим промахом Эйнштейна, когда тот предложил космологическую постоянную, вместо того чтобы предсказать расширение Вселенной (Hawking, S. W. A Brief History of Time: From the Big Bang to Black Holes. New York: Bantam, 1988).
Price, H. Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time. New York: Oxford University Press, 1996.
См., например, Davies, P. C. W., Twamley, J. Time Symmetric Cosmology and the Opacity of the Future Light Cone // Classical and Quantum Gravity, 1993, 10, p. 931–945; Gell-Mann, M., and Hartle, J. B. Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology / In: Physical Origins of Time Asymmetry / J. J. Halliwell, J. Pérez-Mercader, W. H. Zurek. Cambridge: Cambridge University Press, 1996, p. 311–345. Другая форма граничного условия в будущем, не приводящая к переворачиванию стрелы времени, была исследована в физике элементарных частиц; см. работы: Lee, T. D., Wick, G. C. Finite Theory of Quantum Electrodynamics // Physical Review D, 1970, 2, p. 1033–1048; Grinstein, B., O’Connell, D., Wise, M. B. Causality as an Emergent Macroscopic Phenomenon: The Lee-Wick O(N) Model // Physical Review D 79, 2009, p. 105019.
И снова в языке не хватает терминов и конструкций для нестандартных стрел времени. Мы договариваемся, что «направление времени» определяется нами здесь, в «обычной» фазе Вселенной, последовавшей за Большим взрывом. По отношению к этому уговору в фазе коллапса энтропия уменьшается «по направлению к будущему». Разумеется, организмы, реально живущие в этой фазе, будут естественным образом определять все ровно противоположным образом; но это наша книга, и выбор зависит всего лишь от каких-то условностей, поэтому мы можем сами устанавливать правила.
Грег Иган рассмотрел поразительные следствия данного сценария в своем рассказе «Дневник, посланный за сотню световых лет» (The Hundred Light-Year Diary) (переиздано в книге Egan, G. Axiomatic. New York: Harper Prism, 1997).
Вспомните яйца Фаберже Каллендера, о которых мы говорили в главе 9.
См. также Carroll, S. M. What If Time Really Exists? (2008). http://arxiv.org/abs/0811.3772.
Один из первых сценариев отскока назывался просто «сценарий до Большого взрыва». В нем используется новое поле под названием «дилатон» из теории струн, изменение которого влияет на силу гравитации (Gasperini, M., Veneziano, G. Pre-Big-Bang in String Cosmology // Astroparticle Physics, 1993, 1, p. 317–339. Схожий пример — сценарий «экпиротической Вселенной», позднее давший начало «циклической Вселенной». В этой картине энергия, питающая то, что мы воспринимаем как «Взрыв», высвобождается, когда скрытое компактное измерение сжимается до нулевого размера. Идея циклической Вселенной в подробностях обсуждается в популярной книге Пола Стейнхардта и Нила Турока (Steinhardt, P. J., Turok, N. Endless Universe: Beyond the Big Bang. New York: Doubleday, 2007); ее предшественница, экпиротическая Вселенная, была предложена Хури и др. (Khoury, J., Ovrut, B. A., Steinhardt, P. J., Turok, N. The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang. // Physical Review D, 2001, 64, p. 123522). Также под рубрикой «циклическая квантовая космология» существуют другие отскакивающие космологические теории, не включающие струны или дополнительные измерения, но полагающиеся на квантовые свойства самого пространства—времени (Bojowald, M. Loop Quantum Cosmology // Living Reviews in Relativity, 2006, 8, p. 11).
Надеюсь, после публикации этой книги ситуация изменится.
Тот же аргумент работает и для циклической Вселенной Стейнхардта и Турока. Несмотря на название, их модель не обладает свойством периодичности, которое демонстрирует модель Больцмана—Лукреция. В вечной Вселенной с пространством состояний конечного размера допустимые последовательности событий происходят в обоих направлениях времени: как вперед, так и назад, причем с одинаковой частотой. Но в модели Стейнхардта—Турока стрела времени всегда указывает в одном и том же направлении, а энтропия постоянно возрастает, требуя бесконечной тонкой подстройки в каждый момент времени. Что интересно, Ричард Толмен (Tolman, R. C. On the Problem of Entropy of the Universe as a Whole // Physical Review, 1931, 37, p. 1639–1660) уже давно озвучил проблемы энтропии в циклической Вселенной, хотя он говорил только об энтропии вещества, не включая гравитацию. См. также Bojowald, M., Tavakol, R. Recollapsing Quantum Cosmologies and the Question of Entropy // Physical Review D, 2008, 78, p. 23515.
Эта дискуссия подразумевает, что предположения, которые мы делали раньше, обсуждая энтропию нашего сопутствующего объема, все так же верны; в частности, мы продолжаем считать, что объем допустимо рассматривать как автономную систему. Определенно это допущение вполне может оказаться ошибочным, но ученые, исследующие эти сценарии, обычно неявно подразумевают именно такой вариант.
Aguirre, A., Gratton, S. Inflation Without a Beginning: A Null Boundary Proposal // Physical Review D, 2003, 67, p. 083515. Хартл, Хокинг и Хертог (Hartle, J. B., Hawking, S. W., Hertog, T. The Classical Universes of the No-Boundary Quantum State // Physical ReviewD 77, 2008, p. 123537) также исследовали Вселенные с высокой энтропией в прошлом и будущем и низкой энтропией посередине, но в контексте евклидовой квантовой гравитации.
Это верно даже в обычных негравитационных ситуациях, где действует строгое правило, согласно которому полная энергия остается постоянной. Когда высокоэнергетическое состояние распадается до низкоэнергетического, как мяч, катящийся по склону холма, энергия не создается и не разрушается; она просто трансформируется из полезной низкоэнтропийной формы в бесполезную высокоэнтропийную.
Farhi, E., Guth, A. H., Guven, J. Is It Possible to Create a Universe in the Laboratory by Quantum Tunneling? // Nuclear Physics, 1990, B 339, p. 417–490. См. также работы: Farhi, E., Guth, A. H. An Obstacle to Creating a Universe in the Laboratory // Physics Letters, 1987, B 183, p. 149; Fischler, W., Morgan, D., Polchinski, J. Quantum Nucleation of False Vacuum Bubbles. // Physical Review D, 1990, 41, p. 2638; Fischler, W., Morgan, D., Polchinski, J. Quantization of False Vacuum Bubbles: A Hamiltonian Treatment of Gravitational Tunneling // Physical Review D, 1990, 42, p. 4042–4055. Гут пишет об этом в своей научно-популярной книге (Guth, A. H. The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Reading: Addison-Wesley, 1997).
Наиболее полная работа на эту тему среди опубликованных в последнее время принадлежит Энтони Агирре и Мэтью Джонсону (Aguirre, A., Johnson, M. C. Two Tunnels to Inflation // Physical Review D, 2006, 73, 123529). Они составили список всех возможных вариантов появления новорожденных Вселенных вследствие квантового туннелирования, однако в конце не сумели сделать окончательного заключения о том, что же происходит в реальном мире. («Грустный вывод таков, что хотя взаимоотношения между различными процессами образования зародышей стали для нас яснее, вопрос, какой же из них в действительности имеет место, остается открытым».) Приняв решение взглянуть на все это под совершенно иным углом, Фрайфогель и др. (Freivogel, B., Hubeny, V. E., Maloney, A., Myers, R. C., Rangamani, M., Shenker, S. Inflation in AdS/CFT // Journal of High Energy Physics, 2006, 0603, p. 7) рассмотрели инфляцию на фоне пространства анти-де Ситтера, используя соответствие Малдасены. Они пришли к выводу о том, что новорожденные Вселенные совсем не рождаются. Однако нас интересуют фоны де Ситтера, а не анти-де Ситтера; неясно, можно ли обобщить результаты, полученные в одном контексте, на другой. Еще один взгляд на эволюцию пространства де Ситтера вы найдете в работе Bousso, R. Proliferation of de Sitter Space // Physical Review D, 1998, 58, p. 083511.
Carroll, S. M., Chen, J. Spontaneous Inflation and the Origin of the Arrow of Time (2004). http://arxiv.org/abs/ hep-th/0410270.
Мы здесь делаем предположение о том, что пространство де Ситтера соответствует истинному вакууму; в частности, что теория не включает никакое другое состояние, такое, что энергия вакуума в нем исчезает и пространство—время начинает выглядеть как пространство Минковского. Честно говоря, это предположение вполне может оказаться не совсем реалистичным. В теории струн, например, мы полагаем, что 10-мерное пространство Минковского представляет собой хорошее решение для теории. В отличие от пространства де Ситтера в пространстве Минковского царит нулевая температура, поэтому оно способно успешно избегать создания новорожденных Вселенных. Для того чтобы описанный здесь сценарий работал, необходимо вообразить, что либо состояния с нулевой энергией вакуума отсутствуют, либо объем пространства—времени, находящегося в таком состоянии, достаточно мал по сравнению с деситтеровскими областями.
И это несмотря на тот факт, что, едва я завершил работу над рукописью, на рынке появилась книга с таким же в точности названием! (Viola, F. From Eternity to Here: Rediscovering the Ageless Purpose of God. Colorado Springs: David C. Cook, 2009.) Однако ее подзаголовок отличается: «Возврат к нестареющему предназначению Бога». Надеюсь, никто по ошибке не закажет неправильную книгу.
Автор имеет в виду фильм режиссера Фреда Циннемана «Отныне и во веки веков» (From Here to Eternity), снятый в 1953 году. Роман «Отныне и во веки веков» Джеймса Джонса был опубликован в 1951 году. — Примеч. пер.
Feynman, R. P., Leighton, R., Sands, M. The Feynman Lectures on Physics. New York: Addison Wesley Longman, 1970.
Popper, Karl R. The Logic of Scientific Discovery. London: Routledge, 1959. Обратите внимание на то, что Поппер не ограничивался проблемой демаркации; он хотел понять весь научный прогресс как последовательность опровергнутых гипотез. По сравнению с тем, как обычно ведутся дела в науке, это не слишком многообещающий способ разобраться в деталях процесса; опровергать гипотезы важно, но настоящая научная работа этим не ограничивается.
Подробнее об этом см. в работе Deutsch, D. The Fabric of Reality: The Science of Parallel Universes — And Its Implications. New York: Allen Lane, 1997.
Один из множества примеров вы найдете в работе Swinburne, R. The Existence of God. Oxford: Oxford University Press, 2004.
Lemaître, G. The Primeval Atom Hypothesis and the Problem of the Clusters of Galaxies / In: La Structure et l’Evolution de l’Univers / R. Stoops (ed.). Brussels: Coudenberg, 1958, p. 1–32.
Стивен Вайнберг высказался более определенно: «Чем более постижимой кажется Вселенная, тем больше она также кажется бессмысленной» (Weinberg, S. The First Three Minutes: A Modern View of the Origin of the Universe. New York: Basic Books, 1977, p. 154).
Я очень сожалею о том, что уделил в этой книге мало внимания современным и грядущим новым экспериментам в области фундаментальной физики. Проблема в том, что какими бы увлекательными и важными эти эксперименты ни были, чрезвычайно сложно заранее сказать, какие новые знания они нам дадут, особенно касательно такой глубокой и всеобъемлющей темы, как стрела времени. К сожалению, мы не планируем построить телескоп, способный с помощью тахионов заглянуть в другие Вселенные. Что нам доступно — так это, возможно, построение ускорителя частиц, который позволит узнать нечто новое о суперсимметрии, что, в свою очередь, приведет к новым прозрениям в теории струн и, следовательно, более глубокому пониманию квантовой гравитации. Или же мы можем собирать данные с гигантских телескопов — не только фотоны света, но также космические лучи, нейтрино, гравитационные волны, даже частицы темной материи, открывающие нам новые удивительные сведения об эволюции Вселенной. Реальный мир постоянно удивляет нас: темная материя и темная энергия — это всего лишь пара очевидных примеров. Как физик-теоретик я написал эту книгу больше с теоретической точки зрения, но, как показывает история, чаще всего именно новые эксперименты способны пробудить нас от догматической спячки.
Эти свойства — часть той же «магии математики», о которой мы упоминали выше. Например, нам интересно было бы понять, что означает «возвести 10 в степень 0,5». Я знаю, что какими бы ни оказались реальные числа, должно выполняться свойство 100,5 ∙ 100,5 = 10(0,5+0,5) = 101 = 10. Другими словами, если мы умножим число 100,5 на само себя, то получим 10; это означает, что 100,5 должно быть всего лишь квадратным корнем из 10 (это рассуждение верно и для любого другого основания, возведенного в степень 0,5). С помощью этого трюка мы можем понять, каким будет результат возведения любого основания в любую другую степень.
Здесь везде используются десятичные логарифмы, поэтому мы обозначаем их lg. Логарифмы по основанию, отличному от 10, обозначаются как logax, где a — основание. Скажем, если бы речь шла о логарифме от x по основанию 2, мы бы обозначили его log2x. — Примеч. пер.