УДИВИТЕЛЬНО, НО ФАКТ! Бегущие по воде

«Я тороплюсь, я спешу!» — восклицала Фрези Грант — героиня фантастической повести Александра Грина. Но, наверное, даже сам писатель не догадывался, почему она должна именно бежать. А все дело в физике, которая утверждает: если остановиться, то сразу утонешь. Или, по крайней мере, погрузишься в воду по самую шею. Известный физик, академик П. Л. Капица даже любил спрашивать у своих студентов, с какой скоростью надо бежать, чтобы вода держала тебя.


Между тем мы совершенно не удивляемся, когда видим скользящую по воде водомерку. Нам кажется, что легкому насекомому просто удержаться на зыбкой поверхности хотя бы потому, что его ничтожный вес вполне выдерживает поверхностное натяжение жидкости. Оно, это натяжение, и не дает водомерке погружаться в воду.

А как быть более крупным и массивным существам, которых поверхностное натяжение уже не держит? Ящерица василиск знает свой секрет движения по воде, утверждают доктор Тония Хсих и ее коллеги из Университета Гарварда. Они полагают, что раскрыли секрет шлемоносного василиска (Basiliscus plumifrons) — одной из разновидностей ящериц, умеющих бегать по водной поверхности. Для этого они соорудили в бассейне своеобразную беговую дорожку длиной несколько метров. Вода была заполнена серебряными светоотражающими частицами, позволившими с помощью лазерной подсветки и скоростной (250 кадров в секунду) видеосъемки визуализировать потоки вокруг ног ящерицы и вычислить по ним силы, действующие в системе.

Считалось, что во время бега задние ноги ящерицы довольно глубоко погружаются в воду — ее отталкивания от воды попеременно правой и левой ногой больше напоминают интенсивные гребки, создающие подъемную силу и заодно двигающие ящерицу вперед.

Однако эксперименты показали огромное значение поперечной силы, возникающей каждый раз, когда ящерица производила толчок. При ходьбе по твердой поверхности поперечные силы ничтожны по сравнению с силами, направленными вдоль направления движения. В воде же они оказались сопоставимы. Фактически ящерица постоянно стабилизирует себя, поддерживая вертикальное положение, чтобы не упасть и не утонуть. А правильное положение корпуса, в свою очередь, способствует правильному распределению гидродинамических сил, поддерживающих вес ящерицы.

Несколько иная технология бега по воде у довольно крупной водоплавающей птицы — поганки. Если обычные утки и гуси бегут при взлете, активно помогая себе крыльями, то поганки просто очень быстро перебирают лапами, делая как минимум 20 шагов в секунду.

«Причем секрет «хождения по воде» одной лишь скоростью не исчерпывается», — полагают зоологи из Гарварда, наблюдавшие за поганкой Кларка и западноамериканской поганкой в их естественной среде. Сделанные ими более сотни видеозаписей с бегущими птицами позволили построить трехмерную модель движений птичьих лап. Конечно, у поганок, как и у ящериц василисков, лапы все-таки погружаются в воду, так что они делают отчасти шаг, отчасти гребок. Но оба движения — погружение лапы в воду и вытаскивание ее из воды — птицы делают иначе, чем ящерицы. На воду поганки кладут лапы с растопыренными пальцами, проводят их под водой, а потом сжимают пальцы и вытаскивают лапу на поверхность, отодвигая ее в сторону. Сжатые в «кулак» пальцы и движение вбок позволяют уменьшить при этом сопротивление воды.

Авторы исследования пишут, что строение лап поганок и частота, с которой они двигаются, обеспечивают птицам до 30–55 % подъемной силы, необходимой, чтобы поддерживать режим бега по воде. А вот остальные проценты обеспечивает именно характерная манера двигать лапами назад и вбок. Кстати, своеобразная манера двигать лапами делает поганок еще и выдающимися ныряльщиками. «Возможно, птицы смогут подсказать инженерам некоторые идеи относительно того, как можно усовершенствовать наши плавательные аппараты», — утверждают исследователи.

А могут ли бегать по воде сухопутные живые существа? Оказывается, могут. Вот рассказ одного охотоведа. Однажды он шел со своей собакой вдоль реки. У кромки расхаживал огромный кот. Пес заметил врага и бросился к нему. Тот, мгновенно оценив степень опасности и оперативную обстановку — убежать от пса нереально, деревьев нет — принял единственно правильное решение и прыгнул на. воду. Именно на воду, а не в воду.

Хотя кошки вообще-то умеют плавать, но воду они, как известно, не любят. И тут, как уверяет охотник, произошло маленькое чудо. Часто-часто перебирая лапами, кот побежал по воде, не касаясь поверхности брюшком. Бежал настолько быстро, как мог. И остановился перевести дух только на противоположном берегу.

Правда это или очередная охотничья выдумка, доискиваться не будем. Оставим правдивость этой истории на совести охотоведа, возможно не заметившего, что кот перебрался на другой берег просто по перекату, по мелководью. Поговорим о другом. С точки зрения физики, ничего невозможного в беге по поверхности воды, как мы уже знаем, нет — надо лишь двигаться с соответствующей скоростью. С какой именно? Это зависит от массы тела и площади опоры.

Многие из учеников академика Капицы на полном серьезе высчитывали такую скорость. Мы здесь делать этого не будем, укажем лишь, что ответ зависит от массы человека, размера его обуви, температуры воды, ее плотности. Ответы могут быть разными, однако скорость должна составлять примерно 120–150 км/ч.

Люди, как известно, бегать с такой скоростью не способны. Но посмотрите на снимок. Человек бежит по поверхности воды и не проваливается. Можно, конечно, отнести этот снимок на счет компьютерного монтажа. Однако можно схитрить и ходить по воде практически пешком. Для этого надо добавить достаточное количество кукурузного крахмала в бассейн — и вы сможете идти как бы по воде.

Вот что пишет по этому поводу журнал Nature: «Если ударить жидкость ногой, частички крахмала, зависшие в воде, собираются вместе подобно тому, как снег собирается возле снегоочистителя. Это уплотнение образует участок, который может отталкивать с такой же силой, которая сконцентрирована на кончике высокого каблука-шпильки».

— Если бы вы попытались ударить суспензию, то могли бы сломать запястье, — говорит Скот Вэйтукэйтис, физик Университета в Чикаго, занявшийся изучением вязкого вещества после просмотра видео, на котором люди бегали по поверхности этой жидкости.

Вода, прибавленная к кукурузному крахмалу в равных или больших количествах, благодаря своей двуличности достаточно долго была основным продуктом демонстраций на научных ярмарках. Ее даже назвали «неньютоновской жидкостью», так как она ведет себя вовсе не как обычная вода.

— Если аккуратно опустить в нее руку, то она войдет без особого сопротивления, — отмечает физик. — Но если же вы сильно по ней ударите, получите не менее сильный ответный удар.

Чтобы понять, как это работает, исследователи с большой силой ударяли смесь металлическим стержнем и наблюдали за последствиями. Рентгеновские лучи показали, как материал меняет свою структуру. Моделирование на основе полученной информации предполагает, что изначальное воздействие выжало воду из пространства между частичками крахмала. Потом свою роль сыграло трение между частицами. Они сгруппировались, образовав область, которая вела себя как твердое вещество, сопротивляясь воздействию стержня.

— Результаты эксперимента меня не сильно удивили, — сказал Даниэль Бонн, физик Университета в Амстердаме, который выдвинул такой же механизм событий после экспериментов, включающих выстрелы пулями в крахмальные суспензии. — Но опыт был интересным, потому что раскрывает механизм уплотнения крахмала в воде, а точнее — неньютоновской жидкости, в которую превратилась суспензия. Она как бы утаптывается и способна выдержать вес человека.

Результаты своих экспериментов с неньютоновскими жидкостями Даниэль Бонн и его коллеги надеются использовать для создания жилетов с «жидкой» броней, которые, по их мнению, могут превзойти по своим качествам нынешние бронежилеты из кевлара.

Однако вспомните, зимой можно ходить и по рыхлому снегу, если воспользоваться лыжами. Существуют также и лыжи-поплавки для хождения по воде, которые значительно снижают удельное давление веса человека на жидкость, а также призывают на помощь закон Архимеда.

Но вернемся к водомерке. Студенты Массачусетского технологического института Дэвид Ху и Брайан Чен под руководством профессора Джона Буша недавно создали робототехническую водомерку Robostrider и утверждают, что поняли, каким образом держится и передвигается по воде живое насекомое.

Ранее ученые полагали, что водомерка перемещается, создавая ножками волны, которые проталкивают ее вперед. Но группа Буша выяснила, что волны в передвижении водомерок особой роли не играют. При съемке скоростной камерой выяснилось, что двумя из трех пар ног с крохотными волосками насекомое опирается на водную поверхность, а средней парой гребет, словно веслами.

Причем крохотные волоски, увеличивающие опорную площадь, служат как бы своеобразными лыжами-поплавками, которые и удерживают водомерку на поверхности воды.

Полученные знания исследователи вложили в конструкцию Robostrider. Ученые надеются, что им, в конце концов, удастся создать некое приспособление или транспортное средство, которое позволит людям передвигаться по воде, буквально скользя по ее поверхности.



Человек бежит по воде. Как ему это удается?



Умеют бегать по воде и птицы поганки.



Секрет бега по воде известен василиску…



Водомерки-роботы

Загрузка...