На первый взгляд возможность значительного упрощения двигателя при переходе к большим скоростям полета кажется странной, пожалуй, даже невероятной. Вся история авиации до сих пор говорит о противоположном: борьба за увеличение скорости полета приводила к усложнению двигателя. Так было с поршневыми двигателями: мощные двигатели скоростных самолетов периода второй мировой войны значительно сложнее тех двигателей, которые устанавливались на самолетах в первый период развития авиации. То же происходит сейчас с турбореактивными двигателями: достаточно вспомнить о сложной проблеме увеличения температуры газов перед турбиной.
И вдруг такое принципиальное упрощение двигателя, как полное устранение газовой турбины. Возможно ли это? Как же будет приводиться во вращение компрессор двигателя, необходимый для сжатия воздуха, — ведь без такого сжатия не может работать турбореактивный двигатель?
Но так ли необходим компрессор? Нельзя ли обойтись без компрессора и как-нибудь иначе обеспечить необходимое сжатие воздуха?
Оказывается, такая возможность существует. Мало того: этого можно достичь даже не одним способом. Воздушно-реактивные двигатели, в которых применен один такой метод бескомпрессорного. сжатия воздуха, нашли даже практическое применение в авиации. Это было еще в период второй мировой войны.
В июне 1944 г. жители Лондона впервые познакомились с новым оружием немцев. С противоположной стороны пролива, с берегов Франции, на Лондон неслись небольшие самолеты странной формы с громко тарахтевшим двигателем (рис. 39). Каждый такой самолет представлял собой летящую бомбу — на нем находилось около тонны взрывчатого вещества. Летчиков на этих «самолетах-роботах» не было; они управлялись приборами-автоматами и также автоматически, вслепую пикировали на Лондон, сея смерть и разрушения. Это были реактивные самолеты-снаряды.
Реактивные двигатели самолетов-снарядов не имели компрессора, но тем не менее развивали тягу, необходимую для полета с большой скоростью. Как же работают эти так называемые пульсирующие воздушно-реактивные двигатели?
Следует отметить, что еще в 1906 г. русский инженер-изобретатель В. В. Караводин предложил, а в 1908 г. построил и испытал пульсирующий двигатель, похожий на современные двигатели этого типа.
Рис. 39. Реактивный самолет-снаряд. Свыше 8000 таких «самолетов-роботов» было выпущено гитлеровцами во время второй мировой войны для бомбардировки Лондона
Чтобы познакомиться с устройством пульсирующего двигателя, войдем в помещение испытательной станции завода, изготовляющего такие двигатели. Кстати, один из двигателей уже установлен на испытательном станке, скоро начнутся его испытания.
Снаружи этот двигатель прост — он состоит из двух тонкостенных труб, спереди — короткой, большего диаметра, сзади — длинной, меньшего диаметра. Обе трубы соединены конической переходной частью. И спереди, и сзади торцовые отверстия двигателя открыты. Это понятно — через переднее отверстие в двигатель засасывается воздух, через заднее — вытекают в атмосферу горячие газы. Но как же создается в двигателе повышенное давление, необходимое для его работы?
Заглянем в двигатель через его входное отверстие (рис. 40). Оказывается, внутри, сразу за входным отверстием, находится перегораживающая двигатель решетка. Если мы посмотрим внутрь двигателя через выходное отверстие, то увидим вдалеке ту же решетку. Ничего другого внутри двигателя, оказывается, нет. Следовательно, эта решетка заменяет и компрессор, и турбину турбореактивного двигателя? Что же это за такая «всемогущая» решетка?
Но нам сигнализируют через окно наблюдательной кабины — нужно уходить из бокса (так обычно называют помещение, в котором находится испытательная установка), сейчас начнутся испытания. Займем место у пульта управления рядом с инженером, ведущим испытания. Вот инженер нажимает пусковую кнопку. В камеру сгорания двигателя через форсунки начинает поступать топливо — бензин, который сразу воспламеняется электрической искрой, и из выходного отверстия двигателя вырывается клубок раскаленных газов. Еще клубок, еще один — и вот уже отдельные хлопки превратились в оглушительное тарахтение, слышное даже в кабине, несмотря на хорошую звукоизоляцию.
Войдем снова в бокс. Резкий грохот обрушивается на нас, как только мы открываем дверь. Двигатель сильно вибрирует и, кажется, вот-вот сорвется со станка под действием развиваемой им тяги. Из выходного отверстия вырывается струя раскаленных газов, устремляющаяся в воронку отсасывающего устройства. Двигатель быстро разогрелся. Осторожно, не положите руку на его корпус — обожжете!
Стрелка на большом циферблате прибора для измерения тяги — динамометра, установленного в помещении так, что его показания можно прочесть через окна наблюдательной кабины, колеблется около цифры 250. Значит, двигатель развивает тягу, равную 250 кг. Но понять, как работает двигатель и почему он развивает тягу, нам все же не удается. Компрессора в двигателе нет, а из него с большой скоростью вырываются газы, создавая тягу; значит, давление внутри двигателя повышено. Но как? Чем сжимается воздух?
Рис. 40. Пульсирующий воздушно-реактивный двигатель:
а — принципиальная схема; б — схема установки дефлекторов 1 и входной решетки 2 (на рисунке справа входная решетка снята); в — передняя часть двигателя; г — устройство решетки
На этот раз нам не помог бы даже и зеленый воздушный океан, с помощью которого мы раньше наблюдали за работой винта и турбореактивного двигателя. Если бы мы поместили работающий пульсирующий двигатель с прозрачными стенками в такой океан, то перед нами предстала бы такая картина. Спереди к выходному отверстию двигателя устремляется засасываемый им воздух — перед этим отверстием появляется знакомая нам воронка, которая своим узким и более темным концом обращена к двигателю. Из выходного отверстия вытекает струя, имеющая темнозеленый цвет, свидетельствующий о том, что скорость газов в струе велика. Внутри двигателя цвет воздуха по мере его продвижения к выходному отверстию постепенно темнеет, значит скорость движения воздуха увеличивается. Но почему это происходит, какую роль играет решетка внутри двигателя? Ответить на этот вопрос мы все еще не можем.
Не многим помог бы нам и другой воздушный океан — красный, к помощи которого мы прибегали при изучении работы турбореактивного двигателя. Мы убедились бы только в том, что сразу за решеткой цвет воздуха в двигателе становится темнокрасным, значит в этом месте его температура резко возрастает. Это легко объяснимо, так как здесь, очевидно, происходит сгорание топлива. Темнокрасный цвет имеет и реактивная струя, вытекающая из двигателя, — это раскаленные газы. Но почему эти газы вытекают с такой большой скоростью из двигателя, мы так и не узнали.
Может быть, загадку можно разъяснить, если воспользоваться таким искусственным воздушным океаном, который показывал бы нам, как изменяется давление воздуха? Пусть это будет, например, синий воздушный океан, причем такой, что цвет его становится тем более темносиним, чем больше давление воздуха. Попытаемся при помощи этого океана выяснить, где и как рождается внутри двигателя то повышенное давление, которое заставляет вытекать из него газы с такой большой скоростью. Но увы, и этот синий океан не принес бы нам большой пользы. Поместив в такой воздушный океан двигатель, мы увидим, что за решеткой воздух сразу густо синеет, значит он сжимается и его давление резко повышается. Но как это происходит? Ответа на этот вопрос мы все же не получим. Потом в длинной выходной трубе воздух снова бледнеет, следовательно, в ней он расширяется; благодаря этому расширению скорость истечения газов из двигателя оказывается такой большой.
В чем же все-таки заключается секрет «таинственного» сжатия воздуха в пульсирующем двигателе?
Этот секрет, оказывается, можно разгадать, если применить для изучения явлений в двигателе киносъемку «лупой времени». Если прозрачный работающий двигатель сфотографировать в синем воздушном океане, делая тысячи снимков в секунду, а затем показать получившийся фильм с обычной частотой 24 кадра в секунду, то перед нами на экране медленно развертывались бы процессы, стремительно происходящие в двигателе. Тогда нетрудно было бы понять, почему не удается рассмотреть эти процессы на работающем двигателе, — они так быстро следуют один за другим, что глаз в обычных условиях не успевает следить за ними и фиксирует лишь какие-то усредненные явления. «Лупа времени» позволяет «замедлить» эти процессы и делает возможным их изучение.
Вот в камере сгорания двигателя за решеткой произошла вспышка — впрыснутое топливо воспламенилось и давление резко повысилось (рис. 41). Такого сильного повышения давления не произошло бы, конечно, если бы камера сгорания за решеткой была непосредственно сообщена с атмосферой. Но она соединена с ней длинной, относительно узкой трубой: воздух в этой трубе служит как бы поршнем; пока происходит разгон этого «поршня», давление в камере повышается. Давление повысилось бы еще сильнее, если бы на выходе из камеры имелся какой-нибудь клапан, закрывающийся в момент вспышки. Но этот клапан был бы очень ненадежным — ведь его омывали бы раскаленные газы.
Рис. 41. Так работает пульсирующий воздушно-реактивный двигатель:
а — произошла вспышка топлива, клапана решетки закрыты; б — в камере сгорания создалось разрежение, клапана открылись; в — воздух входит в камеру через решетку и через выхлопную трубу; г — так меняется по времени давление в камере сгорания работающего двигателя
Под действием повышенного давления в камере сгорания продукты горения и еще продолжающие гореть газы устремляются с большой скоростью наружу, в атмосферу. Мы видим, как клубок раскаленных газов мчится по длинной трубе к выходному отверстию. Но что это? В камере сгорания позади этого клубка давление понизилось так же, как это происходит, например, за движущимся в цилиндре поршнем; воздух там стал светлосиним. Вот он все светлеет и, наконец, становится светлее окружающего двигатель синего океана. Это значит, что в камере создалось разрежение. Тотчас же лепестки стальных пластинчатых клапанов решетки,, служащих для закрывания отверстий в ней, отгибаются под напором атмосферного воздуха. Отверстия в решетке открываются, и внутрь двигателя врывается свежий воздух. Понятно, что если входное отверстие двигателя закрыть, как это изобразил на шуточном рисунке (рис. 42) художник, то двигатель работать не сможет. Следует отметить, что похожие на тонкое лезвие безопасной бритвы стальные клапаны решетки, являющиеся единственными движущимися частями пульсирующего двигателя, обычно и ограничивают срок его службы — они выходят из строя через несколько десятков минут работы.
Рис. 42. Если прекратить доступ воздуха в пульсирующий воздушно-реактивный двигатель, то он моментально заглохнет (Можно «бороться» с самолетами-снарядами и так. Шуточный рисунок, помещенный в одном из английских журналов в связи с применением гитлеровцами самолетов-снарядов для бомбардировки Лондона)
Все дальше движется темносиний «поршень» горячих газов по длинной трубе к выходному отверстию, все больше свежего воздуха поступает через решетку в двигатель. Но вот газы вырвались из трубы наружу. Мы с трудом могли разглядеть клубки раскаленных газов в струе, когда находились в испытательном боксе, так быстро они следовали один за другим. Ночью же в полете пульсирующий двигатель оставляет за собой отчетливо видный светящийся пунктир, образованный клубками раскаленных газов (рис. 43).
Рис. 43. Такой светящийся пунктир оставляет за собой летящий ночью самолет-снаряд с пульсирующим воздушно-реактивным двигателем
Как только газы вырвались из выхлопной трубы двигателя, в нее устремился через выходное отверстие свежий воздух из атмосферы. Теперь в двигателе мчатся навстречу друг другу два урагана, два воздушных потока — один из них вошел через входное отверстие и решетку, другой — через выходное отверстие двигателя. Еще мгновение, и давление внутри двигателя повысилось, цвет воздуха в нем стал таким же синим, как и в окружающей атмосфере. Лепестки клапанов захлопнулись, прекратив этим вход воздуха через решетку.
Но воздух, поступивший через выходное отверстие двигателя, продолжает по инерции двигаться по трубе внутрь двигателя, и в трубу засасываются из атмосферы все новые порции воздуха. Длинный столб воздуха, движущийся по трубе, как поршень, сжимает воздух, находящийся в камере сгорания у решетки; цвет его становится более синим, чем в атмосфере.
Вот что, оказывается, заменяет компрессор в этом двигателе. Но давление воздуха в пульсирующем двигателе значительно ниже, чем в турбореактивном двигателе. Этим, в частности, объясняется то, что пульсирующий двигатель менее экономичен. Он расходует значительно больше топлива на килограмм тяги, чем турбореактивный двигатель. Ведь чем больше повышается давление в воздушно-реактивном двигателе, тем большую полезную работу он совершает при том же расходе топлива.
В сжатый воздух снова впрыскивается бензин, вспышка — и все повторяется сначала с частотой в десятки раз в секунду. В некоторых пульсирующих двигателях частота рабочих циклов достигает ста и более циклов в секунду. Это значит, что весь рабочий процесс двигателя: всасывание свежего воздуха, его сжатие, вспышка, расширение и истечение газов — длится около 1/100 секунды. Поэтому нет ничего удивительного в том, что без «лупы времени» нам не удавалось разобраться в том, как работает пульсирующий двигатель.
Такая периодичность работы двигателя и позволяет обойтись без компрессора. Отсюда возникло и само название двигателя — пульсирующий. Как видно, секрет работы двигателя связан с решеткой на входе в двигатель.
Но, оказывается, пульсирующий двигатель может работать и без решетки. На первый взгляд это кажется невероятным — ведь если входное отверстие не закрыть решеткой, то при вспышке газы потекут в обе стороны, а не только назад, через выходное отверстие. Однако если мы сузим входное отверстие, т. е. уменьшим его сечение, то можно добиться того, что основная масса газов будет вытекать через выходное отверстие. В этом случае двигатель все же будет развивать тягу, правда меньшую по величине, чем двигатель с решеткой. Такие пульсирующие двигатели без решетки (рис. 44, а) не только исследуются в лабораториях, но и устанавливаются на некоторых экспериментальных самолетах, как это изображено на рис. 44, б. Исследуются и другие двигатели этого же типа — в них оба отверстия, и входное и выходное, обращены назад, против направления полета (см. рис. 44, в); такие двигатели получаются более компактными.
Пульсирующие воздушно-реактивные двигатели значительно проще турбореактивных и поршневых двигателей. В них нет движущихся частей, если не считать пластинчатых клапанов решетки, без которых, как указывалось выше, тоже можно обойтись.
Рис. 44. Пульсирующий двигатель, не имеющий решетки на входе:
а — общий вид (на рисунке показан примерный размер одного из таких двигателей); б — легкий самолет с четырьмя пульсирующими двигателями, подобными двигателю, изображенному выше; в — один из вариантов устройства двигателя без входной решетки
Благодаря простоте конструкции, дешевизне и малому весу пульсирующие двигатели находят применение в таком оружии одноразового действия, как самолеты-снаряды. Они могут сообщить им скорость 700—900 км/час и обеспечить дальность полета в несколько сот километров. Для такого назначения пульсирующие воздушно-реактивные двигатели подходят лучше любых других авиационных двигателей. Если бы, например, на описанном выше самолете-снаряде вместо пульсирующего двигателя решили бы установить обычный поршневой авиационный двигатель, то для получения той же скорости полета (примерно 650 км/час) понадобился бы двигатель мощностью около 750 л. с. Он расходовал бы примерно в 7 раз меньше топлива, но зато был бы по крайней мере в 10 раз тяжелее и неизмеримо дороже. Следовательно, при увеличении дальности полета пульсирующие двигатели становятся невыгодными, так как увеличение расхода топлива не компенсируется при этом экономией в весе. Пульсирующие воздушно-реактивные двигатели могут найти применение и в легкомоторной авиации, на вертолетах и т. д.
Простые пульсирующие двигатели представляют большой интерес и для установки их на авиамоделях. Изготовить небольшой пульсирующий воздушно-реактивный двигатель для авиамодели под силу любому авиамодельному кружку. В 1950 году, когда в здании Академии наук в Москве, в Харитоньевском переулке, представители научно-технической общественности столицы собрались на вечер, посвященный памяти основоположника реактивной техники Константина Эдуардовича Циолковского, внимание присутствующих привлек крохотный пульсирующий двигатель. Этот двигатель для авиамодели был укреплен на небольшой деревянной подставке. Когда в перерыве между заседаниями «конструктор» двигателя, державший подставку в руках, запустил его, то громкое резкое тарахтение заполнило все углы старинного здания. Быстро разогревшийся до красного каления двигатель неудержимо рвался с подставки, наглядно демонстрируя силу, лежащую в основе всей современной реактивной техники.
Пульсирующие воздушно-реактивные двигатели так просты, что их можно с полным правом назвать летающими топками. В самом деле, установлена на самолете труба, горит в этой трубе топливо, и развивает она тягу, заставляющую лететь с большой скоростью самолет.
Однако с еще большим правом можно назвать летающими топками двигатели другого типа, так называемые прямоточные воздушно-реактивные двигатели. Если пульсирующие воздушно-реактивные двигатели могут рассчитывать лишь на сравнительно ограниченное применение, то перед прямоточными воздушно-реактивными двигателями раскрываются широчайшие перспективы; они являются двигателями будущего в авиации. Это объясняется тем, что с увеличением скорости полета выше 900—1000 км/час пульсирующие двигатели становятся все менее выгодными, так как они развивают меньшую тягу и потребляют больше топлива. Прямоточные двигатели, наоборот, наиболее выгодны именно при сверхзвуковых скоростях полета. При скорости полета в 3—4 раза большей, чем скорость звука, прямоточные двигатели превосходят любые другие известные авиационные двигатели, в этих условиях им нет равных.
Прямоточный двигатель внешне похож на пульсирующий. Он также представляет собой бескомпрессорный воздушно-реактивный двигатель, но отличается от пульсирующего принципиально тем, что работает не периодически. Через него непрерывно течет установившийся, постоянный поток воздуха, как и через турбореактивный двигатель. Как же в прямоточном воздушно-реактивном двигателе осуществляется сжатие поступающего воздуха, если в нем нет ни компрессора, как в турбореактивном двигателе, ни периодических вспышек, как в двигателе пульсирующем?
Оказывается, секрет такого сжатия связан с тем влиянием на работу двигателя, которое оказывает на нее быстро увеличивающаяся скорость полета. Это влияние играет огромную роль во всей скоростной авиации и будет играть все большую роль по мере дальнейшего увеличения скорости полета.