До настоящего момента мы прямо или косвенно обсуждали жизнь, похожую на нас. То есть мы говорили о жизни, основанной на химических реакциях, в которых участвуют соединения углерода и которые происходят (или, по крайней мере, происходили изначально) в жидкой воде. В этой главе мы рассмотрим возможность жизни, не похожей на нас — жизни, которая всё ещё основана на химии, но в образовании которой участвуют химические элементы, отличные от углерода, или жидкости, отличные от воды. Это расширение нашего определения значительно увеличивает спектр разнообразия, которое необходимо учитывать, когда мы говорим о живых существах в нашей галактике.
Сказав это, мы должны отметить, что в данной главе мы рассматриваем только жизнь, сформированную естественными причинами. Увлекательная возможность жизни, созданной как следствие развития передовых технологий (вспомните о компьютерах и роботах), оставлена для следующей главы, которая посвящена жизни, действительно не похожей на нас.
Мы начинаем это обсуждение с утверждения, которое можно воспринимать как честную рекламу. Оба автора признаются, что являются так называемыми углеродными шовинистами. То есть, мы считаем, что специфические особенности атома углерода делают его идеальным инструментом для развития и поддержания сложной жизни. Возможно, лучший способ начать изучение возможности существования жизни, не похожей на нашу, — это узнать, что же делает углерод таким особенным.
Атом углерода имеет шесть положительно заряженных протонов в своем ядре, и шесть вращающихся вокруг ядра отрицательно заряженных электронов, чтобы уравновесить этот положительный заряд. О том, где могут находиться эти электроны, законы квантовой механики говорят нам две вещи:
• Электроны могут занимать так называемые энергетические уровни, расположенные на некоторых строго ограниченных и определённых расстояниях от ядра.
• На каждом энергетическом уровне есть место только для определённого, строго ограниченного количества электронов.
В целом, на ближайшем к ядру энергетическом уровне есть место для двух электронов, в то время как на следующих двух уровнях может находиться до восьми электронов на каждом. (У более крупных атомов больше электронов, и они занимают более высокие уровни. На этих уровнях также находится строго определённое количество электронов, но точные значения вычислить сложнее.) Это означает, что в атоме углерода на самом нижнем уровне находятся два из шести электронов, и в то же время на следующем уровне находятся остальные четыре. Именно самые внешние электроны (они называются валентными электронами) образуют связи с другими атомами для создания молекул. Представьте себе, что каждый из четырёх внешних электронов — это своего рода липучка на поверхности атома, позволяющая атому углерода сцепляться с другими атомами, в том числе с другими атомами углерода[12].
Когда атомы углерода соединяются друг с другом, они образуют длинные цепочки, кольца, сложные петли и множество иных форм, которые мы наблюдаем в молекулах, поддерживающих жизнь на Земле. Иногда они отдают для связи с другим атомом углерода сразу два своих валентных электрона — представьте, что два атома склеены двумя парами липучек вместо одной. Эти так называемые двойные связи играют важную роль в создании сложности, которую мы наблюдаем в молекулах на основе углерода на Земле.
Чрезвычайно важной молекулой на основе углерода является ДНК, которая позволяет живым существам на Земле передавать информацию от одного поколения к другому. Она делает это с помощью четырёх молекул, называемых азотистыми основаниями. Эти молекулы обычно обозначаются первой буквой их названий — аденин (A), гуанин (G), цитозин (C) и тимин (T) — и их последовательность в ДНК организма представляет собой сообщение, передаваемое от поколения к поколению. Мы утверждаем, что у любой жизни, основанной на химических веществах, должно быть нечто, играющее роль ДНК — что-то такое, что может передавать информацию от одного поколения другому. Очевидно, что это «что-то» не обязательно должно быть тем же самым, что и наша ДНК. И действительно, учёные смогли создать в лаборатории ДНК, которая содержит кодирующие молекулы, отличные от упомянутых выше, и это позволяет предположить, что в других мирах могли возникнуть другие молекулы, переносящие информацию.
Подход многих учёных к решению вопроса об альтернативной жизни состоит в том, чтобы найти в живых системах на Земле какую-то функцию, которую сейчас выполняют молекулы на основе углерода, а затем узнать, могут ли выполнять ту же функцию молекулы на основе иного химического элемента. Это такой же хороший способ начать нашу дискуссию, как и любой другой, хотя ниже мы утверждаем, что он может быть полон всякого рода ограничений.
Однако прежде, чем перейти к подробному обсуждению конкретных типов атомов, мы должны уделить чуточку внимания одной вещи: относительному изобилию химических элементов в природе. Очевидно, что более обычный в природе атом с большей вероятностью послужит основой для жизни, чем более редкий — уже хотя бы потому, что первый более доступен для химических реакций, ведущих к образованию жизни. Следовательно, в дальнейшем мы сосредоточим наше внимание на обычных элементах и проигнорируем возможность жизни, основанной на относительно редких атомах.
Если мы взглянем на нашу Солнечную систему или на галактику в целом, то обнаружим, что самыми распространёнными элементами являются водород и гелий, за которыми следуют кислород и углерод. Чтобы подчеркнуть то, что будет важно в ходе нашего последующего обсуждения, скажем, что на каждый атом кремния в Солнечной системе приходится около 10 атомов углерода. Один балл в пользу углеродных шовинистов.
Однако если мы рассмотрим только Землю, ситуация будет совершенно иной. Формирование планет земной группы включало процесс сортировки — например, на Земле почти нет гелия, хотя во Вселенной он встречается в изобилии. Мы считаем, что значительная часть углерода, который мог бы пойти на формирование Земли, вместо этого связалась в виде летучих соединений, которые были выброшены из внутренней области Солнечной системы новорождённым Солнцем. По сути, оказывается, что на Земле на каждый атом углерода приходится около 30 атомов кремния — полная противоположность их относительному содержанию в Солнечной системе в целом. Один балл в пользу парней, топящих за кремний, хотя значительная часть кремния на Земле заключена в минералах глубоко под её поверхностью и, следовательно, недоступна жизни.
Когда мы получим представление о распространённости химических элементов, реальный вопрос о жизни, не похожей на нас, сводится к следующему: существуют ли атомы, отличные от атомов углерода, которые могли бы обеспечивать такую сложность молекул, которую мы наблюдаем у земной жизни? То есть, могут ли эти другие атомы образовывать цепочки, кольца и сложные структуры, как это делает углерод, чтобы заложить основу для существования широкого спектра молекул, необходимых для жизни? Это, как мы указывали выше, ведёт нас к кремнию.
Самый простой способ наглядно представить это — вспомнить о втором правиле квантовой механики, приведённом выше. Представьте, что вы начинаете с углерода, а затем добавляете восемь электронов (конечно же, сопровождая это аналогичным увеличением числа протонов в ядре). Это даст нам атом, который, как и углерод, имеет четыре валентных электрона, поскольку из новых электронов четыре заполнят до конца второй энергетический уровень, и останется ещё четыре для следующего, самого верхнего уровня, на котором они могут образовывать связи. И действительно, элемент, у которого на восемь электронов больше, чем у углерода, — это кремний, расположенный в периодической таблице прямо под углеродом.
Это упражнение объясняет, почему формы жизни на основе кремния на протяжении десятилетий были неотъемлемой частью научной фантастики. С химической точки зрения кремний — это элемент, обладающий наибольшим сходством с углеродом, и, как мы уже отмечали, он довольно распространён во Вселенной. Однако, сделав это замечание, мы должны отметить, что между углеродом и кремнием существует фундаментальная разница. Поскольку валентные электроны кремния находятся на третьем энергетическом уровне, тогда как электроны углерода находятся на втором, атом кремния крупнее своего углеродного аналога. Химики предположили, что именно это различие так затрудняет образование длинных цепочек из атомов кремния. Это означает малую вероятность того, что в жизни на основе кремния цепочки атомов кремния смогут играть ту же роль, что и молекулы типа ДНК в жизни на углеродной основе: «липучки» расположены слишком далеко друг от друга, чтобы два атома кремния могли образовать больше одной связи друг с другом. Таким образом, значительная часть сложности, которую мы наблюдаем в молекулах на основе углерода, просто недоступна кремнию. Это отражается в таком факте: известно, что специалисты в области органической химии используют для описания самых сложных молекул на основе кремния такие слова, как «монотонный».
Другая проблема возникает во время анализа обмена веществ у кремниевой жизни. Углеродный метаболизм основан на соединении атмосферного кислорода с углеводами — молекулами, содержащими атомы углерода и водорода. Простейшим примером этого процесса является сжигание метана[13], молекулы, в которой один атом углерода связан с четырьмя атомами водорода. Конечными продуктами этой реакции являются углекислый газ (газообразный) и вода. (По сути, кислород воздуха соединяется с углеродом метана с образованием двуокиси углерода и с его водородом с образованием воды.) Оба эти вещества легко удалить из того места, где вырабатывается энергия организма — например, такого рода взаимодействием с кислородом является появление углекислого газа в воздухе, выдыхаемом вами прямо сейчас.
Аналогичной реакцией в кремниевом мире было бы сгорание молекулы, в которой один атом кремния связан с четырьмя атомами водорода — вещества, известного как моносилан. Это привело бы к образованию в качестве отходов диоксида кремния (диоксида кремния). При привычных для нас температурах это вещество является твёрдым и выводится из организма с гораздо большим трудом, чем углекислый газ — оно является основным компонентом кварца и песка, например. Кстати, есть такие научно-фантастические рассказы, в которых формы жизни на основе кремния выдают свою истинную природу, испражняясь кирпичами из твёрдого диоксида кремния и оставляя за собой безошибочный след.
Из-за сложностей такого рода в научном сообществе существует общее мнение о том, что живые системы, полностью основанные на кремнии (то есть системы, в которых кремний полностью заменяет углерод), вряд ли будут существовать на планетах, которые мы обычно считаем пригодными для жизни. (Сделав это замечание, мы должны добавить, что данное утверждение не означает, что кремний не может быть включен в живые системы. Многие организмы на Земле — например, диатомовые водоросли в океане — создают твёрдые части, используя атомы кремния в своей основанной на углероде структуре.) Однако мы можем представить себе экзотические планеты, где химия кремния может генерировать некоторые очень сложные молекулярные структуры: например, находящаяся в приливном захвате планета земной группы с расплавленной дневной стороной в звёздной системе, богатой металлами и другими тяжёлыми элементами. Но у нас нет возможности узнать, будут ли большие потоки энергии, пронизывающие такую экзопланету, создавать автономные самовоспроизводящиеся системы, которые мы обычно ассоциируем с жизнью.
Мы завершаем это обсуждение жизни на основе кремния представлением того, что мы считаем одним из самых сильных аргументов в пользу углеродного шовинизма. Как мы видели выше, кремния на Земле гораздо больше, чем углерода. Однако, несмотря на это численное преимущество, роль кремния в живых системах на Земле лучше всего охарактеризовать как незначительную, в то время как углерод, представленный относительно бедно, составляет основу всех живых систем. Это подсказывает нам, что в углероде есть нечто особенное, если дело касается жизни, и что жизнь в других местах, возможно, за некоторыми исключениями, будет основана на углероде.
Мы потратили много времени на разговоры о возможности жизни на основе кремния по нескольким причинам. Во-первых, как мы уже отмечали, кремний является элементом, в наибольшей степени подобным углероду. Кроме того, научно-фантастических сценариев, затрагивающих жизнь на основе кремния, существует, вероятно, больше, чем посвящённых любой другой её форме. Такая художественная литература обычно изображает кремниевые формы жизни в виде оживших минералов или скал. Если же принять во внимание аргументы, приведённые в этом разделе, то нам кажется, что эти формы жизни будут редкими в галактике, или же вообще не будут существовать.
Так какие же другие виды жизни, не похожей на нас самих, мы обнаружим с большей вероятностью?
До настоящего момента мы достаточно вольно использовали словосочетание «жизнь на основе углерода». В целом молекулы в живых системах на Земле в своём функционировании могут зависеть от уникальных свойств углерода, но многие из них содержат атомы других материалов, чередующихся с их углеродом. Например, знакомая нам двойная спираль ДНК построена на каркасе из атомов фосфора и кислорода. Поэтому мы должны рассмотреть возможность появления в живых системах кремния в сочетании с другими атомами.
Мы знаем много веществ, в структуре молекул которых есть цепочки из кремния и кислорода, но не цепочки, полностью состоящие из атомов кремния: например, водонепроницаемые герметики и иная коммерческая продукция. Недавно учёные из Калифорнийского технологического института, используя бактерии, собранные в горячих источниках в Исландии, создали молекулы с химическими связями непосредственно между углеродом и кремнием. Хотя основной химический интерес к таким молекулам заключается в том, что они могут выступать в качестве ферментов для создания широкого спектра промышленных материалов, но они также предполагают возможность развития в других мирах форм жизни, основанных на комбинациях углерода и кремния.
Изредка учёные рассматривали в качестве замены углерода в живых существах элементы, отличные от кремния. Как мы уже видели, основная стратегия состоит в том, чтобы найти элемент, который (1) является довольно распространённым и (2) способен образовывать длинные молекулярные цепочки. Одним из элементов, отвечающих этим критериям, является сера, которая находится в периодической таблице прямо под кислородом. Хотя сера встречается не в таком изобилии, как углерод или кремний, она всё же входит в первую десятку самых распространённых элементов в галактике. Она также способна образовывать линейные цепочечные молекулы, хотя это явно не такие сложные разветвлённые структуры, как в биомолекулах на Земле.
Наиболее заметные концентрации серы в Солнечной системе находятся на спутнике Юпитера Ио (это тот, что похож на пиццу с пепперони). Ио является ближайшей к Юпитеру среди четырёх больших галилеевых лун планеты (остальные — это Европа, Ганимед и Каллисто), и гравитационные взаимодействия между этими спутниками генерируют много тепла в его недрах. В результате Ио оказывается самым вулканически активным объектом в Солнечной системе, а вулканы выбрасывают продукты извержения на сотни миль в атмосферу. Пятнистая окраска на его поверхности в основном обусловлена серой из вулканов, которая осела после этих извержений. Большая часть этого покрытия представляет собой чистую серу в нескольких из множества её форм.
Атомы серы обычно объединяются в группы от 6 до 20 атомов, причем наиболее распространённой является структура в форме короны из 8 атомов. Нет ничего необычного в том, что атомы одного элемента группируются в разных конфигурациях: например, алмазы и графит (карандашный грифель) являются чистым углеродом, но у них разное расположение связей между атомами. Когда две молекулы, состоящие из атомов одного и того же типа, имеют разную конфигурацию, говорят, что они являются аллотропными модификациями друг друга. Большое количество аллотропных модификаций серы, которые мы наблюдаем в таких местах, как Ио, иногда используется как основание для предположения о возможности жизни на основе серы — предположения, рождённого широким разнообразием форм, которые могут принимать аллотропные модификации серы. Однако мы не знаем ни одной работы, которая выводила бы этот аргумент за рамки простых предположений.
Мы могли бы продолжить эту дискуссию, двигаясь по всей периодической таблице, но чем дальше мы уходим от углерода, тем более слабыми становятся аргументы. Думаем, что лучше всего придерживаться углерода, сохраняя при этом непредвзятое отношение к случайному редкому появлению жизни, основанной на других химических элементах.
Быть водным шовинистом во многих отношениях даже ещё проще, чем углеродным. Вода обладает многими свойствами, которые делают её пригодной для поддержания жизни, и она действительно практически вне конкуренции. Давайте начнём нашу дискуссию с рассказа о некоторых из её желательных свойств.
Прежде всего, для повышения температуры воды требуется много энергии. На языке физиков мы говорим, что она обладает высокой удельной теплоёмкостью. Это позволяет относительно легко поддерживать постоянную температуру в водоёмах, что является очевидным преимуществом для живых систем.
Кроме того, вода обладает довольно необычным свойством, состоящим в том, что плотность её твёрдой фазы (льда) меньше, чем плотность жидкой фазы. Почти все прочие материалы обладают противоположными свойствами. Это означает, что когда вода начинает замерзать, лёд всплывает наверх, а не опускается на дно. Как правило, в больших водоёмах лёд образует теплоизолирующий слой, а вода под ним остаётся жидкой, что является ещё одним очевидным преимуществом для жизни. Если бы лёд был плотнее жидкой воды, он опустился бы на дно, едва образовавшись, и озеро или океан промёрзли бы полностью снизу вверх. И это, как минимум, создало бы стресс для водных обитателей.
Возможно, важнейшим свойством воды с нашей точки зрения является её способность растворять самые разнообразные вещества. Собственно, её часто называют универсальным растворителем, так как она может растворять больше веществ, чем любая другая обычная жидкость. Это означает, что молекулы других веществ, растворённых в воде, в целом свободно перемещаются и взаимодействуют друг с другом — это очевидный плюс в том, что касается развития жизни. Причина, по которой вода обладает такой способностью, заключается в том, что она представляет собой пример так называемой полярной молекулы.
Небольшое пояснение: законы квантовой механики управляют силами, действующими между атомами в молекулах воды, определяя их конфигурацию. Если вы представите, что атом кислорода — это голова, то два атома водорода — это прикреплённые к нему уши Микки Мауса, причем угол между отрезками, проведёнными от кислорода к двум водородам, составляет 105 градусов. Законы квантовой механики также говорят нам, что электроны в молекуле будут стремиться собираться вокруг атома кислорода. Таким образом, хотя молекула воды в целом электрически нейтральна, один её конец будет нести отрицательный заряд, тогда как другой конец будет положительным. Это распределение зарядов и делает воду полярной. Давайте посмотрим, как это работает, когда вода растворяет другое вещество.
Представьте себе молекулу воды, приближающуюся к куску вещества. Чисто теоретически предположим, что она приближается отрицательным концом вперёд. Молекула в веществе будет испытывать воздействие электрических сил от обоих концов приближающейся молекулы воды, но те, которые связаны с отрицательно заряженным концом, находящимся ближе, будут оказывать более сильное воздействие. Вступив в контакт с молекулой вещества, молекула воды приобретает чистый отрицательный заряд. Из-за этого электроны в молекулах материала будут отталкиваться от приближающейся воды, оставляя в веществе положительно заряженную область, обращённую в сторону молекулы воды. В итоге у нас получается, что к положительному концу молекул материала приближается отрицательно заряженный конец молекулы воды.
Мы знаем, что противоположные электрические заряды притягиваются, а это означает, что, как только электроны сместятся, как описано выше, между молекулой воды и молекулой вещества возникнет сила притяжения. Это вытянет молекулу вещества из её первоначального положения, и по мере продолжения этого процесса вещество будет растворяться молекула за молекулой.
Любой, у кого есть кулинарный опыт, знает, что один из способов удалить липкий налёт с кастрюль и тарелок — просто дать им немного побыть в воде. Эта маленькая кухонная хитрость работает, потому что полярные процессы, запущенные конфигурацией электронов в молекуле воды, медленно растворяют липкий материал.
Учёные рассуждали о многих веществах, которые могли бы заменить воду в химии жизни. В целом мы можем выделить здесь две функции воды. Одна из них, упомянутая выше — просто быть средой, поддерживающей сложные молекулы. Для описания жидкостей, способных образовывать жидкие океаны, писатель-фантаст и биохимик Айзек Азимов придумал слово «талассоген» (образователь морей). Вторая функция — участие в химических процессах жизни. Образование молекул воды играет определённую роль в создании так называемой пептидной связи, которая, например, удерживает белки вместе. Далее мы рассмотрим два возможных заменителя воды. Один из них — аммиак, распространённая молекула, больше всех похожая на воду, а другой — метан. Последний упомянут здесь, потому что мы знаем об одном метановом океане во Вселенной — он находится на спутнике Сатурна Титане.
Давайте начнем с аммиака, NH3. Аммиак, состоящий из азота и водорода, двух распространённых элементов, является обычным веществом — это была одна из первых сложных молекул, обнаруженных в межзвёздных облаках. Вы, вероятно, сталкивались с ним в виде водного раствора, обычного бытового чистящего средства (его часто используют для стекла и керамики, потому что он высыхает, не оставляя разводов). И, конечно же, он играет важную роль в производстве удобрений, которые позволяют относительно небольшому числу фермеров прокормить миллиарды людей на нашей планете. При давлении в 1 атмосферу аммиак представляет собой жидкость в диапазоне от -108° до -28°F (от -78° до -33°C). В этом состоянии он способен растворять самые разнообразные материалы, в том числе некоторые металлы. Кроме того, многие важные молекулы, обнаруженные в системах на основе углерода, имеют аналоги в системах на основе аммиака. Относительное изобилие аммиака и такого рода химические свойства побудили некоторых учёных предложить его в качестве заменителя воды в процессе развития жизни.
Однако здесь есть некоторые проблемы. Вероятно, важнейшей из них является то, что аммиак является жидкостью только при температурах, которые значительно ниже, чем встречающиеся в большинстве мест на Земле. Как правило, при понижении температуры химические реакции замедляются. Вот почему мы используем холодильники и морозильники — если уж об этом заговорили, порча продуктов представляет собой химический процесс. У химиков есть общее эмпирическое правило, согласно которому скорость реакции падает вдвое при каждом снижении температуры на 18°F (10°C). Таким образом, химические реакции в аммиачном океане происходили бы примерно в 30-50 раз медленнее, чем в относительно спокойных океанах Земли. Таким образом, развитие жизни, которое на Земле заняло сотни миллионов лет, в аммиачном океане может занять несколько миллиардов лет. (Мы столкнёмся с проблемой температуры в ещё более выраженной форме далее, когда будем обсуждать жидкий метан.)
Отметив этот момент, мы должны добавить, что не рассматриваем сравнительно низкую температуру жидкого аммиака как абсолютный барьер для развития жизни — как основанной на углероде, так и какой-либо иной. Это просто означает, что для развития жизни в мире, океаны которого состоят из аммиака, потребуется больше времени. Можно было бы рассчитать размеры ЗООЗ для планетных систем с аммиачными океанами, хотя мы не знаем, делалось ли это вообще. Вероятно, они будут находиться дальше от звезды, чем ЗООЗ для воды.
Некоторые учёные, однако, выразили серьёзную обеспокоенность по поводу пригодности аммиака в качестве среды для жизни. Возражения основаны на том факте, что силы, удерживающие молекулы жидкости вместе, в аммиаке слабее, чем в воде. Попутно отметим, что отсутствие разводов на стекле от аммиака связано именно с этим свойством. Притяжение между молекулами воды создаёт поверхностное натяжение, которое заставляет воду на стекле собираться в капли. Аммиак, обладающий более низким поверхностным натяжением, не образует столько капелек и, следовательно, не оставляет разводов. К сожалению, это свойство молекул аммиака может затруднить им образование длинных цепочек, встречающихся в живых системах.
Как и кремний, аммиак является излюбленным альтернативным веществом среди любителей научной фантастики. Например, его часто используют, чтобы представить жизни в холодных внешних слоях атмосферы газовых гигантов. Его способность растворять металлы также порождает увлекательные дискуссии о том, какие цвета вы могли бы увидеть в аммиачном океане. Однако на данный момент, хотя мы и должны рассматривать аммиачные океаны как возможное место зарождения жизни на экзопланетах, у нас нет доказательств того, что они существуют.
Как следует из термина «природный газ», метан — это газ при тех температурах, которые мы считаем нормальными. Если точнее, то он является жидкостью только при температурах между -260° и -297°F (от -162° до -183°C). Тем не менее, нам известен один мир с такой низкой температурой поверхности, и мы знаем, что в этом мире есть океаны, состоящие из метана и других углеводородов. Таким образом, метан является единственным талассогенным веществом, в отношении которого мы можем быть уверены, что оно действительно участвовало в формировании океана (помимо воды, разумеется).
Мир, о котором мы говорим, — это Титан, самый большой спутник Сатурна. С нашей точки зрения, об этом теле известно два важных факта: во-первых, это единственная луна в Солнечной системе с плотной атмосферой (состоящей в основном из газообразного азота, как у Земли), а во-вторых, она действительно холодная — температура поверхности колеблется около -290°F (-179°C).
Чтобы охарактеризовать этот мир лучше всего, можно сказать, что в нём есть знакомые геологические структуры (например, озёра и горы), состоящие из незнакомых материалов. При температуре поверхности Титана водяной лёд твёрд, как камень, а озёра и океаны состоят из жидкого метана и других углеводородов, как уже упоминалось выше. Самым распространённым из этих других углеводородов является этан, двоюродный брат метана, содержащий два атома углерода. Песчаные дюны вблизи экватора Титана состоят из органических соединений тёмной окраски — один учёный сравнил их с дюнами из кофейной гущи.
Атмосфера Титана представляет собой оранжевую дымку, которая препятствует хорошему обзору поверхности. На протяжении многих лет наблюдения в телескоп и данные с космических аппаратов показали, что атмосфера насыщена сложными органическими соединениями — молекулами, которые значительно сложнее, чем простой метан. Затем, вскоре после прибытия к Сатурну в 2004 году, космический аппарат «Кассини» сбросил зонд в атмосферу Титана, и мы впервые взглянули на его поверхность. Зонд был назван в честь Христиана Гюйгенса (1629-95), голландского астронома, открывшего Титан. Он совершил посадку на поверхность спутника и передавал оттуда данные в течение примерно 90 минут, прежде чем его поглотила поверхность Титана. После этого «Кассини» ещё несколько раз пролетел рядом с Титаном, картировав его поверхность при помощи радара. Теперь в нашем представлении этот спутник — такое место, где углеводороды дождём льются с неба и заполняют моря и озёра. (Интересно, что озера Титана названы в честь аналогов на Земле: например, Онтарио и Каюга.) Именно в этих озёрах и морях учёные надеются отыскать информацию о развитии жизни в метановой среде.
Существует ещё одно важное следствие чрезвычайно низких температур на Титане, которое может повлиять на происхождение жизни. Если, как мы указывали выше, скорость химической реакции снижается вдвое при каждом понижении температуры на 18°F (10°C), то на Титане они займут примерно в миллион раз больше времени, чем на Земле. Таким образом, если для развития жизни в океанах Земли потребовались сотни миллионов лет, как это и было, судя по всему, то для того, чтобы то же самое случилось на Титане, потребовались бы сотни триллионов лет. Это значительно больше, чем возраст Вселенной, поэтому первый вывод, который мы можем сделать, состоит в том, что, даже если жизнь и может развиться в метановом океане, у неё, вероятно, не было времени это сделать. Следовательно, учёные, изучающие химию Титана, говорят о поиске предшественников жизни, а не самой жизни. Если нет таких низкотемпературных процессов, о которых мы не знаем в настоящее время, нам придётся исключить метановые океаны из нашего списка сред, в которых к настоящему времени могла бы развиться жизнь.
Сделав это замечание, мы должны отметить, что мы не принимаем во внимание возможность существования пока ещё неизвестных каталитических или ферментативных процессов, которые могли бы значительно ускорить скорость реакции. Однако до тех пор, пока они не будут обнаружены, мы будем придерживаться общепринятого довода, приведённого выше, и считать Титан местом, где мы можем изучать химические предшественники жизни.
На протяжении многих лет люди строили предположения в отношении многих других жидкостей, которые могли бы играть ту роль, которую вода играет в жизни на Земле. Одним из таких примеров является сероводород, H2S. В этой молекуле атом серы занимает то же самое место, какое кислород занимает в воде. Он становится жидкостью при температуре ниже -76°F (-60°C), и потому можно ожидать, что он будет играть важную роль на планетах, удалённых от своих звёзд. Как мы видели в случае с аммиаком, при такой температуре химические реакции, которые привели к возникновению жизни на Земле, протекали бы в несколько сотен раз медленнее, чем на нашей родной планете. С другой стороны, жизни хватило бы времени, чтобы развиться в сероводородном океане на планете, вращающейся вокруг долгоживущей звезды — такой, как красный карлик. Однако, в отличие от аммиака, научных исследований, касающихся пригодности этой молекулы для развития жизни, проводилось очень мало. Таким образом, мы поместим сероводород, а также целый список других веществ, которые могут заменить воду в процессе развития жизни, в папку с пометкой «Возможно».
Написано несколько статей о возможных жидкостях, находящихся на другом конце температурной шкалы по отношению к веществам, которые мы обсуждали до сих пор, — например, о расплавленной лаве. В этом случае проблема заключается не в скорости химических реакций, а в возможности сохранения сложных молекул. В конце концов, высокая температура означает высокую скорость движения и к чрезвычайно сильные столкновения молекул. Мы предполагаем, что в условиях высокой температуры чему-то вроде молекулы ДНК было бы невозможно сохраниться. Скорее всего, какая-либо информация, передаваемая из поколения в поколение, могла бы передаваться посредством сложных минералов, способных сохранять свою структуру при высоких температурах.
Итак, мы завершаем обсуждение этой темы, освежив своё убеждение в том, что наиболее вероятными компонентами в развитии жизни будут молекулы на основе углерода, работающие в воде. Следовательно, мы считаем, что наша нынешняя стратегия, обращающая поисковые усилия на системы, где имеются эти вещества, в высшей степени разумна. Однако мы также понимаем, что следует непредвзято относиться к другим типам молекул, работающих в других жидкостях, поскольку исключать такие типы жизни нельзя, и галактика наверняка будет полна странных и неожиданных находок.