Базовое пособие по эпигенетике

Что такое эпигенетика?

Можно сказать, что эпигенетика занимается изучением наследуемых признаков, не зависящих от факторов, которыми традиционно занималась генетика и которые не следуют тем же правилам.

Таким образом, если генетическая информация закодирована в последовательности ДНК, эпигенетика занимается изучением информации, которая может передаваться без кодирования в последовательности ДНК.

Метафора с буквами алфавита, о которой мы уже говорили, помогает нам лучше понять значение этой разницы: если мы представим, что содержащаяся в ДНК информация — эквивалент текста, букв в книге, то эпигенетические модификации будут шрифтом, полужирным или курсивным, прописными или строчными буквами, подчеркиванием, знаками препинания, в общем, информацией, не содержащейся строго в алфавите, но необходимой для понимания того, о чем говорится в книге.

Так что генетика — алфавит, а эпигенетика — его орфография и грамматика, и даже если основная информация содержится в тексте, форма, в которой она изложена также является важной, поскольку это не одно и то же: например, когда информация выделена большим заголовком или, наоборот, замаскирована под маленький текст. Эту стратегию передачи информации хорошо знают публицисты и журналисты, которые освоили ее использование лучше кого бы то ни было, чтобы наиболее эффективно доносить что-либо до читателя.

Похожим образом природа применяет код знаков, чтобы манипулировать данными, которые содержатся в ДНК, так что информация, встроенная в эпигенетические модификации, столь же важна, как и генетическая информация, то есть та, что записана «буквами» ДНК.

Чтобы углубиться в последствия эпигенетических эффектов и различных аспектов, связанных с эпигенетикой, нелишним будет маленькое повторение. Рассмотрим некоторые основные аспекты как в генетике, так и в молекулярной биологии.

Эпигенетика — термин с историей

Эпигенетические изменения не перестают удивлять ученых в последние десятилетия, но сейчас мы приближаемся к более научному, более рациональному определению эпигенетики, причем некоторые из вопросов, которые выдвигает современная наука, например что именно управляет формированием эмбриона после слияния яйцеклетки и сперматозоида, уже были заданы биологами XIX века. Они, сами о том не подозревая (поскольку термин «эпигенетика» не появится до второй половины XX века), заложили основу этой дисциплины.

Хотя эпигенетика не существовала (или ее так не называли), действительно было слово «эпигенез», которое впервые использовал в 1850 году ученый Каспар Фридрих Вольф, берлинец, родившийся в 1733 году и почитаемый сегодня как отец современной эмбриологии. Он получил докторскую степень в Университете в Галле за работу «Theoria Generations», которую написал в 25 лет и опубликовал в 1759 году. В этой работе Вольф восстанавливает теорию эпигенеза, ранее выдвинутую Аристотелем и Уильямом Гарвеем, в которой утверждается, что любая особь развивается из зиготы, или оплодотворенной яйцеклетки. Вольф, основываясь на очень точных наблюдениях и научных исследованиях, пришел к выводу о том, что у эмбриона разные органы развиваются из однородной недифференцированной массы благодаря некоей организующей существенной (эссенциальной) силе. Сегодня это утверждение кажется нам очевидным, но в свое время оно произвело фурор, так как восставало против теории преформации, безраздельно царившей в физиологии того времени. Согласно этой теории, организмы уже преформированы в семени. Это, чтобы вы понимали, то же самое, что утверждать, что каждое живое существо развивается из точной миниатюры взрослой особи, заложенной в сперме. Так, согласно преформациони-стам, развитие эмбриона представляет собой не что иное, как увеличение в размере уже существующих и сформированных органов, вызванное накоплением питательных элементов.

Новатор Вольф, наоборот, говорил не о маловероятной идее «разрастания», а о существовании процесса, при котором загадочные силы природы допускают формирование структур de novo из бесструктурных масс, делая слияние яйцеклетки и сперматозоида возможным. И эта магия, обозначим это таким образом, эта «существенная сила», как он ее назвал, была нечем иным, как эпигенезом.

С точки зрения современной науки (ни много ни мало два с половиной века спустя!), хотя Вольф и не осмелился предположить, какие именно силы отвечают за организацию материи, которая позволяет зиготе создавать организм, можно сказать, что отчасти его теория уже тогда признавала процессы перепрограммирования и контролируемой регуляции генетической экспрессии.

Однако термин «эпигенетика» сам по себе появился только в 1942 году, когда Конрад Уоддингтон, профессор Эдинбургского университета, предложил его для определения соотношения между генотипом и фенотипом. Уоддингтон родился в 1905 году и провел первые годы жизни в Индии, учился в Кембридже, где окончил отделение палеонтологии и геологии, но вскоре его привлекла генетика, причем до такой степени, что он стал блестящим эмбриологом, генетиком, биологом и даже философом. Благодаря своим исследованиям и достижениям он сформулировал многие концепции генетической канализированности (также используются термины «автономность», «авторегуляция»), генетической ассимиляции и эпигенетического ландшафта, с помощью которых сделал предположение о противопоставлении процессов, которыми занимается генетика, то есть наследования, и механизмов, которыми занимается эпигенетика, по которым генотип становится основой для фенотипа.

Хотя в тот момент Уоддингтон не мог предложить никакие модели механизмов и работы эпигенетических процессов, его определение и особенно принятие существования двух разных типов развития, задействованных в наследовании, сделали его прародителем эпигенетики и принесли ему признание и награды. Его вклад был настолько значителен, что позволил ему открыть первую эпигенетическую лабораторию в 1950 году.

Определение Уоддингтона оставалось нетронутым в течение десятков лет, пока в 1987 году его не переформулировал молекулярный биолог Робин Холлидей — один из первых ученых, который использовал молекулярную биологию в изучении процессов старения. Свое детство он провел, переезжая с места на место со своей семьей, затем поступил в Кембридж, а в 1953 году, когда будущий ученый учился на последнем курсе, была расшифрована структура двойной спирали ДНК. В 1954 году, за год до окончания университета, после участия в конференции, посвященной этому открытию, он решил, что хочет посвятить все свои силы генетическим исследованиям. Он добился выдающихся результатов, и его исследования и открытия дали толчок невероятному прогрессу в этой области. В 1964 году он, например, предложил модель рекомбинации, то есть обмена генетической информацией между молекулами ДНК, которая был назван в его честь — «структура Холлидея». Речь идет о чрезвычайно важной модели, поскольку она предлагает объяснение тому, как две гомологичные молекулы ДНК могут скрещиваться и обмениваться генетическим материалом.

Десять лет спустя, в 1975 году, Холлидей смог доказать, что метилирование ДНК влечет за собой сайленсинг генов у млекопитающих. До самой своей смерти в 2014 году он не переставал работать и заниматься исследованиями. Однако, по нашему мнению, самое выдающееся его достижение заключалось в том, что он дал ясное описание того, что такое эпигенетика и чем она отличается от генетики. Он сделал это самым точным образом, после его объяснения никакие слова больше не нужны:

Свойства генов высших организмов могут изучаться на двух уровнях: первый — механизм их наследственной передачи, который является основным компонентом генетики и хорошо изучен, и второй — механизм их деятельности в процессе развития организма, от оплодотворенного яйца до взрослой особи, который до сих пор не до конца понятен. Изменения в генной активности в процессе развития известны как эпигенетические. […].

Экспрессия генов

Когда мы говорим об экспрессии генов, то имеем в виду момент, в который гены «говорят».

Что говорят гены? Да, это нужно объяснить: в генах содержится информация для формирования белков, так что когда ген экспрессируется, он активируется и его информация считывается для формирования конкретного белка.

В 1994 году, семь лет спустя после того как Робин Холлидей сформулировал свое первое определение эпигенетики (процитированное выше), он предложил два новых варианта этой дефиниции, в первую очередь указав на то, что изменения в экспрессии генов появляются не только в процессе развития, но и во взрослом состоянии организма. Опираясь на этот нюанс, Холлидей переформулировал определение эпигенетики: это «изучение изменений в экспрессии генов, которые происходят в организмах с дифференцированными клетками, и митотическое наследование имеющихся паттернов экспрессии». Кроме того, он сделал акцент на том, что его определение «ничего не говорит о механизмах, и поэтому подразумевает любой вид взаимодействий белков и ДНК, а также изменения на уровне ДНК».

Это новое определение, в свою очередь, обозначило новую проблему: наследование паттернов экспрессии генов. Холлидей подчеркивал, что ДНК может быть подвержена необратимым изменениям, которые влияют на последовательность, и эти модификации передаются следующим поколениям. С другой стороны, «возможно, существуют связанные с экспрессией генов изменения, наследуемые напрямую, которые могут быть обратимы в последующих стадиях и не подразумевают изменения ДНК», или, другими словами, «клеточное наследование, не основанное на различиях в последовательности ДНК». Холлидей почти пришел к определению современной концепции эпигенетики, которое окончательно сформировалось, сочетая в себе идею изменений в экспрессии генов и способности этих изменений передаваться по наследству.

И вот перед нами финальное (но это только на данный момент) определение эпигенетики, которая с этими последними дополнениями, все еще словами Холлидея звучит так: «изучение изменений в генетической функции, которые наследуются без изменения в последовательности ДНК».

Хорошо, а сейчас, когда мы уже определили границы эпигенетики, может, мы уже остановимся и пойдем отдохнем?

Ну уж нет! Наука должна двигаться вперед, и сейчас самое время, чтобы задавать новые вопросы, а именно:

О каких изменениях в функционировании генов мы сейчас говорим?

Почему они так важны и в каких ситуациях происходят?

Эпигенетические изменения

До настоящего времени мы говорили об эпигенетических изменениях без углубления в природу этих вариаций. В научном сообществе эпигенетические изменения долгие годы считались скорее чем-то мистическим, чем осязаемой и измеримой реальностью.

Это происходило из-за того, что традиционной генетике казалось парадоксом, что два аллеля могут иметь ту же самую генетическую последовательность, но разные возможности наследования. Это противоречие разрешалось предположением, что, помимо последовательности ДНК, наследовалось также состояние экспрессии или активированности генов, которое было установлено и унаследовано с помощью некоей модели, заключающейся в том, что аллель может быть в «закрепленнном» или «нетронутом» состоянии в зависимости оттого, работает эта модель или нет.

Напротив, на сегодняшний день мы знаем, что эпигенетическое воздействие основано на одной из физических модификаций, которая определяет возможности экспрессии аллеля. Эти модификации идентифицированы и могут быть двух типов: с одной стороны, те, что напрямую влияют на молекулу ДНК, и с другой стороны, те, что имеют место не в ДНК, а в гистонах — белках, связанных с ДНК.

Секрет жизни

У ДНК есть собственный язык, состоящий из четырех оснований, или букв А, Т, Ц и Г, которые соответствуют аденину, тимину, цитозину и гуанину соответственно. Эти основания распределяются одно за другим, формируя огромную цепочку, или нить, ДНК. Интересно, что нить ДНК не изолирована, а прикручивается к другой нити ДНК таким образом, что вместе они формируют спираль — знаменитую двойную спираль ДНК. В этой двойной спирали каждое основание, которое составляет ДНК, находится напротив комплементарного ему основания и связано с ним химически (рисунок 5), и эта комплементарность всегда является сочетанием аденина и тимина (или наоборот) и цитозина и гуанина (или наоборот).

Рис. 5. Двойная цепочка в спирали ДНК в процессе репликации, чтобы создать «дочерние» двойные цепочки (на рисунке А соответствует А, Т — Т, G — Г, С — Ц)


Из этих четырех букв складываются трехбуквенные слова, которые соответствуют аминокислотам, формирующим белки. Существует как минимум еще одна, пятая, буква кода, но она спрятана.

И дело в том, что на самом деле, говоря о четырех основаниях, мы неизбежно упрощаем ситуацию, так как подробный анализ состава оснований ДНК организма позволил бы нам найти маленький процент малочисленных оснований, которые являются вариантами четырех первоначальных букв.

Действительно, речь идет об основаниях, которые подверглись изменениям после внедрения в ДНК. Это как если бы кто-нибудь поставил ударение над буквой после того, как ее написал. Самый распространенный вариант — 5-метилцитозин. Тогда, продолжая нашу метафору, ударение было бы метильной группой, которая делает Ц (цитозин) ударной (единственное метилируемое основание у млекопитающих).

Эта вариация настолько частотна, что ученые всерьез обсуждают вопрос, можно ли считать ее пятой буквой. Однако последние исследования показывают, что не стоит торопить события, поскольку 5-метилцитозин по-прежнему формирует пару с гуанином в нити комплементарной ДНК, что подтверждает: механизм репликации клетки по-прежнему распознает ее, как если бы он был обычным цитозином.

В таком случае зачем вообще делать Ц ударной?

Спокойно, чуть позже мы ответим на этот вопрос.

Метилирование ДНК

Метилирование ДНК, то есть добавление химической группы, называемой метильной группой, к другому веществу, имеет глубокое воздействие на форму экспрессии генов. Как если бы речь шла о письменном языке, ударение на основании Ц (цитозин) с метильной группой имеет собственные правила. Обычно цитозин метилирован, когда за ним следует гуанин. То есть метилирование цитозина появляется в комбинациях цитозин-гуанин (CG) или CpG (где «р» обозначает фосфат, который скрепляет цитозин и гуанин).

Так как ДНК состоит из комплементарных цепей, метилируется как цитозин, являющийся частью последовательности CpG, так и цитозин из комплементарной последовательности. Но самое важное заключается в том, что эти «ударения» должны быть прочитаны механизмом в ядре клетки. Это как если бы ДНК благодаря такой постановке ударений передавала двойную информацию: ту, что предназначается для определенной последовательности, и ту, что появляется благодаря ударениям над некоторыми Ц.

При метилировании ДНК появляется любопытный феномен: один и тот же физический субстрат — тот же самый текст — используется для предоставления двойной информации. Это как смотреть фильм с субтитрами. С одной стороны, есть сообщение, закодированное в текст, привычным нам языком букв, и с другой — есть метилирование, которое расставляет акценты на определенных словах в последовательностях CpG, чтобы транслировать второе сообщение, до этого неизвестное.

CpG-островки

Последовательность ДНК млекопитающих показывает, что комбинация CpG не так уж и распространена в их геноме. Цитозин и гуанин по отдельности появляются довольно часто, но комбинации CpG единичны. С другой стороны, анализ генома также показывает нам, что распределение динуклеотидов CpG неоднородно, так как хотя глобально эти CpG последовательности довольно частотны, все же появляются короткие участки, где их плотность повышена. Эти участки называются CpG-островками именно потому, что на этих участках длиной от 500 до 2000 оснований ДНК частотность CpG очень высока. Однако самое интересное заключается в том, что эти CpG-островки не связаны ни с одним из перечисленных факторов, но, как правило, они совпадают с регуляторными участками генов.

Напомним, что именно регуляторные участки генов, в отличие от кодирующих участков (которые содержат информацию для синтеза белков), контролируют, где и как активируется этот ген. А так как эти регуляторные участки многих генов богаты CpG, это равносильно тому, как если бы они были готовы стать ударными с помощью метильных групп.

Если анализировать состояние метилирования цитозина в CpG млекопитающих, можно обнаружить интересный феномен: обычно последовательности CpG, которые не находятся внутри CpG-островка, то есть CpG, которые появляются единично в последовательности, метилированы. Эти CpG появляются в виде 5-метилцитозина. Однако CpG, которые находятся внутри CpG-островков, как правило, не метилированы. Важно помнить о том, что цитозин, метилированный или нет, не нарушает порядок последовательности.

Тогда на кого вообще все это влияет?

Транскрипционная функция

С тех пор как было открыто метилирование ДНК, одним из феноменов, с которыми оно оказалось связано, была транскрипционная активность, то есть процесс «копирования» с целью получения РНК.

Остановимся на этом более подробно: ДНК содержит инструкции в генах для формирования белков, но эта информация «копируется», или транскрибируется, в другую молекулу — РНК, и она уже в конечном счете считывается, чтобы белок мог сформироваться. Так вот, было обнаружено, что когда последовательность метилируется, транскрипция репрессируется (другими словами, ген «выключается»).

Что это значит? Что метилирование CpG-островков действует как знак запрета транскрипции гена, который был метилирован.

И какой самый важный вывод мы можем сделать на основе этого последнего утверждения?

Что ДНК — наследуемый материал, обладает двойным функционалом: с одной стороны, содержит в своей последовательности инструкции для формирования белков, копируясь сначала в РНК, с другой — в условиях метилирования приобретает информацию с целью инициировать или задержать механизм формирования белков.

Но кто считывает метилирование ДНК?

В последние годы в лабораториях интенсивно изучается, какие именно факторы ядра интерпретируют данные, закодированные в конкретном профиле метилирования. А именно, ученые задались вопросом, существуют ли системы, направленные на чтение информации, закодированной в определенном профиле метилирования, схожие с системой считывания информации, содержащейся в последовательности ДНК, и ее трансляции в белки через генетический код.

Сейчас мы это проверим.


Генетический код — соответствие, которое связывает различные комбинации из трех азотистых оснований с соответствующими аминокислотами. Например, когда в мРНК появляются три азотистых основания GAG, это служит сигналом для присоединения аминокислоты, называемой глютаминовой кислотой, а когда появляются основания AGA, это означает, что она должна присоединиться к белку, который формируется из аргининовой аминокислоты.

Воздействие метилирования

Открытие того, что метилирование приводит к формированию более компактных и недоступных структур хроматина, пролило свет на изменения, связанные с метилированием ДНК: структура хроматина становится более компактной, когда ДНК, которая его составляет, метилирована. С другой стороны, ученые пришли к еще одному выводу, который вполне сочетается с предыдущим, о связи метилирования ДНК с уменьшением транскрипционной активности.

И каковы же последствия компактизации хроматина?

Из-за метилирования регуляторные участки генов становятся менее доступными транскрипционным механизмам, вследствие чего снижается транскрипционная активность, то есть экспрессия генов.

После всех этих открытий начало создаваться впечатление, что модель работает, и казалось, что наука встала на путь решения проблемы, которая занимала нас в предыдущем разделе. Загадка, кто именно отвечает за чтение метилирования ДНК, казалась почти решенной… Но для того чтобы пазл сошелся, все еще не хватало одной важной детали: какое отношение между метилированием ДНК и компактизацией хроматина?

После изнуряющих исследований что-то начало проясняться: существуют белки, или ядерные факторы, которые обладают способностью распознавать метилированную или неметилированную ДНК и присоединяться к ней в зависимости от ее состояния. Эти факторы,

с помощью какого-то механизма, функционирование которого еще только предстоит изучить, могут сформировать измененную структуру хроматина, не дающую доступа транскрипционным механизмам.

Поиск этой модели стимулировал исследования в погоне за открытием факторов, способных различать метилированную и неметилированную ДНК.

Белки MeCPl и МеСР2

Исследования продолжались, и в начале 1990-х годов группа ученых из Эдинбургского университета отделила от клеточного ядра два белка, способных присоединяться к метилированной ДНК.

Эти белки были названы MeCPl и МеСР2, и на протяжении последующих лет была проделана колоссальная работа по их анализу: были задействованы различные учреждения, преимущественно лаборатория Эдинбургского университета (центр клеточной биологии Welcome Trust под руководством профессора Эдриана Берда, с 1999 по 2011 год) и лаборатория Национального института здоровья США под началом Алана Вольфа.

В первую очередь исследовательская группа Берда определила, какая именно часть белка МеСР2 придает ему способность присоединяться к метилированной ДНК. Этот фрагмент состоит еще из четырех белков, идентифицированных немного позднее, и сейчас они известны как MBD1, MBD2, MBD3 и MBD4. Все они, наряду с МеСР2, составляют семейство белков, умеющих связываться с метилированной ДНК. Какое-то время спустя обе упомянутые лаборатории смогли независимо друг от друга доказать, что каждый из этих белков формирует комплексы, то есть создает связи с другими белками, которые модифицируют хроматин.

Что особенно важно, комплекс, к которому относится МеСР2, модифицирует гистоны, добавляя знаки. На самом деле МеСР2 и другие белки из этого семейства действуют как посредники между метилированной ДНК и определяют степень компактизации хроматина.

Значимость открытия этих белков заключалась в установлении связи между метилированием ДНК и модификациями хроматина в момент определения состояния активированности или инактивированности генов. Это стало переломным моментом, потому что объясняло механизм подавления активности генов путем метилирования ДНК. Кроме того, позднее обнаружилось, что МеСР2, вне зависимости от участия в метилировании, оказался чрезвычайно важным белком для здоровья человека, так как его мутация порождает синдром Ретта, вторую (после синдрома Дауна) по частотности причину задержки умственного развитии у женщин.

И еще одно не менее важное последствие заключалось в том, что эти открытия и их распространение способствовали контактам и обмену информацией между исследовательскими группами, которые работали параллельно над отдельными областями: метилирование ДНК и его влияние на болезни человека, рак и исследования хроматина, — объединяя под общим знаменем ученых из разных университетов и стран.

Таким образом произошло открытие метилирования ДНК как эпигенетического изменения, позволяющего клетке модулировать экспрессию генов, на которые было оказано воздействие, и как механизма изменения структуры хроматина.

Тогда следующий шаг (да, как мы знаем, в науке одно открытие никогда не дает ответа на все вопросы, всегда что-то остается…) заключался в решении, что же определяет метилирование ДНК и как оно передается от одного поколения к следующему.

Но кто ответственный за метилирование генов?

Ответ не так прост: метилирование ДНК возникает как следствие действий целого специального механизма и является продуктом деятельности некоторых ферментов, называемых ДНК-метилтрансферазами (DNMT). Этот механизм занимается размещением метильных групп на цитозины, как будто он авто корректор, который ставит точки над «ё» в словах после того, как они уже написаны.

DNMT занимаются переносом метильных групп из молекулы, называемой SAM (S-аденозилметионин), на аденин и особенно на цитозин ДНК. И как будто этого мало, DNMT бросают вызов догме молекулярной биологии, потому что внедряют в ДНК наследуемую информацию, которая не закодирована в последовательности нуклеотидов.

Напомним, что дупликация или репликация ДНК должна происходить до деления клетки. ДНК реплицируется благодаря комплементарности оснований. В процессе используются свойства цепей, которые составляют ДНК, чтобы копировать их. При репликации 5-метилцитозин ведет себя точно так же, как цитозин без метильной группы. В результате репликации одна из цепей метилирована (на некоторых из своих цитозинах, как и первоначальная модель), а другая нет (рисунок 6).


Рис. 6. Репликация ДНК, начиная с которой каждая дочерняя цепочка генерирует цепочку, ей комплементарную (на рисунке А соответствует А, Т — Т, G — Г, С — Ц)


Необходим дополнительный механизм, или, как показано выше, автоматический корректор, занимающийся расстановкой ударений в комплементарной цепи, которая сформировалась заново и которая сейчас не метилирована. А также очень важно, чтобы как минимум одна из цепей осталась метилированной в дочерней цепочке ДНК. A DNMT (белки, которые гарантируют, что эта новая цепочка ДНК метилировалась) поддерживают метилирование в дочерних клетках, расставляя ударения, или метильные группы, на цитозин в паре CpG, комплементарной метилированным CpG.

Выключатель

Итак, существует другой тип DNMT: они известны под именем DNMT de novo и являются главными ответственными за метилирование пар CpG.

На сегодняшний день все еще неизвестно, кто отдает приказы, чтобы эти DNMT de novo приходили в движение, но, тем не менее, уже доказано, что их дисфункция катастрофична для клетки, потому что метилирование CpG-островков, которые не должны быть метилированы, заставляет выключаться транскрипцию генов. Этот феномен называется «транскрипционный сайленсинг».

Хроматин

А сейчас поговорим немного об одном важном процессе, о котором не стоит забывать, и раз уж он так важен, мы используем метафору, которая, надеемся, будет достаточно наглядна. Наша ДНК не раздета, она стыдливо, но элегантно прикрыта оболочкой из белков, которые формируют то, что мы называем хроматином. Он похож на бусы из жемчужин-белков, нанизанных на нить ДНК.

Традиционно хроматин (другими словами, наши прекрасные жемчужные бусы) считался статичным образованием с исключительно структурирующей ролью, так что открытие деталей механизмов, которые связывают метилирование ДНК с клеточными механизмами, модифицирующими хроматин, стало событием особой важности, так как дало новый импульс в исследовании активной роли хроматина в контроле деятельности генов.

А дело все в том, что, как мы уже говорили, один из существующих типов белков в хроматине — гистоны — отвечает в основном за упаковку ДНК в ядре клетки.

И эта доминирующая роль хроматина, как и его функция, были неизвестны еще несколько лет назад: изначально хроматин казался просто скелетом, а гистоны — белками, которые создают структуры шарообразной формы, вокруг которых оборачивается ДНК. Именно по этой причине микроскопическая картинка очень похожа на жемчужные бусы, то есть на статичную структуру, монотонную и повторяющуюся.

В этих особых бусах структурная единица хроматина, то есть жемчужина, получила название нуклеосомы. Каждая нуклеосома формирует, в свою очередь, группу из восьми гистонов четырех разных типов, окруженных фрагментом ДНК из 147 оснований. Большая часть гистонов находится внутри этой структуры, но их хвосты остаются снаружи.

В 1970-е годы прогресс в исследованиях структуры хроматина был заметен невооруженным глазом. Эти исследования сформировали представление о статичной модели хроматина, и возможно, поэтому в последующие годы интерес к ним сильно ослабел. И так продолжалось целое десятилетие, пока в начале 1990-х годов результаты новых исследований структуры хроматина не активизировали работу по его изучению.

Два открытия оказались основополагающими. Первое — структурный мотив, присутствующий во многих транскрипционных факторах и отвечающий за взаимодействие гистонов друг с другом и с ДНК. Второе — сложные механизмы, занимающиеся модификациями хроматина; механизмы, являющиеся частью самого хроматина и отвечающие за то, чтобы он выстраивался в различные структуры, которые делают его сочетающимся или несочетающимся с транскрипционной активностью.

Далее остановимся немного на этих механизмах.

Два типа механизмов

Существует два типа механизмов, модифицирующих хроматин: первый состоит из групп белков, которые используют выделяемую некоторыми молекулами энергию, чтобы изменить структуру хроматина. Эти группы получили название комплексов ремоделирования хроматина, и они помогают нуклеосомам скользить по ДНК в движении, позволяющем определенным последовательностям, которые блокируются наличием нуклеосом, стать доступными для ядерных факторов, и наоборот.


Комплексы ремоделирования хроматина — группы белков, способные двигать нуклеосомы хроматина, делая его более открытым или закрытым для проникновения других белковых групп, которые регулируют активность генов.


Поэтому деятельность комплексов ремоделирования специализируется на регуляторной части конкретного гена. Во многих случаях это движение делает последовательности доступными для транскрипционных механизмов, а соответственно, и для синтеза РНК. В других случаях комплексы ремоделирования хроматина, наоборот, производят более компактную структуру хроматина, которая затрудняет доступ транскрипционных механизмов.

Второй тип механизмов, которые модифицируют хроматин, состоит из ферментов — модификаторов гистонов. Речь идет о ферментах, которые действуют непосредственно на гистоны, добавляя группы, их модифицирующие. В этом случае ударения ставятся на гистоны, то есть знак, который воздействует на деятельность ДНК, был поставлен не на самой ДНК, а на ее оболочке. Речь идет об одном очень хитром маневре: дело в том, что природа нашла способ отмечать такие связки — хроматин. Таким образом ядро клетки может распознавать эти помеченные связки и специально распутывать те, которые нужно использовать. Просто экономия места.

С другой стороны, в отличие от модификации ДНК, существует много типов модификаций гистонов, и это означает, что существуют различные способы помечать гистоны таким образом, что каждый класс модификаций имеет свое значение.

Каким может быть эпигенетическое состояние хроматина?

По последним доступным сведениям, хроматин может находиться в различных эпигенетических состояниях, которые можно разделить на две группы. Первая зависит от положения нуклеосом на последовательности ДНК. Поэтому согласно локализации нуклеосом некоторые последовательности становятся доступными или недоступными для транскрипционных факторов. Эти позиции наследуются, и их движение на протяжении последовательности подчиняется деятельности комплексов ремоделирования хроматина.

Вторая группа — состояние модификации гистонов, так как эти специализированные белки имеют собственный язык.

Стоит отметить, что в последнее время изучение гистонов стало модным среди молекулярных биологов (да, мы уже об этом говорили, так что не удивляйтесь: ученые обычно довольно странный народ). А чему обязан такой внезапный интерес к этим белкам, которые всего несколько лет назад считались однообразными и скучными? Как вообще получилось, что они наделали столько шума в мире регуляции экспрессии генов?

Этот новый интерес уходит корнями именно в то, что раньше их делало такими скучными, — природа

сделала гистоны до чрезвычайности повторяющимися белками.

Объясним. Чтобы наглядно продемонстрировать консервативность гистонов, нужно всего лишь сравнить последовательность их аминокислот у таких эволюционно далеких друг от друга видов, как горох и человек. В результате мы не без удивления обнаруживаем, что различий между этими двумя последовательностями почти нет. Эта однородность гистонов позволяет ДНК упаковываться в блоки и превращаться в чрезвычайно компактную структуру, и именно этот феномен пробудил интерес ученых всего мира.

Загрузка...