Когда Хуан и Давид родились, родители были им очень рады. Два прекрасных близнеца, совершенно одинаковых, как говорят в семье, и однояйцевых, как говорят ученые. Однояйцевые близнецы делят между собой одну последовательность ДНК, так как появились от слияния одной яйцеклетки и одного сперматозоида, которые образовали эмбрион, разделившийся на два. Если такое деление клетки совершается в течение первых пяти дней после наступления беременности, образовываются два идентичных плода.
Но что мы имеем в виду под словом «идентичные»? Они действительно таковы?
На самом деле эти близнецы, которые однозначно будут одного пола, являются почти клонами; однако это «почти» важно, потому что в действительности оба этих плода генетически не идентичны, несмотря на то что делят между собой одну ДНК, то есть те же самые гены.
Клетка — минимальная единица организма, способная самостоятельно выполнять свои функции.
Родителей Давида и Хуана, как и многих других родителей близнецов, очень забавляла эта невероятная схожесть. Они всегда одинаково одевали малышей и улыбались, когда уже чуть подросшие дети разыгрывали их, выдавая себя один за другого. Но однажды Давид заболел и вынужден был провести в постели несколько месяцев, из-за чего ему пришлось остаться на второй год, в то время как Хуан продолжал учиться в нормальном темпе.
Как только Давид преодолел болезнь и вернулся к обычной жизни, он завел нежелательные знакомства, из-за которых забыл о своих обязанностях и об учебе. Проваливался на экзаменах, прогуливал занятия… Уже в подростковые годы он не проявлял стремления к учебе, что сказалось на успеваемости. Становилось все более очевидным, что в университет он не поступит и не достигнет того, чего достиг Хуан, который, возвращаясь из университета, с грустью и некоторым чувством вины смотрел на своего брата-бездельника. Пока Хуан получал образование, Давид тратил на алкоголь и табак все те малые деньги, которые ему удавалось заработать на временных работах.
Шли годы, мальчики стали мужчинами. Хуан с дипломом по ветеринарии уехал жить в сельскую местность и работал там по профессии. Жизнь Давида, наоборот, протекала во все менее «здоровых» условиях: так как зарабатывал он мало, единственное, что было ему по средствам, — это комната в нищенской квартире с видом на кольцевую дорогу, переполненную стоящими в пробках машинами, которые загрязняют воздух.
Ген — единица генетической информации. Участок ДНК, который содержит необходимую информацию для формирования белка или функциональной РНК. Определение гена также может включать в себя ДНК, которая не кодирует, а участвует в регуляции экспрессии генов.
Некоторое время спустя после рождения первого сына Хуан узнал, что Давиду диагностировали агрессивный рак легких. Через два года его брат скончался в больнице. Безутешный Хуан, плача от бессилия, держал его руку, пока тот не испустил дух. На могилу «своего второго я» Хуан заказал надпись: «Вместе навсегда».
Итак, оставим в стороне неоспоримый драматизм этой истории. Что нам демонстрирует этот пример с научной точки зрения? Как такое возможно, что два человека с одинаковой ДНК могут вести себя по-разному и переносить разные болезни в течение своей жизни?
Причина проста: ДН К — это еще не все, эпигенетика — вот что придает ей смысл.
Для того чтобы ответить на вопросы, которые мы только что задали, необходимо вернуться к началу истории Хуана и Давида: важен момент, когда они стали близнецами, то есть когда в одном эмбрионе зародились два плода.
Вот в чем суть: однояйцевые близнецы, другими словами, рожденные из одного эмбриона, поделившегося надвое, обладают одним и тем же геномом, но могут иметь различный эпигеном. Эта концепция была представлена на суд общественности в первый раз в 2005 году, когда наша команда опубликовала статью «Epigenetic differences arise during the lifetime of monozygotic twins» (cm. Fraga, M. E в библиографии), в которой мы доказали, что однояйцевые близнецы демонстрируют разную эпигенетику на уровне метилирования ДНК (напомним: это процесс, который объясняет, почему некоторые гены активны, а другие остаются «молчащими») и модификаций гистонов (белков, которые помогают ДНК сворачиваться в характерную спираль, составляя хромосомы).
Эта находка изменила то, как мы, исследователи, понимали отношения между геномом, эпигеномом и окружающей средой, и благодаря обширному научному отклику на эту статью, многие средства массовой информации с мировым именем, такие как The New York Times, The Wall Street Journal и телеканалы CBS и ВВС также транслировали эту идею. Вот это да! Мы опубликовали настоящий научный бестселлер!
Модификация гистонов относится к химическим процессам, которым подвержены гистоны, она влияет на функционирование хроматина. Существует множество модификаций, таких как метилирование, ацетилирование, фосфорилирование, убиквитинирование и т. д.
Ацетилирование — введение остатка уксусной кислоты СН3СО в состав органического соединения.
Фосфорилирование — процесс переноса остатка фосфорной кислоты от фосфолирирующего агента-донора к субстрату.
Наше исследование доказало, что большинство близнецов генетически и эпигенетически идентичны при рождении, но сразу после этого их эпигеномы начинают меняться в индивидуальном порядке, другими словами, по отдельности.
Мы решили назвать этот процесс «эпигенетическим дрейфом». Такая метафора позволяет понять, что эта модификация в какой-то степени похожана непредсказуемое движение судна, которое относит морским или речным течением. В нашей грустной истории братьев-близнецов Хуана и Давида мы увидели, что чем старше становились близнецы, тем сильнее различались они эпигенетически, и чем меньше времени проводили друг с другом, тем более разными были их эпигенетические химические метки. С другой стороны, злоупотребление такими веществами, как табак или алкоголь со стороны Давида, их разный образ жизни (сидячий — Давида, физически активный — Хуана) и тип питания были ключевыми факторами в процессе появления различий между ними.
Убиквитирование — посттрансляционное присоединение ферментами убиквитин-лигазами одного или нескольких мономеров убиквинтина. Убиквитин, аналогично применявшейся у пиратов «черной метке», обрекает белковые молекулы, к которым он прикрепляется, на смерть.
Хромосома — физическая структура в клеточном ядре эукариот, которая содержит генетический материал в форме ДНК, закрученной вокруг белкового комплекса, в основном состоящего из гистонов. Более крупные организмы делят свой генетический материал на несколько хромосом.
Эукариот — клетка, которая содержит ДНК. Отдел за двойной мембраной называется ядром, чем и отличается от прокариот (бактерий и архей), генетический материал которых не содержится в ядре.
После публикации статьи наше изначальное наблюдение было подтверждено и доказано многими исследователями, которые в своих работах использовали еще более сложную и высококачественную технику, что позволило нам добавить новые данные, дополнившие наше открытие и расширившие эту область знаний.
Однако в биомедицинском сообществе все еще оставался один нерешенный вопрос, тайна, разгадка которой не найдена: случаи дискордантных близнецов.
Проще говоря, вопрос связан со случаями, в которых однояйцевые близнецы являются носителями одной и той же мутации, из-за которой они подвержены высокому риску развития определенного заболевания. Однако у одного болезнь развивается, а у другого — нет или развивается спустя много лет. Как такое вообще возможно?
Мутация — изменение в последовательности оснований ДНК.
Основания — мы говорим об основаниях (азотистых), имея в виду химические составляющие, которые являются неотъемлемой частью нуклеиновых кислот. В ДНК содержится 4 типа: А (аденин), Т (тимин), Ц (цитозин) и Г (гуанин). В РНК Т (тимин) заменяется на У (урацил).
Барабанная дробь… Эпигенетика снова приходит на помощь, как седьмой кавалерийский полк.
Рассмотрим это подробнее: благодаря достижениям в эпигенетических исследованиях, мы удостоверились в том, что близнец, находящийся на грани заболевания, начинает накапливать вредоносные эпигенетические изменения, провоцирующие патологию. То есть оба обладают одной и той же мутацией, вследствие которой, например, они имеют склонность к определенному типу рака, но из-за стиля жизни один из них накапливает эпигенетические изменения, по причине которых болезнь разовьется, вто время как другой (с иным стилем жизни) никогда ею не заболеет.
Другой пример, приписываемый эпигенетическому дрейфу, связан с заключениями многочисленных исследований, определивших, что эпигенетические различия близнецов становятся причиной появления психических расстройств. Так, у однояйцевых близнецов с абсолютно идентичными генами фенотип может радикально различаться в зависимости от того, как влияет на них окружающая среда: один будет совершенно здоров, а у второго разовьется психическое или любое другое заболевание.
Дискордантные близнецы — близнецы, имеющие всего 50 % общих генов.
Фенотип — любой видимый признак организма (цвет волос, поведение и т. д.), проявление генотипа (набора генов) в определенной окружающей среде.
Также недавно мы провели еще одно исследование, объектом которого были однояйцевые близнецы женского пола. У одной из сестер был обнаружен рак груди, у другой не было даже предпосылок к этой болезни. Наши изыскания привели нас к открытию: задолго до клинической диагностики сестры-близнеца, которой поставили этот диагноз, были обнаружены изменения метилирования ДНК ее клеток. Вот так — сестры были одинаковыми, но разными.
Генотип и фенотип — разные явления: генотип — совокупность генов, а фенотип — любой видимый признак организма, например цвет волос, поведение и т. д. Таким образом, фенотип является проявлением генотипа в определенной окружающей среде.
Примем эти определения за основу. Фенотипическая дискордантность устанавливает, что два организма могут обладать абсолютно одинаковым генотипом, то есть иметь одинаковые гены, но — и в этом вся загвоздка — их фенотипы будут различными. Когда такое случается, дискордантность объясняется эпигенетическими процессами, а не различием генов, так как они одинаковы. Именно однояйцевые близнецы, несмотря на то что они генетически идентичны, могут демонстрировать разные особенности, даже, как мы убедились, до такой степени, что один здоров, а второй подвержен заболеванию. Изменения будут зависеть от влияния окружающей среды на генетику этих индивидов.
Как уже говорилось, наши гены подвержены влиянию различных факторов, включая окружающую среду, которые могут модифицировать эпигенетику и даже оказывать воздействие на функционирование нашего организма.
Не нужно далеко ходить, чтобы найти пример, который объяснил бы нам этот феномен: представьте, что вы живете в загрязненной среде, примером которой может быть любой большой город. В такой среде ваше тело оказывается окруженным химическими соединениями, от которых ему нужно избавиться, и вследствие процесса очищения производятся реактивные формы кислорода (ионы кислорода, свободные радикалы и перекиси), которые провоцируют окислительный стресс.
Так вот этот стресс хотя и не вызывает генетических мутаций (то есть изменений в последовательности наших генов), но в состоянии нанести ущерб эпигенетическим механизмам, что может способствовать преждевременному старению организма и появлению множества болезней, например, таких как рак, различные патологии нейронов, аутоиммунные заболевания.
Существует несколько точек зрения на эту проблему, и довольно сложно прийти к единому заключению, так как разные индивиды могут по-разному отвечать на раздражители и изменчивость среды обитания и окружающей среды.
Помимо уязвимости, свойственной непосредственно индивиду, нужно иметь в виду среду обитания: тот, кто живет за городом, скорее всего, будет меньше подвержен эпигенетическим изменениям, вызванным контактами с городским загрязнением. Подобным образом курящий человек, не соблюдающий диету, ведущий сидячий образ жизни или загорающий без защиты, будет более уязвим. На самом деле перечисленные нами факторы — лишь малая часть тех условий, которые наносят вред нашему эпигеному. Малая, но доказанная.
Тем не менее сегодня существуют многочисленные белые пятна в вопросе о том, какие именно изменения в среде обитания влияют на эпигеном. Поэтому на повестке дня стоят исследования, направленные на изучение состояния организма в разных условиях с целью понять — чего именно не хватает на уровне эпигенетики при различных заболеваниях, что может быть их причиной и как предотвратить их в будущем.
В отличие от генетических, эпигенетические изменения изначально обратимы. Новость вроде бы хорошая, а главное, многообещающая с точки зрения эпигенетики как науки. Эти эпигенетические изменения случаются естественным образом и протекают динамично. То есть в течение эмбрионального развития или в процессе формирования разнообразных типов клеток эпигенетические метки постоянно меняются, чтобы определять сущность и функцию клеток и тканей. Так что если проявится эпигенетическое изменение, которое приводит к определенному заболеванию, эта отклоняющаяся от нормы метка теоретически сможет модифицироваться, вернувшись к непатологическому состоянию. В настоящее время уже успешно используются эпигенетические медикаменты (например деметилирующие агенты ДНК) для лечения таких болезней, как миелодиспластический синдром (заболевание, при котором в организме нарушена функция выработки кровяных клеток).
Эпигенетика — многообещающая наука как минимум потому, что здесь процессы действительно обратимы. Однако остается еще много работы: даже если мы на правильном пути к разработке узкоспециализированных лекарств, наша цель — получить медикаменты, которые обращают конкретное интересующее нас эпигенетическое изменение вспять.
Ответ дать довольно сложно, хотя очевидно и бесспорно то, что существует четкая связь между изменением эпигенетической регуляции и происхождением различных недугов, таких как рак, старение, аутоиммунные заболевания и т. д. Однако помимо окружающей среды, существует гораздо больше факторов, определяющих нашу чувствительность к тем или иным болезням.
Мы должны соблюдать диету, обзавестись полезными привычками, поддерживать активный образ жизни и соблюдать баланс во всем. Если мы будем следовать этим простым правилам, вероятность возникновения болезней, без сомнения, уменьшится, хотя — и с этим придется смириться — свести риск к нулю невозможно.