ГЛАВА 3. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЯДЕРНЫХ РЕАКТОРАХ


Гетерогенные реакторы. В однородной (гомогенной) смеси природного урана с замедлителем не всегда можно осуществить цепной процесс.

Нейтроны теряют свою скорость в замедлителе постепенно и обычно в результате большого числа столкновений становятся тепловыми. Когда слабо замедлившийся нейтрон встретит на своем пути ядро урана238, то произойдет его поглощение.

Как же уменьшить захват нейтронов ядрами урана238?

Если применять в качестве замедлителя графит, то никаким увеличением количества урана и размеров реактора не удастся довести коэффициент размножения до единицы. Следовательно, надо удалить ядра урана238 из зоны, где происходит замедление нейтронов. Поэтому ядерные реакторы, использующие природный уран и графит, изготовляются в виде гетерогенной (неоднородной) смеси урана и замедлителя. В этих реакторах обычно уран в виде стержней (блоков) чередуется с чистым графитом (рис. 16).


Рис. 16. Схема гетерогенного ядерного реактора

Диаметр урановых стержней должен быть рассчитан так, чтобы нейтроны, получающиеся при делении, не испытывали много столкновений в уране. В противном случае уран238 может опять поглотить большое число нейтронов. Обычно урановые стержни имеют диаметр не больше трех — четырех сантиметров.

Предположим, что в одном из урановых блоков произошло деление ядра урана235. При этом выделились три нейтрона. У этих нейтронов может быть различная судьба.

Один из нейтронов может испытать большое число столкновений с ядрами замедлителя и, теряя в каждом столкновении часть своей скорости, придет в другой урановый блок с очень малой тепловой скоростью. Такой нейтрон при столкновении с ядром урана238 имеет очень небольшие шансы им поглотиться: он просто отскочит от этого ядра, как резиновый мячик от тяжелой стены. Ведь ядро урана в 238 раз тяжелее нейтрона. Тепловой нейтрон после ряда столкновений с ядрами тяжелого изотопа в конце концов в том или другом урановом стержне встретится с ядром урана235 и произведет его деление. При этом выделятся опять два или три новых нейтрона.

Другой нейтрон испытает меньшее число столкновений с ядрами замедлителя и придет в другой урановый блок с какой-то средней скоростью. Такие нейтроны очень жадно поглощаются ядрами урана238. Новых нейтронов при этом возникать не будет.

Наконец, третий нейтрон может совсем выйти за пределы уранового котла, не задев ни одного уранового блока.

Как уже указывалось, цепной процесс может протекать, если хотя бы один из нейтронов деления произведет еще одно новое деление. В этом случае коэффициент размножения будет равен единице.

Изменяя величину коэффициента размножения, мы можем управлять процессом, то есть изменять мощность ядерного реактора. Управление котлом обычно производится с помощью стержня из кадмия или бористой стали (кадмий и бор очень жадно поглощают тепловые нейтроны). Такой стержень поглощает нейтроны на их пути между урановыми блоками, уменьшая число делений. Изменяя глубину погружения поглощающего стержня в реактор, можно тем самым изменять величину коэффициента размножения около значений, близких к единице.

Значение коэффициента размножения для случая цепного процесса с замедлителем необходимо несколько уточнить. Поскольку природный уран содержит большое количество тяжелого изотопа, то нужно учесть также ту долю нейтронов, которая выделится за счет деления урана238 быстрыми нейтронами. Таких делений будет немного, но каждое из них даст добавочных два или три нейтрона. Это значит, что из уранового блока будет вылетать уже больше быстрых нейтронов. В среднем вместо одного нейтрона за счет деления урана238 мы получим ε нейтронов, где ε есть величина, немного бóльшая единицы (обычно = 1,03).

Эти ε нейтронов будут терять свою энергию в замедлителе, и если они не успеют стать тепловыми до встречи с ядрами урана238, то последние могут их захватить: эти нейтроны потеряются. Обозначим долю нейтронов, избежавших такого захвата в уране238, через φ. Так как всегда некоторое число нейтронов захватится тяжелым изотопом, то, очевидно, величина φ будет меньше единицы. Таким образом, останется εφ свободных нейтронов. Эти нейтроны имеют скорость, близкую к тепловой, и поэтому могут весьма активно производить деление ядер урана235. Однако часть тепловых нейтронов поглощается замедлителем, регулирующими стержнями из кадмия или бористой стали или просто различными примесями. Обозначим через Θ ту долю тепловых нейтронов, которая поглотится ядрами урана235 и произведет их деление; при этом появляется η новых нейтронов. В результате всех процессов в реакторе каждый быстрый нейтрон будет давать в среднем K=εφθη вторичных нейтронов.

Произведение φθ всегда меньше единицы. Если в качестве замедлителя применяется тяжелая вода, то в случае природного урана φθ примерно равно 0,9. Если учесть, что ε=1,03 и η≈1,33, то получим для ядерного реактора на тяжелой воде следующее максимальное значение для коэффициента размножения:

K= 1,03∙0,9∙1,33=1,22.

Для графитового реактора φθ примерно равно 0,79, и поэтому коэффициент размножения значительно меньше: K≈1,07.

В работающем ядерном реакторе непрерывно происходит деление ядер урана235. Накапливающиеся в урановых блоках «осколки» деления также поглощают тепловые нейтроны, а это приводит к тому, что значение коэффициента размножения довольно быстро падает.

Чтобы избежать частой замены урановых блоков, в урановом котле с графитовым замедлителем выгоднее применять уран обогащенный — с содержанием 1–1,5 процента урана235.

Все приведенные значения коэффициентов размножения относятся к котлам неограниченных размеров. На самом деле величина коэффициента размножения несколько меньше, если учесть утечку нейтронов через наружную поверхность.

Для уменьшения выхода нейтронов за пределы реактора применяются отражатели. В качестве отражателя нейтронов может быть использован тот же графит. Нейтроны, сталкиваясь с ядрами углерода, частично отражаются обратно в так называемую активную зону реактора, где участвуют в цепном процессе.

Однако значительная часть нейтронов все же выходит наружу. Для защиты людей от очень вредного нейтронного и радиоактивного излучения ядерный реактор окружают толстой бетонной стеной толщиной 1,5–2,5 метра.

Мы знаем, что в природном уране необходимо учитывать два конкурирующих процесса: деление ядер урана235 и захват нейтронов ядрами урана238. От того, какой из процессов сильнее, зависит возможность осуществления цепной реакции. Если преобладает поглощение нейтронов, реакция не может поддерживаться, как, например, в природном уране, в случае непосредственного использования быстрых нейтронов деления. Здесь процесс может идти только при использовании медленных нейтронов, или, как говорят, на медленных нейтронах. Но при замедлении нейтроны не сразу приобретают тепловую скорость. Если замедлителем является, например, графит, то, чтобы стать тепловыми, нейтроны должны испытать в среднем 110 соударений. За это время их могут поглотить ядра урана238, и поэтому в однородной смеси природного урана с графитом цепной процесс осуществить нельзя.


Гомогенные реакторы. Очень эффективным замедлителем является тяжелая вода. В каждом соударении с ядром тяжелого водорода нейтрон теряет значительную энергию, и уже после 18–20 соударений скорость его так мала, что вероятность его поглощения ядром урана238 незначительна. Такой нейтрон очень активно производит деление ядер урана235. Поэтому цепной процесс возможен даже в однородной смеси природного урана с тяжелой водой.

Такой гомогенный реактор (рис. 17) состоит из бака с тяжелой водой, в которой растворены урановые соли. Для уменьшения размеров реактора бак окружают слоем отражателя, снижающего утечку нейтронов наружу. Управление котлом, как обычно, производится с помощью стержня из кадмия.


Рис. 17. Схема гомогенного ядерного реактора на тяжелой воде. В растворе урана в тяжелой воде идет цепной процесс. Вода нагревается и дает пар высокого давления

Если применять уран с большим содержанием легкого изотопа (обогащенный уран), то в гомогенном реакторе может применяться и другой замедлитель. Расчеты показывают, что можно изготовить реактор, состоящий из 15 литров простой воды и одного килограмма солей урана235.

Забегая несколько вперед, нужно отметить, что реактор с тяжелой или простой водой является одновременно паровым котлом. Вода в нем непрерывно нагревается и может давать пар высокого давления. Температуру воды и давление пара можно сравнительно легко регулировать с помощью кадмиевых стержней.


Классификация ядерных реакторов. Итак, мы теперь знаем с вами два основных типа ядерных реакторов: на быстрых и медленных нейтронах. Однако иногда выгодно применять для осуществления цепного процесса нейтроны средних (промежуточных) скоростей. Такие нейтроны слабее, чем медленные, поглощаются ураном238 и довольно активно делят ядра урана235. В реакторах на промежуточных нейтронах обычно применяются довольно тяжелые замедлители (например, натрий), в которых замедление происходит не так эффективно, как в воде.

Ядерные реакторы на медленных и промежуточных нейтронах в свою очередь можно разделить на гетерогенные и гомогенные. Все эти реакторы могут быть использованы для получения атомной энергии в промышленных целях.

Позже мы подробнее расскажем об их устройстве и практическом использовании.


Искусственное ядерное горючее. Что же происходит, когда ядро урана238 поглощает нейтрон? Очевидно, в этом случае получается новое ядро, состоящее уже из 239 частиц. Нейтрон не принес в ядро дополнительного заряда, поэтому химические свойства нового вещества остаются прежними. Это новый изотоп урана:

Уран238+нейтрон1→уран239.

Такого изотопа нет в природной смеси урана. Это легко понять, если учесть, что ядро урана239 очень неустойчиво: половина всех ядер урана239 распадается примерно за 23 минуты, излучая электрон и нейтрино. При этом, как мы знаем, один из нейтронов превращается в протон. Получающееся ядро имеет на один элементарный положительный заряд больше, чем у урана. Следовательно, в этой ядерной реакции образуется новый элемент периодической системы. Читатель помнит, что в нашей планетной системе за Ураном следует Нептун. В честь этой планеты ученые назвали новый, 93-й элемент нептунием. Таким образом, 93-й элемент может быть получен в реакции:

Уран239→нептуний239+электрон+нейтрино.

Но изотоп нептуний239 также радиоактивен, и половина его ядер за очень короткое время (2,3 дня) распадается, образуя следующий, 94-й элемент — плутоний:

Нептуний239→плутоний239+электрон+нейтрино.

Плутоний также радиоактивный изотоп, но с очень большим периодом полураспада: половина его ядер распадается за 24 тысячи лет.

Все эти превращения схематически показаны на рис. 18.


Рис. 18. Образование плутония239

В настоящее время в лабораториях уже получено десять новых, так называемых трансурановых элементов, которые в периодической системе элементов Менделеева стоят после урана и заняли места до сто второго номера включительно. Из этих элементов, пожалуй, самым ценным оказался изотоп плутония — плутоний239.

Плутоний239 является расцепляющимся материалом. Он делится таким же образом, как и уран235, и может заменить его в любой установке, где выделяется атомная энергия.

Искусственное ядерное горючее может быть получено также из радиоактивного элемента — тория (рис. 19). У тория имеется всего один изотоп с достаточно большим периодом полураспада (14 миллиардов лет) — торий232. При облучении его нейтронами образуется неустойчивый изотоп тория, который после ряда радиоактивных превращений переходит в изотоп урана — уран233. Уран233, так же как уран235 и плутоний239, является хорошим расщепляющимся материалом. Его период полураспада равен примерно 163 тысячам лет.


Рис. 19. Образование урана233

Новые возможности. Итак, теперь мы имеем три сорта ядерного горючего: уран235, уран233 и плутоний239. Энергия, выделяющаяся при делении ядер этих веществ, практически одна и та же, поскольку любое из этих ядер делится на два ядра меньшей массы, а разность энергии связи «осколков» и исходного ядра для всех сортов ядерного горючего почти одинакова.

Из всех расщепляющихся веществ только уран235 в небольшом количестве имеется в природе. Урана233 и плутония239 в природе нет, и чтобы их получить, нужно облучать мощным потоком нейтронов соответственно торий232 и уран238.

Но как получить такое большое количество нейтронов?

Физики уже довольно давно научились изготовлять так называемые искусственные источники нейтронов. Для этой цели обычно используется реакция:

Бериллий9+гелий4→углерод12+нейтрон1.

В качестве источника ядер гелия4 может быть использован радий или полоний, дающие большое количество альфа-частиц. Такой источник обычно состоит из смеси порошка бериллия с солями радия или полония. Маленькие стеклянные или металлические ампулы наполняются смесью и откачиваются до высокого вакуума. Нейтроны почти без потерь проходят через стенки сосуда. Однако наиболее мощные из современных искусственных источников нейтронов дают всего примерно 109 нейтронов в секунду. Но в одном грамме плутония содержится около 3∙1021 ядер. Легко подсчитать, что даже в том случае, если все добытые нейтроны будут поглощаться ядрами урана238, нужно миллион лет, чтобы накопить примерно один грамм ядерного горючего — плутония239.

Для получения нейтронов можно применить очень мощные ускорительные установки, но и в этом случае понадобится 10 лет непрерывной работы для изготовления одного грамма плутония239 или урана233. Таким путем нельзя создать запас больших количеств искусственно расщепляющихся материалов.

К счастью, сам цепной процесс дает нам в руки мощное средство для изготовления ядерного горючего. В самом деле, ядерный реактор является мощным источником нейтронов. Легко подсчитать, что на каждый киловатт-час выделенной реактором энергии должно разделиться примерно 1017 ядер урана235. Но при каждом делении в среднем освобождается 2,5 нейтрона. При работе уранового котла один из этих нейтронов производит новое деление, то есть идет на поддержание цепной реакции. Из оставшихся 1,5 нейтрона один будет поглощен замедлителем, регулирующими стержнями и примесями, а примерно 0,5 нейтрона поглощается в уране238 с последующим образованием плутония239.

Таким образом, даже очень маленький реактор мощностью в один киловатт за один час производит 0,5∙1017 ядер плутония239. В одном грамме плутония содержится около 3∙1021 ядер. Поэтому один грамм нового ядерного горючего образуется за пять — шесть лет.

Если же создать реактор, имеющий тепловую мощность в 1 миллион киловатт, то он даст в сутки около 500 граммов нового ядерного горючего.

Надо учесть, что плутоний и уран — различные химические элементы и их сравнительно легко можно отделять химическими способами. Химическая обработка бывших в работе урановых стержней, в которых образуется плутоний239, обходится значительно дешевле, чем разделение изотопов.

Таким образом, гораздо выгоднее получать ядерное горючее в ядерных реакторах, нежели производить разделение изотопов урана в весьма сложных и громоздких установках.


Размножающие (бридерные) реакторы. Мы видели в нашем примере, что из 2,5 нейтрона, выделяющихся при делении ядра урана235, в среднем один нейтрон идет на поддержание цепной реакции, то есть на новое деление. Один нейтрон поглощается или выходит за пределы активной зоны реактора и только 0,5 нейтрона идет на получение плутония239. Таким образом, каждые два ядра урана235 дают одно ядро плутония239, то есть при расщеплении одного килограмма легкого изотопа урана получается 500 граммов искусственного горючего.

Нельзя ли так построить ядерный реактор, чтобы в нем «сгоревший» уран235 полностью заменялся новым ядерным горючим? Нетрудно догадаться, что в этом случае для получения атомной энергии можно было бы полностью использовать не только ничтожные количества урана235, но и весь природный уран и торий.

В этом случае имеющиеся на земле запасы ядерного горючего были бы увеличены в несколько сот раз.

Оказывается, это вполне возможно.

Для восстановления ядерного горючего необходимо, чтобы каждое деление урана235 приводило к образованию хотя бы одного ядра плутония239 или урана233. Иначе говоря, один из нейтронов, получившихся при делении, должен быть поглощен ураном238 или торием232, которые затем превращаются в ядра плутония239 или урана233. Но для существования цепной реакции, как мы знаем, необходим второй нейтрон, который будет производить деление урана235. Тем самым из образующихся в среднем 2,5 нейтрона при каждом делении два нейтрона должны быть использованы в этих двух процессах. Но в ядерном реакторе имеются различные потери нейтронов, и весьма существенным источником потерь является сам уран235, так как его ядра могут также поглощать нейтроны. При этом деления не происходит, а образуется ядро изотопа урана236, излучающее гамма-квант:

Уран235+нейтрон1→уран236+гамма-квант.

Новые нейтроны в этой реакции не освобождаются.

В реакторе, где должно происходить восстановление ядерного горючего, все эти потери не должны превышать 0,5 нейтрона из числа нейтронов, получающихся в каждом акте деления, то есть не больше 20 процентов образующихся в реакторе нейтронов. Очевидно, надо найти возможности существенно уменьшить эти потери. В обычном реакторе с замедлителем, использующим природный уран, они составляют примерно 40–50 процентов всего количества нейтронов деления. Утечку нейтронов можно уменьшить, увеличив размеры котла или применив эффективный отражатель. Но в этом случае будет иметь место поглощение нейтронов в ядрах отражателя и увеличатся потери нейтронов в замедлителе, уране и примесях.

Работы ученых, доложенные на Международной конференции по мирному использованию атомной энергии в Женеве в августе 1955 года, показали, что возможны три типа ядерных реакторов с полным восстановлением ядерного горючего.

Первый тип реактора основан на использовании быстрых нейтронов для цепного процесса.

Как уже говорилось, поглощение нейтронов ядрами почти всегда растет с уменьшением скорости нейтронов.

Вы, вероятно, наблюдали, как быстро летящая муха прорывает паутину, расставленную пауком. Муху спасает только ее скорость, ее энергия. Муха, летящая медленно, безнадежно застревает в паутине. Эта аналогия довольно правильно отражает поведение различных нейтронов в веществе. Медленный нейтрон долгое время находится вблизи ядра, в области действия ядерных сил, и поэтому имеется большая вероятность его поглощения: он может быть захвачен ядерными силами даже тогда, когда проходит на некотором расстоянии от ядра. Поглощение же быстрого нейтрона не всегда происходит даже при его столкновении с ядром. Таким образом, если цепной процесс будет идти на более быстрых нейтронах, то тем самым значительно уменьшатся бесполезные потери нейтронов. Поглощение быстрых нейтронов в уране235, замедлителе и примесях в десятки раз меньше, чем медленных. Но в природном уране цепной процесс на быстрых нейтронах, как мы уже знаем, идти не может. Поэтому в реакторах на быстрых нейтронах, которые предназначены для восстановления ядерного горючего, должен применяться уран с большим содержанием урана235.

Такой реактор называется размножающим (бридерным), и состоит он обычно из центральной части (ядра реактора) и оболочки (рис. 20).


Рис. 20. Схема размножающего реактора на быстрых нейтронах. Цепной процесс идет в центральной части реактора. Во внешних блоках происходит образование искусственного ядерного горючего — плутония239 или урана233

Цепной процесс происходит в центральной части реактора, которая должна состоять из сплава урана, обогащенного легким изотопом, с каким-либо тяжелым металлом, слабо поглощающим нейтроны. Таким разбавителем может быть свинец или висмут. Объем центральной части должен быть рассчитан так, чтобы при его заполнении вес уранового сплава был немного меньше критического. Регулировка процесса может производиться добавлением небольшого количества сплава, приводящего систему в критическое состояние. В этом состоянии, как уже нам известно, один из нейтронов деления вызывает еще одно деление, то есть коэффициент размножения равен единице.

При работе такого реактора поглощение нейтронов невелико. Значительная часть их выходит из центральной части реактора и поглощается в оболочке, состоящей из урана238 или тория232. При достаточно толстой оболочке выход нейтронов из реактора практически отсутствует.+

В оболочке нейтроны поглощаются ядрами урана238 или тория232, образуя искусственное ядерное горючее — плутоний239 или уран233.

Центральная часть реактора может состоять из чистого урана235. Однако в этом случае подбор критических условий затруднен. Ничтожное добавление урана может привести к очень быстрому возрастанию коэффициента размножения, и когда он значительно превысит единицу, произойдет атомный взрыв.

Кроме того, при применении чистых расщепляющихся материалов центральная часть реактора будет иметь очень малый объем, в котором выделяется громадное количество тепла. Это затрудняет отвод тепла от реактора. Добавление значительных количеств разбавителя, естественно, облегчает регулировку цепного процесса и работу охлаждающей системы.

Вместо урана235 в центральной части реактора может использоваться плутоний239 или уран233. При работе на быстрых нейтронах легче всего добиться полного восстановления горючего, применяя плутоний239.

Второй тип размножающего реактора может быть выполнен в виде гетерогенного с замедлителем из тяжелей воды. В этом случае блоки из обогащенного урана располагаются очень близко один к другому. На малых расстояниях между блоками большая часть нейтронов не успевает замедлиться, и много актов деления ядер урана235 производится быстрыми нейтронами. Эти нейтроны, как уже говорилось, слабо поглощаются ядрами урана235.

Наконец, оказалось возможным использовать и медленные нейтроны в реакторе с восстановлением горючего. Легче всего это сделать, применяя для цепного процесса уран233. Его ядра сравнительно слабо поглощают (без деления) тепловые нейтроны. Выходящие из активной зоны реактора нейтроны поглощаются в наружной оболочке, состоящей из тория232, где и образуется уран233. Расчеты показывают, что в оболочке такого реактора можно получить «свежего» урана233 не меньше, чем его «выгорает» в центральной части.

Таким образом, размножающие реакторы могут быть осуществлены на быстрых и медленных нейтронах.

Процессы в размножающем реакторе очень чувствительны к различным примесям, загрязняющим уран или замедлитель. Увеличение примесей, естественно, приводит к уменьшению выхода искусственного горючего, так как в них поглощается часть нейтронов. Такими примесями являются «осколки» деления ядер расщепляющихся материалов. Накопление «осколков» приводит к все ухудшающейся эффективности реактора. Нужна частая замена материалов, находящихся в центральной части реактора, и очистка урана от накопившихся «осколков», представляющих собой ядра различных элементов.

Как мы увидим позже, возможно осуществление реакторов, позволяющих непрерывное частичное обновление ядерного горючего. Бывшее в работе горючее проходит стадию химической очистки и возвращается обратно.


Работа ядерного реактора. В условиях постоянной работы ядерного реактора коэффициент размножения должен быть равен единице. Иначе говоря, реактор должен быть в критическом состоянии. Однако он не может находиться долго в таком режиме, когда его размеры точно критические. Существует ряд явлений, которые приводят к самопроизвольному уменьшению коэффициента размножения. Поэтому надо иметь возможность постепенно увеличивать этот коэффициент, или, как принято говорить, реактор должен обладать некоторым запасом реактивности.

Прежде всего в процессе работы происходит постепенное уменьшение содержания расщепляющегося вещества. В том случае, когда размеры системы остаются постоянными, величина коэффициента K становится меньше единицы и цепной процесс затухает. Для поддержания процесса нужно увеличить реактивность ядерного реактора.

Кроме того, при работе реактора происходит накопление «осколков» продуктов деления ядер. Это приводит к отравлению реактора примесями, очень жадно поглощающими нейтроны. Бесполезная потеря нейтронов вызывает уменьшение коэффициента размножения K, то есть опять-таки снижается реактивность системы.

Значительное влияние на протекание цепного процесса оказывает температура реактора. Если при запуске холодный реактор был в критическом состоянии, то при работе в нагретом реакторе обычно уменьшается реактивность. Это объясняется тем, что делящиеся материалы и замедлители при нагревании расширяются, плотность их уменьшается, а это приводит к увеличению среднего расстояния между ядрами. Следовательно, нейтроны уже реже встречаются с ядрами, реже производят деления и менее эффективно замедляются. Кроме того, увеличение температуры означает увеличение скорости молекул и медленных нейтронов, и, следовательно, если реактор работает на тепловых нейтронах, активность их уменьшается. Более быстрые нейтроны с меньшей вероятностью производят деление ядер расщепляющегося материала и значительно чаще поглощаются ядрами урана238. Таким образом, повышение температуры тоже приводит к уменьшению реактивности. Для того чтобы ядерный реактор продолжал свою работу и при высокой температуре, надо увеличить его эффективные размеры.

Рассмотрим в качестве примера работу гетерогенного реактора на медленных нейтронах, выполненного в виде алюминиевого бака, наполненного тяжелой водой, в которую опущены урановые стержни. Цепной процесс управляется регулирующим кадмиевым стержнем. Если мы поднимем регулирующий стержень, то поглощаемое им число нейтронов уменьшится: величина θ, которая входит одним из множителей в выражение для коэффициента размножения, увеличивается, а следовательно, увеличивается реактивность котла. Если регулирующий стержень останется на уровне, при котором коэффициент K больше единицы, то очевидно, что каждое деление ядра урана235 будет вызывать в среднем больше чем одно деление других ядер. Поток нейтронов в реакторе, а вместе с ним и выделение энергии возрастет, мощность котла увеличится.

Мощность котла, или количество энергии, выделяющейся в одну секунду, можно определять, измеряя поток нейтронов, так как их количество определяет число ядерных реакций, в которых освобождается энергия. Чем больше поток нейтронов, тем выше уровень мощности котла. Во всех реакторах предусмотрено измерение потока нейтронов. Это осуществляется с помощью специального прибора — ионизационной камеры, помещенной вблизи активной зоны.

Для регистрации медленных нейтронов применяются ионизационные камеры, наполненные газообразным соединением бора (BF3). Поглощение нейтрона бором приводит к ядерной реакции, сопровождающейся вылетом быстрой альфа-частицы. При своем движении в камере альфа-частица производит ионизацию молекул газа. На электроды ионизационной камеры приходит электрический заряд. При измерении очень интенсивных потоков медленных нейтронов, возникающих во время работы ядерных реакторов, используют менее чувствительные камеры, электроды которых покрыты слоем карбида бора.

Таким образом, нейтрон, проходящий сквозь камеру, вызывает небольшой импульс электрического тока. Чем больше поток нейтронов, тем больший ток протекает в камере. Измерительный прибор дает нам значение потока нейтронов или относительную величину мощности уранового котла.

Как показывают расчеты, при коэффициенте размножения 1,005 поток нейтронов и соответственно мощность реактора увеличиваются за 10 секунд примерно в 2,7 раза.

В любом куске урана, а следовательно, и в урановом котле, независимо от того, протекает цепной процесс или нет, непрерывно выделяется энергия. Это происходит за счет самопроизвольного деления. Учитывая, что в 1 грамме урана за один час происходит в среднем 23 деления, можно легко подсчитать: если в ядерный реактор загружено около 1 тонны природного урана, то начальная мощность его примерно будет 7∙10-14 киловатт. Это, конечно, очень маленькая мощность, но ее вполне достаточно для развития цепного процесса. При выбранном нами коэффициенте размножения K=1,005 через 10 секунд эта мощность увеличится в 2,7 раза, через 20 секунд — в 7,3 раза и т. д.

Подсчитанное таким путем повышение мощности котла во время пускового периода можно представить в виде табл. 1.



Мощность реактора, как видно из таблицы, возрастает медленно за первые 5 минут. Однако в последующие 1,5 минуты скорость значительно увеличивается; за промежуток времени от 6 до 6,5 минуты мощность котла возрастает от 91 до 1750 киловатт, что очень опасно. При недостаточном охлаждении температура тяжелой воды, а следовательно, и давление паров может достигнуть весьма больших значений. В лучшем случае разорвется алюминиевый бак и вода выльется; при отсутствии замедлителя цепной процесс прекратится.

Если провести измерение фактической зависимости мощности котла от времени, то легко убедиться, что приведенные расчеты не совпадают с результатами измерений.

По прошествии некоторого времени вследствие повышения мощности температура котла возрастет, коэффициент размножения уменьшится и поэтому мощность будет увеличиваться значительно медленнее, чем это следует из таблицы. При некоторой температуре коэффициент размножения может стать даже равным единице. Эта температура соответствует определенной мощности ядерного реактора, которая является максимальной для данного положения регулирующего стержня.

Возрастание температуры вследствие большой теплоемкости реактора должно происходить медленнее, чем изменение коэффициента размножения. Поэтому, после того как величина K станет равна единице, температура реактора может еще повышаться. Это приводит к дальнейшему уменьшению K и, следовательно, к падению мощности котла. Уменьшение выделяемого тепла в свою очередь вызовет охлаждение реактора и создаст условия для развития цепного процесса. Таким образом, благодаря своеобразной тепловой инерции происходит колебание мощности ядерного реактора (рис. 21). Размах этих колебаний постепенно убывает, пока не устанавливается мощность, соответствующая температуре реактора, при которой коэффициент размножения становится равным единице. Если мы хотим получить от реактора большую мощность, необходимо выдвинуть часть кадмиевого стержня из реактора. Произойдет дальнейший рост температуры, и мощность реактора после ряда колебаний установится на более высоком уровне.


Рис. 21. Колебание мощности ядерного реактора в пусковой период

Может случиться, что при полном удалении регулирующего стержня рост температуры приведет к такому уменьшению коэффициента размножения нейтронов, что мощность котла не сможет превысить некоторого вполне безопасного значения. Такой реактор очень удобен в обращении, так как нет опасности чрезмерного развития цепного процесса, приводящего к аварии.

Если, несмотря на зависимость коэффициента размножения от температуры, реактор все же может выйти из управления, то его регулировка должна быть полностью автоматизирована. При ручном управлении существует опасность, что быстрое развитие цепного процесса может привести к аварии раньше, чем обслуживающий персонал успеет произвести необходимые операции.

Автоматическое управление может производиться с помощью уже описанной ионизационной камеры (рис. 22). После того как котел достиг заданной мощности (кривая А—B на рис. 21), включают автоматическое управление. При некотором повышении мощности нейтронный поток, пронизывающий ионизационную камеру, создает там электрический ток, который, будучи усилен с помощью радиотехнических устройств, притягивает якорь электромагнитного реле. Якорь реле включает электрический мотор механизма, опускающего регулирующий стержень. Поглощение нейтронов стержнем приводит к уменьшению коэффициента размножения. Мощность котла, а следовательно, и нейтронный поток постепеннно уменьшаются. Этот процесс описывается отрезком кривой B—C. Благодаря уменьшению тока в ионизационной камере якорь реле отходит и включает мотор механизма перемещения стержня в обратную сторону. Регулирующий стержень поднимается, что ведет к увеличению нейтронного потока (кривая С—D), а следовательно, мощности.


Рис. 22. Схема автоматического управления ядерным реактором. Регулирующий стержень совершает колебания вблизи положения, при котором коэффициент размножения нейтронов равен единице; соответственно этому колеблется и мощность ядерного реактора

Таким образом, мощность реактора все время колеблется вблизи заданного среднего значения. С помощью подобной автоматической регулировки колебание мощности уранового реактора может поддерживаться с точностью до 0,1 процента.

Однако не исключено, что автоматическое устройство может вследствие неисправности каких-либо элементов электрической схемы или по другой причине выйти из строя. Чтобы предупредить аварию, реактор имеет аварийный стержень. Механизм передвижения такого стержня связан с другой ионизационной камерой. В случае резкого увеличения мощности реактора или вследствие неисправности каких-либо автоматических устройств срабатывает электромагнитная защелка аварийного кадмиевого стержня; он падает и глубоко входит в тело ядерного реактора. Поглощение большого количества нейтронов ведет к резкому уменьшению коэффициента размножения и, следовательно, к полному прекращению цепного процесса в реакторе. Таким путем может быть обеспечена стабильная и вполне безопасная работа ядерных реакторов.

В реакторах на быстрых и промежуточных нейтронах нельзя применять для регулировки стержни из кадмия или из бористой стали. Эти вещества активно поглощают только медленные нейтроны. Нейтроны, обладающие средними скоростями, очень сильно поглощаются ураном238 и торием232.

Для реакторов на быстрых нейтронах трудно подобрать материалы, жадно поглощающие нейтроны. Регулировка этих реакторов может производиться стержнями из расщепляющихся материалов примерно так, как это показано на рис. 15.

По мере работы реактора в урановых стержнях будет «выгорать» уран235 и накапливаться плутоний239. Если реактор не воспроизводит ядерное горючее, то количество накапливающегося плутония239 меньше «выгоревшего» урана235. Но даже если бы общее содержание расщепляющегося материала в стержне оставалось бы постоянным, мощность ядерного реактора постепенно падала бы. Поглощение нейтронов образующимися в реакторе «осколками» приводит к уменьшению коэффициента размножения. Для стабильной работы реактора необходимо компенсировать это поглощение: надо уменьшить потерю нейтронов в кадмиевом стержне, то есть постепенно выдвигать его из активной зоны реактора.

Однако в конце концов реактивность системы настолько уменьшается, что даже при полном удалении регулирующего стержня коэффициент размножения будет все же меньше единицы. После этого мы уже не сможем поддерживать заданную мощность реактора, и она будет падать.

Время устойчивой работы зависит от размеров реактора и мощности, при которой он работает. Естественно, что чем больше урана загружено в реактор и чем меньше его мощность, тем дольше он работает в устойчивом режиме.

Ядерный реактор будет работать вполне устойчиво, если периодически заменять часть отработанных урановых стержней на новые. В том случае если реактор работает устойчиво, например в течение 100 суток, можно время от времени заменять часть урановых стержней и тем самым поддерживать реактор в состоянии достаточной реактивности.

В отработанных стержнях содержится значительное количество урана, плутония и «осколков» деления. Вследствие того что «осколки» деления представляют собой радиоактивые ядра, отработанные урановые стержни очень интенсивно выделяют излучения, весьма пагубно действующие на организм человека. Поэтому отработавшие стержни извлекаются из реактора с помощью специальных механизмов, выдерживаются в специальных хранилищах, а затем идут на химическую обработку.

Загрузка...