Полукружные каналы не реагируют на положение тела относительно направления силы тяжести; они реагируют на изменение положения тела в пространстве. Если вам надо повернуть голову вправо или влево, или наклонить ее вперед или вниз, или совершить все эти движения одновременно в любом сочетании, то жидкость в одном или всех полукружных каналах начинает двигаться, подчиняясь силе инерции. Таким образом, жидкость в полукружных каналах движется в направлении, противоположном направлению движения головы. (Если автомобиль, в котором вы едете, поворачивает направо, то вас прижимает к левому борту, и наоборот.) Мозг, получая импульсы от стимуляции различных волосковых клеток, возникающей в результате инерционного движения жидкости по полукружным каналам, анализируя порядок и степень стимуляции каждой волосковой клетки, может судить о природе и па-правлении движения головы1.
1 У миног, одних из самых примитивных позвоночных, только два полукружных канала. Их рыбообразные предки были обитателями морского дна, которые передвигались только в одной плоскости влево или вправо, вперед или назад, но никогда не двигались вверх или вниз. Иначе говоря, они жили в двумерном пространстве. У рыб развился третий канал для движений вверх и вниз, и у всех последующих, более развитых позвоночных, включая нас самих, естественно, существует трехмерный вестибулярный аппарат.
Таким образом, с помощью полукружных каналов мозг оценивает не движение как таковое, а степень изменения движения, то есть положительное или отрицательное ускорение, которое и заставляет жидкость в полукружных каналах двигаться по инерции. (Если автомобиль движется с постоянной скоростью, то вы чувствуете себя очень комфортно и спокойно сидите на сиденье. Но как только машина начинает ускоряться, то вас прижимает к спинке сиденья, а если она начинает резко тормозить, то вас бросает вперед). Это означает, что резкая остановка точно так же вызывает движение жидкости в полукружных каналах, как и начало движения. Это становится весьма заметным, если мы начнем быстро кружиться на одном месте, и будем кружиться достаточно долго для того, чтобы жидкость в полукружных каналах преодолела инерцию и начала двигаться вместе с каналами. Если же после этого мы внезапно остановимся, жидкость, подчиняясь силе инерции, продолжит движение, стимулируя при этом волосковые клетки. Мы интерпретируем это так, словно между нами и предметами обстановки продолжается относительное движение. Так как мы осознаем, что стоим на месте, единственный вывод, который мы можем сделать, это тот, что движутся окружающие предметы. Комната вертится, у нас кружится голова, и иногда нам остается только в изнеможении упасть и ждать, когда жидкость в полукружных каналах прекратит движение и мир вокруг нас перестанет кружиться.
Постоянная качка корабля также вызывает перемещение жидкости в полукружных каналах, стимулируя волосковые клетки, и те, кто не имеет привычки к морским путешествиям, часто страдают морской болезнью - состоянием крайне неприятным, хотя и не смертельным.
Глава 12
ГЛАЗА
СВЕТ
Земля буквально купается в солнечном свете, и нельзя придумать более важного единичного факта, чем этот. Излучение Солнца (важной, ноне единственной составной частью которого является видимый свет) поддерживает на поверхности земли температуру, которая делает возможной жизнь в том виде, в каком мы ее знаем. Энергия солнечного света на заре истории Земли, вероятно, создала условия для протекания химических реакций, которые закончились появлением первых живых существ. Можно без преувеличения сказать, что свет продолжает созидать жизнь и в наши дни. Солнце - тот неиссякаемый источник энергии, благодаря которому зеленые растения могут превращать двуокись углерода воздуха в углеводы и другие составные части тканей. Так как все животные на земле, включая и пас, людей, прямо или косвенно питаются зелеными растениями, то можно сказать, что и нашу жизнь поддерживает все тот же солнечный свет. Кроме того, все представители животного царства, а в особенности люди, научились воспринимать солнечный свет. Это восприятие настолько важно для интерпретации окружающей нас среды, что утрата зрения считается тяжелейшим увечьем, и даже нечеткость зрения расценивается как серьезный недостаток.
Свет оказал также сильное влияние па развитие современной науки. В течение последних трех столетий не кончались споры относительно природы света и значения его свойств. Взгляды па природу света были выдвинуты физиками еще в XVII столетии. Англичанин Исаак Ньютон считал, что свет состоит из летящих с большой скоростью частиц, а голландец Христиан Гюйгенс полагал, что свет имеет волновую природу. Центральным в споре представлялся тот факт, что свет распространяется по прямой линии и отбрасывает от непрозрачных предметов четкие тени. Летящие с большой скоростью частицы, если на них не действует сила тяготения, действительно будут двигаться по прямой, тогда как опыт человечества учит пас, что волны (будь это волны на поверхности воды или звуковые волны) огибают встретившиеся па их пути препятствия. На полтора столетия в науке одержала верх корпускулярная теория света.
В 1801 году английский физик Томас Янг показал, что свет обладает свойством интерференции. В своем опыте он показал, что если два луча света направить па экран, то в том месте, где лучи встречаются, падая на его поверхность, образуются участки затемнения. Никакие частицы не могли бы вести себя подобным образом, а волны - могли. Дело в том, что если волны одного луча в какой-то фазе были направлены вверх, а волны второго луча в той же фазе - вниз, то при пересечении этих лучей в одной точке эти противоположно направленные волны должны были погасить друг друга.
Волновую теорию удалось весьма быстро согласовать с тем фактом, что свет распространяется по прямой линии, так как Лигу удалось также определить длину световой волны. Как я уже говорил
в предыдущей главе, чем меньше длина волны, тем менее она способна огибать препятствия, и тем более склонна она распространяться по прямой линии и отбрасывать тени. Самые короткие волны звука имеют длину около половины дюйма, и уже они проявляют тенденцию к прямолинейному распространению. Вообразите себе, как должен вести себя в этом отношении свет, если длина его волны в среднем равна .одной пятидесятитысячной доле дюйма. Для эхолокации свет пригоден больше, чем самый ультразвуковой из ультразвуков, который используется для этой цели в природе. Мы можем определить местоположение предмета по звуку, который он издает, но это определение всегда относительно. Но если мы видим что-то, то точно знаем, где находится видимый нами предмет. «Видеть - значит верить». Верхом скептицизма является фраза: «Не верить своим глазам».
Световые волны несут намного большую энергию, чем звук, с которым мы сталкиваемся в жизни. Этой световой энергии действительно хватает даже на то, чтобы вызывать в некоторых веществах определенные химические изменения. Живому организму вполне по силам ощутить присутствие света по присутствию или отсутствию каких-либо химических изменений, на которые организм может соответствующим образом реагировать. Для этой цели не обязательно получить в свое распоряжение сложно устроенный световоспринимающий орган. Например, растения тянутся к свету или изгибаются ему навстречу, не имея даже намека па такой орган. Реакция па свет полезна - в этом не может быть никакого сомнения. Все зеленые растения должны расти навстречу свету, поскольку они используют для роста его энергию. Водяные животные находят поверхностный слой воды, двигаясь навстречу свету. На суше свет означает тепло, и животные могут либо искать освещенные солнцем места, либо избегать их, в зависимости от времени года, времени суток и других факторов.
Восприятие света с помощью химического механизма может быть как полезным, так и весьма опасным. В живых тканях с их тонким балансом сложных и ломких соединений случайное воздействие света может стать разрушительным. В эволюционном плане оказалось полезным сосредоточить светочувствительные элементы, содержащие определенные химические вещества, в одном участке. Поскольку химические соединения, составляющие это пятно или участок, должны обладать повышенной чувствительностью к свету, то они будут реагировать на слабый свет, который не способен причинить разрушение тканей. Более того, расположение светочувствительного участка в определенной области организма позволило бы защитить от света остальные участки поверхности тела.
(Для того чтобы свет мог воздействовать на какое-либо вещество так, чтобы в нем произошли химические изменения, это вещество должно в первую очередь поглощать свет. Вообще любое вещество поглощает свет определенной длины волны в большей степени, чем световые волны иной длины. Но мы способны воспринимать различные длины волн, ощущая их как различные цвета, как я объясню ниже в этой же главе. Поэтому, когда мы видим светочувствительное вещество, воспринимая свет, который оно либо пропускает, либо отражает, мы видим это вещество окрашенным в какой-нибудь цвет. По этой причине светочувствительные соединения в организме обычно называют пигментами, то есть окрашенными веществами, в особенности прилагая этот термин к зрительным пигментам.)
Даже у одноклеточных организмов есть светочувствительные участки, но специальные светочу ветвительные структуры развиваются, конечно, только у многоклеточных животных, у которых развивается специальный орган - глаз, предназначенный для фоторецепции, что в переводе с греко-латинского означает «восприятие света».
Простейший фоторецептор способен лишь указать наличие или отсутствие света. Тем не менее, если даже организм имеет в своем распоряжении такую примитивную рецепцию, он уже обладает весьма полезным инструментом. Такое животное может двигаться к свету или удаляться от него. Более того, если яркость света вдруг уменьшилась, то это можно воспринять как определенный стимул: что-то произошло между фоторецептором и источником света. Естественным следствием такого поворота событий может стать бегство, так как это «что-то», вполне вероятно, может оказаться врагом.
Более чувствительный фоторецептор может иметь лучшую конструкцию, и одним из способов увеличения чувствительности является увеличение количества света, падающего на светочувствительный пигмент. Этого можно достичь несколькими путями, поскольку свет не всегда распространяется строго по прямой линии. Когда свет переходит из одной среды в другую, он, как правило, преломляется, то есть изменяет направление своего движения. Если поверхность раздела сред плоская, то весь свет, падающий на эту поверхность, преломляется как бы единым блоком. (Это так только в том случае, если все лучи имеют одинаковую длину волны. Если нет, проявляется другой важный эффект.) Если же поверхность раздела искривлена, то все происходит намного сложнее. Если, например, лучи света проходят из воздуха в воду через сферическую поверхность, то они собираются в точке, совпадающей приблизительно с центром сферы, не важно, откуда они падают. Лучи собираются вместе в точке, называемой фокусом («очаг», лат.).
Для того чтобы концентрировать лучи в фокусе, организмы используют не воду, как таковую, а прозрачное вещество, которое, правда, по большей части все же состоит из воды. У наземных животных эта структура похожа на чечевичное зерно, которое по-латыни называется lens, что значит «хрусталик». Хрусталик - это уплощенная сфера, которая, хорошо справляясь со своим делом, весьма экономна по форме, сберегая для глаза дефицитный объем. Хрусталик служит для фокусирования лучей света. Весь свет, который падает на его поверхность, концентрируется в одном узком пятне. Известно, что любой ребенок может с помощью линзы, собирающей лучи, зажечь газету, но не сфокусированный солнечный свет такого делать не в состоянии. Точно так же одиночный фоторецептор может отреагировать на слабый свет, который в отсутствие собирающей линзы - хрусталика - не может создать па светочувствительном пигменте никакого изображения.
Поскольку свет, предоставленный самому себе, распространяется преимущественно по прямой линии, то фоторецептор - не важно, снабжен он хрусталиком или нет, может воспринимать свет только с того направления, с какого он падает па рецептор. Для того чтобы воспринять свет с других направлений, животное должно повернуться, или развить такие фоторецепторы, чтобы они могли воспринимать свет с различных направлений. Последняя альтернатива предпочтительнее, так как позволяет экономить время на поворотах туловищем, а в вечной борьбе за существование и источники пищи дорога бывает каждая доля секунды.
Фоторецепторы достигают своего расцвета и вершины у насекомых. Глаза мухи - это отнюдь не единый орган. Каждый сложный глаз составлен из тысяч отдельных фоторецепторов, каждый из которых повернут на небольшой угол относительно соседних рецепторов.
Муха, не двигаясь с места, может видеть изменения освещенности практически под любым углом. Именно поэтому так трудно поймать муху врасплох и неожиданно прихлопнуть ее мухобойкой. Каждый фоторецептор может регистрировать только «свет» или «темноту», но все вместе они делают нечто большее. Если объект находится между сложным глазом и источником света, то насекомое может составить себе грубое представление о размерах и форме предмета по числу и расположению фоторецепторов, регистрирующих «темноту». Получается довольно грубое мозаичное изображение предмета. Более того, если объект движется, индивидуальные рецепторы по очереди регистрируют появление темноты в направлении движения предмета, а другие рецепторы регистрируют такое же движение светлых элементов упомянутой мозаики. Таким образом, насекомое может составить представление о скорости и направлении движения объекта.
У позвоночных развилась иная система зрения. У этих животных развились большие индивидуальные глаза, которые концентрируют свет, то есть фокусируют его лучи на область светочувствительных клеток. Каждая клетка способна регистрировать тьму или свет. Индивидуальные фоторецепторы имеют размеры клеток, то есть микроскопическую величину, а не такие, как у насекомых, у которых каждый фоторецептор можно увидеть невооруженным глазом. Мозаика позвоночных отличается гораздо большим изяществом и тонким устройством.
Предположим, что вы решили нарисовать портрет человека на листе бумаги, используя для этого черные точки, как в газетных фотографиях (возьмите увеличительное стекло, посмотрите па такую фотографию, и вы поймете, что я имею в виду). Если точки будут крупными, то изображение будет лишено деталей. Чем мельче точки при том же размере рисунка, тем более подробным и детальным будет нарисованное вами изображение.
Точки, которые используют насекомые, имеют размер фасеток их сложных глаз. Точки наших с вами глаз имеют размеры клеток. Таким образом, мы можем разглядеть гораздо больше деталей, чем насекомое. У нас, следовательно, более острое зрение. На том пространстве, которое медоносная пчела может покрыть одной фасеткой, которая будет либо темной, либо светлой, мы можем уместить десять тысяч точек и составить рисунок вместо одного пятна, которое на этом месте видит пчела, и собрать с этого участка намного больше информации.
Использование глаза с фоторецепторами размером с клетку предоставляет его носителю такие преимущества, что такой глаз развился у многих не родственных между собой групп животных. Независимо от позвоночных глаза такой же «конструкции» развились у многих моллюсков. Например, глаз кальмара, несмотря на то что это животное имеет совершенно иную историю развития, чем человек, почти в точности повторяет строение нашего глаза.
ГЛАЗНОЕ ЯБЛОКО
Человеческий глаз, имеющий в диаметре почти дюйм, по форме напоминает сферу, так что название «яблоко» очень подходит к данному предмету. Около пяти шестых поверхности глазного яблока покрыто жесткой волокнистой оболочкой, которая называется склерой («твердый», лат.).Склера окрашена в белый цвет, часть ее видна между веками. В обиходе эту часть называют белком глаза.
В передней части глаза, непосредственно смотрящей на мир, находится прозрачный участок круглой формы диаметром около полудюйма. Это роговица. (Происхождение названия, по-видимому, связано с тем обстоятельством, что тонкая пластинка рога полупрозрачна и, кроме того, рог, так же как роговица, является придатком кожи. Так что название не так уж бессмысленно, как может показаться с первого взгляда.) Роговица не заканчивает очертания глазного яблока. У роговицы несколько более крутая кривизна, и поэтому она выступает над поверхностью глазного яблока, как маленькая сфера, вставленная в большую. Если прикрыть глаз, приложить палец к веку и повернуть глаз в сторону, то палец тотчас же ощутит выпячивание роговицы.
Слой темной ткани, выстилающей внутреннюю поверхность склеры, повторяет гладкие очертания глазного яблока и выступает в полость, образованную выпячиванием роговицы, практически закрывая прозрачный участок. Это сосудистая оболочка, она действительно пронизана сосудами, некоторые из которых явственно просвечивают сквозь белизну склеры. Часть сосудистой оболочки, видная под роговицей, содержит темный пигмент меланин, который окрашивает волосы в темный цвет и придает смуглость коже. У большинства людей достаточно меланина, чтобы придать сосудистой оболочке коричневый цвет. У светлокожих индивидов со средней или сниженной способностью образовывать меланин цвет сосудистой оболочки более светлый. Если пятна меланина разбросаны по сосудистой оболочке достаточно редко, то они не столько поглощают свет, сколько рассеивают его. Свет с веками, которые моментально закрываются, если глазу угрожает хотя бы малейшая опасность. Это движение настолько стремительно, что от его названия в некоторых языках происходят наименования очень коротких промежутков времени. Миг - от времени, в течение которого человек успевает мигнуть. Того же корня немецкое слово ein Augenblick- «мгновение ока». Тем не менее, само движение века не служит причиной раздражения глазного яблока. Во-первых, внутреннюю поверхность века и прилегающую поверхность глазного яблока выстилает очень нежная ткань, которая называется конъюнктивой («соединение», лат.),так как она соединяет веко с глазным яблоком. Конъюнктива всегда бывает влажной, так как ее постоянно смачивают слезы, секрет слезных желез. Слезные железы расположены под костями, образующими верхнюю и наружную части глазницы.
Когда веко закрывается, конъюнктива века скользит по конъюнктиве глазного яблока, причем обе они смазаны тонким слоем жидкости. Для того чтобы поверхность глаза оставалась эластичной и влажной, веко периодически закрывается, то есть человек моргает, покрывая слоем жидкости открытую часть глаза. Мы так привыкаем к этому периодическому миганию, что перестаем его осознавать. Поэтому мы испытываем неудобство, когда нам приходится смотреть на какой-то предмет не мигая. То, что у змеи нет век и она смотрит на мир не мигая, придает ей, по нашему мнению, зловещий вид.
У некоторых животных есть третье веко. Это прозрачная перепонка, которая периодически закрывает глаз, перемещаясь в горизонтальном направлении от внутреннего угла глаза к наружному. Этим движением третье веко очищает глаз, не закрывая его и не создавая опасной слепоты даже
на столь короткий промежуток времени. У человека нет мигательной перепонки, как еще называют третье веко, хотя у внутреннего угла глаза можно обнаружить его рудимент.
Слезы также служат для вымывания из глаза инородных тел, которые могут случайно попасть на поверхность глаза. От инородных тел глаза защищены не только веками, но и ресницами, которые обрамляют веки и образуют защитный (хотя и не сплошной) барьер перед глазной щелью. Именно благодаря ресницам мы автоматически прищуриваем глаза, когда нам в лицо дует пыльный ветер. Брови предохраняют глаза от попадания капель дождя и мелких насекомых.
Тем не менее, иногда инородные предметы все же попадают нам в глаза. Иногда ресница может загнуться внутрь и тоже попасть в глаз. Защитное приспособление само превращается в ранящий снаряд. В ответ на такое попадание, которое может быть очень неприятным, слезные железы начинают продуцировать большое количество секрета, глаза начинают слезиться. Глаза слезятся также в ответ на раздражение дымом, химическими веществами (например, широко известным слезоточивым газом), сильным ветром и даже ярким светом. Обычно слезы отводятся от глаза через слезные протоки, расположенные у внутренних углов глаз. Слезная жидкость по ним оттекает в полость носа. Если слезный проток закупоривается во время насморка, то мы сразу чувствуем это, так как одним из самых неприятных симптомов насморка является сильное слезотечение.
В ответ на сильные эмоции слезные железы начинают активно функционировать, в этих случаях продукция слезной жидкости превосходит способность слезноиосовых каналов отводить избыток слез. В таких случаях слезы накапливаются над нижними веками и начинают течь по щекам. Мы плачем. Мы плачем от радости, горя, ярости, от растерянности, да и вообще практически по любому поводу. При этом усиление оттока жидкости в полость носа становится особенно заметным. Поэтому, поплакав, многие люди сморкаются и вытирают носы. Слезы, как и все жидкости тела, содержат довольно много соли, и, кроме того, в них содержится фермент лизоцим, который способен убивать бактерии и тем самым придает слезам дезинфицирующую способность.
Несмотря на все меры, которые приняла природа для защиты глаза, он все же очень уязвим по отношению к инфекциям, раздражению и травмам. Воспаление соединительной оболочки глаза называется конъюнктивитом. Набухшие кровеносные сосуды начинают необычно просвечивать сквозь склеру, глаза «наливаются кровью». У новорожденных детей это случается довольно часто, так как им в глаза часто попадает инфекция при прохождении по родовым путям матери. Конъюнктивит новорожденных предупреждают, закапывая им в глаза раствор азотнокислого серебра или антибиотики.
Есть форма конъюнктивита, которая называется трахомой. Это очень тяжелое заболевание, которое называется так (по-гречески «трахома» означает «плотный») потому, что в исходе болезни развиваются рубцы, которые могут захватить роговицу и привести к слепоте.
Поскольку трахома очень распространена в странах Ближнего Востока, то слепые нищие являются частыми героями сказок «Тысячи и одной ночи».
То, что мы, как и подобает существам с зеркальной симметрией, обладаем двумя глазами, это такой же факт, что у нас два уха, две ноги и две руки. Существование двух глаз очень полезно хотя бы в том отношении, что потеря одного глаза не приводит к полной слепоте и позволяет человеку вести относительно нормальный образ жизни. Однако второй глаз - это не просто запасная часть.
У большинства животных глаза имеют разные поля зрения, и они ничего или почти ничего не видят одним глазом из того, что они видят другим. Это полезно в тех случаях, когда животному все время приходится быть настороже, чтобы не пропустить появления врагов, и оно должно постоянно смотреть во все стороны при максимальном охвате местности. У приматов, однако, глаза помещаются на передней поверхности головы и смотрят в одну сторону, поэтому поля зрения обоих глаз почти полностью перекрываются. Что мы видим одним глазом, то же мы видим и другим, или почти то же. Хотя поле зрения сузилось, зато мы очень ясно видим то, что видим. Более того, мы получили взамен широкого поля зрения способность воспринимать глубину пространства. Мы можем судить об относительном расстоянии до разных объектов, которые мы видим, разными способами, в зависимости от нашего опыта. Зная истинные размеры какого-либо предмета, мы можем судить о расстоянии до него по его кажущемуся размеру. Если мы не знаем его размеров, то можем сравнить его с расположенными рядом предметами известных размеров. Мы можем оценить расстояние до объекта по туманной дымке, которая скрывает его от наших глаз. Мы можем прикинуть расстояние по схождению параллельных линий, которые тянутся от нас к предмету, и так далее. Все это можно делать с помощью одного глаза не хуже, чем с помощью двух. (Если кто-то с умом поменяет задний план, чтобы воспользоваться допущениями, которые мы всегда делаем по этому поводу, то этот человек может обмануть наше восприятие, и мы придем к ложным заключениям относительно формы, размеров предмета и расстояния до него. На этом основаны многие фокусы с обманом зрения, которыми все мы время от времени развлекаемся.) Тем не менее, нам стоит лишь закрыть один глаз, как мы понимаем, что при взгляде на 'Мир одним глазом зрение становится двумерным и плоским. Глубина пространства, которую мы воспринимаем двумя глазами, исчезает. Как видите, при зрении двумя глазами возникает феномен параллакса. Левым глазом мы видим дерево на фоне определенной точки горизонта. То же дерево, в то же время, не сходя с места, правым глазом мы видим на фоне другой точки горизонта. (Попробуйте взять карандаш и посмотреть на него поочередно левым и правым глазом, держа перед собой на расстоянии фута перед глазами. Вы увидите, что карандаш меняет свое положение на фоне окружающих предметов.) Чем ближе к глазу находится предмет, тем больше он смещается при взгляде на него другим глазом. Таким образом, поле зрения левого глаза не совпадает с полем зрения правого глаза, что проявляется разным положением рассматриваемых предметов относительно друг друга при изолированном восприятии полей зрения каждого глаза. Слияние двух полей зрения при рассматривании предметов обоими глазами позволяет нам судить об относительных расстояниях, оценивая (подсознательно и совершенно автоматически) степень разницы в их положениях в двух полях зрения - правом и левом. Такая форма восприятия глубины пространства называется стереоскопическим зрением, которое позволяет оценивать высоту, ширину и глубину объемных предметов при взгляде на них обоими глазами, а не воспринимать их как плоские проекции1.
1 До изобретения кинематографа популярным вечерним времяпрепровождением было рассматривание стереоскопических диапозитивов. Игрушка состояла из пары снимков одной и той же сцены, сделанных с разных точек под разными углами зрения, представляя картины, видимые как бы по отдельности правым и левым глазом. При рассматривании этой пары снимков через специальное приспособление картина становилась трехмерной. В 1950-х годах кинематограф поразила стереоскопическая лихорадка. Кино снимали тоже с двух позиций и проецировали на экран два изображения, которые зрители смотрели через пару противоположно поляризованных стекол.
Умение фиксировать взгляд обоих глаз в одном поле зрения не избавляет от необходимости смотреть во всех направлениях. Одной из форм компенсации сужения полей зрения является способность активно и быстро поворачивать шею. Например, сова, которая тоже обладает превосходным стереоскопическим зрением и глаза которой находятся во фронтальной плоскости головы, может быстро поворачивать шею почти на 180 градусов во всех направлениях, так что птица может практически смотреть прямо назад.
Наша шея позволяет нам повернуть голову не более чем на 90 градусов, но, с другой стороны, мы можем поворачивать на значительный угол глазные яблоки. Глазное яблоко человека на этот случай снабжено тремя парами мышц. Одна пара вращает глаз слева направо, одна пара вверх и вниз, и еще одна пара просто вращает глазное яблоко в разных направлениях. В результате расширения полей зрения удается добиться практически молниеносным движением глаз, а не совершать более медленный и неудобный поворот всей головы.
Ограничение полей зрения позволяет неожиданно напугать человека сзади. «Что у меня, глаза на затылке?» - жалуется жертва розыгрыша. Однако для приматов, живущих на деревьях, стереоскопическое зрение, жизненно необходимо, ибо только оно позволяет точно оценить расстояние до ветки, за которую надо уцепиться после прыжка с дерева на дерево. Такое приобретение перевешивает риск, связанный с невозможностью видеть, что происходит сзади. Из-за отсутствия стереоскопического зрения отпадает необходимость синхронизации движений глазных яблок. Действительно, зачем в этом случае глаза должны смотреть в одну сторону? Так обстоит дело, например, у хамелеона, наблюдение за движениями глаз которого не вызывает у человека ничего, кроме удивления. При стереоскопическом зрении, таком, как у нас, глазные яблоки должны двигаться в унисон, чтобы у обоих глаз было одно поле зрения.
Иногда случается, что у человека плохо работают мышцы какого-то одного глаза, поэтому, когда другой глаз фиксируется на каком-то предмете, первый глаз смещается в сторону носа (сходящееся косоглазие) или кнаружи (расходящееся косоглазие). Косоглазие поражает стереоскопичность зрения. Человек (подсознательно) делает один глаз доминирующим и смотрит на мир исключительно им, пренебрегая косящим глазом. Этот последний перестает работать, и острота его зрения падает.
Глаза практически никогда не смотрят параллельно, во всяком случае в норме. Если зрачки обоих глаз направлены на один и тот же предмет, то глаза должны слегка сходиться. Обычно такое схождение, или конвергенция, практически незаметно, но его видно при рассматривании близких предметов. Если вы поднесете карандаш к носу испытуемого, то увидите, как его глаза сходятся к носу. Степень усилия, требуемого для такой конвергенции, дает человеку еще одно средство оценки расстояния до рассматриваемого предмета.
ВНУТРЕННЕЕ УСТРОЙСТВО ГЛАЗА
Непосредственно позади зрачка находится хрусталик. Это образование называется так не потому, что содержит хрусталь. Свое название хрусталик получил за кристальную прозрачность. Хрусталик имеет чечевицеобразную форму (по-латыни хрусталик называется lens,что в переводе означает «чечевица»). Диаметр хрусталика - около трети дюйма. По периметру хрусталик окружен поддерживающей связкой, которая прикрепляет его к сосудистой оболочке непосредственно позади радужной оболочки. Эта часть радужки называется цилиарным (реснитчатым) телом и содержит цилиарную мышцу. Хрусталик и поддерживающая связка делят глаз на два отдела, из которых первый по объему составляет лишь одну пятую часть второго. Меньшая передняя камера (так называется передний отдел) содержит водянистую влагу, которая по составу похожа па спинно-мозговую жидкость, и циркулирует также как эта последняя. Водянистая влага поступает в переднюю камеру глаза из сети капилляров цилиарного тела, а оттекает из нее через узкий проток (канал), расположенный поблизости от места соединения радужной оболочки с роговицей. Этот проток называется шлеммовым каналом, по имени немецкого анатома Фридриха Шлемма, который описал его в 1830 году.
Часть глаза, расположенная позади хрусталика, заполнена гелеобразной субстанцией, стекловидной жидкостью, или, поскольку она не очень похожа на жидкость, стекловидным телом. Стекловидное тело имеет постоянный состав и не участвует ни в какой циркуляции жидкости. Несмотря на желеобразную консистенцию, стекловидное тело сохраняет полную прозрачность. Однако иногда мелкие объекты попадают в стекловидное тело. В таких случаях в его геле появляются чужеродные тела, которые воспринимаются нами как точки или черточки, хорошо видные на нейтральном фоне. Медицинское наименование таких плавающих кусочков (они действительно выглядят так, потому что при попытке фиксировать на них взгляд эти точки и черточки уплывают в сторону или вверх) - летающие мушки. Эти мушки есть почти у всех, и мозг игнорирует их до тех пор, пока ситуация не становится угрожающей. Недавно было показано, что мушки - это красные кровяные тельца, вышедшие из капилляров сетчатки.
Изнутри глаз находится под давлением внутриглазной жидкости, которая помогает жестко сохранять сферическую форму глазного яблока. Это внутриглазное давление приблизительно на 177 мм ртутного столба выше, чем атмосферное давление окружающего воздуха. Давление поддерживается балансом притока и оттока водянистой влаги в полость глазного яблока. Если шлеммов канал по какой-либо причине суживается или закупоривается - вследствие фиброзных разрастаний, инфекционного поражения, воспалением или какими-либо органическими остатками, то водянистая влага теряет способность быстро оттекать из передней камеры глаза, и внутриглазное давление начинает повышаться. Это состояние, по причине, которую я укажу ниже, называется глаукомой. Если внутриглазное давление поднимается слишком высоко, что бывает при глаукоме достаточно часто, то может развиться повреждение зрительного нерва и наступить слепота.
Внутренняя поверхность глазного яблока выстлана сетчаткой (почему она так называется, неизвестно). В сетчатке расположены фоторецепторы. Свет, попадающий в глаз, проходит через роговицу, водянистую влагу, через отрытый зрачок, потом минует хрусталик, и стекловидное тело падает на сетчатку. Лучи света, попадая на роговицу, преломляются, потом фокусируются и падают на сетчатку в виде маленького пятнышка. Естественно, чем четче фокус, тем острее и чувствительнее зрение.
Хрусталик, вопреки общепринятому мнению, не является главной преломляющей и фокусирующей средой. Лучи света почти вдвое сильнее преломляются роговицей, нежели хрусталиком. Но есть один нюанс. Преломляющая сила роговицы фиксирована, а у хрусталика она может изменяться. В обычных условиях, при взгляде вдаль, хрусталик уплощен и мало преломляет свет. Лучи света, достигшие роговицы, приходят от удаленных предметов и расходятся, падая на поверхность глаза в виде практически параллельного пучка. Преломляющей силы роговицы и плоского хрусталика вполне достаточно для того, чтобы сфокусировать параллельный пучок на сетчатке. Однако по мере приближения рассматриваемого предмета к глазу лучи перестают быть параллельными и начинают расходиться. На расстояниях меньше двадцати футов лучи расходятся настолько, что без дополнительной настройки глаз теряет способность фокусировать лучи на сетчатке. Но когда такое происходит, начинает сокращаться цилиарная мышца, уменьшая тем самым напряжение и натяжение поддерживающей связки, вследствие чего эластичный хрусталик принимает более сферическую форму, преломляющая сила его увеличивается, и фокус изображения на сетчатке восстанавливается. Чем ближе рассматриваемый предмет, тем более сферическую форму приходится принимать хрусталику, чтобы сохранить фокус на сетчатке. Такое изменение кривизны хрусталика называется его аккомодацией.
Естественно, аккомодация имеет свои пределы. Хрусталик может округляться только до определенной степени. По мере приближения к глазу предмет достигает некой точки, называемой ближней точкой, когда хрусталик не может больше менять свою кривизну. Рефракция, то есть преломляющая система оптической системы глаза, становится недостаточной для рассмотрения предмета и фокусирования его изображения на сетчатке. Очертания предмета становятся расплывчатыми, и человеку приходится откинуть назад голову, чтобы восстановить фокус. С возрастом хрусталик теряет эластичность и, наконец, вообще перестает аккомодировать. Это означает, что с возрастом ближняя точка постепенно удаляется от глаза. Например, человек постепенно бывает вынужден все дальше и дальше отходить от телефонной книги, чтобы прочесть напечатанный там номер. Наступает такой момент, когда для достижения фокуса приходится отходить так далеко, что текст невозможно прочитать, потому что он слишком мелкий и не виден, даже будучи в фокусе. Маленький ребенок способен нормально рассмотреть предмет на расстоянии четырех дюймов от глаза. Молодой человек может сделать это с расстояния десять дюймов. Стареющий человек, возможно, не сможет ничего толком рассмотреть с расстояния меньше шестнадцати дюймов. Такое удаление ближней точки зрения с возрастом называется пресбиопией («зрение старца», греч.).
В идеальном случае лучи света, проходя через роговицу и хрусталик, фокусируются точно на сетчатке. Часто, однако, случается так, что глазное яблоко оказывается слишком глубоким для этого. Лучи фокусируются в нужном месте, но сетчатки в этом месте нет. К тому моменту, когда свет достигает сетчатки, лучи успевают разойтись. Для того чтобы компенсировать это нарушение, глазу приходится придавать хрусталику как можно более плоскую форму, чтобы преломляющая сила его была как можно меньшей, а фокусное расстояние, наоборот, как можно большим. Однако при взгляде вдаль, когда требуется преломляющая сила, меньшая, чем для рассмотрения ближних предметов, хрусталик оказывается беспомощным. Он не может принять форму более плоскую, чем при полном отсутствии аккомодации, которой оказывается достаточно при ближнем зрении. Индивид со слишком глубоким глазным яблоком называется близоруким, он хорошо видит ближние предметы, но плохо удаленные. В медицине близорукость называется миопией («замкнутое зрение», греч.).Название дано потому, что близорукий человек постоянно прищуривает глаза, чтобы лучше рассмотреть удаленные предметы, превращая глаз в некое подобие задиафрагмированной камеры-обскуры, для которой не нужна фокусировка с помощью оптических систем. Однако сквозь прищуренные веки проходит меньше света, поэтому зрение затрудняется (не говоря уже о том, что дополнительную помеху образуют ресницы), а напряжение мышц глазницы приводит к головной боли.
Противоположная ситуация возникает, когда глазное яблоко оказывается недостаточно глубоким. Лучи света падают па сетчатку, не успев сфокусироваться. В этом случае хрусталик с помощью аккомодации может сфокусировать на сетчатке лучи света, отраженные от отдаленных предметов. Лучи от близко расположенных предметов требуют более сильной рефракции, которую хрусталик не в состоянии обеспечить. Такой больной страдает дальнозоркостью. Он видит отдаленные предметы с обычной ясностью, но не может четко рассмотреть близко расположенные объекты. В медицине такое состояние оптической системы глаза называется гиперметропией («чрезмерное зрение», греч.).
Для того чтобы проходящий через роговицу и хрусталик свет правильно фокусировался на сетчатке, эти структуры должны иметь гладкую кривизну. Степень кривизны по любому меридиану (вертикальному, горизонтальному и диагональному) должна быть одинаковой. В действительности такой идеал в жизни вообще не встречается. Кривизна никогда не бывает идеальной, в результате свет фокусируется на сетчатке не в виде точки, а в виде короткой линии. Если линия достаточно коротка, то ничего серьезного со зрением не происходит, но если она слишком длинна, то развивается нечеткость зрения при взгляде как па дальние, так и на близкие предметы. Такое состояние оптической системы глаза называется астигматизмом («отсутствие точки», греч.).К счастью, такое нарушение рефракции легко корригируется очками. (Изобретение очков было одним из достижений Средневековья.) Для коррекции миопии применяются рассеивающие свет линзы, которые сдвигают фокус назад. Для коррекции гиперметропии применяют собирающие линзы, которые сдвигают фокус вперед. При астигматизме применяют линзы с неровной кривизной для того, чтобы скомпенсировать неровности кривизны оптических линз глаза.
Прозрачность роговицы и хрусталика не представляет собой никакого чуда, эти структуры не имеют в своем составе никаких чудесных соединений, несмотря на тот факт, что это единственные в организме по-настоящему прозрачные ткани. Роговица и хрусталик составлены из белков и воды, а их прозрачность, очевидно, зависит от регулярности расположения молекулярных структур. Это такие же живые образования, как и все остальные органы и ткани тела. Например, роговица самостоятельно заживает, если ее поцарапать. Уровень обмена в этих тканях, однако, снижен, так как для своего жизнеобеспечения они не могут пользоваться сетью кровеносных сосудов, как другие органы. Это повредило бы жизненно необходимой прозрачности. Но с другой стороны, для интенсивного обмена веществ любая ткань нуждается в обильном кровоснабжении.
Низкий уровень обмена веществ в прозрачных средах глаза имеет и свои преимущества. Например, роговицу можно сохранить в целости и сохранности для пересадки после смерти донора в течение более долгого времени, чем любую другую ткань или орган, которые требуют для своего сохранения доставки крови. Кроме того, пересаженная роговица, в отличие от других тканей, которые отторгаются после пересадки, практически никогда не отторгается. Это означает, что человек с помутнением роговицы, развившимся вследствие травмы или инфекции, но с сохраненной функцией глаза может восстановить зрение в полном объеме после успешной пересадки роговицы.
Организму нелегко поддерживать прозрачность тканей. Утрата регулярности строения прозрачных тканей приведет к появлению участков помутнения, и такие помутнения действительно развиваются, особенно в хрусталике. Это заболевание может поразить всю его линзу, что выведет ее из строя и приведет к потере зрения. Вероятность помутнения хрусталика повышается с возрастом. Это одна из ведущих причин развития слепоты, и в Соединенных Штатах помутнение является ее причиной в четверти всех случаев. К счастью, помутневший хрусталик можно удалить, а вместо него, чтобы сохранить рефракцию глаза, назначить ношение правильно подобранных очков. Поскольку старческие хрусталики не способны к аккомодации, то принесенная жертва оказывается не слишком большой, если не считать неудобств, связанных с операцией и необходимостью носить очки. Но это весьма небольшая плата за сохранение зрения.
Помутнение хрусталика называется катарактой. Первоначальное значение этого греческого слова - «водопад», но произведено оно от значения «опускать», и это касается не только воды. В данном случае имеется в виду непроницаемый занавес, опущенный перед глазами ослепшего человека. Так как при катаракте обычно черный зрачок становится серым, то в древние времена это заболевание стали называть глаукомой («серебристо-серый», греч.).Когда в обиход вошел термин «катаракта», словом «глаукома» стали обозначать другую болезнь (уже описанную в этой главе), при которой происходит повышение внутриглазного давления. Хотя этимологически этот термин вряд ли подходит для ее обозначения.
СЕТЧАТКА
Своими размерами и толщиной сетчатка напоминает почтовую марку, наклеенную на внутреннюю поверхность глазного яблока. Сетчатка покрывает приблизительно одну пятую площади этой поверхности. (Иногда сетчатка отслаивается, что приводит к почти полной утрате зрения, но в настоящее время существуют методы ее прикрепления к прежнему месту.) Сетчатка состоит из нескольких слоев. Те из них, которые находятся в самой удаленной от глазного дна части, состоят преимущественно из нервных клеток и их волокон. Под нервными клетками располагаются фоторецепторы, которые у человека бывают двух типов - палочки и колбочки, названные так из-за своей формы. Под палочками и колбочками, прилегающими непосредственно к сосудистой оболочке, расположен тонкий слой пигментированных клеток, отростки которых проникают в промежутки между палочками и колбочками. Эти пигментированные клетки поглощают свет, уменьшая его отражение, которое могло бы смазать реакцию сетчатки на прямой свет, поступающий в глаз извне.
У животных, адаптированных к жизни в темноте, мы наблюдаем противоположную картину. Для них желательно и даже необходимо вредное для человека отражение света от глазного дна. Поэтому глазное дно у таких животных содержит светоотражающий слой, который называется тапетумом («ковер», лат.).Этот тапетум отражает свет и дает сетчатке еще один шанс. Ясность зрения здесь принесена в жертву максимальному восприятию тусклого света. Какое-то количество света, отразившись от клеток «ковра», выходит наружу через широко открытый зрачок. Вот почему кошачьи глаза (в которых, конечно, есть тапетум) светятся в темноте зловещим огнем. Правда, этого не бывает в полной темноте, так как даже кошачьи глаза не способны испускать собственный свет. Не надо даже говорить, что в человеческом глазу тапетум отсутствует. Мы пожертвовали чувствительностью ради ясности.
Организация слоев в сетчатке такова, что вступающий в глаз свет сначала сталкивается со слоем нервных клеток, проходит сквозь него и только после этого действует на палочки и колбочки. Этот порядок кажется не вполне эффективным, но на самом деле в человеческом глазу все устроено не так уж плохо. В точке, которая находится непосредственно за хрусталиком и в которой фокусируются лучи света, расположено так называемое желтое пятно. В этой области фоторецепторы упакованы очень плотно, и именно здесь самая высокая острота зрения.
Для того чтобы мы восприняли два предмета отдельно, как именно два предмета, то есть чтобы они в нашем восприятии не слились в один объект (именно эту способность понимают под остротой зрения), надо, чтобы свет от двух предметов падал на два разных фоторецептора, между которыми находится по крайней мере еще один не активированный фоторецептор. Отсюда следует, что чем плотнее упакованы фоторецепторы, тем ближе могут находиться друг от друга точки, которые мы видим раздельно. Именно так и происходит в глазу человека. В желтом пятне фоторецепторы упакованы так плотно, что на обычном расстоянии спокойного чтения человек с нормальным зрением воспринимает в этой области две точки раздельно, если расстояние между ними составляет всего лишь одну десятую миллиметра.
Более того, в центре желтого пятна расположена так называемая центральная ямка, в которой фокусируются лучи света. Смысл этого углубления состоит в том, что над ним и его фоторецепторами практически отсутствует слой нервных клеток, так что почти ничто не мешает свету падать непосредственно на светочувствительные клетки. Эта особенность анатомического строения сильнее всего развита у приматов. Это одна из причин того, что отряд приматов, включая и нас, до такой степени пренебрег обонянием и даже слухом ради улучшения зрения. Превосходное зрительное восприятие, так чудесно развитое у нас, само по себе представляет слишком большое искушение, чтобы его можно было избежать.
Естественно, организм использует и те области сетчатки, которые расположены вне центральной ямки. На эти участки воздействует свет, и мозг реагирует на это воздействие. Когда мы смотрим на какой-то предмет, мы одновременно воспринимаем и то, что происходит вокруг нас, так как обладаем и периферическим зрением. Мы не можем с его помощью различать мелкие детали, но можем оценить силуэт и форму. В особенности же периферическое зрение помогает нам улавливать движение предметов, и это важно даже для людей - уметь видеть краем глаза. В наш автомобильный век множество жизней было сохранено именно благодаря периферическому зрению, способности уловить движение сбоку от машины. При сдаче экзаменов на право вождения автомобиля всегда проверяют периферическое зрение, уводя в сторону карандаш до исчезновения его из поля зрения испытуемого, которому предлагают при этом смотреть прямо перед собой. Утрата периферического зрения при сохранении туннельного (так это называется в народе, так как человек видит только то, что находится непосредственно перед ним) зрения делает водителя опасным для окружающих.
Волокна нервных клеток сетчатки собираются вместе, образуя зрительный нерв, который, по сути дела, вместе с элементами сетчатки представляет собой часть головного мозга. Зрительный нерв покидает глазное яблоко в непосредственной близости от центральной ямки, и место его выхода замечательно тем, что в нем нет ни одного фоточувствительного элемента. В этом месте находится так называемое слепое пятно. Мы не подозреваем о его существовании и не чувствуем его, потому что, во-первых, свет, отраженный от какого-либо объекта и падающий на слепое пятно одного глаза, необязательно падает на область слепого пятна другого глаза. Хотя бы одним глазом мы увидим этот предмет. Если же один глаз закрыть, то в существовании слепого пятна очень легко убедиться. Если человек смотрит на черный прямоугольник, на котором изображены белые точка и крест, и если он сосредоточится на, скажем, точке, то он сможет найти такое расстояние от прямоугольника, на котором он перестанет видеть крест. Значит, на этом расстоянии свет от креста падает точно на слепое пятно. Если после этого подойти к рисунку ближе или отойти от него подальше, то крест снова появляется в поле зрения.
При стимуляции фоторецепторов в близлежащих нервных клетках возникают электрические импульсы, которые проводятся в мозг по зрительному нерву. Эти импульсы достигают зрительной области коры в затылочной доле полушарий большого мозга, где интерпретируются мозгом как свет. Фоторецепторы можно стимулировать и давлением, при этом такая стимуляция тоже воспринимается мозгом как свет. Именно поэтому при ударе в глаз у вас «сыплются искры». И такой же феномен можно вызвать, если плотно зажмурить глаза и сосредоточиться. То, что мы при этом видим, называется фосфен («показать свет», греч.).
Два типа фоторецепторов - палочки и колбочки - приспособлены к разным типам зрения. Колбочки стимулируются только при весьма высоком уровне освещенности и используются для фотопического, дневного, зрения в светлое время суток и при ярком освещении. Палочки, напротив, стимулируются при низком уровне освещенности и вовлечены, таким образом, в скотопическое, то есть в сумеречное зрение.
У многих ночных животных фоторецепторы в сетчатке представлены исключительно палочками. Человеческий же глаз в этом отношении впадет в другую крайность. Нет, палочки числом намного превосходят колбочки даже у человека, так как в сетчатке содержится 125 миллионов палочек и всего 7 миллионов колбочек. Однако в желтом пятне, которое несет на себе все тяжкое бремя осмысленного зрительного восприятия, содержатся исключительно колбочки, и пока не обнаружено ни одной палочки. Более того, каждая колбочка соединена с одним нервным волокном, что невероятно повышает остроту зрения. (В то же время десять или около того палочек соединяются с одним нервным волокном. Таким образом, ночное животное жертвует остроту зрения на алтарь чувствительности.)
Острота зрения человека сконцентрирована, следовательно, на дневном зрении, и это представляется правильным, так как человек ведет дневной образ жизни. Это означает, однако, что в сумерках острота зрения резко снижается. Если человек смотрит ночью прямо на звезду в небе, то она через некоторое время исчезает из вида, так как ее свет действует только на колбочки, но он слишком слаб, чтобы надежно стимулировать колбочки. Однако стоит посмотреть в сторону, как звезда неожиданно снова появляется в поле зрения, так как теперь ее свет упал на палочку. (И наоборот, в периферических областях сетчатки у нас очень мало колбочек по сравнению с желтым пятном, поэтому и в дневное время острота периферического зрения у нас весьма низкая.)
Два типа зрения отличаются между собой еще в одном очень важном отношении. Это восприятие цвета. Как я скажу в своем месте, цветовое зрение воспринимает лишь часть диапазона световых волн, к которым чувствителен глаз человека. Колбочки, которые реагируют на сильный свет, способны реагировать также на разные длины волн этой части и, таким образом, отвечают за их восприятие и цветовое зрение. Палочки, реагируя на свет во всем диапазоне длин волн видимого спектра для достижения наибольшей чувствительности, не способны различать цвета. Другими словами, сумеречное зрение является черно-белым, с промежуточными оттенками серого цвета. Недаром есть пословица: «Ночью все кошки серы».
Палочки содержат окрашенный в розовый цвет зрительный пигмент, и именно в нем под действием света происходят химические превращения. Этот пигмент имеет одно распространенное, но устаревшее название - зрительный пурпур, хотя цвет его вовсе не пурпурный, но более формальное и точное его наименование - родопсин («розовый глаз», греч.).Молекула родопсина состоит из двух частей: белка опсина и небелкового соединения ретиналя, похожего по структуре на витамин А. Ретиналь существует в двух взаимопревращающихся формах - цис-ретиналь и транс-ретиналь. Строение цис-ретиналя таково, что он может соединяться с опсином, образуя при этом родопсин, а транс-ретиналь не обладает такой способностью. Под воздействием света цис-ретиналь превращается в транс-ретиналь, и последний отщепляется от родопсина, оставляя в одиночестве бесцветный белок опсин. Таким образом, можно сказать, что свет обесцвечивает родопсин. В темноте транс-ретиналь снова превращается в цис-ретиналь и присоединяется к опсину, образуя родопсин.
Так, мы имеем цикл - родопсин обесцвечивается на свету и восстанавливает свой цвет в темноте. Именно обесцвечивание родопсина стимулирует нервные клетки. При обычном дневном освещении родопсин по большей части находится в обесцвеченном состоянии и бесполезен для зрения. Это, впрочем, не играет никакой отрицательной роли, так как родопсин в основном участвует в сумеречном зрении и не используется при ярком свете. Именно поэтому, когда человек с яркого света входит в темное помещение, он сначала практически ничего не видит. Зрение постепенно восстанавливается, когда расширяется зрачок и в глаз начинает попадать больше света. Зрение улучшается еще и потому, что в сетчатке, в палочках, постепенно восстанавливается родопсин и начинает, как ему и положено, работать при сумеречном освещении. Этот период приспособления к темноте называется темповой адаптацией. Обесцвечивание родопсина и сужение зрачка при обратном переходе в ярко освещенное место называется световой адаптацией.
В идеальных условиях ретиналь не разрушается при своих взаимодействиях с опсином, по обстоятельства, к сожалению, редко бывают идеальными. Ретиналь - весьма нестабильное соединение и имеет тенденцию претерпевать химические превращения и терять активность. Однако витамин А, соединение более стабильное, легко превращается в ретиналь, а так как в организме существует запас этого витамина, то он и может использоваться для восстановления необходимого для зрения ретиналя. В организме человека, увы, витамин А синтезироваться не может, но его можно усвоить из пищи. Если в пищевом рационе наблюдается дефицит витамина А. то его запасы истощаются, и потери ретиналя перестают восполняться. Перестает образовываться родопсин, и у человека ухудшается сумеречное зрение. В результате, хотя больной хорошо видит днем, он перестает видеть в сумерках. Такое заболевание называется в медицине гемералопией, а в народе - куриной слепотой. Источником витамина А является морковь, и если добавить ее к диете, то положение постепенно улучшается. Народная традиция права, когда утверждает, что морковь полезна для глаз.
ЦВЕТОВОЕ ЗРЕНИЕ
Длина световых волн изменяется в ангстремах единицах, названных в честь шведского астронома XIX века Андерса И. Ангстрема. Ангстрем обозначается буквой А. Это очень малая единица длины, один ангстрем равен 1/100 000 000 сантиметра, или 1/250 000 000 дюйма. Глаз человека способен воспринимать свет с длинами волн в диапазоне от 3800 ангстрем до 7600 ангстрем. Поскольку в этом интервале длина волны удваивается, то все длины световых волн данного диапазона укладываются в одну октаву.
Так же как есть звуковые волны, которые находятся вне пределов восприятия человеческим ухом, есть световые волны, находящиеся за пределами восприятия человеческим глазом. Волны короче 3800 ангстрем - это ультрафиолетовые лучи, рентгеновские лучи и гамма-лучи. Волны с длиной свыше 7600 ангстрем - это инфракрасные лучи, микроволны и радиоволны. Все эти волны, которые так или иначе можно обнаружить и зарегистрировать, охватывают диапазон около 60 октав. Из всего этого множества наш глаз воспринимает, как уже было сказано, всего одну октаву.
Но это не значит, что нам надо считать себя обездоленными в этом отношении. Тип лучей, испускаемых горячим телом, зависит в первую очередь от его температуры, а при температуре поверхности Солнца, большая часть лучей, испускаемых нашим светилом, как раз и укладывается в ту октаву, к которой чувствительны мы и наши глаза. Другими словами, на протяжении многих веков и тысячелетий наши глаза и глаза других живых существ адаптировались к типу излучения, которое, главным образом, имеет место в окружающей нас среде.
Волны всех известных длин, всю их совокупность, обычно называют электромагнитным излучением, потому что оно образуется от ускоренного движения электрических зарядов, с которыми связано возникновение как электрических, так и магнитных полей. В случае света ускоряющийся электрический заряд связан с электроном, находящимся внутри атома. Словом «свет» обычно обозначают одну-единственную октаву электромагнитного излучения, которую мы воспринимаем оптическим способом. Если есть возможность путаницы, то эту октаву можно обозначить термином «видимый свет».
Даже одна октава видимого света не столь уж безлика, во всяком случае не для нормального индивида и не при сумеречном зрении. Так же как мозг интерпретирует звуки с различной длиной волны как волны, несущие разную высоту звука, так тот же мозг интерпретирует световые волны разной длины как волны, несущие различные цвета. Обычный солнечный свет представляет собой смесь всех длин волн видимого спектра; эта смесь представляется нам белой, а ее полное отсутствие представляется нам черным. Если пропустить луч белого света через трехгранную призму, то лучи разного цвета будут преломляться под разными углами. Волны различной длины имеют каждая свой индивидуальный коэффициент преломления. Самые короткие волны преломляются сильнее всего, и наоборот, чем волна длиннее, тем меньше она преломляется. По этой причине полоса длин волн разлагается в спектр, то есть в некую последовательность всех цветов, которые мы способны видеть. (Спектр напоминает нам неотразимую красоту радуги, так как радуга - это полный спектр видимого света, возникающий вследствие преломления солнечных лучей мельчайшими капельками, оставшимися в воздухе после только что закончившегося дождя.)
Количество оттенков цвета, которые мы видим, рассматривая спектр, очень велико, но по традиции мы группируем все оттенки в шесть основных цветов. Свет с длиной волны 4000 ангстрем мы воспринимаем как фиолетовый, 4800 ангстрем - синий, 5200 - зеленый, 5700 - желтый, 6100 - оранжевый и 7000 - красный. Световые волны промежуточных длин мы воспринимаем так же, как промежуточные оттенки. Сравнительно мало животных разделяют с нами способность к цветовому зрению, а те, кто разделяет, очевидно, не могут сравниться в этой способности с приматами и, конечно, с нами. Бывают очень интересные случаи, когда другие животные превосходят пас в некоторых деталях. Например, пчелы не воспринимают самые длинные из волн спектра, воспринимаемого человеком. Однако они реагируют на волны, имеющие длину меньшую, чем волны фиолетового цвета, к которым наши глаза не чувствительны. Другими словами, пчелы не видят красный цвет, но хорошо видят ультрафиолет.
Если пучок лучей спектра пропустит; через призму, перевернутую относительно первой призмы, то в результате мы снова получим белый свет. Но для этого не обязательно сочетать все цвета исходного спектра. В XIX веке Томас Янг и Герман фон Гельмгольц показали, что зеленый, синий и красный цвета при сочетании дают в результате белый цвет. Действительно, оказалось даже, что при сочетании в соответствующих пропорциях зеленого, синего и красного цветов можно получить любой цвет спектра.
(В наши дни это открытие используют в цветной фотографии и в цветном телевидении. Для того чтобы получить фотографию - или кадр фильма - соединяют три пленки, каждая из которых чувствительна к одному из этих трех цветов. Три вида принимающих точек на экране телевизора - каждая чувствительна к одному из тех же цветов - дадут в сочетании картинку полного цветового спектра).
Представляется разумным предположить, что это есть отражение того, каким образом работает сетчатка человеческого глаза. Она, как цветная пленка или экран цветного телевизора, должна обладать тремя типами фоторецепторов, один из которых чувствителен к красному цвету, другой к синему, а третий к зеленому. Если в одинаковой степени стимулировать все три типа рецепторов, то в результате получится ощущение, которое мозг интерпретирует как белый цвет. Мириады оттенков, которые способен различать глаз, суть не что иное, как интерпретация стимуляции всех трех типов фоторецепторов в различных соотношениях. Эта теория не объясняет некоторые опытные факты, касающиеся цветового зрения, и есть несколько альтернативных теорий; в некоторых рассматривают шесть или семь типов фоторецепторов. Однако модель трех типов фоторецепторов продолжает пока оставаться самой популярной среди физиологов.
Как уже было сказано, цветовое зрение ограничено колбочками и не встречается на периферии сетчатки. Колбочки имеют большую концентрацию по мере приближения к желтому пятну, где вообще находятся только они и нет палочек. Сами колбочки не имеют единого строения и не идентичны друг другу. В разных колбочках разные соотношения трех пигментов. Более того, представляется, что существует три типа колбочек, в каждом из которых преобладает свой пигмент. В сетчатке три типа колбочек распределены неравномерно. Колбочки с синим пигментом расположены ближе к периферии, нежели колбочки с красным пигмеитом. Эти последние располагаются ближе к периферии, чем колбочки с зеленым пигментом. Все три типа, естественно, представлены в желтом пятне и в ближайшей к нему области.
Иногда случается, что у человека нет фоторецепторов того или иного типа. В таком случае этот человек страдает цветовой слепотой, которая может быть нескольких видов, причем в пределах каждого вида выделяются градации выраженности заболевания. Каждый двенадцатый мужчина в Америке страдает той или иной формой дальтонизма, или цветовой слепоты. Женщины поражаются этой болезнью крайне редко. Цветовая слепота - это наследственная, сцепленная с полом болезнь. Ген, отвечающий за ее развитие, находится в Х-хромосоме, которых у женщин две, а у мужчины всего одна. Таким образом, у женщин есть запас. Если ген отсутствует в одной хромосоме, он почти наверняка есть в другой. Чаще всего дефицит касается колбочек с красными и зелеными рецепторами. Как бы то ни было, больной всегда испытывает затруднения при различении цветов в диапазоне от красного до зеленого. Очень редко у больного вообще нет цветовых фоторецепторов, и тогда речь идет о полной цветовой слепоте. Это заболевание называется ахроматизмом («отсутствие цвета», греч.).Для таких людей мир нарисован исключительно черными, белыми и серыми красками.
Глава 13
РЕФЛЕКСЫ
ОТВЕТ
Любой организм должен быть в состоянии сочетать восприятие с адекватным действием. То есть какой-то фактор окружающей среды воспринимается и ощущается, а за восприятием следует целесообразное действие. Обыденный опыт говорит нам, что действие выполняется в ответ на ощущение и не выполняется при отсутствии такового. Если мы видим, что кто-то собирается нас ударить, мы уклоняемся от удара и не делаем этого, если никакая опасность нам не угрожает.
Ощущение - это стимул (древние римляне называли стимулом палку с заостренным концом, которой погоняли скот). Само же действие, которое является реакцией на стимул, называется ответом. Взаимодействие стимул - ответ есть основная и характерная черта жизни. Если бы мы столкнулись с предметом, который не отвечает ни на один мыслимый стимул, то нам с необходимостью придется заключить, что перед нами либо неодушевленный предмет, либо мертвые останки некогда живого организма. Напротив, если этот предмет отвечает на стимулы, то мы должны заключить, что перед нами живой объект. Но для того, чтобы считать объект живым, мало одного только ответа. Если мы ударим топором по деревянному полену, то оно ответит на наше действие тем, что расколется; если мы поднесем горящую спичку к смеси водорода и кислорода, она ответит нам тем, что вспыхнет и взорвется. Но эти ответы не введут нас в заблуждение. Ведь никому никогда не придет в голову считать полено или газовую смесь живыми.
От живого объекта требуется ответ, который поддерживает целостность этого объекта или увеличивает его благополучие. То есть ответ должен быть адаптивным, или, по-русски, приспособительным.
Естественно, лучше всего мы понимаем собственные ответы. В нашем сознании существует нечто, что мы называем целью; мы наперед знаем конечный результат, к которому стремимся и которого хотим достичь. Если мы деремся, то наше намерение заключается в том, чтобы защититься от ударов, ибо мы знаем наперед, что нам будет больно, если мы этого не сделаем и пропустим удар. Мало того, мы стремимся ударить противника, потому что заранее знаем, что это поможет нам быстрее закончить драку и достичь желаемого.
Так как это неразрывное единство цели и действия знакомо всем нам с младых ногтей, мы склонны приписывать разумную цель действиям других живых тварей, даже если ясно, что они не могут придерживаться того образа мыслей, какой характерен для нас самих. Например, наблюдая, как растение стремится к солнцу, и, зная, что свет жизненно необходим растению (то есть свет улучшит его «благополучие»), мы склонны думать, что растение стремится повернуться к солнцу потому, что желает этого, потому, что ему нравится ощущение тепла, или потому, что оно испытывает чувство голода. В действительности все обстоит не так. Растение (насколько мы можем об этом судить) не осознает свои действия в том смысле, что мы могли бы считать хотя бы отдаленным подобием действий человека. Действия растения обусловлены теми же слепыми и неторопливыми силами эволюции, которые создали форму и соки этого растения.
Так как свет жизненно необходим для обмена веществ в организме растения, то каждый саженец (при прочих равных условиях), обладающий способностями получить больше света, будет иметь больше шансов выжить. Эта способность может реализоваться большим темпом роста, что позволит саженцу выбраться из тени соседних растений, или, например, широкими листьями, которые, напротив, бросят тень на соседей, поглощая свет, который в противном случае достался бы им. Это может быть чисто химический механизм, который позволяет листьям поворачиваться к солнцу так, чтобы лучи падали на полотно листа прямо, а не под острым углом.
Каков бы ни был механизм доступа к свету, те растения, которым удастся его получить, процветают, оставляя более многочисленное потомство, чем их менее агрессивные соперники. С каждым новым поколением эти приобретенные по чистой случайности ответы, оказавшиеся адаптивными, постепенно становятся преобладающими и практически универсальными. Если в процессе этой медленной эволюции появляются растения, которые по случайности не успевают повернуть листья к свету или используют его с меньшей эффективностью, чем соседние растения, то такие неудачники бывают быстро выбиты из игры их более удачливыми конкурентами. Такое же эволюционное развитие на основе случайных мутаций и естественного отбора характерно для всех форм поведения в сложном многообразии, проявляемого человеком, или в суровой простоте, проявляемой растениями.
Нервная система не является необходимой для развития способности осуществлять целесообразный ответ на стимул. Как я только что сказал, растения, не имеющие нервной системы, тем не менее, поворачивают свои листья к солнцу. Такой поворот в ответ па стимул называется тропизмом. Если стимулом является свет, то явление называют фототропизмом. Достигается фототропизм с помощью избирательного роста, который, в свою очередь, запускается накоплением акусинов в копчиках находящихся в тени побегов. Когда побег попадает в освещенное место, действие стимулов уравновешивается и рост прекращается, заканчивая тем самым и поворот к свету. (Этот поворот аналогичен нашему повороту к источнику незнакомого звука, когда мы поворачиваемся в сторону, откуда звук воспринимается как более громкий. Мы заканчиваем поворот тогда, когда оба уха начинают воспринимать звуковой стимул с одинаковой интенсивностью. Конкретный механизм этого нашего действия, конечно, в корне отличается от поведенческих механизмов растений.)
Так как растения завоевали сушу в условиях действия силы тяжести, то в автоматический ответ на ее действие был развит еще один механизм, названный геотропизмом, то есть ответом на стимуляцию силой земного притяжения. Если зерно падает в землю «вниз головой», то стебель сначала начинает расти вниз, но потом верх одерживает отрицательный геотропизм, зачаток стебля изгибается, и он начинает расти, как ему и положено, вверх, стремясь к свету. Напротив, корень сначала начинает расти вверх, но потом, проявив положительный геотропизм, изгибается и растет вниз, в направлении силы тяжести. Представляется, что геотропизм тоже регулируется с помощью ауксинов, но каким образом эти последние реагируют на силу тяготения, остается неясным. Надо, правда, сказать, что корень отклоняется от вертикального роста вниз, если рядом с упавшим зерном с какой-то одной стороны оказывается обильный источник воды, какое явление, как и следует ожидать, называется положительным гидротропизмом.
Все тропизмы реализуются медленным дифференциальным (то есть избирательным) ростом, хотя не все ответы растений обусловлены только тропизмом. Растения могут, почти как животные, быстро отвечать на некоторые стимулы, почти имитируя мышечные сокращения (конечно, в растениях нет мышц, и ответы реализуются с помощью, например, изменения тургора тканей). Это значит, что в определенных местах растения накапливается больше воды, что меняет форму растения. Есть растения, листья которых сворачиваются ночью и развертываются днем, есть растения, листья которых закрываются при прикосновении к ним. Существуют растения, которые ловят в такие капканы мелких насекомых, которые попадаются в ловушку, прикоснувшись к чувствительным выростам на листьях, и так далее.
У животных тоже можно наблюдать ответы, весьма напоминающие тропизм. Амеба движется прочь от света, а мотылек стремится к нему. Мы с сардонической усмешкой думаем о глупости мотылька, летящего навстречу своей смерти, но вообще говоря, стремление к свету - это проявление адаптивного поведения. В течение сотен миллионов лет, пока вырабатывался этот ответ, искусственных источников света, созданных человеком, попросту не существовало, и свет не представлял опасности. К несчастью для мотылька, он не смог пока выработать соответствующий защитный ответ. Тем не менее, ответы даже простейших животных на стимулы намного сложнее ответов растений, поэтому называть реакции животных тропизмами было бы неверно. Во-первых, тропизм - это движение части организма (например, корня или стебля), в то время как животное движется целиком. Такое движение всего организма
в ответ на стимул называется таксисом («построение», греч.).Таким образом, амеба проявляет отрицательный фототаксис, а мотылек - положительный фототаксис.
Для микроорганизмов, вообще говоря, характерен отрицательный хемотаксис, с помощью которого они отвечают на вредоносные изменения химического состава окружающей среды, уплывая прочь от опасного места, и положительный хемотаксис, который проявляется, когда поблизости появляется что-то съедобное. Существует также фигмотаксис - ответ на прикосновение, реотаксис - ответ на изменение потоков воды и ряд других.
По своей природе ответ может быть не только простой реакцией приближения или удаления. Например, парамеция при столкновении с препятствием отплывает немного назад, поворачивается под углом приблизительно 30 градусов и снова начинает двигаться вперед. Если она снова встречает препятствие, то ответ повторяется. После двенадцатой попытки парамеция меняет курс на обратный. Таким образом, если она не окружена препятствиями со всех сторон, парамеция, в конце концов, всегда находит выход. Но в таком поведении не просматривается истинная цель, как мы понимаем ее с высот наших антропоморфных суждений. И каким бы умным ни казалось нам поведение мельчайшего создания, в действительности это всего лишь проявление абсолютно слепого способа действий, обусловленных и развитых силой естественного отбора.
АЗБУКА РЕФЛЕКСА
Тропизм растений и таксис простейших животных - примеры генерализованного ответа целостного организма или его крупной части на весьма генерализованный стимул. Такой генерализованный ответ на генерализованный стимул может опосредоваться нервной системой, как, например в случае фототаксиса у мотылька, но, вообще, с развитием специализированной нервной системы как стимулы, так и ответы становятся намного тоньше.
Специализированные нервы-рецепторы можно стимулировать более слабыми изменениями окружающей среды, чем обычные клетки. Кроме того, сеть нервных окончаний делает возможным различение прикосновений к одной части тела от прикосновений к другой, так как эти прикосновения могут потребовать разных ответов. При вовлечении в процессы формирования ответов нервной системы стимулу уже не надо возбуждать ответ целостного организма. Определенные двигательные нейроны могут доставить сигнал осуществления ответа какой-либо ограниченной частью организма, например какими-либо железами или определенными группами мышц.
Когда определенный стимул быстро и автоматически вызывает определенный ответ с помощью нервной системы, мы говорим о рефлексе («отражение», лат.).Это хорошее название, потому что нервный импульс проводится от чувствительного органа по чувствительному нерву в центральную нервную систему (как правило, в спинной мозг, но иногда и в ствол головного мозга), там нервный импульс «отражается» и проводится назад из центральной нервной системы по двигательному нерву для осуществления ответа. Цепь связанных между собой нервных клеток, по которым проводится импульс от восприятия до выполнения ответного действия, называется рефлекторной дугой.
Простейшая рефлекторная дуга состоит из двух нейронов, чувствительного и двигательного. Дендриты чувствительного нейрона объединяются в волокна, ведущие к телу клетки, находящейся в заднем роге спинного мозга. Аксоны этих клеток посредством синапов соединяются с дендритами клеток, расположенных в передних рогах спинного мозга. Аксоны этих клеток направляются в составе соответствующего периферического нерва к мышцам, железам или другим исполнительным органам, которые должны реализовать ответ. Поскольку первый нейрон приносит информацию о стимуле в центральную нервную систему, его называют афферентным ( affere -«приношу», лат.). Второй нейрон осуществляет ответ или реализует эффект и поэтому называется эффекторным, или эфферентным. Тот участок нервной системы, где соединяются афферентный и эфферентный нейроны, называется центром рефлекса.
Такая двухнейронная рефлекторная дуга в жизни встречается редко, однако примеры ее можно найти даже в таком сложно устроенном организме, как организм человека. Чаще, однако, встречается трехнейронная рефлекторная дуга, в которой афферентный нейрон соединен с эффекторным посредством промежуточного или вставочного нейрона.
Этот вставочный нейрон целиком, со всеми своими отростками, располагается внутри центральной нервной системы. Но даже эта трехнейронная дуга выглядит весьма простой в высокоорганизованных функциональных системах высших животных. У млекопитающих в рефлекторные дуги, как правило, входит множество вставочных нейронов, сложным образом соединенных между собой. Эти нейроны соединяют нервы с выше- и нижележащими отделами спинного мозга.
Множество нейронов, входящих в цепи сложных рефлекторных дуг, дают возможность ветвления путей прохождения нервных импульсов, что увеличивает сложность ответов на стимулы. Специфический афферентный нейрон может с помощью нескольких вставочных нейронов передать нервный импульс нескольким различным эффекторам. Например, болезненный стимул, приложенный к руке, вызывает быстрое отдергивание руки, запуская сгибательный рефлекс, который осуществляется в результате сокращения вполне определенных групп мышц. Но для того, чтобы это произошло, то есть для того, чтобы реализовался сгибательный рефлекс, надо одновременно расслабить мышцы-разгибатели, чтобы они не мешали сокращаться мышцам-сгибателям. Кроме того, происходит непроизвольный поворот головы в сторону травмирующего стимула, человек издает болезненный вскрик, сокращаются мимические мышцы, на лице появляется гримаса боли. Удивительно, что все разнообразие такого ответа может быть следствием одного-единственного булавочного укола, который сам по себе стимулирует весьма малое число эффекторов.
В то время, когда одна конечность сгибается под действием сгибательного рефлекса, противоположная конечность разгибается под действием перекрестного разгибателыюго рефлекса. Например, когда мы наступаем на какой-то острый предмет, пострадавшая нога быстро поднимается вверх, отрываясь от земли, но мы не падаем, потому что вторая нога стремительно выпрямляется и застывает в таком положении, принимая па себя вес тела.
Другим важным рефлексом является рефлекс растяжения. Когда мышца оказывается в растянутом состоянии, окончания препроцептивных нервов, расположенные в ней, являются рецепторами рефлекторной дуги, эффекторы которой стремятся уменьшить степень растяжения, чем бы оно ни было вызвано. Это, во-первых, помогает нам сохранить равновесие, которое сохраняется при равенстве сил, действующих на антагонистические группы мышц. Если по какой-то причине одна мышца сократилась, то одновременно растягивается противодействующая ей мышца. В ответ на это растяжение она сама сокращается, тем самым восстанавливая равновесие сил. Если сокращение оказывается избыточным, то подобное повторяется уже с первой мышцей, которая, в свою очередь, сокращается в ответ на избыточное растяжение.
В таких случаях мы не осознаем ни действия стимулов, ни произведенных ответов. Мы сознаем только, что мы стоим или сидим, и совершенно не задумываемся о той сложной системе рефлекторных дуг, которые помогают нам спокойно сидеть и ничего (якобы) не делать. Однако если мы вдруг серьезно теряем равновесие, то сохраняем мы его в таких случаях тоже помимо своей воли и подчас совершаем сложные акробатические этюды, сами того не замечая и полагаясь на судорожно сокращающиеся мышцы, стремящиеся уберечь нас от падения. Если разгибательный рефлекс срабатывает во сне, то сокращение мышц бывает таким резким и сильным, что мы подчас просыпаем - с ощущением падения в пропасть.
Широко известным примером рефлекса растяжения является коленный рефлекс. Испытуемый садится на стул и закидывает ногу на ногу, расслабив затем висящую ногу. Мышца, проходящая по передней поверхности бедра, крепится посредством сухожилия к верхней части большеберцовой кости. Это сухожилие, естественно, охватывает и надколенник (коленную чашечку). Если теперь слегка ударить молоточком по области, расположенной чуть ниже надколенника, то удар придется на сухожилие передней мышцы бедра, которая мгновенно от этого растянется. Это растяжение запускает рефлекс растяжения. Мышца быстро сокращается, и голень резко выбрасывается вперед. Поскольку дуга коленного рефлекса являет собой редкий пример двухнейронного рефлекса, то реакция действительно получается впечатляюще быстрой.
Сам по себе коленный рефлекс не очень важен, но его отсутствие может свидетельствовать о поражении того участка центральной нервной системы, в которой замыкается его рефлекторная дуга. Этот рефлекс настолько прост и его так легко вызвать, что его проверка является частью практически любого рутинного медицинского осмотра. Часто поражение нервной системы проявляется обнаружением ненормальных (патологических) рефлексов. Если провести пальцем или другим твердым предметом по подошве стопы, но в норме этим вызывается сгибательный рефлекс - пальцы стопы прижимаются друг к другу и сгибаются внутрь. Если же у больного имеет место поражение пирамидного тракта, то в ответ на раздражение большой палец разгибается, то есть поднимается вверх, а остальные пальцы расходятся в стороны. Это классический рефлекс Бабинского, названный так в честь французского невролога Иосифа Бабинского, который описал его в 1896 году.
Точно так же как единственный рецептор, воспринимающий стимул, может, в конце концов, вызвать реакцию, вовлекающую действие множества эффекторов, так и один эффектор или небольшая группа эффекторов может стоять в конечном звене рефлекторной дуги, которая начинается сочетанием множества разнообразных рецепторов. Единичные небольшие болезненные раздражения определенной половины тела, независимо от точной локализации раздражения, вызывают стереотипную реакцию - поворот головы в сторону болевого ощущения. Часто острая боль в любой области тела вызывает стереотипный резкий вскрик.
Рефлексы не затрагивают полушария большого мозга, поэтому в реализации рефлекторных действий не участвует элемент воли. Рефлекторные действия суть автоматические и непроизвольные. Однако во многих случаях ответ как бы шунтируется и параллельным курсом попадает в головной мозг, где воспринимается как обычное ощущение, причем обычно это осознание приходит уже после того, как заканчивается рефлекторный ответ. Так, если мы, например, случайно прикасаемся к горячему предмету, то рука отдергивается от него непроизвольно, и только через несколько мгновений мы начинаем осознавать, что предмет был горячим. Правда, осознание следует довольно быстро, и после того, как физическая опасность устранена (или сведена к минимуму) в результате рефлекторного действия, мы принимаем уже разумные волевые действия - убираем горячий предмет в безопасное место, прикрываем его, охлаждаем, прикрепляем к нему предупреждающий знак или делаем что-либо еще из того, что кажется нам разумным и логичным в данной ситуации.
Во многих случаях мы остаемся в полном неведении относительно тех ответов, которые запускают в нашем организме различные стимулы. Сильный свет вызывает увеличение площади радужной оболочки, что приводит к сужению зрачка. Вкус пищи заставляет слюнные железы выделять слюну, а слизистую оболочку желудка - пищеварительный сок. Изменения температуры окружающей среды вызывают изменения диаметра определенных капилляров кожи. Наше поведение состоит из большей массы рефлексов, чем это принято думать.
ИНСТИНКТЫ И ИМПРИНТИНГ
Различные рефлексы, о которых мы с вами только что говорили, так же как тропизм растений или таксис простейших животных, представляют собой формы врожденного поведения, поведения, с которым мы рождаемся и которому нельзя научиться. Не надо учиться отдергивать руку от раскаленного утюга, или чихать при раздражении слизистой оболочки носовых ходов, или мигать, когда перед глазами неожиданно появляется какой-либо предмет. Все это, помимо многого другого, умеет делать с рождения каждый ребенок.
Такое врожденное поведение может быть весьма сложным. Можно проследить рефлекторные цепи, в которых ответ на какой-то стимул является стимулом, вызывающим следующий ответ, который, в свою очередь, служит стимулом третьего ответа и так далее. Примерами такого сложного врожденного поведения являются брачные ритуалы многих видов животных: постройка гнезд, постройка муравейников и сложные действия по уходу за молодняком.
К великому сожалению, для нас утеряны этапы становления такого поведения, которое потребовало многих и многих миллионов лет. Если бы нам удалось проследить эти этапы, мы смогли бы увидеть, как развивалось каждое следующее звено в цепи рефлексов и как эти звенья повышали шансы на выживание у следующих поколений. Паттерны поведения не оставляют окаменевших остатков, поэтому нам приходится довольствоваться тем, что мы имеем. Необходимость принимать как факт сложность конечного поведения животных заставляет некоторых романтиков видеть в поведении относительно просто устроенных животных сложные человеческие мотивации. Птица, строящая гнездо, или паук, плетущий сеть, не обладают предвидениями архитекторов и не являются подходящими героями для маленьких моральных проповедей.
Такие цепи рефлексов обусловливают инстинктивное поведение (термин этот в настоящее время выходит из у потребления). Инстинкты - это сложные паттерны ответов, свойства которых совпадают со свойствами рефлексов, из которых они и состоят. Инстинкт - это форма поведения, которая наблюдается с самого рождения, которую нельзя изменить и которая характерна для всех членов данного биологического вида, и так далее.
Так, пауки определенного вида плетут паутины строго определенного типа без всякого предварительного обучения, и они могут плести ее даже в полной изоляции, ни разу в жизни не увидев, как это делается. Молодые птицы способны совершать дальние перелеты и точно прибывать в места, в которых они раньше никогда не бывали, без всякого руководства со стороны старших членов стаи.
Тем не менее, все это не является абсолютно полной характеристикой того сложного поведения, которое мы называем инстинктивным. Некоторые птицы умеют петь с самого рождения, не обучаясь этому искусству, но есть виды птиц, представители которых нуждаются в предварительном обучении. В последние годы стало ясно, что некоторые паттерны врожденного поведения проявляются только в определенные возрастные периоды в ответ на некие специфические стимулы.
В конце концов, то, что мы называем рождением, не есть в действительности начало жизни. Рождению предшествует период развития в яйце или в утробе матери. В течение этого периода нервная система развивается до довольно высокого уровня сложности. На различных стадиях этого процесса формируются многие рефлексы, дуги которых постепенно накладываются друг на друга. Например, в эмбрионе курицы (его довольно легко изучать) сгибательный рефлекс головы регистрируется уже через семьдесят часов после оплодотворения, а рефлекс поворота головы только через девяносто. Движения клюва возникают через пять дней, а глотательный рефлекс появляется лишь на восьмой день после оплодотворения.
У эмбриона человека (который изучать несравненно труднее) тоже происходит постепенное прогрессивное развитие функций. Рефлекторное движение головы и шеи в ответ на прикосновение к области рта и носа можно зарегистрировать на восьмой неделе, однако такие важные рефлексы, как хватательный, и сосательный, появляются только на шестнадцатой неделе. Нельзя, конечно, забывать о том, что рождение является, вне всякого сомнения, поворотным пунктом в развитии организма, и к тому времени, когда оно происходит, у ребенка должны быть сформированы все рефлексы, которые сделают возможным его независимое существование. Короче говоря, формирование рефлексов - это залог выживания новорожденного. Это очевидно. Но речь идет не только о выживании.
Такая преемственность развития и его непрерывность кажутся вполне естественными, развитие продолжается без остановки и после рождения. Окостенение скелета начинается до рождения и продолжается несколько лет после рождения. Миелинизация нервных волокон начинается до рождения и продолжается после него. Почему это не может быть верным и для поведенческого развития? После рождения происходит одно очень важное радикальное изменение. До рождения вся вселенная для зародыша и плода ограничивается полостью яйца или матки, положение в них стабильное, не подверженное изменениям. После рождения среда обитания становится неизмеримо просторней, в этой среде возможно появление разнообразных новых стимулов. «Иястинкты», которые развиваются после рождения, таким образом, могут в большой степени зависеть от новых стимулов, от которых не могут зависеть врожденные инстинкты. Цыплята и утята, только что вылупившиеся из яйца, не следуют за матерью, повинуясь врожденному инстинкту, который заставил бы их с самого рождения узнать мать «в лицо». В действительности происходит нечто другое. Птенцы следуют на любым предметом определенной формы, размера и цвета. Таким образом, любой предмет, способный вызвать это ощущение в определенный срок раннего периода жизни, заставляет принимать себя за мать и следовать за собой. Это может и в самом деле быть мать, и так случается чаще всего, но это совершенно не обязательно!
Установление фиксированного паттерна поведения в ответ на особый стимул, предъявленный в определенный период жизни, называется импринтингом. Специфический период жизни, когда происходит становление импринтинга, называется критическим периодом. Для цыплят критический период, в течение которого происходит импринтинг матери, укладывается в промежуток между 13 и 16 часами после выхода из яйца. У щенков тоже есть критический период, который продолжается с третьей по седьмую неделю после рождения, когда происходит импринтинг стимулов, обусловливающих то, что мы считаем нормальным (инстинктивным) собачьим поведением.
Был также поставлен опыт на овечке, которую выращивали в изоляции первые десять дней жизни, а потом вернули в стадо. Но критический период миновал, и какие-то импринтинги не состоялись. Возможность была упущена безвозвратно. Овечка предпочитала пастись одна, а когда у нее родился ягненок, она не проявила к нему никакого намека на то, что мы привыкли называть «материнской любовью». Такая утрата шанса на импринтинг может оказать на животное весьма нежелательный эффект. Животные, глаза которых были лишены определенных паттернов стимуляции в определенные периоды ранней жизни, так и не обрели нормального зрения, хотя такая же депривация, проведенная раньше или позже критического периода, не причиняет животным никакого вреда.
Представляется почти неизбежным, что подобный импринтинг имеет место и у наших детей, однако в данном случае не может быть и речи о запланированном эксперименте, способном вмешаться в процесс формирования какого бы то ни было импринтинга, не важно, существует он или нет. Знания, касающиеся импринтинга у человека, получены на основе случайных наблюдений. Дети, которые на стадии младенческого лепета были лишены возможности слышать нормальную человеческую речь, в дальнейшем остаются немыми. В лучшем случае они овладевают речью не полностью и с опозданием. Словарный запас их, как правило, весьма ограничен. Дети, которых с рождения воспитывают в сиротских приютах, где их хорошо кормят и одевают, но не ласкают, не баюкают и не носят на руках, становятся маленькими, не по возрасту печальными созданиями. Они сильно отстают в ментальном и физическом развитии, и многие из них умирают по одной причине - от отсутствия «материнской любви», под которой можно понимать отсутствие адекватных стимулов, которые нужны для формирования импринтинга необходимого поведения. Точно так же дети, которые в определенном критическом возрасте лишены общества сверстников, вырастая, превращаются в личностей с теми или иными отклонениями.
Но почему импринтинг? Все выглядит так, словно нервная сеть, призванная отвечать за поведение, полностью сложилась до рождения, за исключением одной связи. При получении определенного стимула эта связь замыкается, быстро и необратимо, формируя необходимый поведенческий паттерн, который нельзя ни модифицировать, ни устранить. Но почему нельзя было добавить эту недостающую связь еще до рождения и избежать риска неудачного импринтинга?
Логически обоснованным может быть предположение о том, что импринтинг допускает определенную и очень желательную в данном случае гибкость. Предположим, что из яйца вылупился цыпленок с раз и навсегда предписанным поведенческим паттерном следования за биологической матерью, которую он может отличить от других кур, например, по запаху, который он от нее наследует и который не может спутать ни с одним другим запахом в мире. Допустим далее, что мать отсутствует в течение нескольких часов после появления цыпленка на свет (ее убили, украли, она заблудилась). Птенец абсолютно беспомощен и беззащитен. Если же, напротив, вопрос о материнстве остается открытым на протяжении нескольких часов после вылупления из яйца, то цыпленок может путем импринтинга выбрать себе в мамы любую из находящихся поблизости кур. Значит, способность к импринтингу - это очень важная и полезная способность.
Таким образом, мы сталкиваемся с двумя поведенческими паттернами, каждый из которых имеет свои преимущества. Врожденное поведение отличается определенностью в том, что оно предписывает некую модель поведения, которая застрахована от ошибок в тех ситуациях, для которых «сконструировано» такое поведение. Неврожденное поведение (приобретенное) более рискованно в том смысле, что если учебный процесс был поставлен не так, как надо, то нужный поведенческий паттерн может и не развиться. Тем не менее, эта модель поведения предлагает в виде компенсации гибкость в приспособлении паттерна к изменяющимся условиям существования индивида.
Импринтинг - это лишь самая примитивная форма приобретенного поведения. Автоматизм, ограниченность времени, когда он возможен, широта условий, при которых он реализуется, - все это говорит о том, что импринтинг является всего лишь небольшим шагом вперед по сравнению сврожденным поведением. Есть и другие формы приобретенного поведения, которые позволяют приспосабливать ответы к непредсказуемым изменениям окружающей среды с большей тонкостью и меньшей неотвратимостью, столь характерной для импринтинга.
УСЛОВНЫЙ РЕФЛЕКС
Ребенок рождается с функционирующими слюнными железами, которые под воздействием вкусовых свойств пищи сразу начинают выделять свой секрет. Эта способность формируется во внутриутробном периоде и является, следовательно, врожденной. Данная способность универсальна и неизменна в том смысле, что все дети отвечают выделением слюны на стимуляцию вкусовых почек. Эффект стимуляции непроизволен и реализуется независимо от сознания. В обычных условиях ребенок не может прекратить саливацию при попадании пищи в рот, кстати, так же как и вы. Следовательно, это безусловный рефлекс. Нет таких условий, которые могли бы способствовать его проявлению.
Вид или запах пищи сами по себе сначала не вызывают саливацию (выделение слюны). По прошествии некоторого времени, в течение которого появляется опыт, подсказывающий, что при появлении определенного вида или запаха в рот скоро попадет пища, у ребенка или детеныша начинается саливация от этих неспецифических стимулов.
Можно сказать, что ребенок узнает, что если он видит и обоняет пищу, то это значит, что сейчас он ощутит и ее вкус, и в предвкушении этого приятного события у младенца начинается саливация (надо заметить, непроизвольная). Как только эта связь устанавливается, ответ становится автоматическим и во всех отношениях напоминает обычный рефлекс. Однако этот новый рефлекс имеет одну особенность. Он зависит от условий, от ассоциации с запахом и видом пищи. Если детеныша всегда кормят в темноте, то вид пищи не будет вызывать слюноотделения, так как кормление никогда не ассоциировалось с видом пищи. Если какое-то блюдо никогда не включали в рацион детеныша, то вид этого конкретного блюда тоже не вызовет саливации при своем появлении, даже если это какой-то невообразимый деликатес для данного биологического вида. Если щенок никогда не ел мяса, то у него не начнется саливация от мясного запаха.
Рефлекс, который вызывает ответ на подобные ассоциации, называется условным рефлексом. Похоже, что организм способен найти более короткий путь замыкания рефлекторной дуги. Организм встречается с ситуацией, когда «определенный запах означает определенный вкус, а вкус вызывает слюноотделение». После этого в дело вступает нервный путь, который упрощает положение, говоря: «Определенный запах вызывает саливацию». (Это напоминает свойство математических равенств: если а=b и b=с, то а=с.)
Такое свойство организмов очень ценно для выживания, так как ответ, который полезен для определенного стимула, скорее всего, окажется полезным и при других стимулах, которые неизменно или почти неизменно сопутствуют первому. Животное, ищущее пищу и руководствующееся только ее вкусом, будет вынуждено пробовать на язык все, что найдет. Такое животное, скорее всего, либо погибнет от голода, либо отравится. Животное, у которого выработан условный рефлекс на запах пищи, имеет большие преимущества.
Условный рефлекс может быть выработан на любой стимул, даже на такой, который, казалось бы, «не имеет смысла». Выработка условного рефлекса не подчиняется логике, это чисто ассоциативный процесс. Первым, кто проводил опыты с искусственными ассоциациями, не имеющими смысла, был русский физиолог Иван Петрович Павлов. Первая ступень его карьеры была посвящена изучению нервных механизмов, контролирующих секрецию некоторых пищеварительных желез. В 1889 году он выполнил весьма впечатляющий опыт, в ходе которого был вскрыт пищевод собаки, верхний отрезок которого был выведен в разрез на ее шее. Пища, которой кормили собаку, выпадала наружу, вместо того чтобы попадать в желудок. Тем не менее, выяснилось, что стимуляция вкусовых почек все равно приводила к выделению желудочного сока. Это был безусловный рефлекс. Но Павлов не остановился на этом, а пошел дальше, выяснив, что при перерезке определенных нервов разрывается дуга этого рефлекса. Хотя собака продолжала с аппетитом есть, желудочный сок больше не выделялся. За эту работу Павлов был в 1904 году удостоен Нобелевской премии.
К тому времени, однако, в физиологии начало развиваться новое направление. В 1902 году Бэйлис и Старлинг показали, что нервные сети - не единственное средство вызова ответов секретирующих соки пищеварительных желез. Действительно, эти ученые выяснили, что деятельность поджелудочной железы не нарушается при перерезке нервов, идущих к ней, и что существуют механизмы регуляции, обусловленные доставкой химических регуляторов с током крови. Павлов пошел другим путем, получив еще более плодотворные результаты. Предположим, что собаке предложили корм. Подчиняясь безусловному рефлексу, собака начнет выделять слюну, ощутив вкус пищи. Вследствие раннего кондиционирования собака также будет выделять слюну в ответ только на запах и вид корма. Но допустим далее, что каждый раз, когда собаке дают пищу, будет звенеть звонок. Это условие соединит вид и запах пищи со звуком звонка. После этого при повторении звонка от 20 до 40 раз собака начинала выделять слюну на один только звонок.
Оставшиеся тридцать лет своей жизни Павлов проводил опыты по выработке самых разнообразных условных рефлексов. Такие рефлексы можно было выработать практически на любые сочетания стимулов и ответов, хотя предел оказался все же не бесконечным. Экспериментаторы открыли, что некоторые экспериментальные условия более эффективны, нежели другие. Если стимул, на который желательно выработать условный рефлекс, предъявляется непосредственно перед нормальным стимулом, то условный рефлекс вырабатывается очень быстро. Например, если звонок звенит непосредственно перед дачей корма. Если же звонок звенит после дачи корма или задолго до нее, то выработка условного рефлекса затрудняется.
Некоторые ответы трудно получить на условный раздражитель. Например, слюноотделением легко управлять, и животных, которые обильно выделяют слюну, очень легко заставить выделять ее в ответ на любой стимул, так или иначе связанный с пищей. Напротив, ответ радужной оболочки на усиление освещенности очень трудно модифицировать какими-либо стимулами, отличными от самого света. (Это, впрочем, не лишено смысла. Ответ на пищу по необходимости должен быть гибким, так как пища может появиться в любом обличье и в разных условиях. Но свет - это свет, и гибкость ответа на его воздействие не нужна и не желательна.)
Различные виды животных отличаются друг от друга по легкости выработки у них условных рефлексов. Как правило, условные рефлексы легче вырабатываются у животных с развитой нервной системой. Они легко улавливают связь между звонком и пищей. Другими словами, можно сказать, что облегчение возникновения новых нервных связей обусловлено большим количеством нейронов в нервной системе и их сложным взаимодействием между собой.
Выработка условных рефлексов отличается от импринтинга тем, что первое обладает большей гибкостью. Условный рефлекс может быть выработан в любое время для большого множества стимулов и ответов, в то время как импринтинг осуществляется в течение короткого критического периода и включает в себя специфический стимул и специфический ответ. Выработка условного рефлекса требует больше времени, чем импринтинг, и в отличие от импринтинга условный рефлекс может угасать.
Предположим, что у собаки выработали условный рефлекс слюноотделения на звонок, а потом в течение некоторого периода времени не кормили после звонка. В этой ситуации с течением времени саливация в ответ на звонок станет слабее и в конце концов совсем прекратится. Условный рефлекс угаснет.
Не удивительно, что чем дольше и чем с большим трудом вырабатывался условный рефлекс, тем дольше и с большим трудом он угасает. Так же не удивительно, что выработанный и угасший условный рефлекс легче вырабатывается во второй раз. Можно сказать, что нервная система, раз выработав условный рефлекс, держит его постоянно под рукой «готовым к употреблению».
Условный рефлекс оказался бесценным инструментом в изучении поведения животных. Выработка условных рефлексов позволяет получить ответы на такие вопросы, для получения которых в противном случае потребовалось бы умение общаться с низшими животными. А в предыдущей главе я рассказал, что пчела не может видеть красный, но может видеть ультрафиолетовый свет. Но как был установлен этот факт, если пчела не в состоянии сообщить нам об этом непосредственно? Ответ заключается в выработке условного рефлекса.
Нельзя представить себе, что у животного можно выработать условный рефлекс на какой-то стимул и не выработать па другой только при условии, что оно различает эти стимулы. Это утверждение кажется самоочевидным. Теперь предположим, что пчелам предъявляются капельки сахарного сиропа па карточках. Пчелы будут прилетать на карточки и есть сироп. Со временем у пчел выработается условный рефлекс, и они начнут прилетать к карточкам даже тогда, когда на них отсутствует сироп. Предположим далее, что в опыте используется два вида карточек, одинаковых по форме, гладкости и размеру, но отличающиеся цветом - одни карточки синие, адругие - серые. Предположим, что сироп всегда наносили на синие карточки и никогда на серые. Со временем, в отсутствие сиропа, пчелы начинают лететь только к синим карточкам, но не к серым. Отсюда можно вывести, что пчела может отличать синие карточки от серых, так как карточки отличаются друг от друга только цветом. Следовательно, пчела различает синий цвет.
Допустим, что в условия эксперимента внесли изменение и стали использовать красные и серые карточки. При этом еда всегда присутствует только на красных карточках. Наконец, по прошествии времени, достаточного для выработки условного рефлекса (на основании данных, полученных в предыдущем опыте), пчел испытали с помощью карточек, на которых не было сиропа. Оказалось, что пчелы без разбора летают как к красным, так и к серым карточкам. Значит, пчелы не отличают серый цвет от красного, то есть они не различают красный цвет.
С другой стороны, пчелы могут отличать друг от друга карточки, которые нам с вами представляются совершенно одинакового цвета, правда, одни из них отражают больше ультрафиолетовых лучей, чем другие. Если сироп помещают только на карточки, отражающие ультрафиолетовые лучи, и никогда на другие, то это приводит к успешной выработке у пчел соответствующего условного рефлекса. Пчела различает карточки даже в отсутствие пищи, а мы не можем. Короче говоря, выяснилось, что пчела видит в ультрафиолетовом спектре.
Тем же способом мы можем испытать, насколько тонко собака различает высоту звуков или формы каких-либо предметов, при выработке условных рефлексов на высоту звука или на форму предметов. При этом можно отметить, к каким звукам и формам собака остается равнодушной. Выяснилось, что собака, например, может отличить круг от эллипса. Она отличает круг, два перпендикулярных диаметра которого равны десяти единицам длины, от эллипса, в котором отношение двух перпендикулярных диаметров равно девять к десяти. Кроме того, собака различает звуки, если частоты их отличаются всего на три герца. Было также показано, что собаки «страдают» абсолютной цветовой слепотой, потому что у них нельзя выработать условный рефлекс, используя разницу цветов.
Глава 14
СОЗНАНИЕ
ОБУЧЕНИЕ
В прошлом люди иногда имели склонность ставить твердую и непроницаемую перегородку между поведением человека и поведением всех остальных животных, назвав эту перегородку «разумом». Поведением других животных управляют инстинкты или их врожденная природа, которая контролирует каждый их шаг и которую они не в силах изменить. Словом, при таком взгляде на жизнь животных считали машинами, конечно очень сложными, но все же машинами.
Человек, согласно такому взгляду, напротив, имеет определенные свойства, которых нет ни у одного животного. Он может запоминать прошлое в мельчайших деталях, предвидеть будущее почти в таких же деталях, представлять себе альтернативные возможности, взвешивать обстоятельства и судить о вещах на основании прошлого опыта, выводить из посылок следствия - и действовать на основании всего этого, исходя из собственной «свободной воли». Короче говоря, только человек обладает силой разума; только у него есть рациональное сознание, коим не обладает никакое другое живое создание.
Никто при этом не отрицает, что и у человека есть инстинкты и слепые побуждения и что еще в совсем недавнем прошлом он руководствовался в своих поступках «животной природой». Но рациональное сознание сумело подняться выше этих темных сил. Оно может превзойти своей силой даже безусловные рефлексы. Если человек подготовлен и если перед ним стоит достойная цель, то он может взять раскаленный предмет и удерживать его, невзирая на боль и дымящуюся кожу. Человек может, не мигая, встретить направленный в лицо удар. Он может преодолеть «основной закон природы», презрев инстинкт самосохранения, и сознательно пожертвовать жизнью ради друга, любимой или даже отвлеченных идеалов.
Однако такое разделение между «разумным человеком» и «иррациональным скотом» едва ли выдерживает критику. Конечно, верно, что при продвижении вниз по эволюционной лестнице по направлению к более простым и примитивным животным мы убедимся, что нервная система будет иметь более простое строение и что для таких животных главную роль будет играть врожденное поведение. Мы увидим, что способность модифицировать поведение в свете прошлого опыта (то есть способность к обучению) будет постепенно терять свою важность. Таким образом, разницу между людьми и животными в этом отношении можно и должно определять не словами «да» и «нет», но словами «больше» и «меньше».
Даже некоторые представители простейших, то есть одноклеточных, животных не всегда реагируют одинаково па одни и те же стимулы, чего следовало бы от них ожидать, если бы они действительно были в буквальном смысле слова машинами. Если в воду, где обитает такое простейшее, добавить раздражающий агент, то животное попытается уйти от него, используя способы 1, 2, 3 и 4, эффективность которых возрастает в той же последовательности. Если тот же агент добавлять в воду повторно через короткие промежутки времени, то со временем животное научится сразу реагировать на пего шагом 3, не пробуя шаги 1 и 2. Создается впечатление, что простейшее решило не прибегать к полумерам, а значит, оно чему-то научилось.
Естественно, что более высокоорганизованные животные легко вырабатывают условные рефлексы, приспосабливая свое поведение к внешним условиям, иногда такая адаптация оказывается весьма сложной. Не надо думать, что условный рефлекс - это всегда нечто вырабатываемое в лаборатории; ничуть не бывало, природа вырабатывает у животных условные рефлексы не хуже, а подчас и лучше, чем человек. Обыкновенная крыса жила и процветала на земле задолго до появления на ней разумного человека. В те времена она жила, не зная о городах и прочих местах обитания человека. Однако она научилась жить в построенных человеком городах и стала таким же городским жителем, как мы с вами, если даже не лучшим, чем мы. Крыса сумела изменить свою природу и проявила недюжинные способности к обучению - так же, как люди. Она сделала это без нашей помощи, более того, невзирая на наши решительные попытки уничтожить ее.
Никакой условный рефлекс - будь он выработан человеком или природой - не сможет заставить льва есть траву, потому что у него нет зубов, приспособленных для разжевывания травы, и, кроме того, нет пищеварительных соков, способных ее переварить, даже в том случае, если бы лев сумел проглотить разжеванную траву. Можно сказать, что врожденная природа льва заставляет его питаться зебрами, а не травой, и этого нельзя изменить. Такие физические ограничения порабощают и человека. Как сказано в Нагорной проповеди: не может человек «заботясь» прибавить себе росту хотя на один локоть. Не может человек никакой заботой стать прозрачным или, взмахнув руками, взлететь над землей. При всем своем разуме, человек так же скован своими физическими ограничениями, как самая простая амеба.