ГЛАВА 2. ЯДЕРНЫЙ ЦЕПНОЙ ПРОЦЕСС


Деление урана. Чрезвычайно заманчивым является использование огромной энергии, освобождающейся в ядерных реакциях. Но не так легко практически получить эту энергию. Путем бомбардировки различных веществ заряженными частицами этого сделать нельзя. Атомные ядра составляют ничтожную часть объема вещества, и попасть в ядро значительно трудней, чем стрелку с завязанными глазами направить пулю в центр удаленной мишени. Из миллионов заряженных частиц лишь одна — две произведут ядерную реакцию. Остальные пройдут мимо ядер и потеряют свою скорость при взаимодействии с электронной оболочкой атомов. Даже очень большая энергия, выделяемая в одной ядерной реакции, не может восполнить потерю энергии на ускорение миллиардов заряженных частиц.

Нельзя получить энергию для практических целей и путем бомбардировки веществ нейтронами, так как получение каждого нейтрона связано с большой затратой энергии.

Опыт практического использования химической энергии говорит нам, что ее можно получать только в таких реакциях, которые поддерживают сами себя, — в так называемых цепных процессах. Таким процессом является известная каждому химическая реакция горения. Для того чтобы зажечь костер из сухих веток, не надо нагревать каждую ветку. Можно зажечь некоторые из них, и тепла, выделяемого при их горении, достаточно для того, чтобы разгорелись соседние, а затем и весь костер.

Нужно было найти такие ядерные реакции, которые вызывали бы подобные же реакций в соседних ядрах вещества, то есть получить ядерный цепной процесс.

Недавно был открыт электрический способ окраски различных изделий. Распыление краски производится при ее соприкосновении с электродом высокого напряжения. Жидкие капли краски разрываются электростатическими силами, возникающими благодаря электрическому заряду жидкости. Здесь, очевидно, электростатические силы преодолевают молекулярные силы сцепления, и большая капля краски делится на ряд маленьких.

То же самое может происходить и с положительно заряженным ядром. Например, при попадании в него нейтрона оно нагревается и может не испускать отдельных частиц, а приходить в колебательное движение, как жидкая капля. Этот процесс схематически изображен на рис. 9. Благодаря таким колебаниям шарообразное ядро попеременно принимает либо сплющенную, либо удлиненную форму. Размах подобного колебания может быть настолько велик, что в средней части ядра образуется перетяжка, и оно под действием электростатических сил разрывается на две части.


Рис. 9. Колебательное движение тяжелого ядра перед делением. Размах колебания может быть настолько сильным, что в средней части ядра образуется перетяжка и оно разорвется на два ядра меньшей массы

Такое расщепление скорее всего возможно у очень тяжелых ядер, так как заряд их довольно большой, а электростатические силы расталкивания растут с зарядом ядра.

Тяжелые ядра обладают меньшей энергией связи, а следовательно, и менее устойчивы. Если такое ядро придет в колебательное движение, то это движение усиливается электростатическим отталкиванием и ядро может разорваться на две части.

Ядерная реакция деления урана была открыта в 1939 году. Было обнаружено, что если нейтрон попадает в ядро урана, то в некоторых случаях это ядро раскалывается, делится на две части, два «осколка» (рис. 10). Из одного ядра урана получаются два радиоактивных ядра более легких элементов. При этом выделяется значительная энергия.


Рис. 10. Деление ядра урана. Из одного ядра урана получаются два радиоактивных ядра более легких элементов

Эту энергию довольно просто подсчитать, воспользовавшись кривой энергии связи. Мы примем, что ядро урана разделится на два почти одинаковых ядра. В получившихся ядрах частицы связаны друг с другом более прочно, нежели в ядре урана. Энергия связи, приходящаяся на одну частицу в этих ядрах, больше энергии связи частицы в уране на 0,85 Мэв.

В момент разрыва ядра урана частицы в «осколках» сжимаются, и при этом выделяется энергия. Каждая частица выделяет как раз ту энергию, которую она приобрела, двигаясь под действием ядерных сил. Эта энергия и равна увеличению энергии связи одной частицы — 0,85 Мэв. Для всех частиц ядра урана выделение энергии составит около 200 Мэв. Сюда входит энергия движущихся «осколков» ядра, нейтронов, гамма-квантов и других частиц, получающихся как в самом процессе деления, так и при последующем радиоактивном распаде «осколков». Надо считать, что кинетическая энергия всех этих «осколков» и частиц в конечном счете превращается в теплоту.

В одном килограмме урана содержится около 2,46∙1024 ядер. Если все ядра разделятся, то при этом выделится 200∙2,46∙1024=4,92∙1026 Мэв.

Для того чтобы пересчитать эту энергию в более знакомые нам единицы, надо учесть, что 1 Мэв равен 4,5∙10-20 киловатт-часа. Деление одного килограмма урана дает 22 миллиона киловатт-часов энергии, что равноценно теплу, получающемуся при сгорании 2,5 тысячи тонн угля.

Но не это самое важное. Физики знают ядерные реакции, которые дают бóльшую энергию. Например, в реакции образования гелия, о которой говорилось раньше, выделяется в восемь раз большая энергия, чем при делении урана. Самое существенное в реакции деления заключается в том, что, кроме двух обладающих большой энергией «осколков», в этой реакции выделяется еще два или три новых нейтрона, а эти нейтроны могут произвести деление соседних ядер урана. Таким образом, в уране может быть осуществлен цепной процесс (рис. 11).


Рис. 11. Цепной процесс в уране. Процесс развивается лавинообразно

Два нейтрона, получающиеся в результате первого деления, могут произвести деление еще двух ядер урана. Появятся уже четыре нейтрона, которые разделят четыре ядра, и т. д. Процесс развивается лавинообразно и мгновенно. Все ядерные процессы очень быстры, поскольку при малых междуядерных расстояниях скорость частиц, производящих ядерные реакции, обычно очень велика.

Так, например, скорость нейтронов, получающихся при делении, достигает 20 тысяч километров в секунду. Такая частица за полсекунды может преодолеть путь от Москвы до Владивостока! Поэтому достаточно миллионной доли секунды для того, чтобы в большом куске урана возник цепной процесс с огромным выделением энергии. А выделение большого количества энергии за короткий промежуток времени есть взрывной процесс. Этим и отличается взрыв от всякого другого метода получения энергии.

Но в природном уране такой цепной процесс не идет. Природный уран состоит в основном из двух изотопов: урана238 и урана235. Причем на тысячу ядер природного урана приходится всего только семь ядер урана235.

Оказалось, что цепной процесс может идти только в чистом или почти чистом уране235. Ядра урана235 делятся как медленными, так и быстрыми нейтронами. А ядра урана238 делятся только очень быстрыми нейтронами.

Такие быстрые нейтроны, правда, освобождаются при делении урана, но после нескольких столкновений с ядрами они теряют свою скорость и не могут произвести деления ядер урана238. Ядра тяжелого изотопа урана очень жадно поглощают нейтроны, обладающие средней, так называемой резонансной энергией. При этом деления ядра урана238 не происходит.

Нейтроны, получающиеся в природном уране после деления, в 99 случаях из 100 попадают в ядра урана238 и там поглощаются. Это обстоятельство препятствует возникновению цепного процесса в природном уране.

Для осуществления этого процесса необходимо отделить от природного урана основную часть урана238, то есть разделить изотопы.


Трудная задача. Если мы имеем смесь каких-нибудь веществ, то химики с помощью ряда операций легко могут разделить эти вещества. Но для разделения изотопов химические реакции бесполезны. По своим химическим свойствам изотопы не отличаются друг от друга. Получение отдельных изотопов в чистом виде имеет особое значение сейчас, когда становится ясной их роль в получении и использовании атомной энергии.

Разделение изотопов оказалось очень трудной задачей. Здесь можно использовать только различие масс их атомов и ядер. Но это различие заметно только у изотопов самых легких элементов; у тяжелых изотопов это отличие незначительно.

Так, например, у водорода разница в массах тяжелого (дейтерия) и легкого изотопов составляет 100 процентов, а у урана — всего 1,3 процента. И все-таки во всех известных в настоящее время методах разделения изотопов урана используют это различие в массах.

Предположим, что требуется разделить газ, состоящий из двух сортов молекул. Если температура во всех точках пространства, заполненного газом, будет одинакова, то средняя энергия хаотически движущихся молекул обоих сортов будет также одинакова, то есть — . Отсюда получается, что — , то есть средние скорости молекул обратно пропорциональны корням квадратным из их масс.

Если это соотношение применить к атомам урана, то получим, что скорость атома урана235 будет в 1,0065 больше скорости атомов урана238.

Различие в скоростях весьма мало, но все же его можно использовать для разделения изотопов урана в методе газовой диффузии. Принцип этого метода не сложен. Представим себе сосуд, разделенный перегородкой с мельчайшими порами. Если в одну часть этого сосуда впустить газообразный шестифтористый уран (есть такая соль урана), то молекулы, содержащие уран235, будут быстрее проникать через пористую перегородку и во второй половине сосуда газ будет содержать несколько большее количество легкого изотопа.

Наиболее простая диффузионная ячейка такого рода изображена на рис. 12. Ячейка состоит из трубки с пористыми стенками, помещенной внутри широкого сосуда, в котором с помощью насосов поддерживается вакуум. Газ, состоящий из двух сортов молекул различной массы, втекает в ячейку. Часть этого газа, прошедшая через пористую перегородку, имеет немного увеличенное содержание легких молекул. В конец ячейки поступает газ с большим содержанием тяжелых молекул.


Рис. 12. Схема диффузионной ячейки для разделения изотопов урана. В отверстия А поступает шестифтористый уран. Через В откачивают продиффундированный газ с увеличенным содержанием легкого изотопа. Из Д выходит газ, содержащий тяжелый изотоп урана

Благодаря малому различию атомных весов изотопов урана изменения изотопного состава газа в обоих сосудах очень малы. Поэтому для получения почти чистого урана235 и полного извлечения его из природного урана нужны тысячи таких ступеней разделения.

Другой способ основан на явлении так называемой термодиффузии газов. Если в сосуде, наполненном шестифтористым ураном, создать большой перепад температуры, то благодаря различию скоростей частиц газ, содержащий тяжелый изотоп, будет скопляться в холодной, а легкий — в горячей части сосуда. Здесь для достаточно эффективного разделения изотопов урана тоже необходимо очень много ступеней очистки.

На совершенно другом принципе основан электромагнитный способ разделения. В основе этого метода лежит принцип масспектрографа, с помощью которого производились измерения масс различных изотопов. Смесь ионов различных изотопов ускоряют в электрическом поле и направляют между полюсами сильного электромагнита. Как известно, движущиеся таким образом ионы будут описывать круговые линии в плоскости, параллельной поверхности полюсов магнита. Кривизна этих круговых линий при прочих равных условиях зависит от массы иона. Более легкий ион описывает окружность меньшего радиуса. Таким образом, выпущенные из масспектрографа ионы различных изотопов могут улавливаться в разных местах. Движение иона по правильной круговой орбите возможно лишь при условии, что на всем пути ион не столкнется с какой-либо молекулой газа. Поэтому из камеры прибора тщательно откачивают воздух.

В одном аппарате такого рода можно сразу получить довольно чистые продукты разделения. Однако производительность установки очень мала. Поэтому опять-таки нужно много ячеек для получения достаточного количества урана235.

Все известные в промышленности способы разделения изотопов очень сложны. Но, несмотря на это, чистые изотопы урана получают в довольно больших количествах.


Критический вес. Уголь — прекрасный горючий материал. Но попробуйте осуществить горение в маленьком куске каменного угля. Вам это не удастся. Химическая реакция горения не может поддерживать сама себя в малом объеме.

Вместе с тем большая масса угля в топке легко сгорит до конца.

Горение угля может происходить только при температуре 500–600 градусов, то есть оно может поддерживаться только тогда, когда выделяющегося при реакции тепла достаточно, чтобы нагреть соседние слои угля до этой температуры. Но тогда нужно, чтобы меньше тепла уходило через поверхность горящего тела. Очевидно, что потеря тепла зависит от величины поверхности горящего тела, а относительная величина поверхности растет с уменьшением размеров тела. Так, например, для шара диаметром 20 сантиметров отношение поверхности к объему будет 0,3, тогда как при диаметре шара 2 сантиметра это же соотношение будет 3, то есть в десять раз больше. Естественно, что при горении малый шар будет терять относительно больше тепла, чем большой. Потеря тепла может быть настолько велика, что горение перестанет само себя поддерживать.

Таким образом, химическую реакцию горения можно осуществить только в достаточно большом объеме[6].

Так же как и химический, ядерный цепной процесс не может идти в малом куске расщепляющегося материала.

Для цепного процесса в уране необходимо, чтобы нейтроны, получающиеся при делении, производили новые деления. Но так как ядра составляют ничтожную часть объема вещества, нейтроны могут свободно пройти сквозь малый объем урана235, не задев ни одного ядра, то есть не совершив нового деления (на рис. 13, А). Нужно уменьшить выход нейтронов, а это можно сделать двумя способами. Во-первых, можно увеличить объем (на рис. 13, Б), при этом уменьшится относительное значение поверхности куска урана и, следовательно, уменьшится вероятность выхода нейтронов через эту поверхность. Во-вторых, выход нейтронов можно уменьшить, окружив кусок урана веществом, отражающим нейтроны (на рис. 13, В). Нейтроны, сталкиваясь с ядрами вещества отражателя, будут частично возвращаться обратно в уран, где вновь примут участие в цепном процессе.


Рис. 13. Критический вес урана. В малом куске урана (А) цепной процесс не идет: нейтроны деления выходят наружу. В большом куске (Б) нейтроны деления производят новые деления: цепной процесс поддерживается. Выход нейтронов можно уменьшить, окружив малый кусок урана слоем отражателя (В)

Для осуществления цепного процесса в уране необходимо, чтобы кусок урана был больше определенного объема или чтобы вес куска урана был больше так называемого критического веса.

Чем же определяется критический вес куска урана235? Легко показать, что необходимым и достаточным для осуществления цепной реакции является условие, при котором хотя бы один из нейтронов деления производит новое деление.

Предположим, что в каждом акте деления получаются три нейтрона (рис. 14). Один из нейтронов может после ряда соударений с ядрами урана или вещества отражателя произвести еще одно деление; при этом появятся опять три нейтрона. Другой нейтрон может, столкнувшись с ядром какого-либо вещества посторонней примеси, им поглотиться; новых нейтронов при этом возникать не будет. И, наконец, третий нейтрон может выйти за пределы урана и отражателя, не произведя ядерной реакции.


Рис. 14. Условие существования цепного процесса. Один нейтрон деления должен совершить еще одно деление

Но, несмотря на эти потери нейтронов, реакция будет себя поддерживать. Действительно, в начале процесса после первого деления было три нейтрона. Это первое поколение нейтронов исчезло, но дало «жизнь» еще трем нейтронам второго поколения. Если в результате одного деления, произведенного вторым поколением нейтронов, появятся опять три нейтрона, то число нейтронов в последующих поколениях будет одинаковое. Если число нейтронов, рождающихся в единицу времени, постоянно, то постоянно и число ядерных делений, а следовательно, и количество выделяющейся энергии. Иначе говоря, уровень мощности такой атомной установки будет постоянным.

Очевидно, что критический вес, при котором начинается цепной процесс, есть тот минимальный вес, при котором каждое поколение нейтронов рождает последующее поколение, состоящее из такого же количества нейтронов, то есть потери нейтронов вследствие утечки или поглощения примесями должны быть полностью компенсированы образующимися в уране нейтронами.

Критический вес зависит прежде всего от формы куска урана, которая определяет величину поверхности. Можно показать, что при одном и том же объеме (или весе) наименьшей поверхностью обладает шар. Например, при одинаковом объеме, равном 125 кубическим сантиметрам, тонкая пластинка размером 25×5×1 сантиметр имеет примерно в три раза бóльшую поверхность, чем поверхность шара радиусом 3,1 сантиметра. Поэтому критический вес сферического куска урана — наименьший и для чистого урана235 равен примерно одному килограмму. Критический вес может быть значительно уменьшен применением отражателя, препятствующего утечке нейтронов.


Атомный взрыв. Присутствующие в уране235 примеси поглощают нейтроны, что создает дополнительные их потери. Эти потери могут быть компенсированы только уменьшением выхода нейтронов наружу. А это приводит к увеличению критического веса урана235.

Здесь можно провести аналогию с горением сырого дерева. Вода поглощает большое количество тепла, выделяющегося при горении, и поэтому трудно разжечь и поддерживать огонь в сырых дровах.

В уране при большом содержании примесей потеря нейтронов вследствие их поглощения не может быть компенсирована ни отражателем, ни увеличением критического веса урана. В таком «грязном» уране цепной процесс не может возникнуть, как бы мы ни увеличивали размеры куска. Поглощающей нейтроны примесью является тяжелый изотоп урана — уран238. Поэтому в сплошном куске природного урана любого объема цепной процесс осуществить нельзя.

Наши рассуждения можно подтвердить очень простыми расчетами.

Предположим, что в куске урана цепной процесс начался в результате одновременного появления N0 нейтронов. Из этих нейтронов некоторое число поглотится примесями, и если предположить, что p есть доля нейтронов, которым удалось избежать этого поглощения, то останется, очевидно, N0p нейтронов. Кроме этого, часть нейтронов выйдет наружу, но некоторая доля f нейтронов произведет деление ядер урана. В каждом делении будет освобождаться ν новых нейтронов. Таким образом, мы будем иметь второе поколение нейтронов в количестве N0pfv. Очевидно, что каждая из величин р и f будет меньше единицы.

Для того чтобы шел цепной процесс, потери нейтронов должны быть полностью компенсированы. Поэтому число нейтронов второго поколения должно быть равно начальному количеству нейтронов или больше его, то есть N0pfvN0, или pfv≥1[7].

Величина pfv=K называется коэффициентом размножения нейтронов. Цепной процесс может идти, только если K≥1. При K=1 цепной процесс начинается, и это равноценно нашему условию, что хотя бы один из нейтронов деления произвел новое деление. Если коэффициент размножения больше единицы, то число нейтронов нарастает лавиной. Действительно, если в начальный момент было N0 нейтронов, то при K>1 в последующих поколениях количество нейтронов будет все время расти:

N1=N0K; N2=N0K2; N3=N0K3

В чистом уране235, где поглощение нейтронов почти полностью отсутствует, коэффициент р близок к единице. Среднее число нейтронов, приходящихся на одно деление ν, приблизительно равно 2,5. Поэтому в достаточно большом куске, где выход нейтронов через поверхность мал, коэффициент размножения может быть близок к 2.

Предположим, что цепной процесс был вызван одним нейтроном, то есть N0=1; тогда большинство ядер разделится уже примерно на восьмидесятом поколении, так как число атомов в одном килограмме урана235 приблизительно равно числу N80=1∙289. Можно считать, что, прежде чем вызвать деление ядра урана, нейтрон должен пройти расстояние, равное примерно 10 сантиметрам. Таким образом, для того чтобы произвести 80 ядерных реакций, нейтронам надо пройти всего около восьми метров; а при скорости их в 20 тысяч километров в секунду они это сделают за миллионную долю секунды, и при этом выделится огромное количество энергии. А это и есть атомный взрыв.

Для начала цепного процесса нет необходимости как-то искусственно впускать нейтроны, для того чтобы «зажечь» кусок урана, имеющего вес больше критического. В уране всегда имеются блуждающие нейтроны, которые обязаны своим происхождением ряду ядерных процессов. Прежде всего в уране происходят самопроизвольные деления ядер. Это явление было открыто советскими учеными Г. Н. Флеровым и К. А. Петржаком. Самопроизвольное деление ядер урана происходит очень редко. В среднем в одном грамме природного урана совершаются 23 деления в час. Но при каждом самопроизвольном делении освобождается несколько нейтронов, которые будут блуждать в куске урана до тех пор, пока не выйдут наружу или не поглотятся его ядрами. При поглощении этих нейтронов ядрами урана может произойти деление и освобождение новых блуждающих нейтронов. В двух разъединенных кусках урана общим весом около двух килограммов за счет самопроизвольного деления освобождается около 40 нейтронов в секунду. В среднем каждые 0,02 секунды образуется один нейтрон.

Кроме того, могут быть нейтроны космического происхождения. Из далеких миров, из Галактики к нам приходят космические частицы, представляющие собой ядра легких элементов, обладающие колоссальной энергией. Эти частицы, сталкиваясь с ядрами различных веществ, производят ядерные реакции, в которых иногда образуются нейтроны. Эти нейтроны тоже могут быть начальными при развитии цепного процесса. Не исключено также деление ядер урана непосредственно теми же космическими частицами.

Итак, в большом куске урана всегда найдется несколько блуждающих нейтронов, которых вполне достаточно для начала цепного процесса. Как только вес куска урана превысит критический, в нем мгновенно произойдет атомный взрыв.


«Горение» урана. Мы уже знаем, как получают атомную энергию из урана235. Но этого недостаточно. Надо научиться управлять процессом выделения энергии. Ведь эта энергия получается в форме взрыва. Цепной процесс идет очень быстро до тех пор, пока не распадется весь расщепляющийся материал или пока этот материал не разлетится под действием атомного взрыва.

Следовательно, нужно научиться осуществлять медленное «горение» урана.

Казалось бы, управлять цепным процессом не так трудно.

Предположим, что мы сумеем изменять и поглощение нейтронов и выход их через поверхность урана, то есть изменять величину коэффициентов р и f.

Для начала цепного процесса мы должны увеличить р или f до тех значений, при которых коэффициент размножения K становится больше единицы. Число нейтронов, а следовательно, и число реакций деления, будет непрерывно возрастать. После того как количество выделяющейся энергии станет достаточно велико и мощность установки возрастет до необходимых значений, коэффициент размножения можно уменьшить до единицы. При этом число нейтронов, а следовательно, и мощность установки останется на прежнем уровне. Изменять же коэффициент размножения можно, и позже мы покажем, как это делается.

Но скорость нейтронов слишком велика, чтобы можно было достаточно надежно управлять процессом. Мы уже видели, что при коэффициенте размножения, равном двум, цепной процесс длится миллионные доли секунды. Поэтому, казалось бы, как только значение коэффициента превзойдет единицу, управление процессом станет невозможным: слишком быстро будет нарастать число нейтронов, участвующих в делении урана. Даже если нам и удастся держать значение коэффициента размножения близким к единице, не может быть гарантии, что при внезапном изменении режима процесс может либо совсем затухнуть, либо перейти в атомный взрыв.

К счастью, есть одно обстоятельство, которое облегчает управление цепным процессом в уране. Исследования показали, что при делении ядра урана не все нейтроны выделяются одновременно. Часть нейтронов (около одного процента) выбрасывается «осколками» деления с довольно большим запозданием, достигающим 60–80 секунд. Эти так называемые запаздывающие нейтроны позволяют в некоторых случаях сильно замедлять развитие цепного процесса.

Предположим, что мы довели значение коэффициента размножения до единицы. Это значит, что потеря нейтронов полностью восполняется вновь образованными при делении ядер. В этом случае цепной процесс осуществляется за счет запаздывающих нейтронов, так как без них коэффициент размножения был бы равен приблизительно 0,99.

Если мы теперь увеличим коэффициент размножения до 1,01, то это увеличение произойдет не сразу. Та часть его, которая определяется мгновенно вылетающими нейтронами, быстро поднимется до единицы. Запаздывающие же нейтроны увеличат значение коэффициента размножения только через одну — полторы минуты. И только после этого будет развиваться цепной процесс.

Таким образом, изменяя коэффициент размножения вблизи значения единицы, мы можем постепенно ускорять или замедлять развитие цепного процесса, то есть управлять скоростью выделения атомной энергии, получающейся при делении урана.


Простейший ядерный реактор. Аппарат, в котором осуществляется управляемый цепной процесс деления, называется ядерным реактором.

Принцип действия ядерного реактора очень прост (рис. 15). Можно взять, например, кусок урана в виде полого короткого цилиндра с таким расчетом, чтобы его вес был близок к критическому. В этом случае коэффициент размножения будет близок к единице. Если постепенно вдвигать в полость цилиндра урановый стержень, то вследствие уменьшения утечки нейтронов через полость коэффициент размножения будет расти и при определенном положении стержня он может стать несколько больше единицы. Нужно только помнить, что коэффициент размножения не должен превышать 1,01, так как при больших его значениях ядерный процесс будет определяться мгновенно вылетающими нейтронами, реактор может выйти из управления и произойдет атомный взрыв. При коэффициенте размножения больше единицы начнет развиваться цепная реакция и возрастать количество выделяющейся энергии. При достижении нужной мощности, изменяя положение уранового стержня, можно добиться такого состояния, при котором коэффициент размножения будет равен единице. Тогда в ядерном реакторе будет выделяться постоянная во времени атомная энергия. Урановый цилиндр будет нагреваться, и выделяющееся в такой атомной «печи» тепло может быть использовано для различных целей.


Рис. 15. Схема простейшего ядерного реактора. При определенном положении регулирующего стержня коэффициент размножения становится больше единицы. Цепной процесс развивается

Однако, как мы уже говорили, для осуществления такого рода цепного процесса необходимо из ядерного горючего реактора удалить значительную часть урана288. Движущиеся нейтроны сталкиваются с его ядрами и, постепенно теряя свою скорость, в конце концов поглощаются ими.


Медленные нейтроны. Цепной процесс может возникнуть и в природном уране, но на медленных нейтронах.

Что же такое медленные нейтроны?

Молекулы различных газов находятся в непрерывном хаотическом движении. Скорость этого движения зависит от температуры. Но даже при нормальной температуре она довольно велика. Например, молекулы кислорода или азота, из которых состоит воздух, двигаются хаотически в различных направлениях со скоростями порядка 500–600 метров в секунду. Такие скорости называются тепловыми скоростями, а нейтроны, обладающие такими скоростями, — тепловыми, или медленными, нейтронами. Медленные нейтроны легко захватываются ядрами урана235 и с колоссальной активностью производят их деление.

Очень существенным является также то, что эти тепловые нейтроны относительно слабо поглощаются ядрами урана238. Поэтому на медленных нейтронах цепной процесс может идти и в природном уране. Замедляются нейтроны довольно просто, примерно так же, как бильярдные шары, ударяющиеся друг о друга. Если движущийся шар ударится о неподвижный, то он всегда теряет часть своей энергии. Иногда при так называемом лобовом ударе движущийся шар потеряет всю свою энергию. Он остановится, а пойдет вперед шар, бывший ранее неподвижным. Но большей частью при косом ударе оба шара будут двигаться с меньшей скоростью. Законы механики говорят нам, что наибольшая потеря энергии будет при столкновении с шаром равной массы. В среднем в каждом таком столкновении шар будет терять половину своей энергии.

Так же как и бильярдные шары, замедляются и нейтроны при столкновении с легкими ядрами. После ряда столкновений нейтроны растрачивают свою энергию, и их скорость становится тепловой, соответствующей скорости молекул замедлителя, то есть вещества, замедляющего нейтроны. В качестве замедлителя можно взять, например, простую воду, содержащую легкие ядра водорода, масса которых примерно равна массе нейтрона. Однако эти ядра не только замедляют движение нейтрона, но и легко их поглощают. А это невыгодно. Поэтому в большинстве случаев в качестве замедлителя используется не простая, а тяжелая вода, в которой легкий водород заменен тяжелым изотопом — дейтерием, слабо поглощающим нейтроны. Хорошим замедлителем является также графит (модификация углерода). Замедление нейтронов в графите идет медленнее, чем в тяжелой воде. Ядра углерода тяжелее ядер дейтерия, и нейтрон при столкновении теряет меньшую часть своей скорости. Но ядра углерода, так же как и ядра дейтерия, почти не поглощают нейтронов.

Загрузка...