Однако защита одной только костной оболочкой достаточно груба. Никому не понравится тесное соприкосновение такой нежной структуры, как мозг, с плотной и жесткой костью. Таких смертельных костных объятий, к счастью, нет, так как и спинной и головной мозг окружены несколькими чехлами, которые называются мозговыми оболочками. Снаружи находится самая жесткая из них - твердая мозговая оболочка, которая по-латыни называется dura mater, то есть «суровая мать». (Название восходит к давним временам, когда средневековые арабские ученые считали, что из этой оболочки происходят все остальные покровы тела.) Эта оболочка действительно очень .жесткая и крепкая. Она выполнена из плотной волокнистой ткани и выстилает изнутри костную поверхность позвонков и черепа, несколько смягчая и выравнивая ее. Листки твердой мозговой оболочки образуют несколько складок, которые проводят разграничительные линии в центральной нервной системе. Один из листков направляется вниз от свода черепа и делит весь большой мозг на правое и левое полушария. Другой листок входит в щель, которая отделяет большой мозг от мозжечка. По большей части, однако, твердая мозговая оболочка все же служит для выстилки внутренней костной поверхности черепа и позвоночника.

Ближе всего к ткани спинного и головного мозга расположена мягкая мозговая оболочка, которая по-латыни называется pia mater («нежная мать»). Это мягкая и нежная оболочка, которая тесно облегает ткань мозга, входя во все его неровности, щели и борозды, повторяя контур. Между мягкой и твердой мозговыми оболочками расположена паутинная оболочка, названная так за свою нежную сетчатую структуру. По-гречески мозговая оболочка - meninx, поэтому воспаление оболочек мозга, вызванное бактериями или вирусами, называется менингитом. До наступления современной эры антибиотиков бактериальный менингит был смертельно опасным заболеванием. Однако даже мозговые оболочки сами по себе не являются достаточно надежной защитой для головного и спинного мозга. Между паутинной и мягкой мозговыми оболочками находится подпаутинное пространство, заполненное спинномозговой жидкостью. Во-первых, спинномозговая жидкость защищает мозг от чрезмерного воздействия силы тяжести. Мозг - очень мягкая ткань, на 85% он состоит из воды. Это, если можно так выразиться, самая водянистая ткань нашего тела. Она содержит больше воды, чем даже цельная кровь. Следовательно, не надо ожидать, что мозг является твердым и жестким образованием, - это не так. Мозг настолько мягок, что если его просто положить на твердую поверхность, то одна сила тяжести изуродует его структуру. Спинно-мозговая жидкость делает головной мозг плавучим, нейтрализуя тем самым силу гравитации. Можно сказать, что головной мозг плавает в спинно-мозговой жидкости.

Жидкость эта также противодействует силам инерции. Костная оболочка черепа защищает головной мозг от прямых эффектов удара (даже легкий толчок может разрушить нежную ткань мозга). Однако такая защита вряд ли одна спасет мозг от разрушения, если непроизвольное движение головы после удара заставит мозг удариться о жесткую кость или о волосистую твердую мозговую оболочку. И для этого совершенно не обязательно, чтобы враг нанес дубиной удар по голове. Достаточно резко повернуть голову, чтобы не защищенный жидкостью мозг с силой вдавился в структуры черепа, что одно может привести к опасному для жизни сжатию нежной мозговой ткани. Это произойдет потому, что мозг сместится в направлении, противоположном направлению движения головы. Цереброспинальная (спинномозговая) жидкость служит амортизатором, который смягчает удары, демпфируя относительные смещения головного мозга и черепа. Достаточно сильный удар или резкое движение, даже если не происходит видимых повреждений, могут оказаться слишком грубыми для мозговой ткани. Даже если мозг не подвергается непосредственному физическому воздействию, внезапный поворот головы (как это, например, бывает в боксе при боковом ударе в челюсть) может привести к растяжению черепно-мозговых нервов и сосудов мозга, так как он отстает от движения головы в силу инерции. Такой удар может привести к потере сознания, а иногда даже к смерти или сильному сотрясению головного мозга.

Цереброспинальная жидкость находится также в полостях головного и спинного мозга, и это приводит нас к другому замечательному выводу. Несмотря на поразительную специализацию и развитие нашего мозга, центральная нервная система человека продолжает сохранять общий план строения полой нервной трубки, план, который был положен в основу анатомического строения первых, примитивных хордовых животных. В спинном мозге эта полость становится рудиментарной, превращаясь в узкий центральный канал, который вообще зарастает у большинства взрослых людей. Этот центральный канал, как и сам спинной мозг, расширяется, попадая в полость черепа. Как только спинной мозг переходит в головной, центральный канал превращается в последовательность специализированных полостей, которые называются желудочками головного мозга. Всего их четыре, нумеруются они начиная с верхней части головы. У основания головного мозга центральный канал открывается в самый нижний из них, в четвертый желудочек. Этот последний узким отверстием сообщается с третьим желудочком, который имеет длинную тонкую форму.

Над третьим желудочком расположено отверстие, которое сообщает его с двумя передними желудочками, расположенными в ткани мозга по обе стороны от щели, которая делит головной мозг на правое и левое полушария. Эти расположенные впереди боковые желудочки (так они называются согласно анатомической номенклатуре) имеют больший объем, чем третий и четвертый желудочки, обладая при этом очень сложной формой. Выпуклой кнаружи кривой линией они огибают головной мозг по всей длине спереди назад, располагаясь вблизи друг от друга в области лба и расходясь в стороны по мере приближения к затылочной части черепа. Боковые желудочки имеют выросты, которые распространяются вниз и кнаружи в нижние части головного мозга.

Эти полости - центральный канал и желудочки мозга - заполнены цереброспинальной жидкостью. Цереброспинальная жидкость по составу очень похожа на плазму крови (жидкую часть крови за вычетом циркулирующих в ней клеток) и в действительности представляет собой нечто большее, чем просто отфильтрованную кровь. В мозговых оболочках, окружающих желудочки, существует густая сеть тонких сосудов. Совокупность этих сетей называется оболочечными сплетениями. Кровеносные сосуды этих сплетений обладают повышенной проницаемостью, являясь, таким образом, источниками цереброспинальной жидкости. Естественно, сквозь стенки сосудов не проникают такие клеточные и субклеточные элементы крови, как эритроциты, лейкоциты и тромбоциты. Проницаемость сосудистых сплетений не настолько высока и не приносит вреда организму. Кроме того, сквозь сосудистые стенки не проникают крупные белковые молекулы. Все остальные составные части крови проходят сквозь стенки сосудистого сплетения и проникают в желудочки головного мозга.

Цереброспинальная жидкость циркулирует по системе желудочков, а из четвертого желудочка через крошечные отверстия уходит в подпаутинное (субарахноидальное) пространство, окружающее мягкую мозговую оболочку. Там, где субарахноидальное пространство расширяется больше, чем обычно, жидкость собирается в так называемые цистерны. Самая большая цистерна расположена на границе с шеей и называется большой цистерной. У новорожденного общий объем цереброспинальной жидкости равен всего лишь нескольким каплям, а у взрослого достигает 100 - 150 миллилитров.

Так как цереброспинальная жидкость постоянно поступает в желудочки, она должна каким-то образом оттекать из мозга. В паутинной оболочке существуют маленькие участки, которые называются паутинными ворсинками. Эти ворсинки обильно снабжены кровеносными сосудами, в которые и всасывается цереброспинальная жидкость. Следовательно, существует система активной циркуляции жидкости между сосудистыми сплетениями желудочков головного мозга, где она образуется из крови, и кровью, куда цереброспинальная жидкость всасывается ворсинчатыми сосудами, пройдя через желудочки.

Всегда существует возможность возникновения препятствий на пути циркуляции цереброспинальной жидкости. Например, путь оттока может быть блокирован опухолью мозга, которая сдавливает выход из какого-либо желудочка. В сосудистых сплетениях будет образовываться жидкость, которая, поступив в блокированный желудочек, не найдет выхода. Давление в желудочке будет повышаться, и это повышение может привести к повреждению ткани мозга. Воспаление мозговых оболочек (менингит) также может привести к блокаде оттока жидкости, что закапчивается столь же плачевно. В таких случаях возникает состояние, называемое гидроцефалией (от греческих слов hydr- «вода» и cephalon -«голова»), или, проще говоря, водянкой головного мозга. Это состояние особенно опасно, если возникает в раннем младенческом возрасте вскоре после рождения, до того, как череп успевает полностью окостенеть. Повышение внутричерепного давления в таких случаях приводит к уродливому увеличению черепной коробки.

Проще всего удалить излишек цереброспинальной жидкости посредством люмбальной пункции, то есть путем введения иглы в промежуток между четвертым и пятым поясничными позвонками. В этом месте уже нет спинного мозга, ткань которого заканчивается несколько выше, и иглу можно вводить, не опасаясь повредить спинной мозг. Пучок нервов, который проходит в этом месте спинно-мозгового канала, свободно пропускает тонкую иглу. Цереброспинальную жидкость, правда с гораздо большими техническими трудностями, можно получить и при помощи пункции большой цистерны головного мозга, и также непосредственно из желудочков, если состояние больного настолько тяжело, что по сравнению с ним отходит на задний план риск трепанации черепа. По уровню деления цереброспинальной жидкости и по ее анализу можно получить полезные данные о том, есть ли у данного больного опухоль мозга, абсцесс, менингит или иное инфекционное поражение головного мозга и его оболочек.

Цереброспинальная жидкость обеспечивает не только механическую защиту головного и спинного мозга. Жидкость эта является составной частью сложной системы химической защиты мозга. Как вы уже поняли, головной мозг по своему составу довольно сильно отличается от состава других органов и тканей тела. Мозг содержит множество жироподобиых веществ, часто уникальных по своему строению. Возможно, благодаря этому обстоятельству мозг не способен получать вещества из крови с той же легкостью, что другие ткани организма. Мозг в этом отношении ведет себя очень разборчиво и щепетильно. В результате, если ввести в кровь какое-либо определенное вещество, то его потом можно обнаружить во всех клетках организма, за исключением клеток нервной системы. Поступлению многих веществ в цереброспинальную жидкость препятствует гематоэнцефалический барьер, то есть барьер между кровью и головным мозгом. Возможно, гематоэнцефалический барьер возникает благодаря тонкому слою особых клеток, выстилающих внутреннюю поверхность кровеносных капилляров, питающих ткань головного мозга. Эти клетки составляют часть нейроглии («нервный клей», греч.),особой ткани, которая окружает и поддерживает нервные структуры мозга. Эти клетки превосходят числом нервные клетки. Соотношение между количеством глиальных (как их чаще всего называют) и количеством нервных клеток равно 10:1. В головном мозге содержится около 10 000 000 нервных клеток и около 100 000 000 глиальных. Именно глиальные клетки составляют около половины массы головного мозга. Выстилка, состоящая из этих клеток, останавливает процесс диффузии некоторых веществ из крови в мозг, воздвигая тем самым избирательный барьер. (Раньше полагали, что глиальные клетки выполняют лишь опорные и питательные функции по отношению к нервным клеткам, но в последнее время появились работы, авторы которых утверждают, что глиальные клетки играют важную роль в некоторых функциях мозга, например в формировании памяти.)

Мозг очень требователен и в другом отношении. Работая, головной мозг использует много кислорода. Действительно, при физическом покое четверть всего кислорода, потребляемого организмом, потребляется головным мозгом, хотя его вес равен 1/50 части веса тела. Потребление кислорода заключается в окислении простого сахара (глюкозы), которая доставляется в мозг по кровеносным сосудам. Мозг очень чувствителен к нехватке как кислорода, так и глюкозы. Его повреждение наступает при нехватке этих веществ быстрее, чем повреждение какого-либо другого органа. (Мозг отказывает первым при смерти от удушья, и именно мозг отказывает первым, если ребенок после рождения долго не делает первый вдох.)

Поток крови через головной мозг контролируется организмом очень строго и не подвержен таким колебаниям, которые могут выдержать другие органы нашего тела. Более того, хотя существуют лекарства, с помощью которых можно расширить сосуды головного мозга, не существует таких лекарств, с помощью которых можно было бы их сузить, уменьшив тем самым снабжение мозга кровью. Опухоль мозга может разрушить гематоэнцефалический барьер. Правда, такое разрушение имеет и свою положительную сторону. Лекарство, меченное радиоактивным йодом, можно ввести в вену, и оно проникнет в мозг в месте роста опухоли, что поможет врачам точно определить место ее расположения, зарегистрировав очаг повышенной радиоактивности в ткани мозга.

КОРА ГОЛОВНОГО МОЗГА

Как только мы встали на ноги и приняли вертикальное положение, то же самое произошло и с нашей нервной системой. Тогда как у других животных спинной мозг расположен горизонтально, а головной мозг впереди, у нас спинной мозг идет в вертикальном направлении, а головной мозг располагается наверху, венчая все тело. В процессе развития нервной системы новые, и, как мы могли бы сказать, «высшие» функции (включая способность к рассуждению и абстрактному мышлению) добавились к передней части спинного мозга в результате цефализации. Так как у человека передний отдел мозга находится сверху, то, говоря о высших функциях, мы выражаемся одновременно буквально и фигурально.

Более того, у человека наивысший уровень нервной системы стал доминирующим не только согласно нашему о нем мнению, но и по реальной массе. Центральная нервная система среднестатистического человека весит 1480 г. Из этого веса на долю спинного мозга (то есть на долю низшего и самого примитивного уровня) приходится около 30 г, то есть около 2%. Что же касается головного мозга, то в его массе превалирует масса конечного мозга, вес которого составляет 5/6 общего веса головного мозга.

Приступая к детальному описанию большого мозга, давайте начнем с того, что большой мозг продольной щелью делится на две половины, которые называются полушариями большого мозга. Поверхность полушарий покрыта слоем нейронов сероватого цвета, которые составляют серое вещество головного мозга. Этот слой серого вещества на поверхности полушарий мозга называется корой головного мозга. («Кора» в данном случае означает то же, что она означает в приложении к коре надпочечников.) Под корой располагаются нервные волокна, ведущие от тел клеток коры к другим частям головного мозга и к спинному мозгу. Есть также волокна, которые соединяют между собой разные участки коры. Жироподобные миелиновые оболочки этих волокон придают веществу мозга беловатый цвет, поэтому часть мозга, расположенная под его корой, называется белым веществом мозга.

Кора сложным образом свернута в складки, как я уже говорил в предыдущей главе. Линии, которые разделяют между собой складки, называются бороздами. Самые глубокие борозды называются щелями. Возвышения мозговой ткани между бороздами, которые выглядят как слегка уплощенные давлением крышки черепа цилиндры, называются извилинами. Борозды и извилины, создавая складчатость поверхности полушарий мозга, втрое увеличивают площадь серого вещества мозга. Количество серого вещества в глубине складок коры вдвое превышает его количество на уплощенной поверхности извилин.

Борозды и извилины - стандартные части мозга, и самые заметные из них, расположенные в одних и тех же местах у разных людей, имеют свои наименования.

Две самые постоянные борозды - это центральная и латеральная (то есть боковая) борозды, расположенные, естественно, в каждом полушарии большого мозга. (Полушария головного мозга по своему строению представляют собой зеркальные отражения друг друга.) Центральная борозда начинается на вершине мозга, непосредственно в его середине, и, немного изгибаясь, направляется вперед и вниз. Иногда эту борозду называют роландовой, по имени описавшего ее итальянского анатома XVIII века Луиджи Роландо. Латеральная борозда начинается у нижней поверхности полушария, отступя на одну треть расстояния от его переднего края, и направляется назад и немного вверх параллельно линии основания мозга. Закапчивается эта борозда, не дойдя полпути до заднего края большого мозга. Это самая заметная из всех борозд. Иногда ее называют сильвиевой бороздой по имени Сильвия (профессиональный псевдоним описавшего ее французского анатома XVII века).

Эти две борозды используют как удобные ориентиры для разграничения полушарий головного мозга на участки, называемые долями. Часть полушария большого мозга, ограниченная сзади центральной бороздой и точкой начала латеральной борозды, называется лобной долей. Позади центральной борозды и над латеральной бороздой расположена теменная доля. Сверху латеральная борозда ограничивает височную долю. В задней части большого мозга, в участке, где заканчивается латеральная борозда, расположена затылочная доля. Название каждой доли соответствует названиям костей свода черепа, каждая из которых прикрывает «свою» долю мозга.

Представляется вполне естественным, что разные участки коры головного мозга контролируют различные участки нашего организма и что, если тщательно исследовать мозг, то на его поверхность можно нанести карту участков тела, соответствующих определенным областям коры головного мозга. Ранние наблюдения такого рода были сделаны на рубеже XVIII и XIX веков венским врачом Францем Йозефом Галлем. Он полагал, что головной мозг специализирован до такой степени, что различные его участки контролируют даже различные таланты или характерологические особенности личности. Поэтому, если какая-либо часть головного мозга у какого-то человека развита необычно сильно, то заметными будут и соответствующие этой части таланты или особенности личности. Ученики и последователи Галля намного превзошли своего учителя. Они разработали теорию, согласно которой каждому избыточно разросшемуся участку головного мозга соответствует выбухание или шишка на черепе, которая освобождает место для увеличенного количества серого вещества коры большого мозга. Следовательно, по их воззрениям, путем тщательного исследования особенностей строения черепа можно многое сказать о характере и талантах носителя этого черепа. Так зародилась псевдонаука «френология», что по-гречески означает «наука о черепе».

Однако, несмотря на то что Галль и, в особенности, его ученики свернули с истинного пути, в их наблюдениях, тем не менее, присутствовало рациональное зерно. В 1861 году французский хирург Пьер Поль Брока при тщательном исследовании мозга умерших сумел показать, что у больных, страдавших неспособностью говорить и понимать речь (афазией), был поврежден определенный участок головного мозга. Эта область располагается в третьей левой лобной извилине, которая с тех пор называется областью Брока.

Вскоре после этого, в 1870 году, два немца, Густав Фрич и Эдуард Хитциг, начали серию исследований, в ходе которых стимулировали различные участки коры головного мозга собаки, регистрируя ответную мышечную активность, если она возникала. (При таком подходе было возможно также разрушать небольшие участки коры и наблюдать, возникают ли после этого параличи, и если да, то в каких группах мышц.) В результате этих опытов была составлена первая, пусть и не очень достоверная, «мышечная карта» коры головного мозга.

Этими исследованиями было установлено, что полоса коры, расположенная перед центральной бороздой, отвечает за стимуляцию двигательной активности скелетных мышц и называется поэтому двигательной областью коры. Тело представлено в двигательной области в перевернутом виде. Так, мышцы самой нижней части ног представлены в самой верхней части моторной коры, дальше книзу находятся области представительства бедра, потом туловища и рук, а в самом низу расположены участки, отвечающие за движения головы и шеи.

Кора головного мозга в двигательной зоне, так же как и в других участках, разделена на несколько слоев, которые анатомы четко отличают друг от друга. В одном из таких слоев, в обоих полушариях, расположены по 30 000 необычайно крупных клеток. Из-за своей формы они получили название пирамидных клеток, или клеток Беца, по имени русского анатома Владимира Беца, который впервые описал их в 1874 году. Волокна этих клеток управляют сокращениями мышц, причем каждая пирамидная клетка соединена волокнами со строго определенными частями какой-либо мышцы. Раздражение волокон более мелких клеток, слой которых расположен в коре выше клеток Беца, не приводит к сокращению мышц, но делает мышечные волокна чувствительными к стимуляции со стороны пирамидных клеток.

Волокна, исходящие из двигательной области коры, образуют пучок, который называется пирамидным путем, или пирамидным трактом. Этот тракт проходит через различные участки головного мозга, лежащие ниже коры, и выходит в спинной мозг. Поскольку пирамидный путь связывает кору (кортекс) со спинным мозгом, его называют еще кортикоспинальным трактом. Два пирамидных тракта, но одному из каждого полушария большого мозга, перекрещиваются в нижней части головного мозга и в верхних частях спинного мозга. В результате стимуляция двигательной области левого полушария приводит к сокращению мышц правой половины тела и наоборот.

Само существование пирамидной системы указывает нам способ объединения нервной системы в функциональную единицу. Головной мозг разделен на изолированные анатомические части - большой мозг, мозжечок и другие, которые будут описаны ниже, но это вовсе не значит, что каждая из них функционирует в отрыве от других частей. Напротив, пирамидная система контролирует деятельность двигательных участков других отделов центральной нервной системы от коры до спинного мозга. Есть нервные волокна, контролирующие двигательную активность нейронов, не являющихся пирамидными клетками и представляющих экстрапирамидную систему, которая также соединяет между собой все части центральной нервной системы. В анатомическом плане нервную систему лучше всего характеризовать по последовательным горизонтальным срезам, но в функциональном плане ее лучше всего исследовать по срезам вертикальным.

Спускаясь вниз от коры через нижележащие области пирамидного и экстрапирамидного трактов до собственно мышечных волокон, мы можем наблюдать умножение эффектов. Волокно единственной пирамидной клетки оказывает воздействие на несколько клеток спинного мозга. Каждая из этих последних управляет деятельностью многих нейронов периферической нервной системы (то есть той части нервной системы, которая расположена за пределами головного и спинного мозга), а каждый из этих нейронов управляет активностью нескольких мышечных волокон. В итоге получается, что одна пирамидная клетка может косвенно контролировать работу приблизительно до 150 000 мышечных волокон. Такое положение помогает осуществлять координацию мышечной активности.

Изменяя степень такой дивергенции, организм может при необходимости регулировать топкую настройку движений. Например, движения туловища могут регулироваться сравнительно небольшим количеством пирамидных клеток, так степень свободы движения торсом сильно ограничена. Совершенно иная ситуация складывается при движениях пальцами рук, которые призваны выполнять более разнообразные движения. Здесь дивергенция намного меньше, и каждая пирамидная клетка контролирует деятельность меньшего числа мышечных волокон.

Но кора головного мозга не просто контролирует ответные реакции. Для того чтобы реакция оказалась полезной и целенаправленной, кора головного мозга должна получать сигналы об ощущениях. В теменной доле, непосредственно позади центральной борозды, находится область коры, которая называется сенсорной.

Несмотря на такое обобщающее наименование, этот участок коры воспринимает отнюдь не все ощущения. Чувствительные волокна, берущие начало от кожи и внутренних органов тела, направляются в составе нервных пучков в головной мозг по проводящим путям спинного мозга. Некоторые из этих волокон остаются в составе спинного мозга, некоторые отходят от основного пути в нижележащие области мозга головного. В большинства своем эти волокна все же достигают коры. Эти достигшие коры волокна несут прежде всего информацию о прикосновениях и температуре, наряду с импульсами, возникающими в мышцах. Эти последние несут информацию, касающуюся положения тела в пространстве и взаимного расположения частей тела, обеспечивая сохранение равновесия. Существуют также генерализованные ощущения, которые не требуют для своего восприятия каких-либо специализированных сенсорных органов. (Эти и другие ощущения будут описаны в 10, 11 и 12-й главах.) В более узком смысле сенсорную область коры головного мозга часто называют соматосенсорной областью (то есть областью телесной чувствительности). Но даже и это слишком обобщающее наименование, потому что один из важнейших соматосенсорных стимулов - боль - не представлен в этой части коры. Боль воспринимается и обрабатывается в других областях мозга, расположенных ниже ее. Тот факт, что ощущения воспринимаются на различных горизонтальных уровнях нервной системы, показывает, что и здесь существует продольная унификация функций. Этим занимается ретикулярная активирующая система, которая координирует деятельность всех уровней центральной нервной системы, отвечающих за восприятие сенсорной информации.

Так же как в случае с двигательной областью, область сенсорной коры разделена на участки, которые в перевернутом виде воспринимают информацию об ощущениях с различных частей тела. На самом верху сенсорной области расположено представительство ног, следующие органы представлены в следующей последовательности сверху вниз - бедро, туловище, шея, плечо, предплечье, кисть, пальцы. Ниже области, воспринимающей ощущения с пальцев, находится область представительства головы. В самом низу находится представительство языка, которое, среди прочих, обрабатывает ощущение вкуса. (Другие ощущения химических веществ, например обоняние, локализовано в основании лобной доли. У человека эта доля очень мала, в отличие от других позвоночных, у которых она сильно развита.)

Участки сенсорной области, представляющие губы, язык и кисть руки (как и следует ожидать), развиты больше относительно размеров этих органов, чем участки, представляющие органы более крупные. Действительно, иногда на рисунки, изображающие кору головного мозга, наносят изображение перевернутого человечка, отдельные части тела которого наложены на области их представительства в коре. На рисунках как сенсорного, так и двигательного человечка его торс непропорционально мал, малы также ноги, хотя очень велики стопы, направленные к верхушке мозга. К нижней части коры направлены очень большая кисть руки, огромная голова и гигантские губы и язык.

Все это достаточно разумно. Что касается движений, то манипуляции ртом и языком в процессе порождения речи и движения кистью руки в процессе трудовой деятельности очень тонки, и именно они отличают людей от животных. Что же касается ощущений, то движения рукой не могут быть точными, если мы в каждый данный момент времени не будем ощущать ее точное положение в пространстве и взаимное расположение пальцев. Ощущения, информация о которых передается с губ и языка, не специфичны только для человека, поскольку прием пищи очень важен и для него, несмотря на весь его интеллект, поэтому сигналы с языка и губ требуют большого внимания головного мозга.

Два очень важных ощущения, - важных и специализированных, - зрение и слух, имеют в своем распоряжении специально зарезервированные для этого доли. Это участок височной доли, расположенный непосредственно книзу от сенсорной области, служащий для восприятия и обработки слуховых ощущений и называемый поэтому слуховой областью, и затылочная доля, в которой расположена зрительная область коры головного мозга. Зрительная кора расположена на самых задних участках коры обоих полушарий головного мозга.

ЭЛЕКТРОЭНЦЕФАЛОГРАФИЯ

Как я уже говорил, в коре головного мозга расположены около 10 миллиардов нервных клеток. Все они способны претерпевать химические и электрические изменения, передавая нервные импульсы. (Они не делают этого только в случае гибели.) Отдельная нервная клетка передает нервный импульс только после стимуляции и только в те, возможно, достаточно редкие промежутки времени, когда изменяется ее электрический потенциал. Однако в каждый данный момент времени разряжается изрядная доля всех 10 миллиардов нервных клеток. Поэтому в целом головной мозг активен постоянно.

В обычных условиях информация об ощущениях постоянно поступает в головной мозг, а двигательные команды постоянно направляются от мозга к периферии. Даже если какие-то сигналы об определенных ощущениях не поступают в мозг, если вы находитесь в непроницаемой темноте и в полной тишине, если вам нечего нюхать или пробовать па вкус, если вы парите в невесомости, то даже в этом случае какие-то ощущения все равно возникают в мышцах и суставах. Эти ощущения сообщают вам об относительном положении в пространстве ваших конечностей и туловища. Но даже если вы будете лежать в состоянии полного расслабления, не совершая никаких произвольных движений, то сердце все равно будет продолжать качать кровь, грудная клетка совершать дыхательные движения и так далее.

Не удивительно, что в любое время дня и ночи, при бодрствовании и во сне, мозг любого живого существа, а не только человека, является источником множества различных электрических потенциалов. Впервые они были обнаружены в 1875 году английским физиологом Ричардом Кэйтоном. Он прикладывал электроды к обнаженной поверхности головного мозга живой собаки и регистрировал при этом очень малые по амплитуде токи. В течение последующих пятидесяти лет техника усиления этих незначительных сигналов была усовершенствована. В 20-х годах XX века стало возможным регистрировать эти потенциалы сквозь толщу кожи и костей, покрывающих головной мозг.

В 1924 году австрийский психиатр Ганс Бергер наложил электроды на кожу головы больного и обнаружил, что при использовании чувствительного гальванометра можно выявить электрические потенциалы. Свою работу на эту тему он опубликовал только в 1929 году. С тех пор использование более сложной техники сделало это исследование рутинным. Процесс измерения токов головного мозга был назван электроэнцефалографией («электрической записью мозга», греч.) .Прибор, используемый для этой цели, был назван электроэнцефалографом, а запись электрической активности мозга - электроэнцефалограммой. Сокращенно электроэнцефалография называется ЭЭГ.

Электрические потенциалы мозговых волн (как были названы обнаруженные флуктуации потенциала) находятся в диапазоне милливольт (тысячных долей вольта) и микровольт (миллионных долей вольта). С самого начала своего исследования Бергер заметил, что потенциалы флуктуировали в определенном ритме. Правда, форма этого ритма оказалась весьма не простой, однако удалось выявить несколько типов ритма, образующих окончательную форму мозговых волн.

Самому заметному типу ритма Бергер дал наименование альфа-ритма или альфа-волн. Альфа-волны характеризуются амплитудой около 20 микровольт и частотой следования около 10 в одну секунду. Альфа-ритм проявляется особенно отчетливо, когда испытуемый сидит в спокойной позе с закрытыми глазами. Поначалу предположение Бергера о том, что этот ритм задается целостным мозгом, казалось вполне приемлемым. Увеличение чувствительности применяемых методов регистрации ЭЭГ пошатнули такое представление. К черепу начали прикладывать все большее число электродов в самых различных местах, расположенных симметрично относительно вертикальной плоскости, делящей головной мозг на две половины в направлении спереди назад. В настоящее время принято регистрировать потенциалы с 24 электродов, определяя разность потенциалов между любыми двумя из них. На основании этих измерений было установлено, что альфа-ритм сильнее всего выражен в затылочной области, которая соответствует месту мозга, где расположены центры зрительного анализатора.

Когда глаза открыты, но взор направлен на бесформенный источник света, регистрируются альфа-волны. Если, однако, перед взором возникает подвижная оформленная картина, то альфа-ритм исчезает или подавляется более выраженным ритмом. Через некоторое время, если в поле зрения не происходит ничего нового, альфа-ритм восстанавливается. Возможно, что альфа-волны представляют состояние готовности, в котором находится зрительная кора, при минимальной стимуляции. (Это похоже на то, как человек переминается с ноги на ногу или барабанит пальцами по столу в ожидании слов, которые побудят его к действию.) Поскольку зрение является нашим основным чувством и обеспечивает нас большим объемом информации, чем все остальные органы чувств, вместе взятые, и эта информация постоянно заставляет наш мозг работать, постольку не удивительно, что альфа-волны доминируют в ЭЭГ покоя. Когда глаза начинают выполнять свою функцию и поставлять мозгу зрительную информацию, и за работу принимаются также и клетки зрительной коры, то ритм ожидания исчезает. Если зрительная картинка перестает изменяться и мозг до конца выявил ее суть, ритм ожидания возвращается. Однако мозг не может ждать до бесконечности. Если человек долго пребывает в отсутствии сенсорной стимуляции, то у него начинаются трудности с мышлением или концентрацией внимания, и могут даже начаться галлюцинации (словно мозг, не получая реальную информацию, начинает создавать свою собственную). Эксперименты, проведенные в 1963 году, показали, что у человека, проведшего две недели без сенсорной стимуляции, происходит ослабление альфа-ритма и уменьшение амплитуды его волн.

Кроме альфа-волн, существуют еще бета-волны, частота которых выше - 14 -50 в секунду, а колебания потенциала имеют меньшую амплитуду, чем альфа-волны. Есть еще медленные и имеющие высокую амплитуду тета-волпы.

ЭЭГ предоставляет в распоряжение физиологов массу загадочных данных, многие из которых они до сих пор не в состоянии интерпретировать. Например, существуют возрастные различия ЭЭГ. Мозговые волны можно выявить у плода в утробе матери, хотя они имеют очень низкий вольтаж и частоту. Это положение постепенно изменяется с возрастом, но «взрослые» характеристики появляются у ЭЭГ лишь к 17 годам. Форма ЭЭГ изменяется также при засыпании и пробуждении, то же самое происходит и во время сна, предположительно в моменты появления сновидений. (Характерным ЭЭГ-проявлением фазы быстрых движений глаз является возникновение дельта-волн.) В противоположность всем этим различиям, ЭЭГ разных видов животных по своим характеристикам очень похожи друг на друга и на ЭЭГ человека. Таким образом, головной мозг, вне зависимости от биологического вида его носителя, работает по единому для всех механизму.

Что же касается анализа ЭЭГ, то можно провести аналогию с воображаемой ситуацией, когда всех людей па Земле одновременно прослушивают из какой-либо точки космического пространства. Возможно, на фоне равномерного гула можно выявить резкое периодическое усиление шума при оживлении уличного движения в часы пик, вечерних гуляний или уменьшение шума во время ночного сна. Пытаться получить какую-то информацию о тонких деталях работы головного мозга из ЭЭГ - это все равно что пытаться на основании шума голосов всех люд» и на нашей планете проанализировать их отдельные разговоры.

Но ученые все же не теряют надежду выиграть сражение. На поле битвы призваны специально разработанные для этой цели сложные компьютеры. Если в окружающей среде вызвать малое изменение какого-либо параметра и направить информацию об этом изменении в мозг, то можно

предположить, что это изменение вызовет какое-то малое изменение характеристик ЭЭГ. Однако в этот момент мозг одновременно занимается обработкой всей прочей поступившей в него информации, и малое, целенаправленно вызванное изменение останется незаметным на фоне других волн. Тем не менее если этот процесс повторять множество раз подряд, то при использовании соответствующей компьютерной программы можно усреднить амплитуды всех волн и сравнить форму усредненной волновой активности мозга в моменты изменения внешнего сигнала с формой усредненной волновой активности в моменты, когда такое изменение отсутствует. При достаточном числе циклов можно будет выявить и зарегистрировать устойчивое отклонение.

Бывают, однако, ситуации, когда ЭЭГ имеет диагностическую ценность даже при отсутствии в распоряжении исследователей сложной современной техники. Естественно, такое возможно лишь в том случае, если форма ЭЭГ радикально отличается от нормальной, а это случается в тех случаях, когда мозг поражен какой-либо серьезной болезнью. (Так, гипотетический наблюдатель может зафиксировать на фоне обычного шума грохот артиллерийской канонады и понять, что началась война, и даже определить, где именно она идет, перекрывая смесь привычных звуков.)

Во-первых, ЭЭГ полезна при выявлении опухолей головного мозга. Ткань, формирующая опухоль, функционально не активна, поэтому в ней не образуются волны электрической активности мозга. В тех областях коры, которые прилегают к опухоли, формы волн ЭЭГ деформируются и искажаются. Применяя достаточно большое число отведений, снятых с достаточно большого числа областей мозга, и тщательно анализируя форму волн можно не только выявить сам факт существования опухоли, но в некоторых случаях даже определить ее местоположение в коре головного мозга. Правда, ЭЭГ не пригодна для диагностики опухолей, расположенных в глубине ткани мозга, вдали от его коры.

ЭЭГ также полезна при диагностике эпилепсии («припадок», греч.), болезни, получившей свое название по причинам, о которых я скажу ниже. Эпилепсией называется болезнь, при которой нервные клетки головного мозга разряжаются в непредсказуемый момент при отсутствии какого бы то ни было стимула. Возможно, она является следствием повреждения головного мозга во время родов или в раннем детстве. Иногда причину выявить не удается. Самой тяжелой формой заболевания является та, при которой поражается двигательная область коры. Клетки этой области разряжаются в случайном порядке, разряды совершенно не координированы, поэтому начинается неупорядоченное сокращение мышц шеи и туловища, что приводит к судорожным движениям. Человек дико извивается всем телом, мышцы его ритмично и сильно сокращаются, сознание утрачивается. Припадок обычно длится недолго, всего несколько минут, но больной за это время может причинить себе довольно ощутимый вред. Такие припадки, повторяющиеся через непредсказуемые промежутки времени, обозначаются французским термином grand mal(«большой припадок»). В старые времена эту болезнь называли падучей.

Есть и другая форма проявления эпилепсии, когда поражается сенсорная область. В таких случаях болезнь характеризуется появлением кратковременных галлюцинаций на фоне утраченного сознания. Такие проявления обозначают другим французским термином petit mal(«малый припадок»). Обе области - моторная и сенсорная - могут поражаться одновременно, в таких случаях за галлюцинациями следует судорожный припадок. В таких случаях говорят о психомоторной атаке.

Эпилепсия не столь уж редкое заболевание. Ею страдает каждый двухсотый житель нашей планеты, хотя не все страдают в такой тяжелой форме. У эпилепсии интереснейшая история. Приступы grand malпугают и впечатляют, особенно представителей примитивных сообществ (и даже не очень примитивных), так как им непонятно, что происходит. Во время приступа мышцы эпилептика явно выходят из-под его контроля, и легко прийти к заключению, что он одержим каким-то сверхъестественным существом. (Именно поэтому таких больных называли одержимыми. В точном переводе с греческого эпилепсия и означает «одержимость». Эпилепсией страдали многие знаменитые люди, включая Юлия Цезаря и Достоевского.)

Сверхъестественное существо логично было считать демоном зла, поэтому эпилептические припадки отчасти отвечают за живучесть веры в нечистую силу и сверхъестественную одержимость. Эпилептики могут ощущать в себе способность к сверхъестественному провидению, в результате тесного общения с потусторонними силами. Пророчества дельфийского оракула всегда отличались большей экспрессией, если перед ними пифия испытывала (или искусно имитировала) эпилептический припадок. Медиумы нового времени, проводя спиритические сеансы, часто весьма умело симулировали припадки, судорожно извиваясь всем телом. Греки считали эпилепсию священной болезнью. Отец медицины Гиппократ (или один из его учеников) был первым, кто понял, что эпилепсия - это такой же недуг, как и все прочие, и имеет вполне конкретную причину. Таким образом, ее, вероятно, можно лечить не прибегая к колдовству и магии.

Для каждой разновидности эпилепсии характерна своеобразная форма волн ЭЭГ. При больших припадках на ЭЭГ выявляются высокоамплитудные волны, следующие друг за другом с большой частотой. При малых припадках волны малой амплитуды быстро следуют друг за другом, причем каждая вторая волна имеет заостренный пик. Психомоторная атака проявляется на ЭЭГ медленными волнами, перемежающимися остроконечными пиками. Форма и рисунок мозговых волн позволяют диагностировать субклинические разновидности эпилепсии, которые невозможно выявить другими методами. С помощью ЭЭГ можно также контролировать эффективность проводимого противосудорожного лечения, регистрируя частоту и распространенность аномальных паттернов мозговых электрических волн.

В настоящее время разрабатываются другие области приложения ЭЭГ для медицинских исследований. Так, головной мозг, в силу своей большой зависимости от доставки кислорода и глюкозы, является первым органом, который перестает функционировать у умирающего больного. При современной технике оживления часто складывается такая ситуация, что врачам удается восстановить работу сердца, хотя высшие центры головного мозга необратимо утратили свою функцию. Жизнь в таком состоянии едва ли может быть названа жизнью в полном смысле этого слова, и было предложено считать смертью больного именно смерть головного мозга, невзирая на то, что сердце все еще продолжает упорно сокращаться.

ЭЭГ может оказаться полезной при диагностике психотических состояний и при изучении их природы. О том, что такое психотическое состояние, я расскажу подробнее в главе 14.

БАЗАЛЬНЫЕ ГАНГЛИИ

Часть головного мозга, расположенная ниже коры, в основном представлена, как я уже упоминал, белым веществом, из которого состоят покрытые миелином нервные волокна. Например, непосредственно над желудочками - полостями головного мозга - располагается мозолистое тело, которое связывает между собой правое и левое полушария головного мозга. Нервные волокна, пересекающие мозолистое тело, объединяют головной мозг в единое функциональное целое, но потенциально полушария могут работать и независимо друг от друга.

Для пояснения можно привести пример глаз. У нас два глаза, которые обычно действуют совместно, как одно целое. Тем не менее если мы закроем один глаз, то сможем видеть достаточно хорошо и одним глазом. Одноглазого человека ни в коем случае нельзя считать слепцом. Точно так же удаление одного полушария у экспериментального животного не делает его безмозглым. Оставшееся полушарие, в той или иной мере, берет на себя функции удаленного. Обычно каждое полушарие отвечает, в первую очередь, за «свою» половину тела. Если, оставив на месте оба полушария, пересечь мозолистое тело, то координация действия половин головного мозга утрачивается, и обе половины тела переходят под более или менее независимый контроль не связанных между собой полушарий мозга. В буквальном смысле у животного образуется два мозга. Такие опыты были выполнены на обезьянах. (После рассечения мозолистого тела рассекали еще некоторые волокна зрительных нервов, чтобы каждый глаз был связан только с одним полушарием мозга.) После такой операции можно было тренировать каждый глаз в отдельности для выполнения различных задач. Например, обезьяну можно научить ориентироваться на крест в круге, как на маркер контейнера с пищей. Если во время обучения оставить открытым только левый глаз, только он будет натренирован на решение задачи. Если после этого закрыть обезьяне левый глаз и открыть правый, то она не справится с задачей и будет искать пищу методом проб и ошибок. Если каждый глаз натренировать на решение противоположных задач, а потом открыть оба глаза, то обезьяна будет решать их поочередно, меняя деятельность. Создается такое впечатление, что полушария мозга каждый раз вежливо передают друг другу эстафетную палочку.

Естественно, в такой двусмысленной ситуации, когда функциями тела управляют два независимых мозга, всегда существует опасность путаницы и внутренних конфликтов. Чтобы избежать такого положения, одно из полушарий (у человека почти всегда левое) становится доминирующим, то есть господствующим. Управляющая речью зона Брока, о которой я упоминал, расположена в левом полушарии, а не в правом. Левое полушарие управляет правой половиной тела, и это объясняет тот факт, что подавляющее большинство людей на Земле - правши. При этом даже у левшей доминирующим полушарием является все-таки левое. Амбидекстры, у которых нет явно выраженного доминирования какого-то одного полушария, иногда испытывают трудности с формированием речи в раннем детстве. Подкорковые участки головного мозга состоят не только из белого вещества. Под корой расположены также компактные участки серого вещества. Они называются базальными ганглиями1.

1 Слово «ганглий» имеет греческое происхождение и означает «узел». Гиппократ и его последователи называли этим словом похожие на узелки подкожные опухоли. Гален, римский врач, работавший около 200 года нашей эры, начал использовать этот термин для обозначения скоплений нервных клеток, выступающих по ходу нервных стволов. В таком смысле это слово употребляется и в настоящее время.

Выше других базальных ганглиев в под корке располагается хвостатое ядро. Серое вещество хвостатого ядра загибается книзу, образуя при этом миндалевидное ядро. Сбоку от миндалевидного ядра расположено чечевицеобразное ядро, а между ними прослойка белого вещества, называемая внутренней капсулой. Ядра не являются полностью однородными образованиями, в них присутствует и белое вещество проводящих путей, по которым проходят миелинизированные нервные волокна, что придает базальным ганглиям полосатую исчерченность. Из-за этого оба ядра получили объединяющее наименование полосатого тела.

Внутри купола, образованного комплексом полосатого тела, хвостатого ядра и чечевицеобразного ядра, находится еще один большой участок серого вещества, который называется таламусом или зрительным бугром.

Базальные ганглии трудно изучать, так как они скрыты глубоко под корой полушарий большого мозга. Имеются, однако, указания на то, что подкорковые базальные ганглии играют большую роль в функциях мозга - как активных, так и пассивных. Белое вещество полосатого тела можно считать в каком-то смысле узким бутылочным горлышком. Его должны миновать все двигательные нервные волокна, идущие от коры, и все чувствительные нервные волокна, восходящие к коре. Следовательно, любое повреждение в этой области приведет к обширному поражению телесных функций. Такое поражение может, например, лишить чувствительности и способности к движению всю половину тела, противоположную тому полушарию, в котором произошло повреждение подкорковых ганглиев. Такое одностороннее поражение называется геминлегией («инсульт половины тела», греч.). (Утрата способности к движению называется греческим термином «паралич», что означает «расслабленность». Мышцы, если можно так выразиться, расслабляются. Заболевание, которое приводит к внезапному развитию паралича, часто называют инсультом или ударом, потому что человек, пораженный этим недугом, внезапно падает с ног, словно от удара невидимым тупым предметом по голове.)

Было высказано предположение, что одной из функций базальных ганглиев является контроль над деятельностью двигательной области коры полушарий большого мозга. (Эта функция присуща экстрапирамидной системе, частью которой являются базальные ганглии.) Подкорковые узлы удерживают кору от слишком опрометчивых и скорых действий. При нарушениях в базальных ганглиях соответствующие участки коры начинают разряжаться бесконтрольно, что приводит к судорожным непроизвольным сокращениям мускулатуры. Обычно такие нарушения касаются мышц шеи, головы, кистей рук и пальцев. В результате голова и руки постоянно мелко дрожат. Это дрожание особенно заметно в покое. Оно уменьшается или исчезает, когда начинается какое-либо целенаправленное движение. Другими словами, дрожь пропадает, когда кора приступает к реальным действиям, а не продуцирует отдельные ритмичные разряды.

Мышцы других групп становятся в таких случаях аномально неподвижными, хотя настоящего паралича при этом нет. Мимика теряет живость, лицо становится маскообразным, походка скованной, руки висят вдоль тела неподвижно, не совершая движений, характерных для ходьбы. Это сочетание сниженной подвижности плеч, предплечий и лица с повышенной патологической подвижностью головы и кистей рук получило противоречивое название дрожательного паралича. Дрожательный паралич был впервые детально описан английским врачом Джеймсом Паркинсоном в 1817 году и с тех пор носит название болезни Паркинсона.

Некоторое облегчение приносит намеренное повреждение определенных базальных ганглиев, которые, как представляется, являются причиной «собачьей дрожи». Один способ заключается в прикосновении тонким зондом к пораженному участку, что прекращает тремор (дрожь) и ригидность (неподвижность). Потом этот участок уничтожают жидким азотом, имеющим температуру -50 °С. При рецидиве симптоматики процедуру можно повторить. Очевидно, неработающий узел лучше, чем работающий плохо.

В некоторых случаях поражение базальных ганглиев приводит к появлению более обширных нарушений, проявляющихся в виде спастических сокращений больших массивов мышц. Создается впечатление, что больной исполняет неуклюжий судорожный танец. Эти движения называются хореей («хорея» - «танец», греч.).Хорея может поражать детей после перенесенного ревматизма, когда инфекционный процесс затрагивает подкорковые образования мозга. Первым эту форму заболевания описал в 1686 году английский врач Томас Сайденхем, поэтому она называется хореей Сайденхема.

В Средние века наблюдались даже эпидемические вспышки «плясовых маний», которые временами охватывали области и провинции. Вероятно, это не были эпидемии истинной хореи, корни этого явления надо искать в психических нарушениях. Надо думать, что психические мании явились результатом наблюдения случаев истинной хореи. Кто-то впадал в такое же состояние по причине истерической мимикрии, другие следовали его при-

меру, что и приводило к вспышкам. Родилось поверье, что исцелиться от этой мании можно, совершив паломничество к гробнице святого Витта. По этой причине хорею Сайденхема называют также «пляской святого Витта».

Существует также наследственная хорея, которую часто называют хореей Гентингтона, по имени американского врача Джорджа Саммера Гентингтона, который впервые описал ее в 1872 году. Это более серьезное заболевание, чем пляска святого Витта, которая в конечном счете излечивается самопроизвольно. Хорея Гентиигтона проявляется впервые в зрелом возрасте (между 30 и 50 годами). Одновременно развиваются и психические расстройства. Состояние больных постепенно ухудшается, и в конце концов наступает смерть. Это наследственное заболевание, о чем говорит одно из его названий. Из Англии в Соединенные Штаты когда-то переселились два брата, страдавших хореей Гентингтона. Считается, что все больные в США являются потомками этих братьев.

Таламус является центром соматосенсорной чувствительности - центром восприятия прикосновения, боли, тепла, холода и мышечного чувства. Это очень важная составная часть ретикулярной активирующей формации, которая принимает и просеивает поступающие сенсорные данные. Самые сильные стимулы, такие, как боль, чрезвычайно высокая или низкая температура, отфильтровываются в таламусе, а более мягкие стимулы в виде прикосновений, тепла или прохлады проходят дальше, к коре мозга. Возникает такое впечатление, что коре можно доверить только незначительные стимулы, которые допускают неторопливое рассмотрение и неспешную реакцию. Грубые стимулы, которые требуют немедленной реакции и не терпят отлагательства, быстро обрабатываются в таламусе, после чего следует более или менее автоматическая реакция.

Из-за этого существует тенденция различать кору - центр холодных размышлений - и таламус - очаг горячих эмоций. Действительно, именно таламус контролирует деятельность мимических мышц в условиях эмоционального стресса, так что, даже если корковый контроль тех же мышц поражен и лицо остается маскообразным в спокойном состоянии, оно может внезапно исказиться судорогой в ответ на сильную эмоцию. Кроме того, животные с удаленной корой очень легко впадают в ярость. Несмотря на эти факты, представление о таком разграничении функций между корой и таламусом является недопустимым упрощением. Эмоции не могут возникать из какой-то одной, очень малой части головного мозга - это надо четко сознавать. Появление эмоций - это сложный интегративный процесс, включающий в себя деятельность коры лобной и височных долей. Удаление височных долей у экспериментальных животных ослабляет эмоциональные реакции, несмотря на то что таламус остается нетронутым.

В последние годы исследователи обратили пристальное внимание на самые древние в эволюционном плане участки подкорковых структур старого обонятельного мозга. Эти структуры связаны с эмоциями и провоцирующими сильные эмоции стимулами - сексуальными и пищевыми. Этот участок, как представляется, координирует сенсорные данные с телесными потребностями, другими словами, с висцеральными потребностями. Участки висцерального мозга были названы Брока лимбической долей («лимб» по-латыни означает «граница»), так как этот участок окружает и отграничивает от остального мозга мозолистое тело. По этой причине висцеральный мозг иногда называют лимбической системой.

ГИПОТАЛАМУС

В области, расположенной под дном третьего желудочка, а значит, под таламусом, находится гипоталамус (по-гречески это означает «под таламусом»), который имеет в своем распоряжении иные инструменты управления телесными функциями. Среди прочих участков недавно был выявлен один, при стимуляции которого возникают очень приятные ощущения. Если в этот участок ввести стимулирующий электрод и научить крысу пользоваться им, то животное начинает стимулировать' центр удовольствия часами и сутками напролет, за исключением времени сна, половой активности и приема пищи. Очевидно, что все проявления жизни желательны постольку, поскольку они стимулируют центр удовольствия. При его непосредственной стимуляции все остальное становится несущественным и ненужным. (Правда, такую возможность формирования физической зависимости, которая отменит все прочие зависимости, не хочется даже обсуждать.)

Поскольку гипоталамус располагает набором нескольких механизмов автоматического контроля телесных функций, постольку его можно рассматривать как некую разновидность гормональной системы, которая регулирует те же функции, применяя антагонистически действующие гормоны (например, инсулин и глюкагон). Действительно, кроме отчетливой физической связи между гипоталамусом и гипофизом, между ними существует довольно смутно очерченная функциональная связь. Гипофиз непосредственно прилегает снизу к гипоталамической области, а его задняя доля образуется из гипоталамуса в процессе эмбрионального развития.

Неудивительно поэтому, что гипоталамус вовлечен в регуляцию обмена воды в организме. Я уже писал о том, как задняя доля гипофиза регулирует концентрацию воды в организме, изменяя реабсорбцию воды в канальцах почек. Представляется, однако, что можно сделать следующий шаг и перейти от гипофиза к гипоталамусу. Изменение концентрации воды в крови сначала стимулирует определенные центры в гипоталамусе, и именно он стимулирует активацию задней доли гипофиза. Если перерезать стебелек, который связывает гипоталамус и заднюю долю гипофиза, то неминуемо развивается несахариый диабет, хотя сама железа остается неповрежденной. Последние исследования позволяют предположить, что гипоталамус регулирует деятельность и передней доли гипофиза, например, стимулирует выработку АКТГ.

Гипоталамус также содержит группу клеток, которые действуют как весьма эффективный термостат. Естественно, мы осознаем изменения температуры окружающей среды и боремся с ними, меняя одежду, включая обогреватели или воздушные кондиционеры. Приблизительно также работает и гипоталамус, но он делает это более тонко и с помощью встроенных в организм механизмов.

Внутри гипоталамуса расположены соответствующие клетки, которые быстро реагируют на минимальные изменения температуры крови. Отопление организма осуществляется мелкими дрожательными движениями мышц с частотой от 7 до 13 раз в секунду. (Этот факт был выявлен и подтвержден в 1962 году.) Тепло, продуцируемое этой дрожью, возмещает его потери в холодную окружающую среду. Если окружающая температура продолжает падать, то дрожь усиливается и становится заметной, нас начинает бить озноб. Кондиционер организма представлен механизмом потоотделения, поскольку испарение воды требует затрат тепла, которое при этом отводится от тела. Гипоталамус, контролируя дрожь и потоотделение, поддерживает внутреннюю температуру тела в очень узком диапазоне (нормой считается 98,6-F), несмотря па колебания (конечно, в разумных пределах) температуры внешней среды.

Существуют такие условия, когда точка регуляции гипоталамического термостата смещается вверх. Чаще всего это происходит при высвобождении в кровь чужеродных белков или токсинов, которые выделяются вторгшимися в организм человека микробами. Даже небольшие количества этих токсинов могут повысить температуру тела на несколько градусов. Такое состояние называется лихорадкой. Для достижения более высокой, чем в норме, температуры организм, охваченный лихорадкой, использует все имеющиеся в его распоряжении средства. Прекращается потоотделение и усиливается мышечная дрожь, доходящая иногда до степени потрясающего озноба. Обычно такая реакция осуществляется в ответ на воздействие холода, поэтому больной, страдающий лихорадкой, может, стуча зубами, жаловаться па то, что ему холодно, что его знобит. Отсюда выражение - «лихорадка с ознобом». Когда вторжение микробов ликвидировано, необходимость в лихорадке отпадает, и термостат организма перестраивается па более низкую точку регуляции. Включаются механизмы снижения температуры, и прежде всего возрастает потоотделение. Такое внезапное усиление потоотделения называется кризисом, и при многих инфекционных заболеваниях является хорошим прогностическим признаком. Больной начинает выздоравливать.

Подъем температуры тела ускоряет распад белков организма в большей степени, чем любые другие реакции. Поскольку многие белки жизненно необходимы, то повышение температуры тела всего па десять градусов по Фаренгейту может стать смертельно опасным. (Такая высокая температура, прав да, губительно действует и на бактерии, поэтому в идеале хотелось бы поддержать такую температуру которая, убив бактерии, пощадила бы клетки больного.)

Организм менее чувствителен к более низким по сравнению с нормой температурам, то есть к гипотермин. Людей, попавших в снежные лавины, удавалось вернуть к жизни после сильного переохлаждения, когда температура их тела снижалась до 60 градусов по Фаренгейту. Снижение температуры уменьшает скорость протекания биохимических реакций в организме, то есть снижает скорость обмена веществ. При температуре 60 градусов по Фаренгейту скорость обмена веществ составляет только 15% от нормальной.

Факт, что многие теплокровные в обычных условиях животные, такие, как медведи и сони, реагируют на холод резким снижением уровня работы гипоталамического термостата. Все замедляется. Частота сердечных сокращений падает до нескольких ударов в минуту. Дыхание тоже становится редким и поверхностным. Жировых запасов оказывается достаточно, чтобы продержаться всю зиму. Человек лишен такой способности к зимней спячке, и если температура его тела снижается ниже 60 градусов по Фаренгейту, то наступает смерть из-за дезорганизации координированной работы сердечной мышцы. Тем не менее, бывают такие положения, когда гипотермия полезна, особенно когда проводятся операции на самом сердце. С помощью достаточного снижения скорости обмена веществ (но не слишком выраженного) деятельность сердца замедляется и с ним можно без вреда манипулировать в течение довольно длительных промежутков времени.

Температуру человеческого тела можно снизить грубыми методами, например положив находящегося в наркозе человека в ледяную воду или обернув одеялом, по которому циркулирует охлаждающий раствор. Более мягко можно сделать это, привлекая к снижению температуры сам гипоталамус. Для этого кровь извлекают из артерии, пропускают по системе охлаждающих трубок и возвращают в артерию. Если кровь брать из сонной артерии и туда же ее возвращать, то охлаждается непосредственно сам головной мозг. Гипоталамус замораживается и перестает действовать. После этого легче снизить температуру тела. Более того, головной мозг переносит более низкую температуру, чем остальные органы. Уменьшение уровня обмена веществ в мозгу резко снижает потребность его в кислороде. Именно потребности головного мозга в кислороде и питательных веществах ограничивают время операций, для проведения которых требуется на время выключить кровообращение. В этих условиях операции на сердце можно проводить в течение четырнадцати минут, не причиняя вреда организму.

Участок гипоталамуса, расположенный в его центре, регулирует аппетит, так же как термостат регулирует теплообмен с окружающей средой. По аналогии, этот контролирующий аппетит центр может быть назван аппестатом. Существование аппестат было открыто после того, как животные, которым удаляли определенную область гипоталамуса, начинали прожорливо есть и становились гротескно ожиревшими. Оказалось, что в то время как термостат воспринимает температуру протекающей через него крови, аппестат определяет уровень глюкозы протекающей через него крови. Когда по прошествии какого-то периода голодания уровень глюкозы в крови падает ниже некоторого ключевого уровня, включается, если можно так выразиться, аппетит, и человек начинает есть, если в его распоряжении есть еда. Когда уровень глюкозы восстанавливается, аппетит выключается. Средний человек может есть, будучи голодным, и не есть, не будучи голодным. Таким образом, можно поддерживать разумный вес и не думать о том, как это делается.

Есть люди, и их не так уж мало, которые поддерживают свой вес на уровне выше нормального и оптимального для поддержания доброго здоровья. В обыденной речи таких людей называют обжорами, и несколько романтическое объяснение этого факта заключается в том, что они страдают каким-то психическим расстройством, которое и заставляет их переедать. Между этими двумя крайностями лежит разумное физиологическое объяснение, которое заключается в том, что у этих людей аппестат настроен на слишком высокий уровень, поэтому чувство голода у них возникает после еды быстрее и держится дольше. Недавние исследования этого вопроса позволяют предположить, что существует два центра, контролирующие аппетит. Один - «центр питания» и другой - центр насыщения. Первый включает аппетит, второй выключает. Считается, что при ожирении и переедании страдает именно второй центр. Возможно, однако, что ожиревшие люди не испытывают настоящего голода, но лишь психологическую потребность постоянно что-то жевать, то есть имеют привычку, которую многие люди считают не нужной и даже безвкусной.

И наконец, в гипоталамусе есть область, которая регулирует цикл сна и бодрствования. У людей этот цикл имеет продолжительность около двадцати четырех часов, что отражает цикл вращения Земли вокруг своей оси и суточный цикл смены светлого и темного времени суток. Современные воздушные путешествия с пересечением часовых поясов смещают цикл и приводят к нарушениям регулярности питания, сна и физиологических отправлений. Во время сна человек впадает в некое подобие зимней спячки. Уровень обмена веществ падает на 15% ниже самого низкого уровня, характерного для бодрствования. Замедляется частота сердечных сокращений, снижается артериальное давление, и расслабляются скелетные мышцы.

У разных людей отмечается разная потребность во сне, но у всех людей потребность в нем снижается с возрастом. В первый период жизни после родов ребенок спит все время, когда он не ест. Дети, как правило, спят 10 - 12 часов в сутки, взрослые от 6 до 9 часов.

Целью сна, и это скажет, видимо, каждый, является восстановление сил после трудового дня, однако есть органы, которые работают день и ночь, не испытывая никакой потребности в ночном отдыхе и не проявляющие никаких признаков усталости или изношенности. Если человека насильно лишить возможности спать, то ни один орган не выходит из строя и не проявляет никаких признаков патологии, за исключением головного мозга. Очевидно, депривация сна вызывает распространенные нарушения координированной работы центральной нервной системы, при этом могут развиться галлюцинации и другие симптомы ментальных расстройств. Отсутствие сна убивает быстрее, чем отсутствие пищи.

Наступление сна, возможно, определяется деятельностью какого-то участка гипоталамуса, потому что разрушение некоторых его частей приводит к развитию сноподобного состояния у экспериментальных животных. Точный механизм, с помощью которого гипоталамус выполняет свои функции, точно не известен. Одна из теорий гласит, что гипоталамус посылает сигналы в кору головного мозга, которая направляет в ответ сигналы, которые взаимно активируют друг друга. При продолжительном бодрствовании координация двух сигнальных систем нарушается, осцилляции начинают терять амплитуду и наступает сон. Когда же координация восстанавливается, то наступает пробуждение, даже в отсутствие насильственного стимула (громкого шума, толчка в плечо).

Ретикулярная активирующая формация, которая фильтрует поступающие в мозг сенсорные данные, также вовлечена в механизм пробуждения, поскольку при блокировании прохождения стимулов наступает сон, а пропускание стимула приводит к пробуждению, и, что еще важнее, в бодрствующем состоянии поддерживается ясное сознание. Таким образом, речь в данном случае идет об активирующей системе. Почему она ретикулярная, станет ясно немного позже.

Работы ретикулярной активирующей системы и взаимной стимуляции коры и гипоталамуса может оказаться недостаточно для поддержания бодрствования при отсутствии других различных стимулов, поступающих в кору головного мозга. При однообразном скучном окружении человек может незаметно уснуть, а фиксация взгляда на однообразно" качающийся или блестящий предмет может погрузить человека в транс, который хорошо знаком всем, кто хотя бы раз присутствовал на гипнотическом сеансе. Обычно мы убаюкиваем детей медленными ритмичными покачиваниями. С другой стороны, если стимулы слишком сильны, то отсутствие сигнализации в кору со стороны гипоталамуса оказывается недостаточным для засыпания. Необычно сильные стимулы могут происходить извне, например на веселой вечеринке, или изнутри, например когда кора поглощена заботами, проистекающими от беспокойства, тревоги, или гнева. В последнем случае сон может не наступить, даже если убрать все посторонние раздражители (то есть выключить свет, лечь в мягкую удобную кровать и т. д.). Такая бессонница может привести страдающего ею человека в полное отчаяние.

Есть болезнь, которая проявляется воспалением тканей мозга (энцефалит). Эта болезнь может стать причиной постоянной сонливости. Один из видов энцефалита так и называется - летаргический энцефалит. Это заболевание обычно называют сонной болезнью, при этом летаргия (от греческого слова «забытье») может постепенно перейти в длительную кому. В самых тяжелых случаях больной может пребывать в коме несколько лет, притом что за ним будут ухаживать, обеспечивая все его насущные потребности.

В Африке распространена эндемическая болезнь, вызываемая особым видом микроорганизмов, которые называются трипаносомами (от греческого слова «бурав»). Название эти простейшие получили за свою форму. Врачи называют эту болезнь типаносомиазом, а в народе ей присвоили наименование африканской сонной болезни. Болезнь передается от человека к человеку при укусах мухи цеце, которая переносит возбудителей, благодаря чему и прославилась. Трипаносомиаз вызывает кому, которая, постепенно углубляясь, приводит к смерти больного. В результате многие районы Африки смертельно опасны для человека и крупного рогатого скота.

Глава 9

СТВОЛ ГОЛОВНОГО МОЗГА

И СПИННОЙ МОЗГ

МОЗЖЕЧОК

Все структуры головного мозга от коры до гипоталамуса образовались из передней доли рыбообразного предка позвоночных. Все эти структуры, следовательно, можно отнести к переднему мозгу. Передний мозг, в свою очередь, можно разделить па две части. Первая - это сами полушария, которые называются конечным мозгом, поскольку этот участок можно рассматривать как конец нервной трубки, если подниматься от хвоста к голове. Вторая часть переднего мозга, в которую входят ба-зальиые ганглии, таламус и гипоталамус, относится к промежуточному мозгу.

Хотя передний мозг достиг у человека весьма внушительных, можно сказать, ошеломляющих размеров, из этого отнюдь не следует, что весь мозг состоит из переднего мозга. Под передним мозгом расположены средний мозг и задний мозг. Средний мозг у человека сравнительно мал и располагается вокруг узкого канала, который соединяет третий и четвертый желудочки. Выглядит средний мозг как толстый тяж, который направляется вертикально вниз от области таламуса. Внизу средний мозг заканчивается мостом, который назван так потому, что соединяет средний мозг с главной частью заднего мозга, в самой нижней части мозга располагается продолговатый мозг. Средний мозг, мост и продолговатый мозг вместе образуют структуру, похожую на ствол, идущий вниз и слегка назад от полушарий большого мозга. Создается впечатление, что большой мозг покоится на этих нижележащих отделах, словно плод, балансирующий на стволе.

По этой причине рассматриваемые в этой главе структуры мозга так и называются - ствол головного мозга. По мере продвижения вниз ствол становится тоньше и в конце концов, проходит через большое затылочное отверстие, покидая полость черепа и переходя в спинной мозг, вступая в канал, образованный позвоночником. У верхнего края большого затылочного отверстия ствол головного мозга сливается со спинным мозгом.

Сзади и сверху к стволу примыкает мозжечок, расположенный непосредственно под задней оконечностью полушарий большого мозга. У примитивных позвоночных этот участок мозга является частью заднего мозга. Подобно большому мозгу, мозжечок продольной щелью делится на две половины, которые называются полушариями мозжечка. Полушария соединяются между собой особой структурой, которую хорошо видно сзади. Это продолговатое сегментированное образование, которое из-за своего вида получило наименование червя. Так же как и в большом мозге, внутри мозжечка находится белое вещество, а серые нервные клетки расположены на его поверхности, формируя кору мозжечка. Кора мозжечка образует более мелкие и плотно упакованные извилины, а щели между ними расположены параллельными продольными линиями.

Каждое полушарие мозжечка соединено со стволом головного мозга тремя ножками, состоящими из нервных волокон. Самая верхняя ножка соединяет мозжечок со средним мозгом, следующая с мостом, а самая нижняя - с продолговатым мозгом. Через ножки мозжечок также соединяется наверху с большим мозгом, а внизу - со спинным мозгом.

Ствол мозга управляет по большей части автоматическими мышечными движениями. Например, при стоянии мы активно пользуемся мышцами, чтобы наши ноги и спина удерживали нас в вертикальном положении, невзирая на силу тяжести. Мы не осознаем эту активность, но если стоим долго, то начинаем ощущать усталость, а если мы потеряем сознание стоя, то мышцы, которые преодолевают силу земного тяготения, расслабятся, и мы рухнем на землю.

Если бы мы были вынуждены сознательно управлять своими мышцами при стоянии, чтобы не упасть, то стояние превратилось бы в деятельность, которая заняла бы все наше внимание, и мы стали бы не способны заниматься ничем больше. Но это не так, к большому счастью, должен добавить. Стояние дается нам без всяких сознательных усилий. В результате мы можем занимать свой мозг в это время другими проблемами. В итоге мы, если того требуют обстоятельства, можем легко стоять, блуждая в дебрях познания. Ни один человек не падает оттого, что его ум чем-то отвлечен. Этот автоматический контроль мышц, ответственных за стояние, управляется из центра, расположенного в стволе мозга, особенно в той его части, которая представляет собой тесно переплетенные участки белого и серого вещества, что придает этому участку сетчатый вид, почему вся структура называется ретикулярной зоной. Именно здесь фильтруется сенсорная информация в системе, которую мы уже обозначили как ретикулярную активирующую систему.

Конечно, мы не собираемся стоять вечно. Для того чтобы мы смогли сесть, мышцы, ответственные за стояние, должны расслабиться. Это осуществляется по команде из базальных ганглиев, расположенных над стволом мозга, которые посылают мышцам соответствующие импульсы. Эти импульсы позволяют телу упасть, но упасть медленно и управляемо, причем так, чтобы в результате принять положение сидя. Если мозг экспериментального животного перерезать между большим мозгом и стволом мозга, то эти расслабляющие импульсы из базальных ганглиев уже не смогут достичь мышц. В результате у животного развивается постоянная, необратимая ригидность всех мышц. Война с гравитацией становится перманентной и бескомпромиссной.

Стояние отнюдь не статично, как может показаться с первого взгляда. Человеческое тело находится при стоянии в относительно нестабильном положении, так как центр тяжести у человека расположен высоко над землей и покоится на двух, близко расположенных друг от друга опорах. (Большинство других позвоночных имеют четыре опоры, а центр тяжести у них расположен низко над землей.) Следовательно, если человек вздумает стоять не шевеля ни единым мускулом, то его свалит на землю любой толчок в плечо. В обычных реальных условиях человек автоматически изменит направление и мощность усилий, чтобы противодействовать силе, стремящейся свалить его на землю. Он расставит ноги и отпрянет назад. Если он и упадет, то только после борьбы.

Силы, которые стремятся вывести человека из равновесия, действуют постоянно. Если не найдется доброго приятеля, который решит испытать, насколько прочно вы стоите, то вы сможете самопроизвольно менять местоположение центра тяжести - потянуться, привстать на цыпочки, наклониться вперед. Вы можете выдержать напор порыва сильного ветра. Короче говоря, вы всегда стремитесь упасть в ту или иную сторону, а мышцы туловища и ног постоянно корректируют свое напряжение, чтобы удержать вас от падения.

Опять-таки здесь существует тесная связь между стволом мозга и базальными ганглиями. Общее положение тела относительно силы притяжения оценивается структурами внутреннего уха, будут обсуждаться в этой книге в соответствующей главе. Нервные импульсы из внутреннего принимаются в стволе головного мозга и воспринимаются в стволе головного мозга и в базальных ганглиях. Кроме того, импульсы от суставов постоянно поступают по активирующей ретикулярной формации в тот же ствол мозга, так что там определяется, какие мышцы надо бить, а какие - напрячь, так чтобы сохранить надежное равновесие.

Это не причиняет нам никакого беспокойства более того, постоянная необходимость из мышечного напряжения для сохранения равновесия оказывается чрезвычайно полезной. Если мы представим себе человека в состоянии идеального равновесия, то увидели бы, что одни и те же мышцы должны находиться в постоянном неизменном напряжении. В этом случае очень наступит утомление. При постоянной корректировке положения тела в разное время в игру вступают разные мышцы, и каждая имеет шанс отдохнуть, пока другие находятся в напряжении. Действительно, когда мы вынуждены долго стоять на одном месте, мы, преувеличивая естественные движения, начинаем самопроизвольно менять положение, смещая в разных направлениях центр тяжести своего тела. Мы делаем это, переминаясь с ноги на ногу или смещая вес в части тела.

Ходьба представляет собой вывод тела из состояния равновесия рывком вперед. В следующий момент мы выносим вперед ногу, чтобы поймать свое падающее тело и вновь придать ему равновесие. Научиться ходить - стоящий подвиг для маленького ребенка, первых попытках он бросается вперед, не задумываясь о последствиях, и, если его внимание чем-нибудь отвлекается, он падает.

Однако ходьба требует ритмических движений. Одни и те же мышцы то сокращаются, то расслабляются, образуя фиксированный паттерн, который повторяется снова и снова с каждым шагом. Со временем контроль над ходьбой полностью переходит к стволу мозга, который поддерживает постоянство движений рук и ног, не требуя нашего сознательного участия в этом процессе. Мы можем идти и одновременно увлеченно беседовать или с большим интересом читать книгу.

Постоянная смена утраты и обретения равновесия во время стояния и ходьбы требует участия механизмов обратной связи. Так, если тело вышло из состояния равновесия и если базальные ганглии начали изменять степень напряжения мышц, чтобы восстановить равновесие, то чувствительные импульсы должны восприниматься ганглиями в каждый данный момент времени, чтобы сигнализировать мозгу о выходе из равновесия в этот момент для того, чтобы базальные ганглии успели подготовить к сокращению нужные мышцы (это и есть обратная связь). Таким образом, организм должен обладать способностью заглядывать в будущее.

Причину этого можно лучше понять, если прибегнуть к механической аналогии. Если вы делаете поворот на автомобиле, то должны начать поворачивать рулевое колесо до того, как входите в поворот, поворачивая его все больше и больше, по мере вхождения, пока поворот руля не достигнет максимума в середине поворота. Если бы вы вошли в поворот с неповернутым рулевым колесом, то вам пришлось бы поворачивать очень круто. То же самое, только в обратном порядке, происходит на выходе из поворота. Вы должны начать выправлять руль до того, как начался выход из поворота, то есть в самой его середине, и поворачивать руль надо так, чтобы он придал колесам прямое положение там, где поворот кончается. Если бы вы начали крутить баранку, когда вышли на прямой отрезок пути, то, чтобы не врезаться в бордюр, вам пришлось бы очень быстро выправлять положение машины, резко поворачивая руль в противоположном направлении.

Итак, вы видите, что правильное выполнение поворота требует умения прогнозировать ситуацию, заглядывать вперед, учитывать не только настоящее положение, но и положение, которое возник нет через несколько мгновений. Для начинающего это не легкая задача. Учась водить машину, человек вынужден огибать углы очень медленно, чтобы не поворачивать лихорадочно, сначала в одном направлении, а потом в другом. По мере накопления опыта новичок начинает все более уверенно и быстро входить в поворот, а потом делает это без участия сознания, мягко вписываясь в поворот каждый раз - ну, или почти каждый.

Эта ситуация в точности похожа на ту, которая складывается в управляющих центрах нервной системы при сохранении равновесия или при необходимости совершить какое-то целенаправленное произвольное движение. Предположим, вам надо взять со стола карандаш. Рука начинает быстро двигаться вперед, но скорость ее движения уменьшается по мере приближения к карандашу. Пальцы должны сомкнуться, чтобы прикоснуться к желаемому предмету. Если рука отклоняется в сторону, то происходит немедленная, соответствующая корректировка движения. Если видно, что рука проходит дальше карандаша, то скорость ее движения замедляется, если же рука не доходит, то движение продолжается до требуемого расстояния. Все эти подправляющие движения и корректировки происходят неосознанно, и вы можете поклясться, что в действительности никакой корректировки не происходит. Но она происходит, и именно по этой причине мы сначала смотрим на карандаш, чтобы взять его, на челюсть противника, прежде чем ударить по ней кулаком, и на шнурки ботинок, прежде чем начать их завязывать. Именно сигналы, которые глаза постоянно посылают в головной мозг, позволяют нам корректировать и уточнять объемы и направление необходимых движений. Если вы захотите взять карандаш не глядя на него, то, даже если вы знаете, где он находится, вам придется искать его на ощупь, и возможно, вы возьмете его в руку не с первой попытки.

Но зрение нужно для подобных действий не всегда. Если вас попросят прикоснуться к кончику собственного носа, вы сделаете это даже в полной темноте. Обычно человек ощущает взаимное расположение частей своего тела с помощью соматосенсорных систем. Подобным же образом можно научиться печатать на машинке или вязать, не глядя на клавиатуру или на спицы, но в этих случаях пальцы совершают весьма ограниченные по объему движения и вероятность ошибки или отклонения очень мала.

Основная роль в корректировке и регулировке движений такого рода принадлежит мозжечку. Он предвосхищает события, заглядывает вперед и предсказывает положение руки за несколько мгновений до того, как произойдет реальное действие, что позволяет должным образом организовать необходимое движение. Когда эта система отказывает, положение становится поистине драматическим. Рука, готовая взять карандаш, промахивается, движется назад, снова промахивается, опять направляется вперед, и эти ошибки повторяются снова и снова, практически до бесконечности. Такие хаотические отклонения от правильного положения напоминают лихорадочные попытки новичка сделать поворот на слишком большой скорости. На флоте такие движения носа судна называют «рысканьем». Поражение мозжечка и приводит к такому «рысканью», а всякое движение, требующее согласованной работы нескольких мышц, становится затрудненным или вообще невозможным. Попытка бежать оборачивается неизбежным мгновенным падением. Движения становятся гротескно резкими и толчкообразными, и даже попытка коснуться пальцем копчика носа сопровождается досадным промахом. Такое состояние в медицине обозначается греческим термином «атаксия» (беспорядочность). Церебральный паралич - это нарушение способности пользоваться мускулатурой в результате повреждения мозга, происшедшего во время внутриутробного развития плода или при тяжелых осложненных родах. Около 4% случаев церебрального паралича сопровождаются атаксией.

Ствол мозга управляет также функциями и движением желудочно-кишечного тракта. Например, скорость отделения слюны регулируется группами нервных клеток, расположенных в верхней части продолговатого мозга и в нижней части моста. Вид и запах пищи или даже мысли о ней активируют эти клетки, которые, в свою очередь, стимулируют слюноотделение. Наоборот, страх или чувство напряжения подавляют активность этих клеток, и во рту «пересыхает». Процесс глотания, требующий согласованного участия мышц глотки и волнообразных сокращений мышц пищевода, с помощью которых пища проталкивается в желудок, также контролируется клетками ствола головного мозга.

Деятельность дыхательных мышц также контролируется особыми отделами ствола. Дыхание можно регулировать и произвольно, а значит, этот процесс не обходится без участия большого мозга. Мы можем заставить себя дышать быстрее или медленнее, поверхностно или глубоко, можем даже на некоторое время вообще задержать дыхание.

Однако такое произвольное вмешательство в ритм дыхания очень скоро становится весьма утомительным, и автоматический контроль снова берет на себя управление дыханием.

Под стволом головного мозга, за пределами большого затылочного отверстия, находится самая нижняя часть центральной нервной системы - спинной мозг. Это остаток недифференцированной нервной трубки, доставшийся нам в наследство от древних хордовых. На поперечном разрезе спинной мозг имеет почти овальную форму. По задней поверхности спинного мозга проходит глубокая борозда, более широкая борозда помельче проходит вдоль передней поверхности спинного мозга. Вместе эти борозды почти, но не совсем делят спинной мозг на две половины - правую и левую, которые представляют собой зеркальные отражения друг друга. В оси спинного мозга проходит центральный канал, который у взрослых обычно зарастает. Этот канал представляет собой рудимент полости первичной нервной трубки хордовых.

Внутренняя часть спинного мозга заполнена массой нервных клеток, так что у спинного мозга, так же как и у головного, есть свое серое вещество, правда, в отличие от последнего, оно находится не на поверхности, а в глубине вещества спинного мозга. В нем серое вещество формирует две колонки, спускающиеся сверху донизу в каждой из половин. Эти две колонки соединены узкой полоской серого вещества, окружающей центральный канал. В результате на разрезе серое вещество напоминает несколько искаженную латинскую букву «Н». Как видно на иллюстрации, нижние ножки буквы направлены назад, к спине. Эти ножки довольно длинны и доходят почти до поверхности мозга. Они называются задними рогами. Верхние ножки буквы короче и толще, они направлены вперед, как говорят в медицине, в вентральном направлении. Это передние или вентральные рога. Серое вещество окружено массой нервных волокон, которые благодаря миелиновым оболочкам имеют беловатый цвет и называются белым веществом спинного мозга. Таким образом, еще раз повторю, что в спинном мозге серое вещество находится внутри вещества мозга, а не на поверхности, как в головном мозге.

Спинной мозг проходит не по всей длине позвоночного канала. Он заканчивается приблизительно на уровне первого или второго поясничного позвонка, в области поясницы. Таким образом, спинной мозг имеет в длину всего лишь около 18 дюймов. Ширина его составляет около полдюйма, а вес у взрослых достигает 30 г.

ЧЕРЕПНО-МОЗГОВЫЕ НЕРВЫ

Пределами головного и спинного мозга, которые составляют центральную нервную систему, находится периферическая нервная система. Эта последняя состоит из различных нервов, которые соединяют определенные части центральной нервной системы с определенными органами. Нервы, в свою очередь, сложены из пучков, содержащих сотни, а иногда и тысячи отдельных нервных волокон. Некоторые нервные волокна проводят импульсы от различных органов в центральную нервную систему и называются поэтому афферентными (от латинского слова «приношу»). Так как импульсы, передающиеся к головному и спинному мозгу, интерпретируются центральной нервной системой чувствительные, то и неравные волокна такого типа называются чувствительными, или сенсорными (от латинского слова «чувство», «ощущение»). Есть также нервные волокна, которые передают импульсы из центральной нервной системы к различным органам. Эти волокна называются эфферентными (от латинского слова «выношу»). Эти импульсы порождают ответы в органах, а поскольку самыми заметными ответами являются движения мы то и сами волокна называются часто просто двигательными, или моторными.

Есть в организме несколько чисто сенсор нервов, которые содержат исключительно чувствительные волокна. Есть также двигательные нервы, которые содержат исключительно двигательные волокна. Тем не менее, большинство нервов являются смешанными, так как содержат в своем составе как чувствительные, так и двигательные волокна. Нервы не всегда состоят только из волокон, и да, в дополнение к ним, они окружены скоплениями тел нервных клеток, с которыми эти воле соединены. Такие скопления нервных клеток называются узлами, или ганглиями.

В человеческом организме есть 43 пары нервов и все они ведут к центральной нервной системе этих пар 12 направляются к головному мозгу и единены непосредственно с ним. Эти нервы, вследствие такого анатомического положения, называются черепно-мозговыми. Остальные 31 пара соединены со спинным мозгом. Черепно-мозговые не просто нумеруются римскими цифрами от первого до двенадцатого, в последовательности, в коте эти нервы соединяются с головным мозгом от большого мозга до продолговатого мозга. Каждый нервов имеет собственное название, которые и числены ниже.

I. Обонятельный нерв.Каждый нерв состоит из множества близко расположенных отдельных тонких нервов (их около двадцати), которые начинаются в слизистой оболочке верхней части носа. Волокна обонятельных нервов поднимаются вверх и, пройдя сквозь мелкие отверстия в костях, образующих основание черепа, входят в обонятельные доли, небольшие выросты мозга, которые находятся непосредственно над основанием черепа. Как подразумевает само название, эти нервы отвечают за восприятие запахов.

Обонятельный нерв - это единственный нерв, который соединяется непосредственно с большим (конечным) мозгом, словно напоминая нам о тех временах, когда головной мозг млекопитающих вообще был обонятельным органом. Остальные 11 пар черепно-мозговых нервов связаны со стволом головного мозга.

II. Зрительный нерв.О функции этого нерва можно сразу судить по его названию. Волокна этого нерва начинаются в сетчатке глаза, направляются кзади и встречаются с волокнами противоположного нерва этой пары на уровне среднего мозга. В месте этого соединения часть волокон переходит в нерв противоположной стороны, а часть остается в нерве «своей» стороны. Таким образом, волокна образуют перекрест, который медики называют греческим словом «хиазма». Зрительный нерв не является нервом в истинном смысле этого слова - это своеобразный вырост самого мозга.

III. Глазодвигательный нерв.Этот нерв выходит из среднего мозга и направляется ко всем, кроме двух, мышцам, отвечающим за движения глазных яблок. Ясно, что этот нерв управляет движениями глаз.

IV. Блоковый нерв.Это самый маленький из черепно-мозговых нервов. Он выходит из среднего мозга и направляется к мышце, смещающей глазное яблоко, к одной из двух, которые не иннервируются глазодвигательным нервом. Мышца, к которой направляется этот нерв, проходит через кольцо соединительной ткани и напоминает блок, отсюда и название нерва.

V. Тройничный нерв.Это самый крупный из черепно-мозговых нервов. Обонятельный и зрительный нервы являются чисто чувствительными, а глазодвигательный и блоковый - чисто двигательными. В отличие от них, тройничный нерв является смешанным и содержит как чувствительные, так и двигательные волокна. Нерв соединяется с мостом в различных его участках. Чувствительные волокна образуют три группы (отсюда и название нерва) и соединены с различными частями лица. Глазничный нерв снабжает кожу передней половины свода черепа, лба, верхнего века и носа. Верхнечелюстной нерв снабжает чувствительными волокнами кожу нижнего века, части щеки и верхней губы. Нижнечелюстной нерв снабжает чувствительными волокнами кожу нижней челюсти и щеки ниже тех мест, которые иннервируются верхнечелюстным нервом. Глазничный и верхнечелюстной нервы являются чисто чувствительными, а нижнечелюстной - смешанным. Его двигательные волокна управляют жевательными мышцами.

Невралгия (от греческого словосочетания «боль нерва») может быть весьма мучительной. При спастической форме боль сочетается с судорожными подергиваниями лицевой мускулатуры. Эти подергивания обычно называют тиком. Болезненный мышечный спазм обычно называется французским термином tic douloureux,то есть болезненным тиком.

VI. Отводящий нерв.Этот нерв начинается в мосту немного ниже места его соединения с продолговатым мозгом и направляется к мышце, отводящей глазное яблоко. Эта мышца тянет глазное яблоко таким образом, что зрачок смещается кнаружи от средней линии, от этого нерв и получил свое название. Это чисто двигательный нерв. (Может показаться удивительным, что движения глазного яблока контролируются тремя нервами из двенадцати. Отводящий нерв и блоковый отвечают за одну мышцу каждый, а глазодвигательный нерв управляет всеми остальными. Однако, ввиду важности зрения, этот факт не кажется очень удивительным.)

VII. Лицевой нерв.Он начинается в области моста в месте несколько выше его соединения с продолговатым мозгом. Так же как тройничный нерв, лицевой нерв является смешанным. Его чувствительные волокна берут начало в передних двух третях языка, и именно по нему вкусовые ощущения достигают головного мозга. Эти же волокна иннервируют слюнные железы и слезные железы. Двигательные волокна снабжают различные мимические мышцы, которые при взаимодействии придают лицу то или иное выражение.

VIII. Слуховой нерв.Этот чувствительный нерв входит в головной мозг в месте соединения моста с продолговатым мозгом. Начинается он во внутреннем ухе и контролирует слуховые ощущения. В составе слухового нерва идут также волокна от лабиринта, структуры, которая управляет чувством равновесия (вестибулярного аппарата). Поэтому нерв этот называют также преддверно-улитковым («преддверие» по-латыни - «вестибулум»), а улитка - это орган, который воспринимает звуковые волны.

IX. Языкоглоточный нерв.Этот смешанный нерв начинается в продолговатом мозге близ его соединения с мостом и иннервирует слизистую оболочку задней части языка и глотки. Это чувствительные волокна. Двигательные волокна идут к мышцам глотки.

X. Блуждающий нерв.Это еще один смешанный нерв. Свое название он получил потому, что снабжает своими ветвями практически весь организм, в отличие от прочих черепно-мозговых нервов. Блуждающий нерв начинается в продолговатом мозге в виде последовательности нескольких корешков, которые, пройдя сквозь основание черепа, соединяются в один нервный ствол. Некоторые двигательные волокна снабжают мускулатуру гортани и глотки, другие спускаются ниже и иннервируют мышцы бронхов, сердечную мышцу и мышцы желудка и кишечника. Кроме того, блуждающий нерв снабжает своими ветвями поджелудочную железу, регулируя скорость секреции панкреатических соков, хотя по большей части эту работу, как я уже упоминал в главе 1, выполняет секретин.

XI. Добавочный нерв.Этот двигательный нерв снабжает мышцы глотки, а также некоторые мышцы рук и плеч. Некоторые его волокна идут в составе блуждающего нерва. Часть волокон добавочный нерв получает из спинно-мозговых корешков. Свое название нерв получил из-за того, что в его составе есть добавочные волокна спинно-мозговых нервов, а сам он является добавочным по отношению к блуждающему нерву.

XII. Подъязычный нерв.Это еще один двигательный нерв, который берет начало в продолговатом мозге и снабжает мышцы, осуществляющие движения языка.

СПИННО-МОЗГОВЫЕ НЕРВЫ

Спинно-мозговые нервы в нескольких отношениях сильно отличаются от черепно-мозговых нервов. Во-первых, своим более регулярным расположением. Черепные нервы соединены с головным мозгом неравномерно, большей частью в том месте, где мост соединяется с продолговатым мозгом. Напротив, спинно-мозговые нервы выходят из спинного мозга через равномерные промежутки, что имеет определенный смысл, если мы вспомним естественную историю хордовых животных. Хордовые - это один из типов животных, тела которых сегментированы. Сегментация - это разделение структур тела па похожие отделы, подобно тому, как поезд делится на вагоны. (К другим типам сегментированных животных относятся членистоногие, включая насекомых, паукообразных, многоножек и ракообразных; а также кольчатые черви).

Хордовые в своем развитии достигли такой стадии, когда сегментация перестала быть отчетливо выраженной. Явным признаком сегментации у человека является ряд повторяющихся позвонков (по одному на каждый сегмент) позвоночного столба и ребра, которые присоединены к двенадцати позвонкам. Нервная система также несет на себе отпечаток сегментации, так как спинно-мозговые нервы выходят из спинного мозга через повторяющиеся промежутки сквозь межпозвоночные отверстия на всем протяжении позвоночника.

Черепно-мозговые нервы, как мы с вами убедились, являются либо двигательными, либо чувствительными, либо смешанными, а спинно-мозговые нервы - все смешанные. В каждом сегменте спинного мозга берет начало одна пара нервов. Один нерв пары выходит из правой половины спинного мозга, второй - из левой. Нервные волокна берут начало в сером веществе спинного мозга. Более того, каждый нерв соединен как с передним, так и с. задним рогом серого вещества. Таким образом, у каждого нерва есть передний корешок и задний корешок. В передний корешок из спинного входят двигательные волокна, и из заднего корешка в спинной мозг входят чувствительные волокна. Тела клеток двигательных волокон находятся в спинио мозге, в его сером веществе. В противоположное этому тела клеток чувствительных волокон располагаются вне спинного мозга. Тела чувствительны: волокон называются ганглиями заднего корешка.

Каждая пара спинно-мозговых нервов формируется из слияния переднего и заднего корешков на каждой стороне спинного мозга. Первая пар; покидает позвоночный канал в промежутке между черепом и первым позвонком, вторая пара - между первым и вторым позвонком и так далее. Первые семь позвонков позвоночного столба со ставляют шейный отдел позвоночника и называются поэтому шейными позвонками. Соответственно, первые восемь пар спинно-мозговых нервов, первая из которых проходит над первым шейным позвонком, а восьмая - под седьмым, называются шейными нервами.

Ниже шейных позвонков находятся двенадцать грудных позвонков, и из-под каждого из них выходит очередная пара спинно-мозговых нервов, которые, естественно, образуют грудные спинно-мозговые нервы (межреберные нервы). Поскольку ниже грудных позвонков расположены поясничные позвонки (их пять), постольку им соответствуют пять пар поясничных нервов. Под поясничными позвонками расположен крестец. У взрослого он кажется одной костью, хотя у плода он состоит из отдельных позвонков. В послеродовом периоде крестцовые позвонки постепенно срастаются для образования более прочного основания для нашего опорно-двигателыюго аппарата. Однако надо заметить, что образование нервов опередило такое развитие событий, и из крестца выходит еще пять пар крестцовых нервов. И наконец, в самом нижнем конце позвоночника расположены еще четыре похожих на пуговицы позвонка, которые вместе образуют копчик. Из этого отдела выходит одна пара спинно-мозговых нервов, которые здесь называются копчиковыми.

Итого, в сумме получаем 8 шейных нервов, 12 грудных (межреберных) нервов, 5 поясничных нервов, 5 крестцовых и 1 копчиковый, что и дает всего 31 пару спинно-мозговых нервов.

Если бы позвоночный столб и спинной мозг имели одинаковую длину, то можно было бы ожидать, что сегменты спинного мозга идут вровень с позвонками, и каждый следующий нерв выходит из позвоночника горизонтально. Но это не так, позвоночный столб приблизительно на десять дюймов длиннее, чем спинной мозг. Следовательно, сегменты спинного мозга имеют меньшую высоту, чем позвонки.

При продвижении по ходу спинного мозга сверху вниз каждая пара нервов должна проделывать все более длинный отвесный путь, чтобы выйти из позвоночного канала из-под «своего» позвонка. Чем дальше вниз, тем длиннее становится этот вертикальный отрезок пути. Под концом спинного мозга в позвоночном канале находится конгломерат из десяти (вначале) пар нервов, которые идут вниз по каналу, и у каждого следующего межпозвоночного отверстия они одна за другой выходят из позвоночника. Таким образом, вся нижняя часть позвоночного канала заполнена грубыми, параллельно расположенными нитями, которые в совокупности напоминают по виду конский хвост. Это образование, согласно анатомической номенклатуре, так и называется - cauda equina(конский хвост, лат.).Если для проведения хирургической операции надо обезболить нижнюю часть тела, то анестетик (обезболивающее вещество) вводят именно в область конского хвоста, но не выше, чтобы не повредить вещество спинного мозга. По месту пункции канала позвоночника эта анестезия так и называется - каудальной, то есть хвостовой.

После того как нерв покидает просвет спинномозгового канала, он сразу делится на две ветви - дорзальную, которая направляется к мышцам и органам спины, и вентральную, которая направляется к остальным частям тела.

Вообще говоря, согласно общему плану строения тела хордовых животных, нервы каждого сегмента снабжают органы в пределах одного, своего, сегмента. Даже у человека нервы первых четырех шейных сегментов снабжают окончаниями кожу и мышцы шеи, а нервы следующих четырех шейных сегментов снабжают кожу и мышцы верхней конечности. То же самое касается нервов поясничной области, которые снабжают окончаниями кожу и мышцы нижних конечностей. Здесь находится самый длинный нерв - седалищный. Он выходит из полости таза и иннервирует заднюю поверхность бедра, голени и стопы. По-латыни этот нерв называется nervus ischiadicus,то есть нерв, «реагирующий на боль в бедре». Воспаление седалищного нерпа бывает, как правило, очень болезненным. Эта форма невралгии настолько широко распространена, что заслужила собственное наименование - ишиас.

Однако человеческое тело не удается разделить на четко отличающиеся друг от друга сегменты. Во-первых, сегменты несколько искажены в результате эволюционных изменений, которые претерпели примитивные хордовые в ходе своего филогенетического развития. Вот яркая иллюстрация: диафрагма - это плоская мышца, отделяющая грудную полость от полости живота. Можно ожидать, что эта мышца иннервируется грудными нервами, но в действительности это не так. В эмбриональном периоде диафрагма формируется в области шеи плода, поэтому логично предположить, что она снабжается шейными нервами. Так в действительности и есть. Потом диафрагма спускается ниже и «тянет» за собой «свои» нервные стволы.

Кроме того, многие мышцы и другие органы формируются в местах, где к ним подходят нервы из двух прилежащих друг к другу сегментов. Такое перекрывание встречается весьма часто, и существует мало таких мышц, которые не получали бы иннервацию от двух сегментов. Это повышает надежность всей системы, поскольку в этом случае повреждение какого-либо нерва, конечно, ослабляет мышцу, но не приводит к полному ее параличу.

И наконец, сами нервы не находятся в полной изоляции друг от друга после того, как покидают спинной мозг. Несколько близлежащих нервов часто склонны переплетаться друг с другом, в результате чего образуются структуры, которые называются нервными сплетениями. При этом каждый нерв не теряет своей индивидуальности, но их переплетение настолько тесное, что практически невозможно проследить ход каждого индивидуального нерва в сплетении. Например, первые четыре нерва шейного отдела спинного мозга образуют шейное сплетение, а остальные четыре шейных нерва и четыре верхних грудных нерва образуют плечевое сплетение, так как оно располагается на уровне верхней части плеча. Другие грудные нервы не образуют сплетений, представляя собой индивидуальные межреберные нервы. Поясничные нервы вновь образуют сплетение, естественно, поясничное. Крестцовые нервы не отстают от поясничных и образуют свое, крестцовое сплетение.

Вообще, если происходит повреждение спинного мозга вследствие его заболевания или травмы, то в половине тела, расположенной ниже повреждения, наступает полная потеря чувствительности и развивается паралич. Если спинной мозг повреждается выше четвертого шейного позвонка, то развивается паралич грудной клетки и дыхания. Именно поэтому так опасно «ломать шею». Смерть при повешении наступает не столько от перелома шейных позвонков, сколько от разрыва спинного мозга в шейном отделе.

Различные спинно-мозговые нервы функционируют не изолированно, а в строгом взаимодействии друг с другом и с головным мозгом. Белое вещество спинного мозга состоит из пучков нервных волокон, которые идут вверх и вниз по ходу спинного мозга, соединяя между собой различные его части. Те волокна, которые передают импульсы вниз от головного мозга, называются нисходящими путями (трактами), а те, которые передают импульсы вверх, к головному мозгу, называются восходящими путями (трактами).

Я уже упоминал пирамидную систему - один из нисходящих путей. Этот путь берет начало в двигательной зоне коры головного мозга, проходит через базальные ганглии и ствол мозга, потом спускается вниз по обеим половинам спинного мозга, образуя синапсы, то есть соединения, с различными спинномозговыми нервами. Таким образом, мышцы конечностей и туловища, которые иннервируются спинно-мозговыми нервами, подчиняются произвольному контролю со стороны коры головного мозга. Другие нисходящие пути, например экстрапирамидная система, проходят через разные уровни центральной нервной системы. Мышцы туловища и конечностей, соединенные подобным образом со стволом мозга, подчиняются, например, импульсам, поступающим из мозжечка, что позволяет человеку сохранять равновесие при стоянии и ходьбе.

Восходящие пути собирают информацию о различных ощущениях и доставляют ее вверх, в головной мозг, через активирующую ретикулярную формацию. Именно благодаря этой информации головной мозг получает возможность принимать решения и адекватно реагировать на изменения во внешней среде.

АВТОНОМНАЯ НЕРВНАЯ СИСТЕМА

Нервные волокна можно разделить на два класса, в зависимости от того, иннервируют они органы, подчиняющиеся или не подчиняющиеся произвольному контролю. Органы, о которых мы думаем, что они подчиняются контролю сознания, являются но большей части скелетными мышцами. Именно с помощью произвольного сокращения различных групп мышц мы приводим в движение кости, соединенные между собой суставами, и заодно переносим в пространстве внекостные структуры. Движения конечностями, наклоны туловища, движения нижней челюстью, языком и управление мимикой - все это находится под контролем сознания.

Скелетные мышцы словно футляром одевают все внутренние органы и конечности, поэтому мы способны по желанию двигать всеми частями тела. При поверхностном взгляде может создаться впечатление, что мы способны двигать самим телом, а не мышцами. По этой причине нервы, идущие к скелетным мышцам и от них, называются соматическими нервными волокнами (от греческого слова «сома», что значит «тело»).

Внутри тела, вдали от невооруженного глаза, находятся органы, которые не подчиняются произвольному контролю со стороны сознания в истинном смысле этого слова. Вы можете, например, заставить себя дышать быстрее или глубже, но это трудно, и, как только вы устанете, дыхание вновь перейдет под контроль неосознаваемых механизмов и начнет осуществляться в автоматическом режиме, независимо от вашего сознания, которое вы можете потерять, если будете упорствовать в своих усилиях. Кроме того, вы не можете волевым усилием заставить сердце биться быстрее или медленнее (правда, если вы отличаетесь живым воображением, то можете это сделать, но не прямо, а опосредованно, например внушив себе сильный страх). Другие органы работают даже тогда, когда вы даже не задумываетесь об их существовании. Зрачки глаз сужаются и расширяются, то же самое происходит с различными мелкими сосудами в разных областях тела. Железы могут выделять больше или меньше секрета и так далее.

Те органы, которые не подчиняются произвольному контролю, обычно называются внутренними, или висцеральными. Этот термин, по-видимому, происходит от искаженного латинского слова, означающего «вязкий» или «липкий». Нервные волокна, которые снабжают висцеру, называются висцеральными нервами. Надо думать, что нервные волокна, которые управляют органами под контролем сознания, не могут следовать по организму теми же путями, что нервные волокна, которые управляют какими-либо органами без участия сознания. Последние, если можно так выразиться, замыкают контур, минуя сознание. Для этого в организме должны существовать какие-то особые нервные механизмы.

Загрузка...