4. Температурные стимуляторы анаболизма

Люди тратят лучшие годы своей жизни на достижение больших спортивных результатов. Они соблюдают строжайше диеты, тратят огромные деньги на спортивную фармакологию, не подозревая порой, что существуют очень простые и в то же время очень эффективные стимуляторы анаболизма. Речь идет о перепадах температурного режима. Умелое их использование можно значительно усилить анаболические и затормозить катаболические процессы в организме.

Давно уже известно, что светлокожие жители стран с умеренным климатом обладают большей силой и мышечной массой, чем экваториальные народы с темной кожей. И в то же время темнокожие представители негроидной расы обладают намного большей выносливостью. Даже расселение различных рас по всей планете не изменило этой закономерности. В «достероидную эпоху» не было ни одного чемпиона в силовых видах спорта, который являлся бы выходцем из страны с жарким климатом и имел бы темную кожу, и точно так же во всех видах спорта связанных с выносливостью побеждали спортсмены с преимущественно темной кожей, даже если они родились на севере. Миллионы лет естественный отбор делал северян более сильными, а южан более выносливыми.

Любому культуристу, даже новичку, известно, что летом в жару мышечная масса не растет, хоть ты тресни, и главные усилия сводятся к тому, чтобы ее хотя бы не потерять. С наступлением осени и похолоданием ситуация меняется. Масса начинает расти. И наибольший рост достигается в зимний период, в период наибольшего холода. Летом ситуация обратная. При отсутствии роста мышечной массы быстро растет выносливость. Поэтому-то лето и является базовым периодом подготовки для всех видов спорта, связанных с выносливостью.

Даже сейчас, когда спортивная фармакология вроде бы стерла разницу между генетическими особенностями разных народов, нет-нет, да и обращает на себя внимание обилие темнокожих спортсменов в аэробных видах спорта, связанных с выносливостью и преобладание светлокожих в чисто силовых видах спорта.

Итак, уже вроде бы ясно, что холод способствует наращиванию мышечной массы и силы, а жара — развитию выносливости и способности приспосабливаться к большим нагрузкам. Удивительным оказалось то, что, темный цвет кожи вызван не столько потребностью организма, защитить себя от обилия ультрафиолетовых лучей, сколько потребность увеличить выносливость в условиях жаркого климата. Исследования конца 80-х гг. поразили даже видавших виды ученых. Оказалось, что наибольшее количество пигмента — меланина, который придает коже темный цвет, содержится у негров не в коже, а в центральной нервной системе. Меланин играет роль нейро-медиатора, служит своеобразным депо для предшественников катехоламинов и обладает антиоксидантным действием, способствует улучшению адаптации организма к большим физическим нагрузкам, связанным с выносливостью. А известный нам всем ацетилхолин — передатчик нервного импульса с нерва на мышечные волокна осветляет кожу, уменьшает в ней количество меланина и в то же время увеличивает мышечную силу.

Как именно влияет изменение температуры окружающей среды на обмен веществ в организме? У животных, в отличие от человека, организм содержит большое количество бурой жировой ткани. Она получила такое название из-за коричневой окраски. Бурая жировая ткань содержит в своих жировых клетках очень большое количество митохондрий, которые собственно и придают ей бурый, а точнее коричневый цвет и имеют очень крупные размеры, высокое количество окислительных ферментов, особенно нитохрома. В обычной жировой ткани окисление жирных кислот сопровождается выходом энергии, частично запасаемой в виде АТФ, а частично рассеивающейся в виде гена. В бурой жировой ткани вся энергия окисления расходуется на тепло. Именно благодаря большому количеству бурой жировой ткани животные зимой не замерзают[13]. Именно бурая жировая ткань не дает замерзнуть бурым медведям и другим животным, впадающим зимой в спячку. Она находится не только под кожей и во внутренних капсулах внутренних органов. Бурая жировая ткань находится вокруг сосудов, снабжающих кровью головной мозг, сердце, почки и др. внутренние органы, чтобы не дать им замерзнуть. В эксперименте, помещение животных в условия пониженной температуры воздуха сопровождается увеличением массы их тела. Увеличение массы тела подопытных животных происходит в основном за счет увеличения количества бурой жировой ткани и служит показателем хорошей адаптации к холоду. Если холодовая нагрузка чрезмерна, то животные погибают. Для успешной адаптации к холоду холодовая нагрузка должна быть либо умеренной, либо прерывистой, чтобы дать организму время адаптироваться. Примечательно то, что помимо бурой жировой ткани увеличивается также и количество мышечной ткани. Механизм этого явления мы рассмотрим на примере человека.

Что касается человека, то его адаптация к холоду идет другим, более совершенным путем. Бурая жировая ткань есть и у нас с вами, но она носит рудиментарный характер и ее совсем немного. Островки бурой жировой ткани находятся в верхней части спины в области трапециевидных мышц. Небольшое количество бурой жировой ткани находится также вокруг сосудов, кровоснабжающих сердце, головной мозг, почки и т. д.

Приспособление к холоду человека происходит нервнорефлекторным путем. Самым первым звеном, реагирующим на холод, является нервная система и лишь потом реакция распространяется на весь обмен веществ.

В процессе эволюции человека закрепился универсальный механизм реакции организма на все внешние воздействия — выброс в кровь адреналина. Адреналин — гормон мозгового вещества надпочечников. Надпочечники — это 2 маленькие железы над почками весом по 1 г. Им, однако, принадлежит очень важная роль в приспособлении организма ко всем неблагоприятным факторам окружающей среды. Организм не знает, с каким вредоносным фактором ему придется столкнуться завтра. Поэтому в процессе эволюции он начал синтезировать такие вещества, которые обеспечивали бы комплексную защиту от любого вредного фактора, как на субклеточном уровне, так и на уровне всего организма. При воздействии на организм холода происходит массированный выброс в кровь адреналина. Адреналин сужает периферические сосуды тела и расширяет центральные. Возникает феномен «централизации кровообращения». Сужаются сосуды кожи и подкожной клетчатки, кишечника, слизистых оболочек. Расширяются сосуды мозга, сердца, почек, скелетных мышц. Кровь уходит от периферии тела к центру, перераспределяя тепло от менее к более жизненно важным органам. Сужение сосудов кожи помимо всего прочего мешает холоду проникнуть вглубь тела. Централизация кровообращения — важнейший защитный механизм. Если по каким-либо причинам она нарушается, то человек может замерзнуть очень быстро, даже в условиях не очень сильного охлаждения. Примером может служить состояние алкогольного опьянения, когда под действием алкоголя расширяются сосуды кожи и централизация кровообращения не развивается. Субъективно человек чувствует тепло из-за расширенных кожных сосудов, но объективно организм испытывает глубокое охлаждение из-за проникновения холода к центральным органам. Это заканчивается тяжелыми простудными заболеваниями и смертью.

Способность адреналина вызывать централизацию кровообращения, обусловлена тем, что разные ткани организма реагируют на адреналин по-разному. В коже, например, находятся преимущественно α-адренорецепторы. При действии на них адреналина происходит сужение кожных сосудов, кожа резко бледнеет и принимает желтоватый оттенок (просвечивается подкожный жир). В скелетных мышцах содержатся в основном β-адреналорецепторы. Поэтому под действием адреналина происходит расширение сосудов скелетных мышц.

И α-, и β-адренорецепторы содержатся практически во всех тканях и органах человеческого организма. Только их удельный вес в различных тканях может очень сильно различаться. Если возбуждение α-адренорецепторов вызывает катаболические реакции, то возбуждение β-адренорецепторов вызывает усиление анаболизма в тех тканях, где они расположены[14]. Мы подошли к ключевому для нас вопросу, каким образом реализуется анаболическое действие холода на мышечную ткань.

Умеренные холодовые нагрузки в тренирующем режиме оказывают анаболическое действие по отношению к мышечной ткани, способствуют наращиванию мышечной массы.

Все вышеизложенное очень легко доказать с помощью несложных фармакологических экспериментов. Существует множество лекарств для лечения бронхиальной астмы, действие которых направлено на возбуждение β-адренорецепторов[15]. Способность эти лекарственных препаратов возбуждать β-адренорецепторы объясняется тем, что все они являются синтетическими производными адреналина. Формула адреналина специально была модифицирована таким образом, чтобы ослабить α-адреностимулируюшнй эффект и усилить β-адреностимулирующий. Все эти препараты обладают хоть и небольшим, но все-таки заметным анаболическим действием. С допинговой целью эти препараты очень широко применялись и применяются легкоатлетами, а также представителями других аэробных видов спорта, т. к. они плюс ко всему облегчают дыхание и повышают выносливость. Один из последних препаратов этой группы под названием «кленбутерол» оказался особенно удачным. Оказалось, что кленбутерол особенно сильно стимулирует β-адренорецепторы, оказывая умеренное анаболическое действие. Еще одно очень сильное преимущество кленбутирола заключается в том, что он избирательно стимулирует β2-адренорецепторы, не затрагивая β1 — адренорецепторы. β1-адренорецепторы находятся преимущественно в сердце. Их возбуждение приводит к увеличению частоты сердечных сокращений, что является нежелательным побочным действием всех препаратов для лечения бронхиальной астмы. Кленбутерол лишен этого недостатка. Он почти не повышает частоту сердечных сокращений, но зато хорошо расширяет бронхи и облегчает дыхание. Анаболическое действие кленбутирола вначале рассматривалось как побочное, а затем выступило на первый план и кленбутерол стал одним из самых популярных средств спортивной фармакологии как в анаэробных видах спорта, так и в аэробных.

Поскольку и холодовое воздействие и кленбутерол активизируют β2-адренорецепторвы, очевидно имеет смысл их сочетанное использование как для повышения устойчивости организма к холоду, так и для достижения анаболического эффекта. Простым логическим путем мы можем прийти к тому, что все средства, повышающие устойчивость организма к холоду в той или иной степени задействуют систему β-адренорецепторов. И это действительно так. С одной стороны, эти средства имеет смысл использовать для повышения устойчивости организма к холоду, чтобы побыстрее увеличить холодовую нагрузку, а значит и анаболический стимул холода. С другой стороны, все эти средства и сами по себе обладают некоторым анаболическим действием за счет стимуляции β-адренорецепторов.

Что это за средства? Коль уж речь зашла о β2-адреностимуляторах, применяемых для лечения бронхиальной астмы, то это такие препараты, как изадрин, астмопент, беротек, сальбутамол, добутамол и др. Выпускаются они в карманных ингаляторах. Самостоятельного анаболического значения они не имеют, однако 1–2 вида этих препаратов перед тренировкой значительно повышают выносливость и в меньшей степени — мышечную силу. Их применение позволяет увеличить холодовую нагрузку. Ингаляционный способ применения означает всасывание этих препаратов через легкие. Попутно они оказывают противовоспалительный и противоаллергический эффект именно в легочной ткани. Эго очень важно для тех, кто склонен к простудам или имеет хронические воспалительные заболевания легких, способные дать обострение от закаливающих процедур. Применение таких ингаляторов помогает «при крыть» всю дыхательную систему[16] от возможного воспаления. В современных экологических условиях это, важно хотя бы потому, что 30 % городского населения болеет хроническим бронхитом, даже не подозревая об этом.

В некоторой степени способностью стимулировать β2-адренорецепторы обладают адаптогены. Нам уже известны эти растения — элеутерококк колючий, аралия манчжурская, лимонник китайский, родиола розовая, женьшень, заманиха высокая, левзея сафлоровидная, теркулия платанолистная. Способность адаптогенов повышать устойчивость организма к холоду иллюстрирует очень простой факт: ежедневный прием настойки элеутерококка в количестве 15 капель уменьшает заболеваемость ОРЗ ровно в 2 раза.

Интенсивная физическая нагрузка повышает активность β2-адренорецепторов сильнее любого стимулятора. Отчасти этим и объясняется анаболический стимул физических нагрузок. Но эта же стимуляция β-рецепторов повышает и устойчивость организма к низким температурам. Физические тренировки и закалка усиливают действие друг друга, что позволяет в конечном итоге получить результат намного больший, чем при воздействии на организм какого-либо одного фактора.

Здесь мы подходим к такому интересному феномену, как «перекрестная адаптация». Заключается он в том, что самые различные факторы, действующие на организм, затрагивают какое-то одно общее звено. И тем самым они повышают эффективность воздействия друг друга на обмен веществ. Физическая нагрузка, охлаждение, антиастматические препараты, адаптогены[17] — все эти факторы воздействуют на β2-адренорецепторы и повышают неспецифическую резистентность организма, дают анаболический стимул работающим структурам организма (не только мышцам, но также и внутренним органам, даже форменным элементам крови). Их комбинированное воздействие помогает достичь максимального результата.

Комбинирование отдельных фармакологических препаратов в спорте — архисложная задача. Мне как практическому врачу порой бывает просто больно видеть, насколько безумно спортсмены комбинируют самые различные препараты. Порой эти комбинации осуществляются таким образом, что некоторые препараты взаимонейтрализуют друг друга и ничего, кроме вреда, такие комбинации не приносят. Фармакология — это высший пилотаж медицины. Назначая те или иные лекарственные средства, нужно очень четко представлять себе клеточные, и даже молекулярные механизмы их действия. Только тогда можно достичь необходимого эффекта.

Среди некоторых спортсменов бытует мнение, что холодовая закалка приводит к росту не только мышечной, но и жировой ткани. Действительно, достаточно лишь взглянуть на моржей, купающихся в проруби, чтоб убедиться — худых людей среди них нет. Скорее наоборот, преобладают люди, покрытые ровным слоем жировой ткани, впрочем, не очень толстые.

Так как же дело обстоит на самом деле? Чтобы понять это, необходимо рассмотреть действие холодового стимула на жировой обмен. В отличие от бурой жировой ткани, которая всю энергию окисления жирных кислот тратит на тепло, обычная (белая) жировая ткань тратит на тепло лишь 70 % окисляемых жирных кислот. 30 % идут на синтез АТФ. Как видим, в плане образования тепла не настолько уж сильно обычная жировая ткань отличается от бурой, тем более, что эти самые 70 %, «идущие на тепло», подвержены значительным колебаниям. Эти колебания вызваны как раз воздействием холодового стимула. Под действием холода возникает так называемое «разобщение дыхания[18] и фосфорилирования» в жировых клетках. В результате окисления жирных кислот меньшее количество энергии запасается в виде АТФ, и большее количество рассеивается в виде тепла. Уровень теплопродукции при этом резко возрастает. Жирные кислоты, поступая в кровяное русло, попадают в печень и мышцы, где основным энергетическим источником служит гликоген. Воздействуя на процесс распада гликогена, они действуют как фактор разобщения окисления и фосфорилирования, вызывая меньший конечный выход АТФ и больший конечный выход тепла. Точно таким же образом они воздействуют и на другие жировые клетки, где процесс распада жира на жирные кислоты и глицерин еще только начался.

При периодическом воздействии холода и массированном выбросе жирных кислот в кровь организм, естественно стремиться запасти в подкожно-жировых долю побольше энергетического материала, т. е. жира. Этот процесс на первый взгляд неизбежен, однако стоит лишь скорректировать диету, как этого вполне удается избежать. Необходимо уменьшить в рационе долю жиров (как животных, так и растительных), но в еще большей степени депо углеводов, т. к. большая часть подкожного жира (90 %) синтезируется именно из углеводов. При такой корректировке диеты излишнего прироста жировой ткани всегда удастся избежать.

Именно централизация кровообращения должна стать ведущим механизмом, предохраняющим организм от холода и этот механизм необходимо сделать приоритетным.

Каким же таким волшебным свойством обладают β-адренорецепторы, что их активизация усиливает анаболические процессы в организма? Ларчик открывается очень просто: β-адренорецепторы, расположенные на поверхности клеток, воспринимают гормональные сигналы таких «сильных» эндогенных анаболических гормонов, как инсулин и соматотропин. Через β-адренорецепторы частично действуют и глюкокортикоиды, небольшое количество которых необходимо для нормального протекания анаболических реакций[19]. Такие нейро-медиаторы (посредники нервного сигнала), как дофамин и L-ДОФА, также действуют на клетки в основном посредством возбуждения β-адренорецепторов. Не являясь гормонами, они повышают чувствительность клеток к тестостерону и гормону рота, причем еще вдобавок ко всему активизируют синтез и секрецию вышеуказанных гормонов.

Периодическое охлаждение приводит также к активизации рецепторов ацетилхолина — медиатора, передающего нервный импульс с нерва на мышцу. Именно активизация выброса ацетилхолина обуславливает феномен дрожания, возникающий в ответ на холод. Дрожание позволяет увеличить теплопродукцию ни много, ни мало в 4 раза. Являясь своеобразной «гимнастикой» для мышц упражнение не увеличивают мышечную силу, но совершенствует нервно-мышечный аппарат.

Холодовое воздействие вызывает резкий выброс в кровь гормонов щитовидной железы. Тиреоидные гормоны обладают сильнейшим разобщающим действием на окисление и фосфорилирование, в результате чего значительно активизируется термогенез. Кроме того, гормоны щитовидной железы активизируют биологическое окисление всех энергетических субстратов и в конечном итоге повышают энергетический фон всего организма. Проникая непосредственно в ядро клетки, тиреоидные гормоны индуцируют синтез информационных факторов, которые активизируют синтез белка в митохондриях. Митохондрии увеличиваются в размерах. Их энергетическая избирательность уменьшается. Они начинают утилизировать все подряд: углеводы, аминокислоты, жирные кислоты, органические кислоты, кетоновые тела и т. д. При тиреотоксикозе (повышенной функции щитовидной железы) больным постоянно жарко. Жару они переносят с трудом, а вот холод, наоборот, переносят с завидной легкостью. Выброс гормонов щитовидной железы в кровь приводит к значительному распаду подкожной жировой ткани на глицерин и жирные кислоты с выходом последних в кровяное русло. Кроме того, тиреоидные гормоны косвенным образом повышают активность адренорецепторов (в том числе и β2-рецепторов). Гормоны щитовидной железы, безусловно, являются самым сильным калоригенным фактором организма. По способности повышать температуру тела, им нет в организме равных.

Суммируя вышесказанное, можно сказать, что под действием холода в организме происходит «взвинчивание обмена» с резким усилением окисления и большим выходом энергии в виде тепла. Постепенно, по мере адаптации к холодовым воздействиям организм стремится сократить энергетические потери. Это достигается за счет повышения чувствительности рецепторов к действующим веществам. Так, например, повышается чувствительность рецепторов к тиреоидным гормонам и в ответ на холод организм отвечает не столько выбросом тиреоидных гормонов, сколько временным повышением чувствительности к ним клеток.

Вместо активизации β2-адренорецепторов в клетках резко нарастает количество ц-АМФ (циклического аденозинмонофосфата). Сама активизация β-адренорецепторов преследует лишь одну цель — запустить фермент аденилатциклазу. Аденилатциклаза, «вмонтированная» в мембрану клетки, запускает синтез ц-АМФ, а уже ц-АМФ вызывает в клетке весь необходимый комплекс конечных изменений. По мере адаптации организма к холоду вместо запуска такой длинной цепочки взаимодействий происходит сразу активация ц-АМФ, что экономит организму много времени и сил. А уже ц-АМФ вызывает весь комплекс интересующих нас анаболических реакций в мышцах. Именно ц-АМФ является центральным звеном перекрестной адаптации, поэтому адаптированный к холоду организм и проявляет повышенную устойчивость ко всем остальным видам нагрузок от мышечной до электромагнитной.

Если в начальном периоде освоения закаливающих процедур под действием холода происходит, как правило, ускорение частоты сердечных сокращений, то по мере адаптации к холоду постепенно развивается реакция замедления частоты сердечных сокращений в ответ на холодовое воздействие.

Рассмотрение частных методик закаливания не входит в задачи данной статьи, однако хотелось бы кратко остановиться на основных принципах, которые помогли бы достигнуть максимальных результатов в минимально короткие сроки.

Поскольку нашей целью является усиление анаболизма, необходимо отказаться от методик, которые подразумевают закаливание организма путем длительного воздействия небольшого по величине холодового фактора. Постоянное нахождение в условиях пониженной температуры, легкая одежда позволяют организму адаптироваться именно к постоянной пониженной температуре, не более того. Никакого анаболического стимула такая холодовая адаптация не дает.

Для запуска рефлекторно-гуморального механизма анаболических реакций необходимо кратковременное воздействие относительно больших по величине низких температур. Обливание холодной водой, холодный душ, плавание в холодной воде — вот те средства закаливания, которые способствуют усилению анаболизма. Прерывистый характер закаливающих процедур (1–2 процедуры в день) необходим для того, чтобы дать организму время на адаптацию и развитие позитивных сдвигов.

На обливании хотелось бы остановиться особо. Мой опыт практического врача говорит мне, что это самая сильная и в то же время самая безопасная мера холодового закаливания. При закаливании контакт с холодной водой очень кратковременный и тело не успевает значительно охладиться. А вот рефлекторная реакция в виде централизации кровообращения, выброса ацетилхолина и т. д. в ответ на обливание развивается очень быстро и вызывает весь комплекс необходимым анаболических стимулов.

Принципиально важно не начинать закалку теплой водой, постепенно снижая ее температуру, а начинать сразу с холодной, чтобы вызвать достаточную рефлекторную реакцию. Человеку незакаленному нельзя, естественно, сразу обливать все тело холодной водой. Необходимо начать с обливания рук по локоть. Затем, когда организм адаптируется, прибавить к этому обливание ступней. При обливании контакт с холодной водой настолько кратковременный, что он не вызовет простудного заболевания даже у человека с не очень крепким здоровьем. Затем следует перейти к обливанию рук целиком. Следующей ступенью является обливание ног до колен, затем целиком. После того, как организм адаптируется, к обливанию рук и ног можно осторожно перейти к обливанию всего тела. Форсировать события ни в коем случае нельзя. Обливать отдельные участки тела нужно до тех пор, пока организм полностью к этому не привыкнет. Никакой спешки быть не должно. Год, так год, два, так два. Чем медленнее идет адаптация к холоду, тем она стабильнее и долговечнее.

Для профилактики простуды во время закаливающих процедур их лучше сочетать с приемом адаптогенов или β-адреностимуляторов. Тем, кто имеет какие-либо хронические воспалительные заболевания, целесообразно сочетать закалку с приемом больших доз витамина С (3-10 г в сутки). Это поможет предотвратить простудные заболевания[20].

Правильно применяя холодовое воздействие, можно существенно усилить анаболические реакции организма. Однако по мере адаптации организма к периодическим Холодовым воздействиям их интенсивность необходимо постепенно увеличивать, чтобы поддерживать анаболический стимул на должном уровне.

Реакция организма на тепловое воздействие имеет некоторые общие черты с реакцией на холод, т. к. любая защитная реакция организма в целом неспецифична и универсальна, иначе не было бы феномена перекрестной адаптации. В то же время тепловая реакция имеет свои, только ей присущие черты, которые заслуживают отдельного рассмотрения.

Если реакция на холод возникает сначала в периферических адренорецепторах, а потом распространяется на центральную нервную систему[21], то реакция на тепловое воздействие формируется вначале в ЦНС и лишь, потом распространяется на периферию. Как в центре, так и на периферии реакция заключается в основном в возбуждении α-адренорецепторов, β-адренорецепторы возбуждаются относительно слабо. При перегревании организма, как же, как и при холодовом воздействии происходит выброс адреналина и централизация кровообращения — сужение периферических сосудов. Сужение сосудов на периферии снижает теплопроводность кожи и не дает избыточному теплу проникнуть к центральным органам. Как видим, одна и та же реакция организма — централизация кровообращения выполняет разные функции в зависимости от того, в какие условия попадает организма. Централизация кровообращения защищает организм не только от холода и жары. Она позволяет сохранить жизнь при кровопотере, перераспределяя кровь от менее важных органов к более важным: повысить выносливость во время тяжелой физической работы, перераспределяя кровь от «неработающих» органов к «работающим» и т. д.

Перегрев организма приводит к обратимыми нарушениям структуры белковых и липидных молекул, из которых состоят мембраны митохондрий — «энергетических станции» клетки. Митохондрии — эволюционно наиболее молодые органы клетки. Поэтому-то они и страдают в первую очередь. Основное следствие перегрева организма — это нарушение энергетических процессов. Если адаптация к холоду сопровождается резким усилением окислительных процессов и увеличением выхода энергии, пусть даже и в виде тепла, то условиях перегрева, наоборот, происходит торможение окислительных процессов с целью затормозить теплопродукцию организма. Торможение окислительных процессов приводит к выраженному энергетическому дефициту. Энергетический дефицит — вот основное следствие перегрева организма. Холод повышает потребление организмом кислорода, а перегрев тормозит. В условиях охлаждения происходит повышение активности щитовидной железы, в условиях перегрева — угнетение. К избытку тепла организм приспосабливается путем снижения основного обмена, чтобы уменьшить выработку тепла. Сопряжение окисления и фосфорилирования при этом увеличивается. Меньшее количество энергии рассеивается в виде тепла, и большее количество запасается в виде АТФ.

Возбуждение α1-адренорецепторов ЦНС приводит к сильному выбросу соматотропного гормона. Так, например, в сауне при температуре воздуха в 110 °C уровень соматотропина в крови может повыситься в 6(!) раз. Выброс соматотропина в условиях перегрева — важнейшая защитная реакция организма. В условиях энергетического дефицита становится целесообразным переход митохондрий с углеводного на жировое «питание», т. к. жирные кислоты дают больший выход энергии, нежели углеводы. Соматотропный гормон обладает сильным жиромобилизующим действием. Усиливается распад нейтрального жира на глицерин и жирные кислоты, которые служат питанием для митохондрий[22]. Кроме того, благодаря сильнейшему белково-синтетическому действию соматотропин помогает приспособиться организму к экстремальной ситуации. Подобно адреналину, соматотропный гормон является «стрессовым гормоном» и выбрасывается в кровь при любом мало-мальски серьезном стрессе. Даже в очень больших количествах он не повреждает клеточных структур, как это порой бывает при избыточном выбросе адреналина и глюкокортикоидов.

При регулярном воздействии высоких температур адаптация организма происходит за счет снижения основного обмена, экономизации всех функций организма, а также экономизации совершения физической работы. КПД совершения физической работы значительно возрастает, т. к. это уже требует значительно меньших затрат энергии.

Снижение основного обмена при регулярном тепловом воздействии имеет ту же самую природу, что и снижение обмена при закаливании холодом. Это повышение чувствительности клеточных рецепторов к гормонам и нейро-медиаторам. В первую очередь повышается чувствительность клеток к гормонам щитовидной железы, а из нейро-медиаторов чувствительность к катехоламинам. Чувствительность к катехоламинам повышается за счет более активного внутриклеточного синтеза ц-АМФ — внутриклеточного посредника некоторых гормональных и медиаторных сигналов. Если теплокровные животные (в т. ч. и человек) подвергаются периодическому воздействию тепловой нагрузки, то вначале это сопровождается выбросом адреналина и других катехоламинов, а затем, по мере развития тренированности, просто увеличением содержания внутриклеточного ц-АМФ, который вызывает клетках весь комплекс реакций, характерных для воздействия катехоламинов. Повышение чувствительности клеток к гормональным сигналам создает все предпосылки для усиления процессов анаболизма.

Как видим, прямо противоположные по сути своей факторы — холод и тепло способны вызывать в организме сходные реакции, благоприятствующие протеканию анаболических процессов. В этом и заключается закон единства и борьбы противоположностей.

Подбор способа теплового воздействия на организм, так же как и в случае с холодным воздействием, имеет принципиальное значение. Постоянное воздействие умеренно высокой температуры (пребывание в условиях жаркого климата) способно повысить выносливость, которая может быть реализована при последующем переезде в условиях климата более холодного. Однако адаптация к умеренному тепловому воздействию не вызывает реактивного выброса соматотропина и не создает предпосылок для дальнейшего развития анаболических реакций. Необходимо краткосрочное и сильное тепловое воздействие с достаточным временным интервалом между отдельными периодами тепловой нагрузки, чтобы дать организму время для адаптации. Вначале таким «идеальным» средством теплового воздействия считалась сауна. Однако со временем выяснилось, что большей эффективностью обладает парная баня. Даже в Финляндии, где использование сауны с оздоровительной целью возведено в культ, все большее и большее распространение получает русская парная баня.

Посещение парной бани с целью адаптации к высокой температуре необходимо осуществлять не менее 3-х раз в неделю, иначе кодовые положительные реакции успевают угаснуть до того, как наступит следующее посещение бани. Более частое помещение сочетается с меньшей длительностью. Наиболее оптимальным является ежедневное посещение парной бани длительностью 10–15 минут.

Естественно, что неподготовленному человеку необходимо начинать тепловую закалку с небольших температур и малой длительности пребывания в бане. Постепенно, по мере развития тренированности и адаптации температура воздуха и время пребывания в парной увеличиваются.

Нейро-медиаторы, относимые к катехоламинам — адреналин, норадреналин, дофамин, L-ДОФА[23] «отвечают» за скорость и качество мыслительных процессов, быстроту и реакции, уровень настроения и чувствительность клеток к половым гормонам. Неудивительно поэтому, что адекватная тепловая тренировка приводит к повышению настроения, увеличению скорости и продуктивности мыслительных процессов, усилению половой функции, ведь в результате внутриклеточного накопления ц-АМФ чувствительность клеток к этим нейро-медиаторам повышается.

В последнее время ряд авторов высказывают опасение, что высокая температура парной может неблагоприятно сказаться на генетическом аппарате мужских половых клеток из-за перегрева яичек, где созревают сперматозоиды. Надо признать, что в этих опасениях есть свой резон. Известно, что молекула ДНК — носитель генетической информации во всех клетках, и в половых в частности, постоянно подвергается повреждающим воздействиям окружающей среды. 98 % повреждений ДНК подлежат самовосстановлению. ДНК как бы сама себя «ремонтирует» с помощью специальных ферментов. За этим «следят» специальные регуляторные гены. Однако часть этих повреждений (около 2 %) неизбежно остается и оказывает отрицательное влияние на наследственность. Это отрицательное влияние подразумевает увеличение частоты врожденных аномалий, да и просто ослабление здоровья потомства. Поэтому по-настоящему здоровые дети рождаются только у молодых родителей, половые клетки которых еще не успели растерять свой генетический потенциал. Даже нормальная температура тела вызывает повреждения ДНК, которые накапливаются с возрастом. В процессе эволюции яички — основные половые железы мужчин были выведены из брюшной полости в мошонку, где температура на 1,5 °C ниже, нежели в брюшной полости. В результате более щадящего температурного режима возрастные изменения в мужских половых клетках достигают меньшей степени, нежели в женских. Поэтому-то здоровье ребенка в большей степени зависит от возраста матери, нежели от возраста отца. Перегрев яичек в парной бане может привести к более выраженному, чем обычно, повреждению ДНК сперматозоидов. Является ли это непреодолимым препятствием для использования парной бани или сауны в тренировочных целях? Думается, что нет. Нужно только позаботиться о ношении специальных плавок или шорт с хорошей теплоизоляцией, которые уберегли бы половые железы от чрезмерного перегревания. Ведь сберегают же от чрезмерного перегревания голову, надевая перед посещением парной шерстяные или войлочные шапочки.

Как холодовая, так и тепловая закалка организма уменьшают его подверженность простудным заболеваниям. Основным механизмом здесь является выброс адреналина, который обладает сильным противовоспалительным действием и повышает иммунитет. Адаптации к холоду помогает избежать провоцирующего влияния внезапных охлаждений, а адаптация к жаре помогает активизировать противовоспалительные системы организма.

Хочется сделать особый акцент на том, что ни холодовое, ни тепловое воздействие не обладают собственно анаболическим действием на мышечные волокна, хотя тепловое воздействие способно вызвать гипертрофию митохондрий, а холодовое — гипертрофию жировой ткани (при условии неправильной диеты). Они (тепловые и холодовые стимулы) лишь усиливают анаболический стимул тренировок и в адекватном сочетании с тренировками обеспечивают более быстрый прирост мышечной массы и силы[24].

Давайте закаляться!

Загрузка...