Архитектура жизни, или структура нас

Жизнь – это наилучший пример сложности в действии. Развитие любого организма, будь то бактерия или бабуин, представляет собой невероятно сложную последовательность взаимодействий огромного множества участников.

Например, молекулы – наши с вами мельчайшие составляющие – обладают способностью к катализу химических реакций, а значит, собственным поведением.

А когда они объединены в какое-то целое, будь то клетка или ткань, то поведение многократно усложняется. Так, у клетки появляется способность к движению, изменению формы и росту. Однако, даже понимая принцип работы компонентов целого (будь то двигатель внутреннего сгорания или клетка). мы не всегда можем объяснить, как это целое функционирует. Другими словами, определение и описание молекулярной головоломки-паззла даст мало чего, если до конца не известны правила сборки. Словом, инструкция где?


Что такое тенсегрити?

Природа использует одни и те же правила игры, это доказывает повторяемость у микро- и макроскопических существ определенных структур (моделей, выкроек, назовите, как хотите): пентагоны, спирали, шестигранники, триангулы. Причем эти структуры возникают как в симметричных (кристаллы), так и в неупорядоченных (белки) веществах. Более того, часто живое маскируется под нежить: так, из строительных кирпичиков-атомов углерода, водорода, кислорода, азота и фосфора состоят и органические, и неорганические системы. Различие лишь в их расположении в трехмерном пространстве.

Этот феномен объединения компонентов в большие устойчивые структуры с новыми возможностями, которыми не обладают сами компоненты, известен как самосборка. Например, крупные молекулы в теле человека само-собираются в клеточные структуры, известные как органеллы, которые, в свою очередь, само-собираются в клетки, клетки – в ткани, ткани – в органы. Наше тело в результате представляет собой иерархическую систему из звеньев-подсистем. Как же мы так изумительно хорошо собраны?

Несмотря на довольно могучий опыт исследований, ученые все еще мало знают о тех силах, которые побуждают атомы к самосборке в молекулы. Даже какие группы молекул объединяются вместе, формируя клетки и ткани, и то не слишком понятно. Но за два последних десятилетия было открыто занимательное, если не сказать интригующее, свойство самосборки. Во всем многообразии природных систем, таких как атом углерода, белки, вирусы, клетки, ткани и даже человеческий организм, существует один фундаментальный способ построения, носящий название «тенсегрити». Если напрямую перевести слово «tensegrity» с английского, получится что-то вроде «напряженности стойкости», что звучит по-русски неуклюже, поэтому будем дальше следовать хорошей отечественной традиции называть вещи их заграничными именами. Термин «тенсегрити» означает, что система стабильна за счет баланса в ее структуре сил сжатия-растяжения. (Есть еще одно значение этого слова, которое, пожалуй, более на слуху: последователи Карлоса Кастанеды утверждают, что тенсегрити – это магические пассы магов древней Мексики. Это забавное совпадение: тенсегрити-структуры, как вы увидите дальше, имеют весьма магический вид.)

Фундаментальность открытия тенсегрити в том, что оно имеет приложение в самых различных областях. Ученые говорят, что вездесущесть тенсегрити в природных системах такова, что, возможно, мы сможем по-новому взглянуть на эволюцию.


Сфера зернышка пыльцы,построенного в соответствии с принципами «тенсегрити»


Палка, палка, огуречик… Вот и вышел человечек!

Начнем с истории. Время – середина 1970-х годов, место – Йельский университет, личность – Дональд Ингбер. Студент всерьез интересовался биологией клетки, а еще скульптурой. Именно последняя навела Ингбера на мысль, что внешний вид живых существ – следствие некой заложенной природой изначальной архитектуры, если хотите – плана, в меньшей степени объясняется химическим строением. Молекулы и клетки, из которых сформированы наши ткани, рассуждал он, находятся в постоянном движении, они перемещаются, возвращаются обратно, снова шевелятся. Это нужно им для сохранения общей структуры – того, что мы называем телом. Такова жизнь.

Тенсегрити – многокомпонентные системы – механически устойчивы не потому, что каждый из компонентов прочен, а потому, что все они в совокупности, в системе находятся в состоянии устойчивого равновесия, что дает большую устойчивость к стрессу извне. Вот веник. Сломать его в собранном виде трудно, а отдельные прутья из него ломаются легко. Веник туг может служить не лучшим, но все же примером тенсегрити-системы.

Ингбер выделил два типа тенсегрити-структур. Первый – это геодезические купола, фундаментальная основа, созданная из прочных распорок, каждая из которых испытывает сжатие или растяжение. Распорки, соединяясь, образуют триангулы, пентагоны или гексагоны, и каждая распорка ориентирована таким образом, чтобы удерживать каждый соединительный узел в фиксированном положении, тем самым гарантируя устойчивость всей их сложной системы.


Шея жирафы – наглядный пример эффективности взаимодействия костей и мускулов в живом организме.


Устойчивость тенсегрити-структур второго типа (их изобрел скульптор Кеннет Снельсон) осуществляется за счет так называемого предварительного напряжения. В его изящных работах сочетаются структуры, перманентно испытывающие только растяжение, и структуры, подвергающиеся только напряжению сжатия. Даже перед применением внешней силы к подобному тенсегрити-изделию оно уже натянуто в одном и сжато в другом месте, то есть «предварительно напряжено». Приложив давление, получим внутри системы противоборствующие силы: ее прочные, сжатые компоненты будут растягивать гибкие, растянутые, в то время как те – сжимать первых. Вот и равновесная система!

Медаль, однако, со свойственной ею подлостью имеет оборотную сторону. Нужно, чтобы натяжение между составляющими этой системы сохранялось длительное время. Исследователь Ричард Бакминстер Фуллер предложил рецепт для устойчивого положения сводов: «постоянное растяжение плюс местное сжатие». Фуллер разработал знаменитую пространственную конструкцию «геодезического купола» (полусферы, собранной из тетраэдров), которая стала одной из крупнейших конструктивных новаций двадцатого века.

Итак, и в скульптурах Снельсона, и в куполах Фуллера находящиеся под давлением элементы постройки расположены максимально близко друг по отношению к другу и находятся в состоянии упругого равновесия. Поэтому самые крепкие и прочные здания получаются при использовании тенсегрити-структур, и это, заметим, при одинаковом количестве стройматериалов.


Одна из скульптур Кеннета Снельсона


От скелета – к цитоскелету!

А что может дать эта тенсегрити человеку-то? – спросите вы. Оказывается, принципы тенсегрити приложимы к человеческому телу на любом уровне, возьмем ли мы клетку или орган. На макроскопическом уровне 206 человеческих костей противостоят зловредной силе тяжести и удерживаются в вертикальном положении благодаря силе мускулов, сухожилий и связок, то есть растяжимых элементов. Иначе говоря, тенсегрити-структура внутри нас: кости – прочные распорки, мускулы, сухожилия и связки – упругие элементы. На микроскопическом уровне оказывается, что наши белки и другие важные молекулы также подчиняются законам тенсегрити.

А теперь возьмемся за промежуточный уровень – клеточный. В 1970-е годы биологи представляли клетку как скопление гелеподобной протоплазмы, окружённое мембраной, – представьте себе, скажем, воздушный шарик, наполненный патокой. Было известно, что мембрана, или цитоскелет состоит из трех типов белковых полимеров: микроволокон, промежуточных волокон и микротрубочек. Но какова роль последних в регулировании формы клетки, оставалось загадкой. Непонятно было также, почему изолированные клетки на различных поверхностях, или субстратах ведут себя по-разному.

Впрочем, то, что клетки расплющиваются и «размазываются», если поместить их на ровное стекло, было известно давно. А Альберт Харрис из университета Северной Каролины еще в 1980 году показал, что если клетки посадить на тонкую упругую резину, то они сокращаются и приобретают сферическую форму, а их сокращение вызывает сморщивание резины. Уже упоминавшийся ранее доктор Ингбер предположил тогда, что если взглянуть на клетку как на тенсегрити-систему, то такое ее «поведение» вполне объяснимо.

С «тенсегрити точки зрения» клетка есть совокупность структур, которые в свою очередь образованы сплетением бесчисленных волокон.

Клетка – достаточно прочная вещь (конечно, в той же степени, в которой могут быть прочными дорогие колготки). Ее цитоскелет, то есть дословно «клеточный скелет», состоит из паутины микроволокон, которая создает центростремительное напряжение внутри клетки. Цитоскелету противостоит целый арсенал средств: внеклеточный матрикс, микротрубочки и крупные пучки поперечно связанных микроволокон. Но и цитоскелет не прост: в нем есть промежуточные волокна – «великие интеграторы», связующие между собой сжимающие микроволокна, микротрубочки, поверхностную клеточную мембрану и ядро клетки. Промежуточные волокна также создают растяжку между клетками и различными компонентами ткани. Эта функция необходима для деления клеток, особенно когда ткань должна затянуть свежую рану. В этой экстремальной ситуации стремительно размножающиеся клетки в ткани ведут жестокую борьбу за место, стремясь с помощью вышеописанных структур принять наиболее выгодную сферическую форму. В результате формируется нормальная ткань. И это благодаря тенсегрити!

Понимание этих процессов может привести к новым подходам влечении рака и заживлении ран, а может быть, и к созданию искусственной ткани. Ведь что такое ткань? Совокупность клеток и межклеточного матрикса, выполняющего роль цемента. Поиск и исследование тенсегрити-структур на уровне тканей были проведены Ингбером и его американскими коллегами – Вангом и Стаменовичем. Исследователи обнаружили, что применение стресса, более сильного, чем молекулярное притяжение, к клеточной поверхности органов чувств, участвующих в обмене веществ, никак не влияет на «внутреннюю жизнь» клеток.

Это открытие заставляет по-новому увидеть реакцию клеток на стимул извне.


Купол Фуллера


Внутренние элементы клетки, создающие напряжение, которое поддерживает целостность клетки


Главное, чтобы костюмчик сидел!

Хотя изменения в структуре ДНК порождают биологическое разнообразие, гены – всего лишь продукт эволюции, а не ее движущая сила. Геодезические сооружения, наподобие тех, что есть у вирусов, ферментов и клеток, мирно существовали в неорганическом мире у кристаллов и минералов, когда генов еще и не существовало.

Вот немного измышлений о началах живого. Раньше ученые говорили о возникновении жизни в древнем океане. Сейчас многие высказываются в пользу появления живого в глине. Любопытно, но факт: микроструктура глины – решетка атомов, упорядоченных в восьми- и четырехгранные структуры… Так-так, а вам это ничего смутно не напоминает? Как насчет… Да-да-да, тенсегрити-структур? Поскольку эти октаэдры и тетраэдры упакованы неплотно (микроструктура пористая), они могут двигаться одни относительно других. Отсюда пластичность глины, что, видимо, дает ей возможность катализа химических реакций. Скорее всего, давным-давно, во глубине миллионолетий, на поверхности глинистого минерала образовались первые строительные кирпичики органической жизни… Шло время, самосборка делала свое дело, образовывались предвестники клеточных органелл, а за ними и первая живая клетка. Потом по цепочке: ткань, орган, организм. Кстати, развитие эмбриона из яйцеклетки – тот же процесс.

Возникает вопрос: каким образом из неорганических компонентов образуются органические вещества? Или вот есть, например, натрий, взрывоопасный металл, и хлор, ядовитый газ. А вместе они образуют безобидный хлорид натрия, или поваренную соль. Все дело, оказывается, в способе образования структуры.

Если уж на то пошло, любое вещество, а по-философски – материя, есть предмет определенного пространственного напряжения безотносительно к ее расположению или размерам. Тенсегрити – наиболее экономичный и действенный способ постройки на молекулярном, макроскопическом и промежуточных уровнях. Тенсегрити-структуры были отобраны в ходе эволюции из-за их эргономичности: минимум материалов плюс высокая механическая прочность.

Шестигранная форма пчелиных сот оказалась очень прочной конструкцией, к тому же ячеистое поэтапное строительство весьма рационально. Початок кукурузы – идеальная форма для многоэтажного здания. Необычно прочную форму раковин некоторых моллюсков также используют при строительстве зданий.

«Ребристость», характерная для многих раковин, взять, например, черноморских гребешков, придает таким зданиям дополнительную прочность.



Александр Зайцев.

Загрузка...