На одном из участков производственного цеха BMW в Дингольфинге (Германия) человек и робот вместе собирают трансмиссию. Рабочий готовит корпус, а механическая рука, восприимчивая к происходящему вокруг и оснащенная функцией распознавания, поднимает механизм весом в 5,5 кг. Рабочий переходит к следующей операции, а робот аккуратно устанавливает коробку передач и поворачивается, чтобы взять следующую.
В другом производственном участке под негромко играющую песню Lost on You американской певицы LP еще один манипулятор приклеивает черный уплотнитель по периметру автомобильных окон. Между операциями рабочий подходит, чтобы протереть форсунку, вставить стекло и унести готовые окна, как будто робот и человек исполняют хорошо поставленный танец[1].
Благодаря открытиям в области искусственного интеллекта мы вступаем в эпоху радикальной трансформации бизнеса. Это новая эра, где фундаментальные управленческие подходы, которыми мы руководствовались прежде, меняются ежедневно. Системы на основе искусственного интеллекта не только автоматизируют многие процессы, делая их более эффективными, но и позволяют человеку и машине совершенно по-новому взаимодействовать. Меняется сама природа работы, что заставляет нас искать новые методы управления бизнесом и персоналом.
Долгие годы роботы представляли собой громоздкие устройства, обычно отделенные от работников-людей и выполняющие четко прописанную задачу — к примеру, они оптимизировали загрузку деталей на штамповочный пресс. Подобная функция была частью стандартизованного производственного процесса, в рамках которого и люди выполняли одну и ту же работу изо дня в день — например, выявляли дефекты в деталях.
Сравните традиционный конвейер с заводом, где роботы намного меньше, маневреннее и способны работать бок о бок с человеком благодаря встроенным сенсорам и сложным алгоритмам искусственного интеллекта. В отличие от первых поколений промышленных роботов — громоздких, неинтеллектуальных и даже опасных механизмов — новое поколение может распознавать находящиеся рядом объекты, понимать происходящее, действовать и обучаться благодаря машинному обучению и другим технологиям искусственного интеллекта. Иными словами, рабочий процесс становится гибким и адаптивным, традиционные сборочные линии уступают место командам «человек + машина», которые можно постоянно менять без остановки производства. Теперь, чтобы выполнить кастомизированный заказ и адаптироваться к меняющемуся спросу, будут сформированы команды «человек + машина». К новым задачам они приступят сразу, без необходимости проверять и корректировать вручную процессы или производственные этапы.
Прогресс затронул не только производственную сферу. Системы искусственного интеллекта интегрируются во все отделы, от маркетинга, продаж и обслуживания клиентов до НИОКР.
Представьте: продуктовый дизайнер из Autodesk разрабатывает новый дрон. Вместо того чтобы модифицировать существующие концепты с учетом таких ограничений, как вес и мощность двигателя, он вводит эти параметры в программу с функциями искусственного интеллекта. Алгоритм генерирует огромное количество дизайн-проектов, которых никто никогда прежде не создавал. Некоторые чересчур причудливы, другие более привычны, но все без исключения соответствуют исходным требованиям. Дизайнер выбирает тот вариант, благодаря которому его дрон будет выгодно отличаться от конкурентов, и дорабатывает прототип в соответствии с эстетическими представлениями и инженерными задачами.
Потенциальная способность искусственного интеллекта трансформировать бизнес-процессы беспрецедентна, однако она создает и проблему, требующую особого внимания. В отношении использования искусственного интеллекта — систем, расширяющих возможности человека благодаря распознаванию, осмыслению, действию и обучению, — компании сейчас находятся на перепутье. По мере внедрения подобных систем — от машинного обучения до компьютерного зрения и глубокого обучения — одни компании смогут увеличить производительность труда только в краткосрочной перспективе (и со временем этот эффект нивелируется), тогда как другие достигнут небывалых высот с помощью революционных инноваций, меняющих правила игры. В чем же причина?
Она кроется в понимании истинной природы воздействия искусственного интеллекта. В прошлом руководители внедряли машины, чтобы автоматизировать конкретные бизнес-процессы. Традиционно это были линейные, пошаговые, последовательные, стандартизованные, повторяющиеся и измеряемые операции. За прошедшие годы их удалось оптимизировать благодаря анализу трудозатрат и потраченного времени (вспомните конвейеры), однако сейчас этот подход исчерпал себя и компании выжимают последнее из автоматизации.
Продолжая исследовать потенциал технологий искусственного интеллекта, лидеры отраслей начали по-новому смотреть на бизнес-процессы, прежде всего, как на гибкие и адаптивные. Они отказались от традиционных конвейеров и перешли к идее интеграции людей и продвинутых ИИ-систем. Взаимодействие человека и машины радикально меняет многие процессы. Опыт BMW и Mercedes-Benz убеждает в том, что традиционные сборочные линии уступают место интегрированным командам сотрудников, работающих бок о бок с роботами. Команды нового типа способны на ходу усваивать новую информацию и адаптироваться к быстро меняющимся рыночным условиям. Это позволяет компаниям переосмысливать бизнес-процессы.
Ключ к пониманию роли искусственного интеллекта сейчас и в будущем — трансформация бизнес-процессов.
Распространено мнение, что системы на основе искусственного интеллекта, включая робототехнику и ботов, постепенно начнут вытеснять людей с рабочих мест, отрасль за отраслью. Беспилотные автомобили придут на смену такси, возьмут на себя курьерскую доставку и грузовые перевозки. Для некоторых профессий это верно, однако наши исследования показывают, что, хотя искусственный интеллект можно использовать для автоматизации определенных процессов, гораздо большего эффекта можно достичь при дополнении и расширении человеческих возможностей. К примеру, при обработке требований и жалоб искусственный интеллект не заменяет людей; напротив, он берет на себя однообразные рутинные действия по сбору данных и их предварительному анализу, высвобождая сотрудникам время для решения сложных проблем. По сути машины делают то, что им удается лучше всего: выполняют повторяющиеся монотонные задачи и анализируют колоссальные объемы данных. А люди занимаются тем, что они умеют лучше всего: работают с неоднозначной информацией, приходят к умозаключениям в сложных случаях и общаются с недовольными клиентами. Зарождающаяся интеграция человека и машины положила начало так называемой третьей волне бизнес-трансформации.
Чтобы лучше понимать, как сегодня обстоят дела с внедрением искусственного интеллекта, следует разобраться в истории вопроса. Первая волна трансформации предполагала стандартизацию процессов. Эту эпоху открыл Генри Форд, который превратил производство автомобиля в набор последовательных операций, осуществляемых на конвейере. Каждую операцию можно было измерить, оптимизировать и стандартизировать, обеспечив на этой основе рост производительности труда.
Основным содержанием второй волны трансформации бизнеса стала автоматизация. Эта волна пришла в 1970-х годах и достигла своего пика в 1990-е благодаря реорганизации бизнес-процессов на основе открытий в области информационных технологий: персональные компьютеры, обширные базы данных и программное обеспечение, которое автоматизировало задачи бэк-офиса. Такие ритейлеры, как Walmart, оседлали вторую волну и стали мировыми лидерами. Некоторые компании смогли полностью перестроиться: UPS, к примеру, из курьерской службы превратилась в глобальную логистическую компанию.
Третья волна связана с адаптивными бизнес-процессами. Основанная на двух предыдущих, она будет гораздо более масштабной и значительной, чем революция конвейеров и компьютеров, и олицетворяет собой радикально новые методы ведения бизнеса. Как мы покажем в этой книге, лидеры отраслей трансформируют свои бизнес-процессы, чтобы стать более гибкими и быстрыми, а также легко адаптироваться к поведению, предпочтениям и потребностям своих сотрудников в любой момент. Эта способность к адаптации опирается на обработку данных в режиме реального времени (вместо заранее заданной последовательности шагов). Хотя процессы не стандартизованы и не унифицированы, они дают гораздо более значимые результаты. По сути, ведущие компании выводят на рынок персонализированные продукты и услуги (в отличие от массовой продукции вчерашнего дня) и при этом обеспечивают стабильное увеличение прибыли.
Чтобы проиллюстрировать глубокое различие между старым мышлением и новым подходом, взглянем на историю GPS-навигации. Первые онлайн-карты представляли собой цифровую версию бумажных. Вскоре GPS-навигаторы изменили наш пользовательский опыт обращения с картами: достаточно было указать место назначения, чтобы узнать маршрут, хотя процесс все равно оставался статичным. Сейчас такие навигационные приложения, как Waze, используют пользовательские данные в режиме реального времени — местонахождение водителя и скорость, а также информацию о пробках, ДТП, ремонтных работах и других препятствиях, которой делятся сами пользователи. Все эти данные позволяют системе построить оптимальный маршрут и обновлять его в режиме реального времени, чтобы сэкономить время в пути. Старый подход предполагал оцифровку статичной бумажной карты, в то время как Waze объединил ИИ-алгоритмы и данные в режиме реального времени, чтобы создать живую оптимизированную карту, которая помогает водителям максимально быстро добраться до пункта назначения. Использование искусственного интеллекта исключительно для автоматизации текущих процессов напоминает первые GPS-навигаторы, тогда как современная эпоха взаимодействия человека и машины больше похожа на Waze — традиционные бизнес-процессы в ней полностью переосмыслены.
К сожалению, массовая культура уже давно продвигает идею противостояния человека и машины — вспомните такие фильмы, как «2001: Космическая одиссея» и все серии «Терминатора». Представление об умных машинах как потенциальной угрозе человечеству имеет долгую историю и уже привело к тому, что многие руководители придерживаются схожей точки зрения, воспринимая машины исключительно как врагов, которые вытеснят людей. Это не только прискорбное заблуждение, но и губительная недальновидность.
Правда проста: машины не собираются захватывать мир и не исключают присутствия человека на рабочих местах. В современную эпоху трансформации бизнес-процессов системы искусственного интеллекта не заменяют людей; напротив, они расширяют наши возможности и сотрудничают с нами, повышая производительность и позволяя достичь результатов, которые раньше считались невозможными.
В этой книге мы покажем, что третья волна создала колоссальное, динамично развивающееся и разнообразное пространство для взаимодействия человека и машины, призванного на несколько порядков повысить эффективность бизнес-процессов. Мы называем эту область недостающей серединой — «недостающей», потому что практически никто о ней не говорит и лишь немногие работают над тем, чтобы заполнить эту лакуну (рис. 1).
Рис. 1. «Недостающая середина»
В «недостающей середине» люди работают с умными машинами, причем каждый участник взаимодействия специализируется на том, что делает лучше всего. Люди разрабатывают, обучают ИИ-приложения и управляют ими. Так человек дает возможность технологиям выполнять роль партнеров. Машины в «недостающей середине» помогают людям превзойти себя, наделяя их сверхспособностями — например, возможностью обрабатывать и анализировать огромное количество данных из самых разных источников в режиме реального времени. Машины расширяют возможности людей.
В «недостающей середине» люди и машины не враги, конкурирующие за одну и ту же работу. Напротив, они партнеры и образуют симбиотический союз, где один мотивирует другого на более высокие достижения. В недостающей середине компании могут переосмыслить свои бизнес-процессы и воспользоваться преимуществами команды «человек + машина». Возможности недостающей середины открыты не только IT-компаниям. Так, Rio Tinto, глобальный горнодобывающий концерн, использует искусственный интеллект для удаленного управления оборудованием — автоматизированными бурами, экскаваторами, бульдозерами и так далее — из единого центра управления. Благодаря этому операторам-людям не приходится больше трудиться в опасных условиях. Команда аналитиков Rio Tinto может анализировать информацию, поступающую с датчиков, чтобы управлять техникой эффективнее и безопаснее[3].
Как мы уже отмечали, в эпоху адаптивных процессов правила управления организациями меняются каждый день. Переосмысливая бизнес-процессы и характер взаимодействия человека и машины, бизнес-лидеры в самых разных отраслях должны принять новые правила и следовать им. Вот почему мы написали эту книгу: чтобы дать людям, которых заботит их бизнес, команда и карьера, необходимые знания для достижения успеха в эпоху искусственного интеллекта.
В первой части мы расскажем о той роли, которую искусственный интеллект играет в бизнес-процессах сегодня. Начнем с заводских цехов, а затем проиллюстрируем, как организации используют искусственный интеллект в разных отделах — бэк-офис, НИОКР, маркетинг и продажи. Основной вывод этого раздела: компаниям не стоит рассчитывать на реализацию всех преимуществ взаимодействия человека и машин, если они не создали для этого соответствующих условий. Повторим, что организации, которые используют машины только для замены людей, в итоге проиграют, в то время как компании, стремящиеся расширить человеческие возможности с помощью машин, станут лидерами своей отрасли.
В первой главе мы расскажем о том, как команды «человек + машина» изменили производство не только в BMW и Mercedes-Benz, но и у других крупных производителей. Так, General Electric создает «цифровые двойники» своих продуктов — например, турбинной лопасти в реактивном двигателе. Виртуальные модели наследуют свойства физического объекта, что позволяет повышать производительность, а также прогнозировать сбои до того, как они произойдут, что в корне меняет техническое обслуживание оборудования.
Вторая глава посвящена бэк-офису. Здесь технологии искусственного интеллекта помогают фильтровать и анализировать колоссальные потоки информации из самых разных источников и автоматизировать однообразные рутинные задачи, а также расширять человеческие возможности и опыт. К примеру, канадская компания, оказывающая финансовые и страховые услуги, использует ИИ-системы для обработки неструктурированных финансовых данных из новостных заметок, отчетов и электронной почты, с тем чтобы выработать конкретные рекомендации, причем ее можно обучить извлекать из общего информационного потока только те сведения, которые коррелируют с индивидуальными запросами каждого аналитика.
В третьей главе мы покажем, как компании используют искусственный интеллект в научных исследованиях и разработках. На каждом этапе НИОКР — наблюдение, формулирование гипотезы, проведение эксперимента и анализ результатов — ИИ-технологии способствуют большей эффективности и значительно улучшают конечный результат. Мощный программный пакет GNS Healthcare с элементами машинного обучения находит закономерности в медицинских картах пациентов и может автоматически генерировать гипотезы непосредственно из данных. Так, системе потребовалось всего три месяца, чтобы воспроизвести результаты двухлетнего исследования, в ходе которого изучались побочные реакции при приеме нескольких лекарственных препаратов у пожилых пациентов по программе Medicare.
В четвертой главе мы рассмотрим бизнес-процессы в маркетинге и продажах, а также расскажем, какое огромное влияние искусственный интеллект оказал на эти сферы. Виртуальные помощники на основе нейронных сетей и машинного обучения, такие как Alexa (Amazon), Siri (Apple) и Cortana (Microsoft), стремительно становятся цифровым воплощением этих брендов. Другими словами, искусственный интеллект сам становится брендом.
Во второй части нашей книги мы исследуем «недостающую середину» и дадим рекомендации топ-менеджерам, чтобы помочь им пересмотреть и переосмыслить традиционные представления о работе. Чтобы раскрыть весь потенциал искусственного интеллекта, компаниям необходимо восполнить существующий ныне пробел, продумав новый функционал своих сотрудников, выработав новые принципы взаимоотношений человека и машины на рабочих местах, изменив традиционный подход к управлению и пересмотрев саму суть такого понятия, как «труд».
В пятой главе мы поговорим о том, как машинное обучение, интегрированное в бизнес-процессы, приводит к появлению совершенно новых профессий. В частности, понадобятся сотрудники, умеющие разрабатывать и обучать алгоритмы, разъяснять принципы их действия и при этом видеть их неотъемлемой частью бизнес-процессов. Одна из новых профессий — менеджер по связям с машинами — примерно то же, что HR-менеджер, но по управлению системами искусственного интеллекта, а не сотрудниками. Эти менеджеры будут продвигать эффективные системы, воспроизводить их в других подразделениях компании. Системы с низкой результативностью будут «разжалованы» и, вероятно, списаны со счетов.
В шестой главе мы расскажем, как люди добиваются невероятного повышения эффективности благодаря ИИ-технологиям, которые существенно расширяют их возможности. Они развивают человеческий потенциал и дают ему проявиться в полной мере. (В каком-то смысле эта глава — обратная сторона пятой главы, где мы рассматриваем, как люди помогают машинам расширять и развивать их возможности.) Взаимодействие человека и машины помогает людям прыгнуть выше головы, освободив от тяжелой рутинной работы и позволив выполнять свои задачи быстрее и эффективнее.
В седьмой главе мы проведем глубокий анализ управленческих проблем, возникающих у руководителей и бизнес-лидеров при взаимодействии с искусственным интеллектом и требующих от них совершенно иного мышления. Основной вопрос: какие шаги должен предпринять топ-менеджмент, чтобы обеспечить трансформацию текущих бизнес-процессов? В частности, руководители должны содействовать осуществлению пяти основных принципов, включая экспериментирование (в данном контексте метод проб и ошибок), организацию доступности данных для анализа и обучения искусственного интеллекта и т. д.
Наконец, в восьмой главе мы поговорим о характере работы в будущем. По мере того как взаимодействие человека и машины будет получать все большее распространение, компаниям придется развивать восемь интегрированных навыков: умное запрашивание (знать, как лучше сформулировать вопросы для интеллектуального агента на самых разных уровнях абстракции), расширение возможностей с помощью ботов (эффективное взаимодействие с интеллектуальными агентами ради достижения самых смелых целей), взаимное обучение (обучать ИИ-агентов новым навыкам и при этом обучаться самому для эффективной работы с процессами, оптимизированными с помощью искусственного интеллекта), целостное слияние (разработка ментальных моделей для интеллектуальных агентов с целью улучшить результаты взаимодействия человека и машины), регуманизация времени (переосмысление бизнес-процессов с целью выделить максимум времени для тех задач, которыми занимаются только люди, и для обучения), ответственная стандартизация (определение целей и восприятия взаимодействия человека и машины на уровне индивидов, бизнеса и общества в целом), вынесение совместных решений (выбор последовательности действий в условиях машинной неопределенности) и неустанное переосмысление (поиск новых способов реорганизации труда, бизнес-процессов и бизнес-моделей с целью значительного роста их эффективности).
Наши исследования показали: лидеры самых разных отраслей — 9% нашей выборки из более чем 1500 представителей — уже «оседлали» третью волну. Они добились максимальной автоматизации и теперь разрабатывают следующее поколение процессов и навыков, чтобы использовать весь потенциал взаимодействия человека и машины. Они думают в стиле Waze, переосмысливают бизнес-процессы как активные и адаптивные, используя данные, поступающие в режиме реального времени. Они вышли за рамки традиционного мышления — примитивной оцифровки статичных карт.
Как ведущие компании добились подобных результатов? Они преуспели, следуя пяти основным принципам, связанным с надлежащим мышлением, экспериментированием, лидерством, данными и навыками (MELDS — Mindset, Experimentation, Leadership, Data, Skills).
• Надлежащее мышление — принципиально иной подход к бизнесу через переосмысление работы в области «недостающей середины», где люди совершенствуют искусственный интеллект, а умные машины наделяют человека сверхспособностями. Ранее акцент делался на использовании машин для автоматизации конкретных операций в том или ином производственном процессе. Теперь потенциальное взаимодействие человека и машины трансформирует устоявшиеся бизнес-процессы. Традиционные сборочные линии уступают место интегрированным командам людей, обладающих расширенными возможностями, и умных машин. Эти команды «на ходу» адаптируются к постоянно обновляемым данным и иным нововведениям, привносимым людьми. Это своего рода симбиоз, где бизнес-процессы все больше напоминают живые организмы. По нашим прогнозам технологии искусственного интеллекта будут играть ведущую роль в том, чтобы помочь компаниям теснее взаимодействовать с рынками, на которых они работают, более оперативно реагируя на потребительский спрос. Чтобы этот прогноз стал реальностью, руководителям придется воспринять уникальный образ мышления, ориентированный на действия, и переосмыслить свои бизнес-процессы. Им также предстоит уяснить: первым делом необходимо заложить фундамент, а не спешно заполнять «недостающую середину». Сначала нужно раскрыть потенциал своих сотрудников, автоматизировав рутинную работу, и затем только можно сосредоточиться на взаимодействии человека и машины.
• Экспериментирование: активный поиск возможностей для тестирования искусственного интеллекта, а также для изучения и масштабирования переосмысленных процессов в «недостающей середине». Век стандартизированных бизнес-процессов подходит к концу, компании больше не могут опираться на стратегию копирования лучших бизнес-практик от лидеров отрасли. Вот почему таким важным становится экспериментирование. Руководители должны регулярно проводить испытания, чтобы определить, какие бизнес-процессы наиболее эффективны именно для них. Львиная доля этих исследований будет проводиться методом проб и ошибок, чтобы выяснить, какую работу должны выполнять люди, а какую лучше поручить командам людей и машин (недостающей середине).
• Лидерство: ответственное применение искусственного интеллекта с первых шагов. Руководители должны учитывать этические, моральные и правовые последствия применения технологий искусственного интеллекта; системы, работающие на их основе, должны выдавать результаты, поддающиеся объяснению, способствовать прозрачности алгоритмов и устранять возникающие ошибки. Компаниям также следует уделить внимание тому, чтобы сотрудники, работающие с системами искусственного интеллекта, не утрачивали ощущения контроля и развивали понимание собственных расширенных возможностей при принятии решений. Более того, компании должны обеспечить необходимое обучение и переобучение сотрудников, чтобы люди были подготовлены к выполнению нового функционала в рамках «недостающей середины». По сути, инвестиции в персонал должны стать основной частью стратегии по внедрению искусственного интеллекта в каждой компании.
• Данные: построение «цепочки поставок информации» для обеспечения работы интеллектуальных систем. Искусственный интеллект требует колоссального количества данных — и по объему, и по типам. Сюда входят и «выбросы», то есть данные, возникшие как побочный продукт другого процесса (например, cookie-файлы от просмотра веб-страниц). Сбор и обработка подобной информации — одна из основных трудностей, с которой сталкиваются компании, использующие системы искусственного интеллекта. Данные должны перемещаться внутри организации абсолютно свободно, не «оседая» в тех или иных отделах. Только так компании смогут эффективно использовать информацию, применяя ее для поддержки и совершенствования технологии искусственного интеллекта и работы людей в «недостающей середине».
• Навыки: активно развивать восемь интегрированных навыков, необходимых для трансформации бизнес-процессов в «недостающей середине». Растущая сила искусственного интеллекта радикально меняет взаимодействие человека и машины. Во вторую волну машины использовались главным образом для замены людей — вспомните, как автоматизация резко сократила число заводских рабочих, секретарей, бухгалтеров, кассиров-операционистов в банках, турагентов и других. Но сейчас, в период третьей волны, люди нужны больше, чем когда-либо: на этапе трансформации бизнес-процессов именно люди становятся ключевыми игроками. В эпоху адаптивных процессов люди не только разрабатывают, развивают и обучают системы искусственного интеллекта, но и взаимодействуют с ними, заполняя «недостающую середину» и достигая нового уровня производительности.
Как вы увидите, пять базовых элементов новой модели (MELDS) лежат в основе большинства практических советов этой книги, и мы часто будем возвращаться к ним: на первых четырех мы сосредоточимся в главе 7, а последний, пятый, подробно рассмотрим в главе 8.
Революция искусственного интеллекта не грядет, она уже здесь и требует от компаний переосмысления бизнес-процессов, чтобы максимально использовать возможности ИИ-технологий для расширения человеческих способностей. Эта книга — ваш путеводитель по дорогам новых технологий. Приступим к делу.