ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ Схемы «не по правилам»

(Окончание. Начало см. в «ЮТ» № 11 —2015 г.)



Насколько автору известно, подобный РЧ-усилитель на транзисторе КТ368 использовался в одной промышленно выпускаемой станции гражданского СВ-диапазона 27 МГц.

Схему УРЧ с цитатой мы позаимствовали из замечательной статьи Л. В. Розова «Хитрая ВЧ-схемотехника радиоприемных устройств», которую можно найти на сайте http://www.jais.ru /write2.html.

На рисунке 2 приведен УВЧ, выполненный по схеме с ОБ (общей базой). Это не какой-то ВЧ-эквивалент, это реально работающая схема. Как видно из рисунка, здесь всего лишь один резистор, расчет которого требует только знания закона Ома.



Кстати, даже некоторые солидные преподаватели с учеными степенями пытались нам доказать, что такая схема работать не будет. Они, видимо, просто забыли, что когда Uбк = 0, то это еще активный режим работы транзистора. В конечном итоге самый лучший критерий — практика. Спаять такую конструкцию можно за 10 минут.

Другие примеры использования биполярных транзисторов в барьерном режиме можно найти в той же статье автора про сверхрегенераторы. Там дана схема весьма чувствительного и экономичного сверх регенеративного УКВ-приемника, собранного на 7 транзисторах (рис. 3).



Рис. 3


Любопытно заметить, что первые 4 транзистора поставлены именно в барьерный режим. Это УРЧ (VT1), сверхрегенеративный каскад (VT2) и первые два каскада УЗЧ (VT3 и VT4). Поскольку в УЗЧ применена непосредственная связь между каскадами, транзисторы VT3 и VT4 работают при коллекторном напряжении около 0,5 В, равном напряжению базы последующего каскада. Такое решение вполне допустимо, поскольку в этих каскадах сигналы еще слабы и не превосходят по амплитуде 0,5 В. Последний усилительный каскад (VT5) и выходной эмиттерный повторитель (VT6 и VT7) работают уже в обычном режиме, при коллекторном напряжении около половины напряжения питания, и поэтому способны усиливать сигналы большей амплитуды.

Однако пора уже перейти к сути настоящей статьи. Оказывается, в описываемом режиме очень хорошо, и даже лучше биполярных, работают некоторые полевые транзисторы, а именно транзисторы с изолированным затвором. Из широко распространенных к ним относятся транзисторы серий КП301 и КП304. Для них этот режим (при напряжении затвора, равном напряжению стока) уже трудно назвать барьерным — он для них самый обычный, линейный.

Чтобы лучше разобраться с работой полевых транзисторов (ПТ), сначала посмотрим, как они работают в самом обычном режиме, при напряжении затвора, близком к нулю, и значительном напряжении стока. Об этом хорошо рассказано в статье А. Межлумяна «Необычный режим работы полевого транзистора», которую можно найти на сайтах http://www.electrik.org/modules/Static_Docs/data/rf/p-tr.htm или http://www.rlocman.ru/shem/schematics.html?di=52211

В статье приведены сток-затворные характеристики (зависимость тока стока от напряжения на затворе) для самых обычных, широко распространенных ПТ с затвором, образованным р-n-переходом, например, серии КП303 (рис. 4, а). На этих вольт-амперных характеристиках можно выделить 3 характерные зоны:

I — закрывающего смещения Uзи, когда при положительном напряжении стока напряжение на затворе отрицательно;

II — открывающего смещения, при котором ток затвора практически отсутствует, поскольку положительное напряжение затвора меньше порогового для р-n-перехода затвора;

III — открывающего смещения, обусловливающего существенный ток затвора, что видно по входной характеристике, показывающей ток затвора в зависимости от напряжения на нем. Возрастающий ток затвора резко снижает входное сопротивление, при этом теряется главное достоинство каскадов на ПT — высокое входное сопротивление. Рекомендовать работу ПТ в этой зоне ни в коем случае нельзя.

В то же время работа ПT в зонах I и II вполне возможна и даже рекомендуется. Особенно выгодна работа при нулевом смещении затвора, что значительно упрощает схему. В справочниках обычно указывают начальный ток стока Iо, как раз при нулевом смещении затвора.

Так, для транзисторов КП303А, Б и Ж составляет 0,3…3 мА, что вполне приемлемо для маломощных предварительных усилителей. Для более мощных, в том числе и радиочастотных усилителей и генераторов, подойдет КП303Е с начальным током стока Iо, равным 5…20 мА. Нелишне подобрать и экземпляр ПТ с наиболее подходящим Iо.

Иное дело — ПТ с изолированным затвором. У них ток затвора не возникает никогда (если только затвор не пробит импульсом высокого напряжения), и строить входную характеристику нет смысла. В то же время, в зависимости от серии и типа транзистора, напряжение отсечки (напряжение запирания, когда ток стока прекращается) Uотс может быть как отрицательным (рис. 4, а), так и положительным (рис. 4, б). Для ПТ с изолированным затвором КП305 в справочниках указано напряжение затвор-исток, при котором ток стока равен 5 мА при напряжении стока 10 В. Для КП305И оно может достигать -2,5 В, а для КП305Д +2 В. Подбор нужного экземпляра транзистора здесь тоже полезен.



Как пример грамотного использования ПТ, приведем схему предварительного усилителя воспроизведения для высокоомной магнитофонной головки из статьи А. Межлумяна (рис. 5). Как говорится, проще не придумаешь!



Сопротивление единственного резистора R1 сосчитать тоже просто: допустим, что из соображений экономичности вы выбрали ПТ с начальным током стока 0,5 мА, и напряжение питания у вас 5 В. Далее, во избежание ограничения одной из полуволн сигнала вы хотите, чтобы на стоке было 2,5 В (половина напряжения питания). Тогда R1 = 2,5/0,5 = 5 кОм.

Подобрать экземпляр транзистора можно в готовом устройстве, измеряя тестером напряжение на стоке. Если начальный ток стока ПТ велик, то напряжение на стоке будет низким, а если мал — то высоким.

Теперь рассмотрим использование ПТ с изолированным затвором в режиме, аналогичном барьерному режиму биполярных транзисторов, когда напряжение на стоке равно напряжению на затворе. Подойдут, как упоминалось, ПТ серий КП301 и КП304.

Они имеют канал (промежуток сток-исток) р-типа и поэтому требуют отрицательного напряжения на стоке. За этим исключением характеристика их подобна показанной на рисунке 4, б. Открываются они при U порядка -5 В, поэтому источник питания нужен с напряжением U не ниже 6 В, а лучше 9 или 12 В.

Чтобы напряжение питания было привычным, положительным, сток и затвор можно соединять (по постоянному току) с общим проводом, а питание подавать на исток. Вывод корпуса/подложки обычно соединяют с истоком.

В качестве самого простого примера на рисунке 6 показана схема антенного усилителя для радиоприемника с рамочной или ферритовой магнитной антенной L1.



Для диапазона средних волн рамка должна содержать 15…30 витков любого изолированного провода. Диаметр рамки 0,3… 1 м (чем больше диаметр, тем меньше витков, но выше эффективность антенны). Для коротких волн достаточно 1…3 витков. KПE C1 любой, с максимальной емкостью 280…510 пФ. Ферритовую антенну можно взять от любого радиоприемника.

ПT здесь включен по схеме истокового повторителя, не усиливающего напряжение сигнала, но имеющего очень высокое входное и низкое выходное сопротивления. Благодаря этому мощность сигнала усиливается многократно, а напряжение на антенне, практически не нагруженной усилителем, и так получается значительным.

Сопротивление резистора R1 рассчитывают по формуле R = (Uпит — 5)/Iо. Собственно, ток и задается этим резистором по вашему желанию. Никакого подбора ПТ не требуется. Например, если Uпит = 9 В, a R = 10 кОм, то ток будет 0,4 мА. Конденсатор С2 — обычный блокировочный, емкостью от 0,033 мкФ и выше.

Этот антенный усилитель можно сделать и выносным, разместив антенну за окном или на балконе (что полезно для увеличения сигнала и уменьшения бытовых помех).

Тогда элементы R1, С2 размещают в приемнике, а к усилителю проводят двухпроводную линию (один провод к истоку, другой — земля). В усилителе тогда вообще ничего не остается, кроме транзистора и антенного контура! Ну, а как вы будете вращать КПЕ, зависит от вашей изобретательности.

Другой пример использования ПТ в этом необычном режиме — трехкаскадный усилитель с непосредственной связью между транзисторами. Его можно использовать как УЗЧ, УПЧ, УРЧ и даже как УПТ (усилитель постоянного тока), если исключить разделительный конденсатор С1 и сделать двуполярное питание.

Коэффициент усиления достигает нескольких тысяч. Напряжение всех стоков и затворов одинаковое, порядка 5 В, а напряжение питания рекомендуется выбирать равным удвоенному напряжению отсечки (порядка 10 В).



Нижний частотный предел определяется емкостью конденсатора С1 (для звуковых частот емкости 0,033 мкФ достаточно), а верхний зависит от частотных свойств транзисторов и может достигать нескольких мегагерц.

Подбора транзисторов не требуется, их токи задают резисторы R1-R3. Сопротивления R1 и R2 рекомендуется выбирать побольше, в районе десятков килоом, резистор R3 — несколько килоом, или высокоомные наушники.

Сопротивление резистора обратной связи R4, устанавливающего режим, рекомендуем выбирать очень большим, чтобы не снижать усиление, ведь изолированные затворы тока практически не потребляют. 5…10 МОм будет в самый раз. А чтобы еще немного повысить усиление на звуковых частотах, можно составить этот резистор из двух по 3…5 МОм, а точку соединения замкнуть на землю конденсатором (те же 0,033 или 0,047 мкФ) так же, как это сделано в УЗЧ-приемнике на рисунке 3, и даже добавить в эту цепочку регулятор усиления. Одним словом, поле для экспериментов открывается широкое!

В. Поляков, профессор

Загрузка...