Сжатие воздуха — важнейший, но не единственный процесс, происходящий в прямоточном воздушно-реактивном двигателе. После того как воздух сжат, его необходимо нагреть — без этого двигатель не может развивать тягу. А для нагревания воздуха в двигателе нужно сжечь топливо. Средняя цилиндрическая часть двигателя, в которую поступает воздух из диффузора и где происходит сгорание топлива, поэтому и называется камерой сгорания.
Сгорание топлива в прямоточном воздушно-реактивном двигателе является самой сложной частью протекающего в нем рабочего процесса. Со сгоранием связаны, пожалуй, наибольшие трудности, которые возникают и перед ученым, исследующим прямоточный двигатель, и перед конструктором, создающим новый образец такого двигателя, и перед экспериментатором, испытывающим его на стенде или в полете.
Правда, так обстоит дело не только в случае прямоточного двигателя. Сгорание представляет собой обычно наименее изученную часть рабочего процесса едва ли не любого теплового двигателя. Это относится и к таким широко распространенным двигателям, как поршневые двигатели внутреннего сгорания — автомобильные, тракторные, авиационные, судовые и другие. Но если недостаточная изученность процесса сгорания в этих двигателях не мешает их успешному использованию, то иначе обстоит дело с прямоточным двигателем. По существу именно сгорание главным образом и представляет собой ту основную трудность, которую предстоит еще преодолеть ученым и конструкторам на пути освоения прямоточного воздушно-реактивного двигателя с тем, чтобы он получил полноправную путевку в жизнь.
Неудивительно, что сгорание топлива в прямоточном воздушно-реактивном двигателе представляет собой столь сложную проблему. Ведь это сгорание должно происходить в необычайно трудных условиях, каких нет ни в одном из других тепловых двигателей.
Каждый по своему опыту знает, как трудно зажечь спичку на сильном ветру. К каким только ухищрениям не прибегают опытные курильщики, чтобы прикурить на улице, когда дует ветер. Поворачиваются спиной к ветру, прячут дрожащее пламя спички под полу пальто или в согнутую крендельком ладонь руки. И все же далеко не всегда удается зажечь спичку. Что же говорить о камере сгорания прямоточного воздушно-реактивного двигателя, где «дует» не просто ветер, а невиданной силы ураган?
Несмотря на то, что воздух, стремительно набегающий на двигатель, тормозится в диффузоре, скорость его в камере сгорания прямоточного воздушно-реактивного двигателя все же больше, чем скорость самого сильного урагана. Ветер, дующий со скоростью в несколько десятков метров в секунду, — это ураган страшной, невиданной силы, а скорость воздуха в камере сгорания прямоточного двигателя превосходит 100 м/сек. Когда мы говорим о торможении воздуха в диффузоре, то имеем, конечно, на это право, ибо скорость воздуха уменьшается при этом в несколько раз. Тем не менее в камере сгорания воздух движется с невиданной в природе скоростью.
Но почему нельзя затормозить воздух в диффузоре еще сильнее, так чтобы в камере сгорания его скорость составляла, допустим, всего несколько метров в секунду? Сделать это, конечно, можно, но это чрезвычайно невыгодно. Ведь чем меньше скорость воздуха в камере сгорания, тем больше должно быть поперечное сечение камеры, чтобы пропустить то же количество воздуха. Но диаметр камеры сгорания — это наибольший диаметр двигателя, и его увеличение связано с увеличением лобового сопротивления самолета. Это особенно нежелательно при сверхзвуковых скоростях полета, для которых в первую очередь и предназначены прямоточные воздушно-реактивные двигатели. Поэтому диаметр камеры сгорания прямоточного воздушно-реактивного двигателя должен быть как можно меньшим; при этом скорость течения воздуха в камере получается очень большой.
Как же можно поджечь горючую топливовоздушную смесь в прямоточном двигателе и заставить ее потом непрерывно и устойчиво гореть, если в камере сгорания двигателя бушует искусственный ураган, равных которому по силе не встречается в природе?
В этом и заключается главная трудность обеспечения сгорания топлива в прямоточном двигателе. Горение топлива в камере сгорания прямоточного воздушно-реактивного двигателя — это по сути дела непрерывное, ни на минуту не прекращающееся единоборство пламени с ураганом. В этой борьбе либо побеждает пламя — и тогда двигатель работает, либо победа склоняется на сторону ветра — и тогда пламя начинает пульсировать, двигатель работает неустойчиво, а затем и вовсе останавливается, «глохнет»: пламя срывается и горение прекращается.
Как удается заставить топливо гореть в воздушном потоке, движущемся с такой огромной скоростью?
Впервые эта проблема, имеющая важнейшее значение не для одних только прямоточных двигателей, была подвергнута изучению нашим отечественным ученым — физиком В. А. Михельсоном в конце прошлого века. С тех пор ученые и конструкторы нашей страны раскрыли много загадок, относящихся к сгоранию топлива в потоке, что позволило создать ряд удачных конструкций высокоскоростных камер сгорания, в частности для турбореактивных двигателей. Чтобы понять, как удается решить эту задачу, представим себе камеру сгорания прямоточного двигателя. Из топливных форсунок вытекает под давлением топливо, которым в прямоточных двигателях обычно является бензин. Смешиваясь с воздухом, бензин образует горючую смесь, которая и должна гореть.
Вспомните, как вы поджигаете газовую горелку. Открывая кран, перекрывающий доступ газа к горелке, вы подносите к ней зажженную спичку — газ вспыхивает, образуя светящийся факел пламени. Спичка давно погасла, но газ продолжает гореть. В спокойном воздухе факел совершенно недвижим. Но эта неподвижность обманчива — внутри факела происходят сложные процессы, развивающиеся с большой скоростью. Раскаленные, светящиеся продукты сгорания улетучиваются, поднимаясь кверху, а их место занимают новые порции свежего газа. Они снова смешиваются с воздухом, подогреваются, воспламеняются и сгорают, чтобы так же улетучиться из факела, как и продукты сгорания предыдущих порций.
Значит, неподвижность факела — это не покой, а результат особого равновесия в ходе процесса. Вот так же, например, иногда не меняется уровень воды в водопроводной раковине, хотя из крана хлещет вода: так бывает в тех случаях, когда приток воды в раковину равен количеству воды, которая успевает вытечь из нее. Если мы несколько прикроем водопроводный кран, то уровень воды в раковине понизится, а затем снова наступит равновесие. То же произойдет и в случае, если мы, наоборот, откроем кран сильнее. Только на этот раз новый равновесный уровень воды в раковине будет более высоким.
Попробуем проделать такой же опыт с факелом. Уменьшим подачу свежего газа. Тотчас же светящийся конус пламени уменьшится. Почему? Очевидно, установилось новое равновесие аналогично тому, как это происходит при изменении уровня воды в раковине. Точно так же новое равновесие установится, если мы увеличим подачу газа — факел станет большим.
Возвратимся снова к раковине. Если мы чрезмерно откроем водопроводный кран, то уровень воды в раковине поднимется настолько, что вода начнет переливаться через край. Это будет пределом возможного смещения равновесия в одну сторону, в сторону повышения уровня. Другого предела мы достигнем в том случае, если прикроем кран настолько, что вода будет литься из него тонкой струйкой, так что в раковине воды вовсе не будет, она будет сразу выливаться из нее.
Явления в горящем факеле, конечно, гораздо сложнее, чем в нашем примере с водопроводной раковиной. Не так просто понять, какие факторы обусловливают равновесие факела, и установить пределы, ограничивающие это равновесие. Опыт показывает, что такие пределы существуют. Если сильно подуть на горящий факел или, например, сильно повысить давление и, следовательно, скорость выходящего газа, то факел оторвется от горелки и погаснет.
Оказывается, главное условие того, чтобы факел был устойчивым и непрерывно горел, — это непрерывное поджигание новых порций газа, выходящих из горелки. Эти порции воспламеняются уже горящими частицами газа. Горение распространяется от горящей смеси к свежей с определенной скоростью — она так и называется скоростью сгорания. Легко видеть, что если скорость, с которой горящая смесь уносится от горелки, станет очень большой, то горение просто не успеет распространиться, факел оторвется от горелки и затем погаснет. Чем больше скорость сгорания, тем больше и та предельная скорость подачи газа, при которой факел еще сохраняет устойчивость.
Явления, происходящие в камере сгорания прямоточного воздушно-реактивного двигателя, еще сложней, чем в факеле газовой горелки, так как в камеру поступает не газообразное, а жидкое топливо. Значит, до сгорания его необходимо распылить, т. е. образовать облако мельчайших капелек, перемешать эти капельки равномерно с воздухом, а затем испарить. Эти процессы подготовки топливовоздушной смеси к сгоранию сильно усложняют картину явлений, происходящих в камере сгорания двигателя.
Однако главным и здесь остается поджигание новых порций топлива. В отличие от пламени газовой горелки факел в камере сгорания прямоточного двигателя обдувается стремительным потоком воздуха. Скорость этого воздушного потока во много раз превышает скорость, с которой распространяется по потоку сгорание. Вследствие этого пламя не может удержаться в камере, оно срывается и уносится потоком; двигатель перестает работать, «глохнет».
Как же все-таки в таких условиях удается поджигать топливо и обеспечивать тем самым устойчивое горение в прямоточном двигателе? Для этого используются разные методы, но все они преследуют одну и ту же цель — подвести раскаленные газы (продукты сгорания) к основанию факела с тем, чтобы они подожгли топливовоздушную смесь. В одном случае для этого топливо впрыскивается в камеру сгорания двигателя не по направлению воздушного потока, а против него; горящие газы меняют затем свое направление и омывают основание факела. По другому методу воздух, омывающий факел, закручивается штопором, образуя настоящий небольшой смерч; для этой цели он пропускается через особый завихритель, имеющий расположенные по спирали лопатки. В результате такого завихрения воздуха внутри воздушного вихря образуется область пониженного давления, в которую поступают раскаленные газы (продукты горения), меняя свое направление на обратное. Так создается постоянная зона обратного тока раскаленных газов, поджигающих топливо. Наконец, в третьем случае в камере сгорания устанавливаются специальные стабилизаторы пламени — экраны. Воздух, обтекающий эти экраны, которым придают обычно неудобообтекаемую форму, создает за ними застойные вихревые зоны, куда также проникают раскаленные продукты горения, поджигая факел.
На рис. 63 изображен прямоточный воздушно-реактивный двигатель, в котором использован один из описанных способов стабилизации пламени в камере сгорания. Горелки и стабилизирующие устройства располагаются обычно в передней части камеры, сразу за диффузором, образуя так называемое фронтовое устройство, или регистр. В дозвуковых прямоточных двигателях одно только это фронтовое устройство и можно видеть внутри двигателя, если заглянуть в него через торцовые отверстия. В сверхзвуковых двигателях, как указывалось выше, обычно имеется еще центральное тело.
Рис. 63. Прямоточный воздушно-реактивный двигатель со стабилизатором пламени
Но почему же мы говорили выше о сгорании в прямоточном воздушно-реактивном двигателе, как о сложной проблеме, которую еще нужно решить, если уже существуют прямоточные воздушно-реактивные двигатели с надежным, устойчивым сгоранием?
К сожалению, даже в этих существующих двигателях проблема сгорания решена далеко не до конца. В одних двигателях устойчивость сгорания достигнута ценой слишком больших потерь давления в камере сгорания, что приводит к значительному уменьшению тяги и увеличению расхода топлива. В некоторых двигателях сгорание устойчиво на одних режимах работы, но становится неудовлетворительным на других. Но самое главное заключается в том, что обеспечение сгорания в существующих двигателях осуществлялась и осуществляется даже до сих пор в основном чисто опытным путем, на ощупь, путем длительных испытаний с сопутствующими им переделками камеры сгорания. Вследствие этого доводка прямоточных двигателей, для испытания которых требуются весьма сложные, громоздкие и дорого стоящие установки, затягивается иной раз на годы. Кроме тою, когда конструкторы приступают к созданию нового двигателя, то им из-за отсутствия ясных представлений о процессах, происходящих в камере сгорания, приходится идти все тем же экспериментальным путем. Единственные указания им дает опыт прошлого, но этот опыт, конечно, всегда оказывается недостаточным, когда речь идет о создании нового двигателя, рассчитанного на иные требования и иные условия работы. Так теория, которая должна освещать путь практике, в этом случае пока еще отстает от нее.
Наибольшие трудности, связанные со сгоранием в прямоточном двигателе, возникают как раз тогда, когда двигатель предназначается для полета с большими скоростями, намного превышающими скорость звука, и на очень больших высотах, что и характерно для использования прямоточного двигателя. Когда растет скорость полета, то обычно увеличивается и скорость воздушного потока в камере сгорания, а вместе с ней растут и трудности стабилизации горения. Большие неприятности часто создают мощные пульсации и колебания воздушного потока в камере сгорания, из-за чего пламя начинает сильно вибрировать. При этом не только резко снижается тяга и увеличивается расход топлива, но сам двигатель может легко выйти из строя. Еще хуже обстоит дело со сгоранием при увеличении высоты полета. А ведь полет со скоростью, в 2—3 раза превышающей скорость звука, возможен только на весьма больших высотах, где воздух крайне разрежен и, следовательно, не оказывает такого большого сопротивления летящему самолету, как на малых высотах. Вблизи земли это сопротивление так велико, что полет со скоростью, в 2—3 раза превышающей скорость звука, становится практически невозможным. Невозможен он еще и потому, что при полете с такими большими скоростями в плотной атмосфере оболочка самолета может сильно разогреться: на больших высотах в разреженном воздухе этого не происходит. Но именно разреженность воздуха создает особые, пока еще до конца не преодоленные трудности в работе камеры сгорания прямоточного, да и других воздушно-реактивных двигателей. Оказывается, что при увеличении высоты полета в работе камеры сгорания двигателя, вполне
удовлетворительно работавшего у земли и на меньших высотах, наступают перебои. Пламя начинает пульсировать, а затем срывается и гаснет. Это объясняется тем, что скорость сгорания топлива при увеличении высоты полета резко уменьшается, так как уменьшаются давление и температура воздуха в камере сгорания двигателя. Мало того, при значительном увеличении высоты полета топливовоздушную смесь в камере сгорания вообще не удается воспламенить.
Обеспечение нормального сгорания топливовоздушной смеси при больших скоростях и высотах полета является в настоящее время основной проблемой развития прямоточных воздушно-реактивных двигателей. Можно не сомневаться в том, что эта проблема будет в недалеком будущем решена. Тем самым для прямоточных двигателей будут открыты именно те области применения, в которых они не имеют себе равных среди всех других авиационных двигателей. Тогда авиация сделает еще один громадный скачок вперед в отношении скоростей и высот полета. Это — дело авиации завтрашнего дня.
Чтобы закончить наш рассказ о сгорании в прямоточном воздушно-реактивном двигателе, следует еще раз подчеркнуть огромное превосходство этого двигателя перед турбореактивным. Это превосходство связано с допустимой температурой сгорания. Мы знаем, что лопатки турбины ограничивают максимальную температуру газов, выходящих из камеры сгорания турбореактивного двигателя. Поэтому в турбореактивном двигателе участвует в сгорании лишь около четверти всего воздуха, протекающего через камеру сгорания. Остальной воздух служит для охлаждения продуктов сгорания — он добавляется к ним уже за зоной горения. В прямоточном двигателе такого ограничения нет, ибо нет и турбины. Здесь для сгорания топлива можно использовать весь кислород, заключенный в воздухе. Поэтому при том же количестве протекающего через двигатель воздуха в прямоточном воздушно-реактивном двигателе удается сжигать в 3—4 раза больше топлива и получить в результате этого соответственно большую тягу с единицы площади «лба» двигателя. А ведь в таком увеличении этой удельной лобовой тяги, а следовательно, и мощности, приходящейся на единицу площади вредной лобовой поверхности двигателя (вредной потому, что именно с ней связано лобовое сопротивление двигателя), и лежит ключ к увеличению скорости полета.
В турбореактивном двигателе газы, выходящие из камеры сгорания, имеют температуру не более 850—900° С. В прямоточном двигателе эта температура превышает 1500—1600° С. Поэтому реактивная струя, вытекающая из сопла турбореактивного двигателя в атмосферу, имеет температуру 600—650° С, тогда как из прямоточного двигателя через сопло вытекают газы с температурой до 1500° С. Это надо всегда иметь в виду при установке двигателя на летательный аппарат. Небрежность конструктора в этом отношении может вызвать непоправимую катастрофу.
Мы познакомились в основном с двумя важнейшими частями прямоточного воздушно-реактивного двигателя — диффузором и камерой сгорания, и только вскользь — с соплом, являющимся третьей основной частью двигателя. В сопле газы, выходящие из камеры сгорания, расширяются и скорость их движения соответственно увеличивается, без чего нельзя получить большую тягу двигателя. В дозвуковом прямоточном воздушно-реактивном двигателе реактивное сопло имеет обычно такую же форму конической сходящейся трубы, как и сопло турбореактивного двигателя. Но, оказывается, в прямоточном двигателе можно и вовсе обойтись без сопла. В этом случае прямоточный воздушно-реактивный двигатель станет еще более простым по внешним очертаниям — он превратится в простую цилиндрическую трубу с коническим диффузором спереди, без которого, как уже говорилось выше, обойтись нельзя. Но почему же можно обойтись без сопла, где в этом случае будет происходить необходимое расширение газов и увеличение их скорости движения?
Оказывается, функции сопла можно передать камере сгорания. Выше отмечалось, что при горении топлива в цилиндрической камере сгорания скорость течения газов увеличивается, так как газы расширяются. Можно добиться и того, чтобы это расширение газов в камере сгорания произошло вплоть до атмосферного давления. Тогда, очевидно, и не будет надобности ни в каком сопле.
Иначе обстоит дело в сверхзвуковом прямоточном воздушно-реактивном двигателе. Так как скорость истечения газов из такого двигателя может значительно превосходить скорость звука, то сопло сверхзвукового двигателя тоже должно быть, как правило, сверхзвуковым. Это значит, что оно должно сначала суживаться, а затем расширяться. Наличие на двигателе такого сопла обычно и свидетельствует о том, что он предназначен для сверхзвукового полета.
В сверхзвуковом прямоточном воздушно-реактивном двигателе функции сопла уже не может выполнять камера сгорания.
В цилиндрической камере сгорания может быть достигнута только скорость звука. Перейти через эту скорость в цилиндрической камере невозможно. Поэтому камера сгорания может заменить только первую, сужающуюся часть сверхзвукового сопла, вторая же, расширяющаяся часть в сверхзвуковом воздушно-реактивном двигателе сохраняется. Следовательно, если сопло двигателя представляет собой простую расширяющуюся трубу, то мы имеем дело со сверхзвуковым двигателем, в котором на выходе из камеры сгорания газы имеют скорость звука.