Вообще-то, как подсказывает нам жизненный опыт, от пыли трудно ждать что-нибудь хорошее. Лишь знаменитый польский фантаст Станислав Лем однажды догадался, что и от крошечной крупинки может быть толк, если наделить ее, эту крупинку, толикой разума. Повесть «Непобедимый», где была высказана эта мысль, увидела свет в 1964 году. Тогда даже сам автор полагал, что его идея воплотится в реальность еще очень нескоро. Но прошло полвека, и вот что пишет по поводу «умной пыли» журнал New Scientist.
В науку понятие «умная пыль» (Smartdust) было введено американским исследователем Кристофером Пистером из Университета Калифорнии в 2001 году. Исходил он вот из каких соображений. В Национальной лаборатории Сандиа еще в середине 90-х годов прошлого века была создана модель автономного робота MARV (Miniature Autonomous Robotic Vehicle), объем которого составлял около 1 кубического дюйма.
К 2000 году его размеры удалось уменьшить более чем в четыре раза. Эта крошечная машина имела процессор с памятью в 8 Кбайт, датчик температуры, микрофон, видеокамеру, химический сенсор. В дальнейшем планировалось оборудовать MARV системой беспроводной связи, чтобы группа микророботов смогла объединяться для совместного решения задач под управлением центрального компьютера.
А если исходить из закона Мура, согласно которому электронные чипы, продолжая совершенствоваться, тем не менее, уменьшаются вдвое каждые 18 месяцев, то вскоре должны наступить такие времена, когда размеры микророботов должны достигнуть размеров пылинки.
По замыслу разработчиков, основной областью применения таких роботов может стать военное дело. Рассыпал беспилотный летательный аппарат с воздуха какое-то количество «умной пыли» на территории противника, и невидимые разведчики будут исправно передавать информацию о каждом танке, бронемашине и даже об одиночном солдате, прошедшем поблизости, с указанием времени и точных координат.
Более того, такая пыль может не только вести разведку, но и при необходимости уничтожать боевую технику противника. По замыслу американских военных, облако пыли может окружить, скажем, танк, проникнуть сквозь щели внутрь машины. А потом вся эта пыль по команде может взорваться…
Впрочем, по мнению профессора Прабала Датты и его коллег из Мичиганского университета в Энн Арбор (США), «умной пыли» вполне по силам и решение сугубо мирных задач.
Если добавить такие пылинки в краску, которой затем покрасят стены здания, фермы моста или фюзеляж авиалайнера, то крошечные датчики будут снабжать специалистов информацией о техническом состоянии данного объекта.
Группа Датты уже работает над первыми прототипами таких микроуйстройств под названием Michigan Micro Motes. Каждый чип объемом в 1 кубический миллиметр, оборудованный сенсором температуры, движения и других характеристик окружающего мира, будет передавать информацию в виде радиоволн.
«Мичиганские микропылинки» — так прозвали первые прототипы своего изобретения создатели во главе с Даттой — способны определить наличие внутри жилых помещений угарного газа в опасной концентрации. Пригодятся компьютерные микродатчики и в медицине. Например, их можно будет имплантировать во внутренние органы пациентов. В этом случае «умная пыль» в режиме онлайн будет сообщать об их состоянии.
«Покрыть все вокруг крошечными датчиками — весьма заманчивая идея, — полагает Джошуа Смит, руководитель Лаборатории сенсорных систем при Вашингтонском университете в Сиэтле. — Однако, пытаясь реализовать ее, многие мои коллеги заходили в тупик перед проблемой: «А как обеспечить энергией для работы такие крупинки?»
«Мичиганские микропылинки» под микроскопом выглядят большими. На самом деле они меньше снежинки.
Производство «умной пыли».
Сам Смит полагает, что единственный выход — это сделать так, чтобы «пылинки» работали за счет энергии, добываемой ими из окружающей среды. Для этого могут использоваться крохотные солнечные панели или термоэлектрогенераторы, преобразующие тепло в ток.
Еще Джошуа Смит работает над проектом микрокомпьютеров — платформ беспроводного распознавания и восприятия (WISP). Эти устройства чуть крупнее и для коммуникации используют систему радиочастотной идентификации, аналогичную той, что встроена в кредитные карты нового поколения. Так же, как и Micro Motes, WISP не нуждаются в батарейках и питаются «остатками» энергии — например, сигналами близлежащих телебашен.
Еще одна проблема, которую предстоит решить прежде, чем «умная пыль» начнет применяться повсеместно, — как одновременно управлять множеством микромеханизмов. Над ее решением думают не только зарубежные, но и отечественные специалисты.
По мнению доктора технических наук Игоря Каляева из НИИ многопроцессорных вычислительных систем при Таганрогском государственном радиотехническом институте, такую задачу сможет осилить лишь мощный сверхкомпьютер, способный отследить положение каждого робота и дать ему инструкцию. Однако это требует огромных затрат времени, а кроме того, весьма небезопасно: управляющий центр может взять и выйти из строя. «Значительно проще дать возможность каждому роботу принимать самостоятельные решения и координировать свои действия с действиями соседей», — полагает ученый.
Таганрогские исследователи построили математическую модель, позволяющую понять, как следует управлять облаками микророботов, с тем чтобы они одновременно двигались к разным целям. Алгоритм действия, придуманный российскими учеными, выглядит так. Сначала роботы образуют единое облако. Ему сообщают координаты целей. Каждый робот, зная свои координаты и координаты целей, выбирает ближайшую и принимает решение, стоит ли к ней двигаться. Для этого он узнает, сколько роботов уже направилось к этой цели. Если их достаточно для решения поставленной задачи, он начинает искать другую цель или остается в резерве. Если нет, принимает решение об атаке, о чем и оповещает соседей. Таким образом, облако весьма быстро распадается на фрагменты-кластеры, которые перемещаются к выбранным целям.
Компьютерное моделирование показало, что предложенный подход очень эффективен, а алгоритм принятия решений микророботами столь прост, что его легко воплотить в маленьких электронных мозгах микропылинок. Кроме того, вся процедура управления становится гибкой, способной быстро учитывать и потери микророботов, и изменения в поведении целей.
Главной проблемой является связь микропылинок как между собой, так и с центром управления. Она требует огромных энергозатрат. «Умные пылинки» могут выполнить 100 000 операций на своем центральном процессоре, используя при этом лишь одну единицу энергии. Но эта же единица энергии будет израсходована для передачи во внешний мир… всего 1 бита информации.
Выход из положения, кажется, нашел доктор Джон Баркер, профессор Центра исследований в области наноэлектроники в Глазго. Он говорит, что при помощи беспроводных сетей из таких микроустройств радиусом в миллиметр можно будет в случае необходимости формировать кластеры-рои, о которых говорилось выше. Тогда информацию можно будет передать по цепочке, от одной пылинки к другой, что требует меньших энергозатрат.
«Мы убедились в том, что большинство частиц могут «разговаривать» только с ближайшими соседями, но когда их много, они могут общаться на значительно больших расстояниях, — рассказал ученый. — В ходе моделирования мы добились объединения 50 устройств в единый рой — и сумели это сделать, несмотря на сильный ветер».
Кстати, электрический заряд, подаваемый на пылинку, позволяет решить и проблему передвижения. Если полимерную оболочку такого устройства «сморщить» с помощью микрозаряда, то пылинка станет подниматься выше, а если расплющить, то она пойдет вниз.
В будущем тысячи этих дешевых беспроводных сенсоров, размещенных в самых различных местах, будут самостоятельно объединяться в сети и работать от встроенных источников питания в течение нескольких лет. Пока же сенсорные сети могут состоять всего из нескольких сотен пылинок, поскольку эти устройства остаются слишком дорогими, а длительность их работы исчисляется всего несколькими днями.
Тем не менее, первые сенсорные сети на принципе «умной пыли» уже прошли полевые испытания в Афганистане, где американские военные использовали их для отслеживания передвижений боевой техники. Другая сеть используется на острове Дикой утки в штате Мэн, где с ее помощью ученые изучают миграцию буревестников, еще одна — в составе системы симулятора землетрясений в Беркли.
Впрочем, некоторых экспертов подобные успехи микроэлектроники не очень радуют. Они опасаются, что в один не очень хороший день мириады микропесчинок могут выйти из-под контроля. И что они тогда натворят, даже фантасты опасаются прогнозировать… Так что необходимо уже сейчас подумать, что нужно сделать, чтобы такое не случилось на самом деле.
Однако прогресс уже не остановить. Фантастическая идея, некогда выдвинутая Станиславом Лемом, постепенно становится реальностью.