ГЛАВА 7. О ТЕРМОЯДЕРНЫХ РЕАКЦИЯХ


Соединение легких ядер. Как известно, ядерную энергию можно получить как при делении ядер тяжелых, так и при соединении ядер легких элементов. Мы уже умеем получать и использовать энергию при делении ядер изотопа естественного урана — урана235 и ядер искусственных изотопов — урана233 и плутония239.

Физики еще раньше, чем была открыта реакция деления урана, знали, что при бомбардировке легких ядер быстрыми заряженными частицами происходят ядерные реакции, в которых выделяется очень большая энергия. Например, при бомбардировке лития ядрами водорода — протонами выделяется энергия, примерно в два с половиной раза большая, чем при делении урана, если отнести эту энергию к единице веса вещества, входящего в реакцию. Еще большая энергия получается при образовании ядер гелия из различных изотопов водорода.

Однако произвести соединение ядер не так легко. Ведь одноименно заряженные ядра с большой силой отталкиваются. Поэтому для того чтобы производить такие ядерные реакции, нужно ускорять заряженные частицы на специальных аппаратах-ускорителях. Но можно ли на ускорителях получать атомную энергию для практических целей? Оказывается, нет. Из огромного числа частиц лишь одна совершит ядерную реакцию, и энергии, выделенной при этом, недостаточно даже для того, чтобы компенсировать работу, затраченную на ускорение миллионов заряженных частиц, которые пройдут мимо атомных ядер. Таким путем нельзя получить выигрыш в энергии.

Очевидно, что для получения энергии при соединении легких ядер нужен процесс, который сам себя поддерживает. Оказалось, что для получения быстрых частиц совсем необязательно применять ускорители. Вспомните, ведь атомы и молекулы любого вещества всегда находятся в непрерывном движении. Причем скорость движения атомов, а следовательно, и ядер растет с повышением температуры вещества. Поэтому надо нагреть смесь легких элементов. Ядра этих элементов при своем движении будут сталкиваться друг с другом — соединяться. Происходят ядерные реакции и выделяется энергия. Если тепла, получающегося в этих реакциях, достаточно, чтобы поддержать высокую температуру вещества, то будет осуществляться самоподдерживающийся ядерный процесс. Этот процесс и называется термоядерной реакцией.

Примерно так же мы зажигаем смесь газа с воздухом в газовой горелке. Вы знаете, что газ сам по себе не загорится. Для его горения необходима температура порядка 400–500 градусов. Надо повернуть кран, пустить газ и поднести к нему зажженную спичку. Дальше уже газ сам будет поддерживать свое горение. Будет идти так называемая термохимическая реакция, при которой тепла, выделяющегося за счет химической реакции горения газа, достаточно, чтобы поддерживать существование самой реакции.

То же самое будет, если мы как-нибудь подожжем смесь легких элементов. Будет идти поддерживающая сама себя термоядерная реакция, при которой будет выделяться энергия, в десятки миллионов раз большая энергии любой химической реакции.

Но оказалось, что сделать это совсем не так просто. Для «зажигания» термоядерной реакции уже простая спичка не годится; нужна зажигалка, дающая температуру в несколько миллионов градусов. Только тогда скорость некоторой части легких ядер будет достаточна для преодоления отталкивающих электростатических сил и осуществления ядерных реакций.


Энергия Солнца и звезд. Получить температуру в несколько миллионов градусов в земных условиях очень трудно. Но оказывается, что термоядерные реакции идут в природе без нашего участия.

Солнце и звезды излучают огромную энергию в мировое пространство, и эта энергия пополняется за счет ядерных реакций соединения легких элементов. В центре Солнца температура порядка 13 миллионов градусов. При этой температуре атомы полностью ионизованы, то есть вокруг их ядер уже не существует электронных оболочек. Фактически Солнце заполнено электронно-ионным газом. Высокие температуры вызывают колоссальные давления этих газов, и ядра могут подойти значительно ближе друг к другу, нежели в земных условиях при обычных температурах. Благодаря давлению плотность газов в центре Солнца равна около 80 граммов на кубический сантиметр, что намного больше плотности самых тяжелых твердых тел на земле.

Исследования показали, что на Солнце и в ряде других звезд идет целый ряд ядерных реакций, в результате которых четыре атома водорода превращаются в одно ядро гелия.

В результате этих реакций выделяется огромная энергия. При превращении одного килограмма водорода в гелий выделяется тепло, достаточное для того, чтобы вскипятить полтора миллиона кубометров воды.

Интересно, что термоядерная реакция на Солнце протекает очень медленно. Нужно несколько миллионов лет, чтобы четыре атома водорода превратились в ядро гелия. Поэтому тепло, излученное десятками тонн солнечного вещества в сутки, недостаточно, чтобы вскипятить один стакан воды. При таком медленном процессе только благодаря участию гигантских масс возможно выделение Солнцем огромного количества тепла. Если применить известный уже нам закон взаимосвязи массы и энергии, то оказывается, что наше Солнце излучает такую огромную энергию, что вместе с этой энергией каждую секунду Солнце теряет четыре с половиной миллиона тонн своего веса. Правда, для Солнца эта потеря совершенно ничтожна. Масса его настолько велика, что за два миллиарда лет своего непрерывного излучения Солнце теряет не больше одной десятой процента своего веса.

Естественно, что в результате ядерных реакций содержание водорода на Солнце уменьшается, и после того как весь водород израсходуется, выделение энергии прекратится: Солнце погаснет. Но и здесь опасаться незачем. Сейчас на Солнце столько водорода, что его хватит, как показывают подсчеты, на 100 миллиардов лет.


Солнце на земле. Мы приходим с вами к удивительному выводу. Оказывается, человечество за все время своего существования всегда использовало ядерную энергию — энергию Солнца. Действительно, мы уже говорили, что какой бы источник энергии мы ни имели на земле, его происхождение неразрывно связано с Солнцем.

Однако земля получает ничтожную часть энергии ядерных реакций, происходящих на Солнце. Еще меньшую часть полезно расходуем мы для наших нужд. И, безусловно, прав академик Несмеянов, когда он сказал в 1955 году на сессии Академии наук: «Настало время вместо использования жалких крох консервированной в том или ином виде на нашей планете колоссальной энергии Солнца создать свое Солнце на земле». Не правда ли, это звучит как фантазия? Но мы не привыкли слышать из уст выдающегося ученого, президента Академии наук, фантастические идеи. Разве фантазия электростанции, использующие ядерную энергию деления урана, двигатели на атомном горючем? Еще ближе мы подойдем к цели, когда сумеем получить управляемую термоядерную реакцию, подобную реакциям, идущим на нашем большом Солнце. Тогда мы действительно создадим свое Солнце на земле.

На этом пути ученым предстоит решить еще очень много трудных задач. Мы обладали до сих пор единственным средством, позволяющим получать температуру в миллионы градусов, необходимую для осуществления термоядерных реакций. Это — взрыв атомной бомбы. Она и применяется в качестве детонатора для термоядерного, водородного оружия. Но, конечно, невозможно применять для промышленных целей атомную бомбу. Поэтому прежде всего надо было найти возможность «зажигать» термоядерные реакции, не прибегая к атомному взрыву, то есть построить прибор, позволяющий получать температуру в миллион градусов.

Хотя наиболее выгодной ядерной реакцией является соединение ядер обычного водорода, но, к сожалению, осуществление термоядерной реакции на земле на таком горючем вряд ли возможно. Значительно проще осуществить термоядерные реакции на тяжелом водороде (дейтерии) и особенно легко — на сверхтяжелом водороде (тритии). Эти реакции уже используются в водородной бомбе.

Дейтерия на земле — огромные запасы. Он содержится в любой воде в небольшом количестве: примерно 0,015 процента к имеющемуся там водороду. Но ведь вода в земных океанах неисчерпаема. Было бы очень заманчивым использовать этот источник энергии в мирных целях. Быстрорастущие потребности человечества в энергии были бы обеспечены на миллиарды лет. Над этой проблемой работают многие ученые в различных странах. Исследования, проведенные советскими и зарубежными учеными в последние годы, показали, что имеются реальные пути к решению этой великой задачи.


Магнитный мешок. Для того чтобы нагреть водород до миллиона градусов, нужна небольшая энергия. Для одного грамма дейтерия это всего несколько киловатт-часов. Трудность заключается в том, что при таких температурах атомы и молекулы газов обладают огромными скоростями и разбегаются в разные стороны. Давление газа достигает миллионов атмосфер. Тепло переходит от дейтерия к окружающему веществу, к стенкам сосуда, в котором происходит это нагревание. Естественно, что в этом случае мы уже будем затрачивать огромную энергию на нагревание сосуда. Нагреть нам дейтерий так не удастся. Да и какой сосуд выдержит температуру в миллионы градусов и давление в миллионы атмосфер? Надо было придумать такую термоизоляцию, которая дала бы возможность стенкам сосуда оставаться холодными в то время, когда газ в сосуде имеет температуру в миллионы градусов. Кроме того, нужно, чтобы давление на стенки сосуда не было бы слишком высоким. Казалось бы, что эта задача неразрешима. Но решение было найдено.

Нагретый до миллионов градусов газ уже не является обычным веществом. Он состоит из движущихся отдельно друг от друга заряженных частиц: положительных атомных ядер и отрицательных электронов. Этот газ называется плазмой. Задача заключается в том, чтобы удержать заряженные частицы вместе, так как при их разлете, естественно, будет уходить энергия, заключенная в объеме газа.

В 1950 году академики И. Е. Тамм и А. Д. Сахаров сделали очень интересное предложение о применении магнитного поля для термоизоляции плазмы высокой температуры. Дело в том, что в магнитном поле заряженные частицы не могут двигаться прямолинейно, а заворачиваются по окружностям. Чем больше магнитное поле, тем по меньшей окружности двигаются ионы и электроны. Правда, при столкновении друг с другом они будут перемещаться, но уйдут не дальше, чем на длину радиуса окружности. При сильном магнитном поле потеря энергии плазмой за счет движения частиц должна уменьшаться в десятки и сотни тысяч раз. Заряженные частицы нагретой до миллионов градусов плазмы будут как бы находиться в магнитном мешке. Однако стенки этого мешка, образованные магнитным полем, уже не боятся сверхвысоких температур.

После того как академики И. Е. Тамм и А. Д. Сахаров высказали свою идею, физики вспомнили, что с подобным явлением, правда в меньшем масштабе, с так называемым пинч-эффектом, они уже встречались при исследовании газового разряда. Читатель ведь знает, что, когда по проводнику протекает электрический ток, вокруг него образуется магнитное поле. То же самое происходит при прохождении тока через плазму. И вот при больших токах в ртутной дуге и при некоторых других формах электрического разряда возникающая там плазма благодаря сильному магнитному полю сжимается в узкий шнур. При этом сжатии, так же как это имеет место при обычном сжатии газа, происходит повышение температуры. Однако при сравнительно малых токах, которые до сих пор использовались в газовом разряде, температура плазменного шнура достигала только десятка тысяч градусов. Это далеко до температуры, необходимой для термоядерных реакций. Но это не обескуражило ученых. Были произведены необходимые расчеты, и большая группа физиков под руководством академика Л. А. Арцимовича приступила к исследованиям.


Близко к великой цели. Оказалось, что для успеха дела — получения температуры в миллион градусов — нужны токи порядка сотен тысяч и даже миллиона ампер. Такой ток можно пропустить через плазму разрядной трубы только при напряжении в несколько десятков тысяч вольт. Достаточно перемножить значение тока и напряжения, чтобы убедиться, что мощность установки превосходит мощность всех гидроэлектростанций Советского Союза. Выход заключался в том, чтобы пропускать через разрядную трубку мощные токи в виде импульсов, длящихся миллионные доли секунды. Тогда при колоссальной мгновенной мощности средняя мощность, потребная для питания установки, получается вполне приемлемой величины.

Газоразрядная трубка с дейтерием в экспериментальной установке получала электрическое питание от мощной батареи высоковольтных конденсаторов при напряжении 50 тысяч вольт.

Много нового и чрезвычайно интересного открыли советские физики при исследовании сверхмощных импульсных разрядов. Применяя специальные и очень остроумные измерительные приборы, они обнаружили, что газ в трубке стягивается в узкий плазменный шнур, оторванный от стенок сосуда. Плазма испытывает резкие колебания, связанные с последовательным сжатием и разряжением. В сосуде возникают ударные волны с невиданной скоростью распространения — несколько сот километров в секунду. Температура плазменного шнура в момент наибольшего сжатия достигала миллиона градусов.

Интересно отметить, что в ряде исследований применялась сверхскоростная киносъемка. Киноаппарат фотографировал около двух миллионов кадров в секунду. После проявления кинопленки перед глазами физиков раскрывались все особенности процессов, длившихся миллионные доли секунды. Группа физиков и теоретиков обработала экспериментальный результат. Многие до сих пор неизвестные явления получили объяснения.

Термоядерная реакция в дейтерии всегда сопровождается излучением нейтронов. С большим удовлетворением в 1952 году физики уже в первых опытах обнаружили нейтронное излучение. Но, увы, радость была преждевременна. Дальнейшие исследования и расчеты показали, что нейтроны появляются уже при таких малых разрядных токах и температурах плазмы, когда термоядерной реакции практически еще не может быть. Было также обнаружено, что одновременно с нейтронами появляются и гамма-лучи. По своим свойствам они соответствовали рентгеновским лучам, испускаемым рентгеновской трубкой с напряжением 300–400 киловольт.

Хотя нейтроны и гамма-лучи не могли быть следствием возникающих термоядерных реакций, но это явление само по себе представляет огромный интерес.

Для их объяснения необходимо допустить, что в плазме имеются весьма быстрые заряженные частицы, которые могут быть получены при разности потенциала на электродах разрядной трубки в несколько сот киловольт. Но все приборы убедительно показывали, что в момент излучения нейтронов и гамма-лучей напряжение на трубке всего 10 киловольт.

Это явление пока не получило удовлетворительного объяснения. Вполне вероятно, что в плазме происходят такие процессы, при которых часть медленных заряженных частиц ускоряется и получает очень большую энергию, достаточную для получения нейтронного и гамма-излучений.

Исследования ближайшего времени позволят создать стройную теорию этих процессов. Впереди еще много трудностей. Если мы хотим получить термоядерную реакцию в каком-либо кратковременном процессе, то прежде всего необходимо, чтобы за время этого процесса выделялась значительно бóльшая энергия, нежели затрачиваемая в начале процесса. Этого пока еще нет.

Еще более трудной задачей является получение длительной и медленно протекающей термоядерной реакции.

Советские физики близко подошли к решению великой проблемы — получению искусственной и управляемой термоядерной реакции. Как знать, может быть, через несколько месяцев или лет советские читатели узнают о новой огромной победе ученых.


Еще немного фантазии. Даже если нам удастся осуществить сверхвысокие температуры, проблема получения энергии термоядерных реакций еще не будет решена. Мы сможем зажечь термоядерную реакцию, но надо научиться управлять ею. Нам не удастся использовать энергию, если после того, как мы «подожжем» нашу ядерную смесь, произойдет атомный взрыв.

Намечаются два пути исследования энергии термоядерных реакций. Первый путь заключается в осуществлении медленного горения ядерной смеси. Так происходит на Солнце и звездах, но мы хотим построить свое маленькое Солнце на земле. Тогда перед учеными встанет еще одна довольно трудная задача: надо будет научиться использовать энергию, получаемую при температуре в миллион градусов.

Пути к этому тоже есть. Умеем же мы использовать энергию нашего большого Солнца, которая получается при 13 миллионах градусов. Сейчас мы еще далеки от каких-нибудь конструктивных решений, но все же можно представить себе, из каких примерно элементов будет состоять термоядерный реактор — искусственное Солнце (рис. 93). По-видимому, в его центре будет находиться нагретая до миллионов градусов плазма, удерживаемая в малом объеме мощными электромагнитными полями. Ионы легких элементов, сталкиваясь друг с другом, вступают в ядерные реакции, в результате которых выделяется огромная энергия. Возможно, что удастся получить с одного кубического сантиметра центрального объема мощность 1 киловатт или с одного кубического метра — миллион киловатт.


Рис. 93. Возможная схема термоядерного реактора — искусственного солнца

Носителем энергии в ядерных реакциях являются заряженные частицы, нейтроны и электромагнитное излучение. Быстрые заряженные частицы отдадут часть своей энергии в центральном объеме, тем самым поддерживая там необходимую для осуществления термоядерной реакции температуру. Основную энергию заряженные частицы потеряют во внешнем объеме вне электромагнитного поля. Эту энергию можно получить в виде тепла, выделенного какой-нибудь поглощающей стеной, окружающей центральный объем. Но можно поступить иначе, превращая энергию заряженных частиц непосредственно в электрическую, минуя тепловой цикл (паровой котел и турбину). Заряженные частицы, поглощаясь каким-либо металлом, выбивают с поверхности металла большое количество электронов. Таким образом, металлическая стенка получит положительный заряд, который обусловливает возникновение электрического тока. Существуют и другие возможности превращения энергии термоядерных реакций в электрическую.

Энергия нейтронов, поглощаемых внешней стеной, превращается в тепло. По-видимому, при высоких температурах, получающихся в термоядерных реакциях, наибольшая часть энергии будет выделяться в виде электромагнитного излучения. Эту энергию также можно превращать в тепловую и электрическую. Исследования показали, что очень чистые кристаллы кремния превращают в электрическую энергию- около семи процентов падающей на них световой энергии. Весьма вероятно, что найдутся химические соединения, которые еще эффективнее будут преобразовывать свет в электричество. Такие вещества в скором времени можно будет применять для использования солнечной энергии в промышленных целях, а в будущем можно будет использовать также энергии излучения искусственных солнц.

Наконец, энергию искусственного термоядерного солнца можно использовать в фотосинтезе. Как известно, зеленые листья растений поглощают значительную долю падающей на них солнечной световой энергии. Благодаря фотосинтезу они создают запасы энергии в органических веществах. Эту энергию мы используем при горении химического топлива. Весьма вероятно, что в будущем будет выгодно с помощью термоядерных реакций и ускоренного фотосинтеза создать искусственное химическое топливо, используя его затем как горючее на транспорте и электростанциях.

Создание на основе термоядерных реакций искусственных маленьких солнц может произвести очень эффективное изменение местного климата. Это могут

быть как неподвижные солнца, так и солнца, расположенные на искусственных спутниках земли.

Конечно, это еще пока почти фантазия, но она имеет под собой довольно прочную основу, и надо будет еще много потрудиться, чтобы превратить ее в действительность.

Среди ученых есть некоторые опасения, что в разумных и достижимых на земле объемах не удастся осуществить медленную термоядерную реакцию. Но даже если эти пессимистические высказывания оправдаются, то есть и второй путь. Он заключается в использовании малых взрывов смеси легких элементов. Для этого надо будет зажигать смесь маленькими порциями. После того как выгорит первая порция, в аппарат впускается следующая и поджигается. Это напоминает работу двигателя внутреннего сгорания, например дизеля. Здесь также порциями впрыскивается горючее, которое мгновенно воспламеняется и обеспечивает рабочий ход двигателя.

Успешное решение этой задачи позволит создать реактивные двигатели, использующие термоядерные реакции.

Конечно, такой путь использования термоядерных реакций является менее выгодным, чем медленное горение: каждый раз для осуществления мелкого взрыва необходимо затратить часть энергии на получение сверхвысокой температуры смеси. Однако атомная энергия, получающаяся при каждом взрыве, может быть во много раз больше затраченной. Не следует забывать об огромной концентрации энергии в термоядерном горючем. Содержимое обычного баллона со сжатой смесью легких газов будет заключать в себе запас энергии, равноценный теплу, выделяющемуся при сгорании примерно двух тысяч тонн бензина. Реактивный самолет или снаряд, снабженный таким горючим, сможет совершать полеты огромной дальности.

Сейчас ведутся работы в различных направлениях, и еще неясно, каким путем удастся получить управляемую термоядерную реакцию. Не подлежит, однако, никакому сомнению, что цели ученых увенчаются успехом. В ближайшие десятилетия, а может быть и годы, человечество овладеет энергией термоядерных реакций для промышленных целей и получит новые неисчерпаемые источники энергии, значительно превосходящие запасы атомной энергии в уране и тории.

Загрузка...