Освоившись более-менее с 3D-кино и объемными принтерами, современные дизайнеры и инженеры задумались уже над освоением четвертого измерения. По их мнению, 4D-принтеры и прочие устройства позволят создать предметы со скрытыми свойствами. Попробуем разобраться, что это такое.
Когда огородник по весне сажает в почву семена, он не задумывается над тем, что является инициатором некоего чуда природы. Мы все уже привыкли, что летом из семян вырастут огурцы, помидоры и иные овощи, достаточно лишь за ними ухаживать. Точно так же из мельчайших семян ольхи или березы со временем вырастают высокие деревья. А не пора ли нам примерно таким же образом выращивать и вещи? Видимо, подобные мысли давно уже не дают покоя инициаторам нового дизайнерско-технологического направления. Однако легче сказать, чем сделать.
Кое-что уже придумали исследователи Массачусетского технологического института (МТИ). Они ведут эксперименты с некоторыми объектами, в которых присутствует еще один динамический компонент, своего рода дополнительное «измерение». Этот компонент, по идее, должен придать вещам и предметам свойство изменения формы под воздействием, например, воды, нагрева или интенсивного освещения.
Профессор Скайлер Тиббитс, возглавляющий Лабораторию технологий самосборки МТИ, полагает, что со временем можно будет купить в магазине набор плоских листов-заготовок, дома обрызгать их специальным раствором и затем наблюдать, как они начнут медленно трансформироваться, становясь стульями, шкафами и другими предметами мебели. «Для того, чтобы понять принципы работы программируемой мебели, — поясняет профессор, — достаточно представить себе, что происходит с тонкой полоской дерева, если ее намочить водой с одной стороны. Она, эта полоска, начинает деформироваться, закручиваться из-за того, что древесина имеет неоднородную структуру. К сожалению, в таком простом опыте бывает очень трудно предугадать, как именно пойдет деформация. Она определяется многими факторами — породой древесины, типом ее волокон, наличием тех или иных дефектов (скажем, сучков) и т. д. А вот если при помощи технологий той же ЗD-печати получить искусственную древесину, имеющую строго заданную структуру из чередующихся слоев разной толщины и областей с определенной зернистостью, управляемая деформация может принять заранее заданную форму».
Причем, по мнению С. Тиббитса, на одной древесине свет клином не сошелся. В той же Лаборатории технологий самосборки МТИ разработан уже целый ряд программируемых материалов. Есть, например, ткань, бандана из которой превращается в ковбойскую шляпу, стоит ей только намокнуть под дождем.
«Работая совместно с компанией Carbitex, занимающейся разработкой и производством всяких экзотических материалов, мы создали систему СХб, позволяющую тому же программируемому углеродному волокну свернуться спиралью, закрутиться в кольцо или деформироваться иным образом в ответ на различные виды энергии активации — влагу, температуру, свет, — поясняет профессор С. Тиббитс в статье, опубликованной в университетском информационном пресс-релизе. — Такое программируемое углеродное волокно является отличным сырьем для производства множества изделий. Кроме того, при помощи программируемых материалов можно создавать адаптивные аэродинамические формы кузовов автомобилей и фюзеляжей самолетов, которые смогут подстраиваться под изменяющиеся условия окружающей среды»…
Ранее подобные технологии были просто невозможны или для их реализации требовалось использование сложнейших электронно-механических систем. Ныне, похоже, дело заметно упрощается. Во всяком случае, представители аэрокосмической отрасли из компании Airbus совместно с Массачусетским технологическим институтом уже начали работу над созданием регулируемого воздухозаборника из программируемого материала для реактивного двигателя. Заинтересовались новой технологией и мебельщики, которым уже не придется посылать покупателям на дом сборщиков гарнитура. Достаточно будет лишь проконсультировать покупателя.
Тему для этой публикации мне подсказал Константин Горбунов, ученик 4-го класса из г. Ярославля. Мы с ним познакомились на очередном форуме «Шаги в будущее», где Костя и оказался как раз в связи со своим интересом к самым миниатюрным роботам, которыми ныне занимаются специалисты многих стран. Он прочитал научный доклад о роботах BEAM. Вы тоже, как и я поначалу, ничего о них не знаете? Тогда вот вам такая история…
— BEAM — это сокращение до начальных букв слов Biology, Electronics, Aesthethics, Mechanics, — сказал мне Костя. — Кроме такой расшифровки существуют и другие популярные толкования термина, например, Biotechnology Ethology Analogy Morphology или Building Evolution Anarchy Modularity.
И далее Костя Горбунов выдал фразу, заученную им наизусть.
— Это термин, обозначающий принцип построения роботов, использующий простые аналоговые цепи (например, компараторы) вместо процессоров с целью достичь необычно простого (в сравнении с традиционными передвижными роботами) дизайна, который жертвует гибкостью ради надежности и эффективности выполнения определенного задания. Впрочем, существуют исключения, использующие не только аналоговые цепи, — таких роботов называют «мутантами»…
В переводе на обыкновенный язык эта премудрость означает следующее. Основу конструкции робота BEAM составляют аналоговые электрические цепи, в упрощенном виде копирующие биологические нейроны. Наличие таких цепей и других аналогичных устройств позволяет роботу худо-бедно ориентироваться в окружающей среде.
Механизм моделирования поведения нейронов с помощью электрических цепей был изобретен американцем Марком Тильденом. Похожие разработки ранее велись его коллегой Эдом Ритманом и описаны в работе «Эксперименты в области искусственных нейронных цепей».
Ныне существует множество роботов BEAM, использующих солнечные батареи для питания двигателя, что позволяет им автономно работать при различном освещении. Современная микроэлектроника дошла уже до того, что позволяет создавать роботов размером с ладонь или даже с ноготь пальца на руке.
Среди них популярны гибриды — роботы BEAMbots, использующие топологию «лошадь-и-всадник». Показательный пример такого гибрида недавно был продемонстрирован учеными Калифорнийского университета в Беркли (США). Они научили робота-таракана запускать робота-птицу, которая требует предварительного разгона для взлета.
Шестиногий робот-таракан X2-VelociRoACH отпечатан на 3D-принтере. Он весит всего 54 г, но передвигает ногами с частотой 45 Гц, разгоняясь до 5 м/с, что является своего рода мировым рекордом для шагающих роботов таких размеров.
На нем «сидит верхом» летающий робот-орнитоптер H2Bird, который машет крыльями с частотой 5 Гц. При весе 13 г орнитоптер взлетает со спины таракана, как только тот достигает скорости в 1,3 м/с.
Исследователи полагают, что у необычного тандема блестящие перспективы. Подобные конструкции в будущем могут быть использованы, например, в качестве разведывательных роботов. Робот-таракан X2-Veloci-RoACH, который умеет быстро бегать, нырять в щели и карабкаться по препятствиям, будет осуществлять наземную разведку. А робот-птица H2Bird тем временем станет обозревать местность свысока…
Костя Горбунов демонстрирует свой доклад на планшете.
В настоящее время существуют разные виды («тропы») роботов BEAM, которые созданы для выполнения разных задач. Наиболее часто встречаются фототропы, поскольку поиск света является наиболее очевидной задачей для использующего солнечную энергию робота. Далее, аудиотропы реагируют на звуки, причем аудиофилы следуют за источниками звука, а аудиофобы, напротив, уходят от них. Радиотропы реагируют на радиочастоты, а термотропы — на тепло…
Роботы BEAM имеют также множество механизмов движения и позиционирования. Например, роботы-вибраторы используют небольшой мотор со смещенным центром тяжести для вибрации, а роботы-змеи движутся по горизонтальной волне, в отличие от роботов-червей, которые движутся по продольной волне. Существуют еще и кроулеры: роботы, движущиеся с помощью гусениц, колес или механических ног. Словом, их ныне придумано немало, включая роботов, движимых искусственными мускулами.
1. Модель робота-муравья.
2. Роботы-муравьи способны действовать группами.
Схема робота-муравья.
Цифрами обозначены: 1 — оптический сенсор; 2 — 3D-стереокамера; 3 — антенна; 4 — схема управления на микрочипах; 5 — радиомодуль; 6 — преобразователь напряжения; 7 — процессор; 8 — электробатареи; 9 — пьезоэлектрические «мышцы» ног; 10 — пьезоэлектрические «мышцы» жвал-хватателей.
Ежегодно в г. Теллуриде (штат Колорадо, США) проводится международное собрание ученых, занимающихся ВЕАМ-роботами, для обмена опытом. До недавнего времени в собраниях участвовал и сам Марк Тильден, однако ныне ему пришлось отказаться от участия из-за сильной занятости.
Тем не менее, и без него конструкторы всякий раз демонстрируют все новые интересные экспонаты. Так, сотрудники Стэнфордского университета недавно продемонстрировали крошечных роботов-силачей, способных перемещать предметы, вес которых в сотни или даже тысячи раз превосходит их собственный.
Главный секрет этих роботов скрыт в их конечностях, которые скопированы с лап гекконов. Поверхность «ступней» роботов покрыта специальными резиновыми
пластырями, усеянными микроскопическими резиновыми шипами. Когда пластырь прикладывается к поверхности и на него оказывается вертикальное давление и продольное усилие, шипы изгибаются, увеличивая во много раз площадь контакта с поверхностью. А когда робот тянет свою конечность вперед, то шипы распрямляются и конечность без проблем отделяется даже от вертикальной поверхности.
Крошечные могучие роботы перемещаются способом, который также позаимствован у живой природы. Подобно гусенице, часть которой при перемещении находится в контакте с поверхностью, одна или две конечности робота всегда прикреплены к поверхности и удерживают на себе вес груза. Такой подход позволяет роботу совершать шаги, практически не затрачивая на это энергию, которая почти полностью расходуется на перемещение груза. В итоге робот весом всего в 9 г поднимает по вертикальной поверхности груз весом более 1 кг.
Еще один крошечный робот весом 20 мг может поднимать канцелярскую скрепку весом в 500 мг. Этот робот так мал, что инженеру Эллиоту Хоксу пришлось использовать микроскоп, пинцет и другие тонкие инструменты для изготовления деталей и окончательной сборки этого робота.
Но самой внушительной силой обладает робот-ползун под названием uTug. Сам он весит всего 12 г, но способен тянуть груз, вес которого в 2000 раз превышает его собственный. «Это как если бы обычный человек попытался тянуть голубого кита», — сказал Дэвид Кристенсен, один из инженеров, принимавший участие в изготовлении робота-силача.
В будущем, считают исследователи, роботы подобной конструкции могут оказаться очень полезны для перемещения тяжестей на строительных площадках или на промышленных производствах. Они могут оказать неоценимую помощь и при ликвидации последствий чрезвычайных ситуаций, например, при пожаре подниматься по стенам горящего небоскреба, таща за собой спасательный канат.
Но для реализации задуманного инженерам потребуется научиться делать резиновые пластыри большей площади, которые будут крепиться на конечностях больших и более мощных роботов.
1. ВЕАМ-робот издалека можно принять за стрекозу.
2. Робот-таракан с наездником-орнитоптером.
3. Робот-силач.
Технология BEAM лучше всего подходит для начала изучения робототехники, логических схем и микроэлектроники. ВЕАМ-конструкции дешевы, просты и могут быть построены любителями всего за несколько часов.
Для того чтобы сделать своего первого робота, необходимо познакомиться всего с несколькими электронными деталями.
Прежде всего, утверждает Костя Горбунов, вам понадобится электромотор (их обычно два, но можно сделать робота, используя всего один электродвигатель). Далее фотоэлемент (обычно фототранзистор или фотодиод, их тоже понадобится пара штук), простая логическая микросхема (она будет служить «нервной системой» и силовой частью робота, управляющей электромоторчиками), батарейки.
Ваш первый робот будет реагировать на свет. Благодяря же заложенному в него фототропизму он будет следовать за светом. Добавив в него пару светодиодов и резисторов, вы получите робота, способного избегать препятствий. Ваш робот уже не будет глупо упираться в стенку, а сможет миновать неожиданную преграду.
Публикацию подготовил И.ЗВЕРЕВ