Часть II. «Недостающая середина»

Переосмысление бизнес-процессов с помощью искусственного интеллекта

Введение

* * *

В предыдущих главах мы говорили о том, как искусственный интеллект применяется в бизнесе. Компании в самых разных отраслях используют преимущества эффективных команд, состоящих из людей и машин. Сильные стороны людей, такие как креативность, находчивость, ловкость, рассудительность, социальные навыки и лидерские качества, по-прежнему актуальны и значимы. То же самое можно сказать и о сильных сторонах машин, таких как быстродействие, точность, прозрачная масштабируемость, способность выполнять повторяющиеся операции и строить прогнозы. Осознание относительных преимуществ людей и машин позволит компаниям повысить эффективность работы и усилить мотивацию сотрудников, существенно увеличив при этом доход и чистую прибыль.

Но что будет завтра? Вторая часть книги — это и есть наш прогноз. В следующих главах мы проанализируем динамику взаимодействия человека и машины, а также попытаемся выяснить, что можно сделать для переосмысления бизнес-процессов с учетом этой динамики.

По всей вероятности, некоторые профессии всегда будут оставаться исключительной прерогативой либо человека, либо машины. Однако наши исследования показывают, что формирование команд из людей и машин трансформирует многие старые профессии и способствует появлению новых. Новые профессии, возникающие из партнерского взаимодействия людей и машин, появляются в области, которую мы называем недостающей серединой. Речь идет о новых подходах к труду, которые практически не упоминаются в современных экономических исследованиях и докладах о положении дел в сфере занятости. Традиционно людей и машин считали соперниками, отнимающими друг у друга работу. Однако такая бинарная точка зрения носит слишком упрощенный характер и исключает пути эффективного взаимодействия, которые и формируют «недостающую середину».

Простая истина: максимальной эффективности компании достигают, когда люди и машины действуют как союзники (а не как противники), пользуясь преимуществами друг друга. То, что мы выполняем играючи (сложить полотенце, например), может оказаться весьма сложным для машины. А нам чрезвычайно трудно делать то, что легко дается машинам (в частности, обнаруживать скрытые закономерности в больших объемах данных). В действительности люди могут добиваться успеха, когда в их распоряжении почти нет данных, тогда как машинам нет равных при больших объемах данных. Бизнес нуждается в обеих возможностях — и эти возможности находятся в той самой «недостающей середине», где и происходит командная работа. Кроме того, машинное обучение и другие технологии искусственного интеллекта во многих случаях функционируют подобно «черным ящикам», что может привести к принятию решений, не имеющих объяснения. Для систем определенных типов это приемлемо, однако другие области применения (такие как медицина и право) обычно требуют участия людей.

В прошлом, когда цифровые инструменты использовались в основном для автоматизации процессов, у компаний не было «недостающей середины» и, соответственно, потребности ее заполнить. Однако сегодня в связи с совершенствованием технологий искусственного интеллекта, благодаря которым возможно взаимодействие человека и машины, развитие «недостающей середины» стало одним из важнейших элементов переосмысления бизнес-процессов. Формирование «недостающей середины» начинается с подхода, которого уже придерживаются многие компании, упомянутые в первой части книги. Они рассматривают инвестиции в искусственный интеллект прежде всего как вложения в талантливых специалистов и только потом в технологии. Они высоко ценят сотрудников, которым свойственна гибкость, предпринимательский талант и готовность к переобучению. Кроме того, эти компании поддерживают успешное взаимодействие работников и систем искусственного интеллекта. Такой подход позволяет им создать основу для адаптируемых, устойчивых бизнес-процессов, способных выдержать экономические потрясения и ускоряющиеся темпы научно-технического прогресса.

Для дальнейшего развития «недостающей середины» компаниям необходимо понять, как люди помогают машинам и как машины помогают людям. Именно здесь мы находим самые передовые профессии настоящего и будущего как для людей, так и для машин.

На рис. 3 отображены шесть функций, формирующих «недостающую середину». В левой части рисунка показано, что люди обучают машины выполнению задач, разъясняют полученные машинами результаты и обеспечивают работу машин. Правая часть демонстрирует, что машины усиливают способность людей понимать суть происходящего и их интуицию посредством использования данных и методов анализа, а также взаимодействуют с людьми с помощью новейших интерфейсов и реализуют физические свойства, существенно расширяющие возможности человека.


Рис. 3. «Недостающая середина»


Эффективное использование «недостающей середины» — одна из главных составляющих переосмысления бизнес-процессов, однако существует и второй ключевой элемент — изменение самой концепции бизнес-процесса. Компаниям необходимо отказаться от восприятия себя как совокупности последовательных задач. В эпоху искусственного интеллекта бизнес-процессы становятся более динамичными и адаптивными. Вместо того чтобы представлять бизнес-процесс как совокупность точек на прямой, можно визуализировать его, скажем, как разветвленную сеть подвижных узлов, поддающихся повторному соединению, или как звездчатую систему. Линейная модель бизнес-процессов больше не соответствует требованиям времени.

Вопросы развития «недостающей середины» и переосмысления основ бизнес-процессов руководители компаний должны решать через призму ответственного искусственного интеллекта. Крайне важно не только обеспечивать процесс обучения, без которого сотрудники не могут участвовать в формировании «недостающей середины», но и решать этические, моральные и юридические вопросы, связанные с системами искусственного интеллекта. К числу самых важных относятся следующие:


• Как мы, будучи публичной компанией, имеющей обязательства перед акционерами, сотрудниками и обществом в целом, можем гарантировать, что будем развивать искусственный интеллект во благо, а не во вред?


• Можем ли мы использовать искусственный интеллект в рамках нового процесса в соответствии с имеющимися законами и нормативными актами, такими как «Общий регламент по защите данных»?


• Как мы можем гарантировать, что непредвиденные последствия внедрения искусственного интеллекта не вызовут проблем с брендом и связями с общественностью?


Хотя процесс только начинается, компании в самых разных отраслях уже демонстрируют поразительную креативность по использованию технологий искусственного интеллекта и привлечению сотрудников к ответственной трансформации и переосмыслению бизнес-процессов. Они позволяют заглянуть в будущее, которое становится все актуальнее не только для таких цифровых гигантов, как Facebook и Amazon, но и для каждой компании третьей волны трансформации.

Рассмотрим в качестве примера Rio Tinto — глобальную диверсифицированную горнодобывающую компанию[87]. Технология искусственного интеллекта позволяет этой компании удаленно управлять огромным парком оборудования из центра управления операциями. Эти автономные буровые установки, экскаваторы, бульдозеры, беспилотные грузовики и оборудование для шахт находятся в тысячах километров от центра. Показания датчиков, установленных на машинах, непрерывно поступают в базы данных, а искусственный интеллект анализирует эту информацию с целью обнаружить ценные сведения. Например, данные о закономерностях поломок самосвалов позволяют прогнозировать поломки и частоту ремонта.

Однако вряд ли это пример чистой автоматизации с полной заменой людей. В центре управления Rio Tinto работает много специалистов по анализу данных, инженеров и опытных операторов дистанционного управления оборудованием, которые вместе обеспечивают работу этого большого парка. У централизованного управления немало преимуществ: например, такой подход позволяет согласовать работу операторов, которые не взаимодействуют офлайн. Поскольку эти люди работают в тесном сотрудничестве, дистанционно управляя машинами, у них есть возможность координировать действия и решать проблемы, возникающие при изменении условий, таких как неблагоприятная погода и выход оборудования из строя. Безусловно, масштабные инвестиции Rio Tinto в искусственный интеллект не обошлись без неудач — например, беспилотные железнодорожные системы для перевозки руды по Австралии внедрили с большим опозданием[88]. Вот почему стоит уделить внимание эффективному взаимодействию людей и машин, обеспечивающему принятие более качественных решений и непрерывное совершенствование огромной операционной системы компании.

Многие вряд ли сочтут Rio Tinto компанией, функционирование которой основано на цифровых технологиях. Тем не менее ей удалось изменить структуру персонала таким образом, чтобы сотрудники могли эффективно работать вместе с системами искусственного интеллекта. Для этого компания реорганизовала ряд бизнес-процессов так, что они напоминают скорее центр управления полетами NASA в Хьюстоне — нетипичный, но все же эффективный подход для горнодобывающего предприятия.

Но что происходит, когда бизнес изначально выстраивается на основе совместной работы людей и машин? Компания Stitch Fix, которой исполнилось всего шесть лет, — наглядный пример «недостающей середины» и переосмысления бизнес-процессов. Основная услуга Stitch Fix — персональные покупки, но с одной интересной особенностью: компания подбирает одежду и доставляет ее вам домой на основании данных, предоставленных клиентом, таких как предпочтения по стилю, размер одежды и доступ к коллекции Pinterest[89], собранной пользователем. Если вам не понравится какой-либо из присланных товаров, вы сможете вернуть его. Остались в прошлом те времена, когда приходилось проводить много часов в магазине, примеряя десятки нарядов, и выбирать подходящие вещи, больше полагаясь на удачу.

Stitch Fix была бы немыслима без машинного обучения. Однако компания понимает, что участие человека — важнейший фактор ее успеха. Поскольку стабильность бизнеса целиком и полностью зависит от качества рекомендаций по подбору одежды, ее деятельность основана на системе рекомендаций, которые дают как люди, так и машины. Структурированные данные, такие как стиль, размеры и предпочтения тех или иных брендов, находятся в ведении машин. Люди-стилисты уделяют больше внимания неструктурированным данным, таким как картинки с Pinterest и комментарии клиентов, почему они ищут новую одежду.

Когда приходит время собирать товары для отправки клиенту, алгоритмы машинного обучения сокращают количество возможных вариантов (по таким параметрам, как стиль, размер и др.) и предоставляют в распоряжение стилиста конечный набор вариантов. Другими словами, машина дополняет сотрудника. Затем на основании своих знаний и опыта стилист готовит финальный комплект и в некоторых случаях составляет персональные рекомендации для клиента. Человек и машина постоянно учатся и совершенствуют процесс принятия решений. Решение клиента о том, следует ли ему оставить тот или иной предмет одежды, — это информация из категории «да/нет», которая используется для обучения алгоритма, с тем чтобы он предлагал в будущем более подходящие варианты. На основании этой информации, а также интуитивных догадок и замечаний со стороны клиента стилист также совершенствует свою работу.

Что значит работать в Stitch Fix? Более 2800 стилистов компании входят в систему со своих компьютеров — своеобразных цифровых консолей — и работают с интерфейсом, позволяющим быстро принимать решения по выбору одежды. Доступные варианты автоматически сортируются таким образом, чтобы стилистам не приходилось тратить время на просмотр одежды неподходящего размера. Кроме того, интерфейс предоставляет такую информацию о клиентах, как склонность к риску, и открывает доступ к их отзывам. Интересно, что данный интерфейс помогает стилистам преодолевать предвзятость — он может менять информацию, которую они видят, чтобы проверить, не склонны ли они повторять привычные рекомендации[90].

По данным внутренних опросов, даже при постоянном мониторинге и алгоритмах, управляющих процессом принятия решений, стилисты Stitch Fix в большинстве случаев удовлетворены выполняемой работой. На самом деле работа, в основе которой лежат широкие возможности для творчества и гибкий график, будет играть важную роль в формировании персонала будущего. Предлагая медицинскую страховку и другой соцпакет стилистам, которые отрабатывают определенное количество часов в день, Stitch Fix позиционирует себя как компания, которая понимает основные аспекты управления человеческими ресурсами в формирующейся среде работы по требованию.

Что дальше

Компании Rio Tinto и Stitch Fix разработали собственные подходы к созданию «недостающей середины» и переосмыслению бизнес-процессов в своих отраслях. Мы привели здесь эти примеры, чтобы помочь вам увидеть возможности создавать и развивать «недостающую середину», трансформировать бизнес-процессы и предпринимать конкретные шаги, направленные на переосмысление труда.

Революция взаимодействия людей и машин уже началась, однако остается еще много вопросов, на которые предстоит ответить, и много дорог, которые предстоит пройти. Такова цель оставшихся глав, поэтому давайте двигаться дальше.

Глава 5. Правильное формирование алгоритмов

* * *

Три функции человека по развитию и внедрению ответственного искусственного интеллекта

У Мелиссы Цефкин интересная работа. Будучи научным руководителем исследовательского центра компании Nissan в Кремниевой долине, она работает вместе с простыми разработчиками автомобилей над созданием следующего поколения беспилотных транспортных средств. Задача Мелиссы — обеспечить беспроблемное взаимодействие человека и машины (другими словами, между водителем и автомобилем), в этом ей помогает образование антрополога. «Необходимо понять людей, если вы хотите предоставить им автоматизированного партнера», — утверждает Мелисса[91].

Роль Цефкин в компании Nissan — обращать внимание и анализировать те вещи, о которых большинство разработчиков автомобилей и не задумываются. Возьмем, к примеру, правила дорожного движения и дорожные знаки, большинство из которых интуитивно понятны (как в случае запрета на пересечение двойной сплошной линии), однако при определенных условиях люди часто нарушают эти правила (пересекая двойную сплошную, чтобы избежать столкновения). Следует ли программировать самоуправляемые автомобили на нарушение правил в определенной ситуации? Вместе с разработчиками, инженерами-электротехниками и специалистами по искусственному интеллекту Цефкин надеется наделить алгоритмы искусственного интеллекта в беспилотных автомобилях человеческими качествами, такими как готовность нарушить правила в благих целях.

Будучи антропологом в области проектирования транспортных средств, Цефкин относится к группе профессионалов, которых до недавнего времени не существовало. За последние годы системы искусственного интеллекта стали неотъемлемой частью повседневной деятельности компаний, предлагая продукты покупателям, помогая промышленным предприятиям становиться эффективнее, а также обнаруживая и решая проблемы посредством информационных систем. Такая трансформация инициировала широкую дискуссию о возможном исчезновении ряда профессий в будущем. (Подумайте хотя бы о множестве сотрудников складов, которые работают сейчас в компании Amazon.) Однако в дискуссиях такого рода часто упускают из виду, что в то же время появится много новых профессий, подобных тому, чем занимается Цефкин. Большинство их будут сфокусированы на обучении машин человеком, причем этот процесс все больше будет напоминать процесс воспитания ребенка. Так системы искусственного интеллекта научатся поддерживать сложное взаимодействие с людьми.

В рамках глобального исследования более полутора тысяч компаний, уже использующих или тестирующих системы искусственного интеллекта и машинного обучения, мы обнаружили ряд новых профессий, роль которых будет только расти.

Эти новые профессии не просто заменят старые. Речь идет о совершенно новых функциях, требующих таких навыков и такой подготовки, в которых еще никогда не возникала потребность. В частности, системы искусственного интеллекта высокого уровня сложности требуют привлечения специалистов в области бизнеса и технологий, которые должны заниматься обучением, разъяснением и обеспечением устойчивости систем искусственного интеллекта (речь идет о функциях в левой части рис. 4, где показаны смешанные виды деятельности человека и машины). Такая работа дополняет задачи, выполняемые интеллектуальными машинами. Будучи тесно связанными с искусственным интеллектом, такие функции опираются на сугубо человеческие навыки. Где в вашей организации могут найти применение эти новые профессии? Как они согласуются с существующими и переосмысленными процессами? В этой главе мы дадим ответы на эти вопросы и приведем примеры, которые помогут вам приступить к анализу перспектив, открывающихся перед специалистами по обучению, разъяснению и экспертами по устойчивости искусственного интеллекта.


Рис. 4. «Недостающая середина» — левая часть

Специалисты по обучению

В прошлом людям приходилось приспосабливаться к работе компьютеров. В настоящее время происходит обратный процесс — системы искусственного интеллекта учатся тому, как адаптироваться к нам. Для достижения этой цели им требуется всестороннее обучение. На рис. 5 перечислены профессии, без которых системы искусственного интеллекта невозможно будет обучить тому, как выполнять определенные задачи или как действовать немного более… очеловеченно. Как правило, мы положительно реагируем на искусственный интеллект, демонстрирующий человекоподобное поведение, ведь это позволяет нам поддерживать более естественное взаимодействие с машинами. (С другой стороны, у нас могут вызывать неприязнь малейшие отклонения в поведении человекоподобных роботов — этот феномен, получивший название «зловещая долина», рассматривается в одном из следующих разделов данной главы.)


Рис. 5. Функции специалистов по обучению


Например, промышленных роботов, работающих рядом с людьми, необходимо программировать и обучать выполнению разных задач, что требует привлечения сотрудников с соответствующими навыками. Автомобилестроительные компании с высоким уровнем автоматизации несут огромные потери при выходе оборудования из строя. Незапланированный шестичасовой простой автоматизированной сборочной линии, выпускающей по одному автомобилю стоимостью $50 000 в минуту, обходится примерно в $18 миллионов. Именно по этой причине компания Fanuc (ведущий производитель робототехники) обучила 47 тысяч людей использованию своего оборудования. Тем не менее в ближайшие годы будет не хватать около 2 миллионов квалифицированных специалистов для работы на производстве[92].

Физические роботы — не единственный тип систем искусственного интеллекта, которым необходимо обучение. Интеллектуальное программное обеспечение также нуждается в обучении — и в этом случае очень важно, чтобы обучающиеся машины обрели человекоподобные черты. В самых простых случаях специалисты по обучению помогают системам распознавания естественного языка и «переводчикам» делать меньше ошибок. В более сложных случаях алгоритмы искусственного интеллекта необходимо научить имитировать человеческое поведение. Например, чат-боты, обслуживающие клиентов, должны научиться распознавать неочевидные моменты человеческого общения. В Yahoo! специалисты по обучению искусственного интеллекта стремятся научить корпоративную систему обработки естественного языка тому, что люди не всегда имеют в виду то, что говорят. К настоящему времени компания разработала алгоритм, способный обнаруживать сарказм в социальных сетях и на веб-сайтах с точностью до 80%[93].

По мере того как искусственный интеллект будет охватывать все больше отраслей, вырастет число компаний, испытывающих потребность в специалистах по обучению физических и программных систем искусственного интеллекта. На первом этапе целесообразно привлекать тех квалифицированных сотрудников, которые уже работают в тесном взаимодействии с системами искусственного интеллекта или с системами, в которые интегрирован искусственный интеллект. Во многих случаях от скрытых знаний таких специалистов зависит, будет ли система работать эффективно или ее ждет провал. Затем, после того как она усвоит основные принципы, необходимо перейти на следующий уровень обучения, который обеспечит дальнейшую детализацию и устойчивость, как в приведенных ниже примерах.

Специалист по обучению эмпатии — это человек, который учит системы искусственного интеллекта демонстрировать сочувствие. Такая задача может показаться надуманной, однако упомянутый в главе 4 стартап Koko, созданный в медиалаборатории Массачусетского технологического института, разработал систему машинного обучения, которая призвана помочь таким чат-ботам, как Siri компании Apple и Alexa компании Amazon, реагировать на вопросы пользователей с сочувствием и глубоким пониманием. В настоящее время специалисты обучают алгоритм Koko более чутко реагировать на запросы людей, которые, например, опечалены потерей багажа, покупкой некачественного товара или мигающим монитором, который никак не удается починить. Цель — добиться того, чтобы система обсуждала с человеком проблему или сложную ситуацию, проявляя сочувствие, сострадание, а может, даже юмор. Каждый раз, когда алгоритм Koko реагирует ненадлежащим образом, специалист по обучению помогает ему внести необходимые коррективы в свои действия. Со временем такой алгоритм машинного обучения обретет способность давать лучший ответ.

Этот пример демонстрирует потенциал современных систем искусственного интеллекта такого рода. Без алгоритма Koko Alexa реагирует на опасения пользователя заранее заготовленными, повторяющимися фразами, такими как «Мне жаль это слышать» или «Порой помогает разговор с другом». Благодаря алгоритму Koko бот Alexa способен оказать гораздо более существенную поддержку. Вот как звучит ответ виртуального помощника Alexa с алгоритмом Koko человеку, который волнуется перед предстоящим экзаменом: «Экзамены действительно вызывают стресс, однако небольшое беспокойство помогает добиться успеха. Оно обостряет интеллект… Так организм готовится действовать. На самом деле это даже полезно. Нервозность можно воспринимать как секретное оружие. Я знаю: это легче сказать, чем сделать. Но я думаю, ты сдашь экзамен гораздо лучше, чем тебе кажется». В случае приложений для обслуживания клиентов с использованием искусственного интеллекта хорошо обученный чуткий бот позволит вам обойти конкурентов.

Помимо обучения эмпатии усовершенствованные системы искусственного интеллекта будут также учиться тому, как стать более похожими на человека, — им помогут в этом специалисты по обучению личностным качествам. На первый взгляд предположение о том, что у систем искусственного интеллекта может возникнуть потребность в развитии определенных личностных качеств, нам кажется в чем-то даже дерзким. Но подумайте, какую важную роль может сыграть такая технология, как виртуальный помощник Cortana компании Microsoft, в контексте создания бренда и его дальнейшего поддержания (о чем шла речь в главе 4). Возьмем, к примеру, уверенный, компетентный и заботливый стиль общения системы Cortana. Благодаря интенсивному обучению специалистами Microsoft Cortana производит впечатление собеседника, который всегда готов помочь, но при этом не склонен к менторскому тону. Например, Cortana начнет понимать, в каких случаях конкретный человек наиболее восприимчив к рекомендациям. Все это соответствует миссии Microsoft, которая уже много лет поддерживает расширение возможностей пользователей.

У специалистов по обучению личностным качествам может быть разное образование и опыт работы. Так, Робин Юинг в прошлом писала сценарии и продавала их голливудским киностудиям[94]. В настоящее время она применяет свои творческие способности, помогая инженерам развивать личностные качества Sophie — программы искусственного интеллекта в области здравоохранения. Среди многих других задач Sophie напоминает пользователям о том, чтобы они приняли лекарства, и регулярно связывается с ними, чтобы проверить их самочувствие. Безусловно, у таких специалистов, как Юинг, нет резюме, типичного для сферы высоких технологий. В компании Microsoft развитием личностных качеств виртуального помощника Cortana занимается команда, в состав которой входят поэт, писатель и драматург.

Надлежащее обучение таких ботов, как Cortana, начнет играть все более важную роль по мере того, как подобные приложения будут принимать антропоморфный облик и ассоциироваться с тем или иным брендом. Некоторые специалисты по маркетингу уже сейчас предвидят эволюцию брендов от одностороннего взаимодействия (от бренда к клиенту) к двусторонним взаимоотношениям. В рамках такого взаимного обмена с потребителями искусственный интеллект становится лицом бренда, о чем шла речь в предыдущей главе.

Если эволюция чат-ботов (и брендов) пойдет по такому пути, их необходимо будет обучать в глобальном контексте — и эта задача будет возложена на специалистов по обучению мировоззрению и локализации. Подобно тому как людям, работающим за рубежом, необходимо считывать культурные коды иностранных коллег и понимать, о чем они говорят, боты также должны быть чувствительными к различиям между людьми из разных стран мира. Специалисты по обучению мировоззрению и локализации позаботятся о том, чтобы системы искусственного интеллекта учитывали множество локальных факторов. Например, в некоторых странах люди не испытывают такого же беспокойства из-за роботов и роста автоматизации, как жители США и Западной Европы. Так, японцы восхищаются роботами и ощущают «культурную близость» с ними, что может облегчить установление более тесного взаимодействия машины и человека. Специалисты по обучению мировоззрению должны знать о таких различиях. Понимание чат-ботами культурных кодов позволит избежать недоразумений и затруднений, а также укрепить доверие к бренду.

Большую помощь в обучении систем искусственного интеллекта человеческим качествам и глобальному мировоззрению могут оказать специалисты по моделированию взаимодействия. Такие люди помогают привить машинам определенные поведенческие паттерны, привлекая сотрудников с большим опытом в качестве ролевых моделей. Так, профессор робототехники Массачусетского технологического института Джули Шах занимается разработкой роботов, которые могут наблюдать за работой людей, чтобы со временем научиться выполнению определенных задач. Одна из целей такого подхода — научить роботов принимать элементарные решения, например прерывать выполнение одной задачи ради более важного задания, а затем возвращаться к исходной, как это сделал бы человек.

Обучение искусственного интеллекта не обязательно выполнять собственными силами. Подобно бухгалтерскому учету, IT и другим функциям, обучение систем искусственного интеллекта может осуществляться на краудсорсинге или аутсорсинге. Компания Mighty AI умело применяет методы краудсорсинга для обучения систем искусственного интеллекта распознаванию объектов (например, озер, гор и дорог на фотографиях), а также обработке естественного языка. Компания накопила огромный объем обучающих данных, которые использует при выполнении заказов своих клиентов. Так, один заказчик поручил Mighty AI научить его платформу машинного обучения определять намерения собеседников и смысл того, что они говорят. Ранее другая компания в области искусственного интеллекта Init.ai предприняла попытку выполнить такое обучение своими силами, предлагая сотрудникам «разыграть» диалоги для составления эталонных бесед, однако такой подход было трудно масштабировать. Это ограничение в итоге привело к тому, что компания Init.ai делегировала данную работу подрядчику.

В сотрудничестве с Mighty AI компания Init.ai разработала сложные задачи на основе поддающихся персонализации шаблонов, опираясь на помощь сообщества пользователей, прошедших предварительный квалификационный отбор. Обладая знаниями, навыками и специализацией в соответствующих областях, эти пользователи «озвучивали» диалоги в соответствии со сценариями, приближенными к реальному взаимодействию клиентов и сотрудников компании. Затем в Init.ai использовали полученные данные для построения собственных моделей диалогов, которые легли в основу подготовки платформы машинного обучения[95].

Совершенно очевидно, что качество систем искусственного интеллекта полностью зависит от качества данных, на основе которых их обучали. Приложения такого рода ищут закономерности в данных, и любые искажения отразятся на результатах последующего анализа. Эта ситуация напоминает принцип «мусор на входе — мусор на выходе», но в данном случае было бы уместно сказать «ошибки на входе — ошибки на выходе». В рамках одного интригующего эксперимента программисты компании DeepMind, принадлежащей Google, научили систему искусственного интеллекта играть в две игры, одна из которых сводилась к охоте, а другая к сбору фруктов. В итоге система искусственного интеллекта, которую обучали играть в охоту, демонстрировала крайне агрессивное поведение. При обучении на игре в сбор фруктов система искусственного интеллекта демонстрировала гораздо большую склонность к сотрудничеству[96].

Именно поэтому роль специалиста по гигиене данных так важна. Беспристрастными должны быть не только сами алгоритмы; данные, которые используются для их обучения, также должны быть свободными от предвзятости. В ближайшие годы роль таких специалистов будет только возрастать, ведь компании используют информацию из самых разных источников, в том числе биометрические данные, изображения со спутника, данные о дорожном движении, данные из социальных сетей и т. д. Во многих случаях это могут быть так называемые выбросы, то есть данные, возникающие как побочный продукт другого процесса. Подумайте о тех данных, которые каждый день генерируются Facebook.

Ведущие компании быстро обнаружили, как использовать такие «выбросы» в эпоху больших данных. Например, хедж-фонд BlackRock использует спутниковые снимки территории Китая для более эффективного анализа промышленного развития этой страны. Данный анализ даже привел к появлению нового финансового инструмента — «квантаментальных» фондов, которые используют сложные алгоритмы машинного обучения для анализа традиционной финансовой отчетности и «выбросов» для того, чтобы прогнозировать динамику стоимости тех или иных акций на рынке[97]. Такие инновационные приложения требуют опыта и знаний специалистов по гигиене данных, во многих случаях работающих совместно с экспертами по устойчивости систем искусственного интеллекта, о которых мы поговорим позже. Специалисты по гигиене данных должны не только обеспечивать преобразование «выбросов» в формат, приемлемый для ввода в систему искусственного интеллекта, но и очищать эту информацию от любого «шума» или скрытой предвзятости.

Специалисты по разъяснению

Представители этой профессии нужны, чтобы устранять разрыв между техническими специалистами и руководителями компаний. Важность подобного функционала будет возрастать по мере увеличения непрозрачности систем искусственного интеллекта. Многие обеспокоены тем, что сложные алгоритмы машинного обучения напоминают черный ящик, особенно когда такие системы рекомендуют действия, идущие вразрез с общепринятыми представлениями или носящие противоречивый характер (рис. 6).


Рис. 6. Функции специалистов по разъяснению


Рассмотрим в качестве примера компанию ZestFinance, которая помогает кредитным организациям повысить эффективность прогнозирования кредитного риска и увеличить выдачу займов тем лицам, которые при обычных обстоятельствах не соответствуют всем условиям получения кредита. Эта компания обеспечивает кредиторам возможность анализировать тысячи единиц информации о потенциальном заемщике (гораздо больше, чем требуется для расчета кредитного рейтинга FICO и составления традиционных кредитных историй) и использует самую современную технологию искусственного интеллекта для принятия решений о выдаче кредита или отказе в нем. Средний годовой доход потенциального заемщика достигает $30 000, причем у многих есть невыплаты по кредитам. Как правило, кредиты предоставляются на небольшую сумму (в среднем около $600) под высокие проценты[98].

Учитывая характер бизнеса, компании ZestFinance необходимо иметь возможность объяснить своим клиентам работу системы искусственного интеллекта, которую они используют для одобрения кредитов. Компания описала процесс оценки кандидатов на основе разных критериев, таких как честность, стабильность и благоразумие. Если указанный человеком доход гораздо выше, чем у аналогичных кандидатов, это снижает его рейтинг честности. Если за прошедшие несколько лет человек много раз переезжал с одного места на другое, под ударом оказывается его рейтинг стабильности. А если он не нашел времени, чтобы прочитать все условия предоставления кредита перед подачей заявки, это отрицательно сказывается на рейтинге благоразумия. Затем набор алгоритмов, каждый из которых выполняет самостоятельный анализ, изучает всю совокупность данных. Так, один из них проверяет, не указывает ли определенная информация на более серьезные события, например просрочку платежа по состоянию здоровья. На основании результатов анализа ZestFinance присваивает кандидату рейтинг от 0 до 100.

Усовершенствованные алгоритмы позволили ZestFinance выявить множество любопытных закономерностей. Так, компания выяснила, что люди, использующие прописные буквы при заполнении заявок на кредит, обычно оказываются заемщиками с более высоким уровнем риска. Такие результаты дали ZestFinance возможность постоянно снижать процент невозврата кредитов на несколько процентных пунктов, что позволяет компании обслуживать клиентов, которым при обычных обстоятельствах кредит бы не выдали. Однако главное здесь то, что ZestFinance может объяснить, как она принимает решения по кредиту, одобряя каждую третью заявку.

Поскольку компании полагаются на всё более совершенные системы искусственного интеллекта, принимая те или иные решения (особенно те, которые затрагивают интересы клиентов), им необходимо объяснять и обосновывать свои действия. На самом деле правительства уже рассматривают возможность принятия нормативных актов в этой области. Например, новое постановление Европейского союза «Общий регламент по защите данных», которое вступило в силу в 2018 году, по существу, вводит «право на разъяснение», позволяющее потребителям бороться за отмену любого решения, затрагивающего их интересы и принятого исключительно на основе алгоритма.

Компаниям, использующим современные системы искусственного интеллекта, понадобятся квалифицированные сотрудники, способные объяснить логику сложных алгоритмов. Одним из таких сотрудников станет эксперт по алгоритмам, в обязанности которого входит выявление причин, по которым алгоритм выдает те или иные результаты. Когда система совершает ошибку или когда ее решения приводят к непредвиденным негативным последствиям, эксперт должен выполнить своего рода «аутопсию» алгоритма, чтобы понять причины таких действий и внести необходимые коррективы. Некоторые типы алгоритмов объяснить не составит труда — к их числу относится алгоритм «убывающий список правил», в котором используется упорядоченный список правил импликации. Другие, как, например, алгоритмы глубокого обучения, объяснить не так просто. Тем не менее эксперт по алгоритмам должен иметь надлежащую подготовку и навыки, необходимые для детального анализа всех алгоритмов, используемых организацией.

В данном случае могут оказаться чрезвычайно полезными такие методы, как локально интерпретируемые моделе-агностические объяснения (local-interpretable-model-agnostic explanations, LIME). Для LIME не имеет значения, какой именно алгоритм искусственного интеллекта используется на самом деле. По существу, LIME вообще не нужно знать о внутренних механизмах соответствующей системы искусственного интеллекта. Для анализа любых результатов LIME корректирует переменные и наблюдает за тем, как меняется решение. Эта информация позволяет LIME выделить разные данные, на основе которых был сделан соответствующий вывод. Так, например, если экспертная система по подбору персонала определила лучшего кандидата на одну из должностей в отделе научных исследований и разработок, LIME может установить переменные, которые привели к принятию данного решения (такие как образование и глубокие знания в определенной узкой области), а также аргументы против этого решения (такие как отсутствие опыта работы в команде). С помощью таких методов эксперт по алгоритмам может объяснить, почему заявителю отказали в кредите, почему приостановили производственный процесс или маркетинговую кампанию запустили только на определенный сегмент потребителей.

Однако еще до возникновения потребности в такой экспертизе специалист по прозрачности алгоритмов должен классифицировать причины, по которым алгоритм искусственного интеллекта действует как черный ящик. От этих причин зависят уровень прозрачности и возможность проведения проверки алгоритма. Например, некоторые алгоритмы намеренно создаются как черные ящики, с тем чтобы защитить интеллектуальную собственность, тогда как другие напоминают черные ящики из-за сложности программного кода, или масштаба обрабатываемых данных, или механизмов принятия решений[99]. Специалист по прозрачности — это человек, который классифицирует системы и ведет базу данных или библиотеку информации о доступности системы.

Для специалиста по разъяснению такая база данных бесценна. В его обязанности входит принятие важных решений о том, какие технологии искусственного интеллекта лучше всего использовать для конкретных задач. В данном случае особое внимание следует уделить выбору между точностью и объяснимостью алгоритма. Например, система глубокого обучения обеспечивает высокий уровень точности прогнозирования, однако у компаний могут возникнуть трудности с объяснением полученных результатов. Напротив, дерево решений может не привести к получению результатов с высокой точностью прогнозирования, но обеспечит существенно более высокий уровень разъяснения. Так, например, для внутренней системы оптимизации логистики, допускающей только небольшие отклонения от графика поставок, целесообразно использовать технологию глубокого обучения. С другой стороны, в области здравоохранения или взаимодействия с клиентами осуществляется строгий надзор со стороны регуляторов, а значит, в этом случае лучше использовать алгоритмы убывающих списков правил[100].

Кроме того, специалист по разъяснению может решить, что в определенной области целесообразно вообще отказаться от искусственного интеллекта. Оптимальным вариантом может стать традиционный обработчик правил. Принимая подобное решение, специалист по разъяснению должен учитывать не только технологические аспекты, но и финансовые, юридические, этические и другие важные факторы.

Эксперты по устойчивости

В 2015 году на заводе компании Volkswagen в Германии робот нанес сотруднику смертельные увечья. Трагическая гибель рабочего привлекла внимание общества к растущей зависимости от автоматизированных инструментов. С тех пор как компьютеры начали брать на себя выполнение все более сложных задач, усиливаются опасения, что машины могут выйти из-под контроля. От компьютера HAL из фильма «2001 год: Космическая одиссея» до киборгов из франшизы «Терминатор» — популярная культура только подогревает тревоги людей. Однако робот в Германии не совершал умышленного нападения на рабочего. Согласно первым отчетам, причина трагедии заключалась в программной ошибке — другими словами, в ошибке человека.

Это ужасающее происшествие — исключительный случай, однако обеспечение корректного использования искусственного интеллекта — первоочередная обязанность представителей новой профессии: экспертов по устойчивости, которые должны постоянно работать над тем, чтобы системы искусственного интеллекта функционировали надлежащим образом как инструменты, призванные обслуживать людей, помогать им выполнять свою работу и облегчать их жизнь. Таким образом эксперты по устойчивости систем искусственного интеллекта помогут развеять страхи перед мрачным будущим, в котором роботы станут разумными и превзойдут человеческое общество (рис. 7).


Рис. 7. Функции экспертов по устойчивости


Очевидно, один из лучших способов добиться того, чтобы сложные роботы и другие системы искусственного интеллекта функционировали так, как было задумано, — изначально правильно проектировать их. Именно в этом случае компаниям понадобятся специалисты по контекстному дизайну. Разрабатывая новую систему, они должны учитывать самые разные факторы, зависящие от контекста, такие как бизнес-среда, задача бизнес-процесса, пользователи, культурные коды и т. д. Важную роль могут играть даже, на первый взгляд, мелкие детали. Когда компании General Motors и Fanuc проектировали нового робота для гибкого автоматизированного производства, призванного работать бок о бок с людьми, возникли трудности с выбором цвета для него. Оранжевый символизировал опасность, а желтый можно было интерпретировать как предупреждение. В конечном счете остановились на цвете лайма, который они назвали «безопасным зеленым»[101].

Безусловно, даже грамотно спроектированные системы могут создавать определенные проблемы, а в некоторых случаях проблема заключается в чересчур хорошем функционировании технологии, что приводит к непреднамеренному нанесению вреда. Много лет назад известный писатель-фантаст Айзек Азимов сформулировал три закона робототехники:


• Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред.


• Робот должен повиноваться всем приказам человека, кроме тех случаев, когда эти приказы противоречат первому закону.


• Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит первому или второму законам.


Впервые изложенные в рассказе «Хоровод» (1942), эти три закона актуальны до сих пор, однако это только отправная точка. Например, должен ли беспилотный автомобиль, пытаясь защитить своих пассажиров, свернуть в сторону, чтобы не сбить выбежавшего на дорогу ребенка, если при этом он может совершить наезд на пешехода? Именно из-за таких вопросов компаниям, которые проектируют и используют сложные технологии искусственного интеллекта, понадобятся специалисты по безопасности систем искусственного интеллекта. Они должны делать все от них зависящее, чтобы предвидеть непреднамеренные результаты действий системы искусственного интеллекта, а также без промедления устранять последствия любых происшествий.

По итогам недавнего исследования Accenture мы обнаружили, что менее трети компаний демонстрируют высокий уровень доверия к справедливости и контролируемости систем искусственного интеллекта, а также что менее половины компаний испытывают столь же высокое доверие к безопасности этих систем[102]. Исследования показали, что каждый третий опасается искусственного интеллекта, а каждый четвертый убежден, что эта технология нанесет вред обществу[103]. Безусловно, это указывает на фундаментальные проблемы, которые необходимо решить, чтобы и впредь использовать технологии искусственного интеллекта. Именно здесь эксперты по устойчивости систем искусственного интеллекта будут играть ключевую роль.

За одну из важнейших функций отвечают менеджеры по соблюдению этических норм. Они будут блюстителями общепринятых норм, человеческих ценностей и моральных принципов. Например, если система искусственного интеллекта по одобрению кредитов проявляет дискриминацию к людям, проживающим в определенных регионах, такой менеджер обязан расследовать и устранить это нарушение этических (а может, даже правовых) норм. Другие случаи предвзятости могут быть не столь явными, как у поискового алгоритма, выдающего изображения только белых женщин, когда кто-то вводит запрос «любящая бабушка». Менеджер по соблюдению этических норм в сотрудничестве с экспертом по алгоритмам должен раскрыть причины такой выдачи, а затем принять надлежащие меры по их устранению (табл. 1).


Таблица 1. Ответственный и устойчивый искусственный интеллект: новые факторы, которые должны учитывать эксперты по устойчивости систем искусственного интеллекта


В будущем возрастет роль искусственного интеллекта в обеспечении того, чтобы передовые системы действовали согласно этическим принципам и моральным нормам человеческого сообщества. Исследователи Школы интерактивных вычислений Технологического института Джорджии Марк Ридл и Брент Харрисон создали прототип системы искусственного интеллекта Quixote, которая способна усваивать этические принципы (например, что нельзя воровать) при чтении прозы. По словам Ридла и Харрисона, эта система умеет обнаружить ценности, анализируя художественные тексты, где люди взаимодействуют друг с другом. Такие произведения описывают культуру и общество, кодируя тем самым «общие знания, социальные протоколы, примеры надлежащего и ненадлежащего поведения, а также стратегии преодоления трудностей»[104]. Так, «прочитав» множество историй, система Quixote узнала о том, что стремление к эффективности весьма похвально, за исключением тех случаев, когда это противоречит другим важным факторам. Однако даже при наличии таких инноваций менеджерам по соблюдению этических норм все равно необходимо будет осуществлять мониторинг и обеспечивать надлежащее функционирование сложных систем такого рода.

Система искусственного интеллекта может быть технически совершенной и этичной, но все же оказывать негативное воздействие на организацию. Именно поэтому компаниям понадобятся специалисты по этике автоматизации, в обязанности которых будет входить оценка неэкономического воздействия систем искусственного интеллекта. Один из важных аспектов — общий уровень принятия новых технологий сотрудниками компании. Разумеется, они боятся потерять работу из-за автоматизированной прикладной системы, которая способна функционировать так же хорошо, как человек, если не лучше.

Сильные эмоциональные реакции могут возникать в ответ на внедрение роботизированных систем искусственного интеллекта. Изучая, как мы реагируем на роботов, японский специалист по робототехнике Масахиро Мори обнаружил одну любопытную закономерность. Чем реалистичнее робот, тем выше наша эмоциональная близость и эмпатия, но до определенного момента. Когда робот становится еще более похожим на нас, любые изъяны или отклонения начинают вызывать у нас отторжение. Однако если эти изъяны убрать, робота будет почти не отличить от человека, он снова начнет вызывать у нас положительные эмоции, и со временем уровень эмпатии к такому роботу сравнится с уровнем эмпатии к человеку. Резкое снижение эмпатии, которое Мори обозначил термином «зловещая долина», может стать препятствием на пути успешного взаимодействия человека и машины[105]. Специалисты по этике автоматизации должны знать об этом феномене.

В целом эффективно функционирующие системы искусственного интеллекта целесообразно продвигать, а их варианты дублировать и внедрять в других подразделениях компании. С другой стороны, необходимо ограничить функции систем искусственного интеллекта, работающих неудовлетворительно, а если усовершенствовать их невозможно, то снимать с эксплуатации. Решением этих задач будут заниматься менеджеры по связям с машинами — специалисты с функциями, как у HR, только контролировать они будут не сотрудников, а системы искусственного интеллекта. Эти специалисты будут работать в «отделе по связям с машинами» и регулярно проводить аттестацию всех систем искусственного интеллекта, внедренных в организации. В ходе такой аттестации нужно будет проанализировать множество факторов, в том числе объективную производительность системы, а также опосредованные цели, например стремление следовать корпоративным ценностям, таким как повышение разнообразия и забота об окружающей среде.

Проблема в людях

Вопросы, которые мы подняли в этой главе, лишь начало. Мы рассказали только о нескольких новых профессиях, появляющихся по мере того, как искусственный интеллект охватывает все больше бизнес-процессов. Описанный здесь функционал — малая часть множества новых профессий, которые возникнут в будущем. Действительно, по мере того как организации развиваются вместе со своими командами людей и машин, в них неизбежно будут появляться должности, сходные по функционалу со специалистами по обучению, разъяснению и устойчивости систем искусственного интеллекта. В связи с возникновением новых профессий (которые демонстрируют важность навыков человека в «недостающей середине») руководители должны иначе подходить к потребностям команд людей и машин. (Речь идет о таких аспектах нашей модели MELDS, как мышление и лидерство.) В частности, новые профессии потребуют определенного образования, профессиональной квалификации и опыта. Например, специалистам по обучению эмпатии не обязательно обладать традиционным дипломом о высшем образовании. Людей со средним образованием, от природы наделенных состраданием, можно обучить необходимым навыкам в рамках корпоративных программ профессиональной подготовки. Многие новые профессии могут привести к появлению «безворотничковой» рабочей силы, которая будет постепенно формироваться на основе традиционных «синих воротничков» в области промышленного производства и в других секторах экономики.

С другой стороны, представителям некоторых новых профессий (таких как менеджер по соблюдению этических норм) понадобятся высшее образование и специальные навыки. Например, большинство ведущих компаний уже сейчас адаптируют свои программы профессиональной подготовки к тем специальностям, о которых мы говорили выше, внедряя методы из психологии детского развития.

Главный вывод: компаниям, внедряющим технологии искусственного интеллекта, необходимо переосмыслить свои стратегии формирования базы талантливых специалистов, чтобы более эффективно привлекать, обучать, управлять и удерживать таких сотрудников. Очевидно, внедрение систем искусственного интеллекта потребует новых подходов и процессов, причем не только в области информационных технологий, но и во всех остальных. Мы обсудим соответствующие управленческие вопросы более подробно в главе 7. В конце концов, во многих случаях проблемы зачастую связаны с людьми, а не с технологиями.

Глава 6. Сверхрезультаты обычных людей

* * *

Три способа выхода на новый уровень продуктивности с помощью искусственного интеллекта

Если вы хотите сделать стул с нуля, вам придется сначала создать Вселенную. Не такая уж простая задача, верно? Мы перефразировали Карла Сагана, который в своем знаменитом изречении говорил о выпечке яблочного пирога, а не о создании стула, но его подход верен и в нашем случае. Саган имел в виду, что ни одну на первый взгляд простую задачу невозможно решить без знания законов природы, лежащих в ее основе. Иначе говоря, каждый яблочный пирог и каждый стул содержит в себе целую Вселенную с ее законами физики и математики. К счастью для пекарей и столяров, их творческий процесс подразумевает, что большинство полезных свойств Вселенной уже разгаданы. Более сложные аспекты (такие как алхимическое сочетание ингредиентов или углы ножек стула) носят скрытый характер — они включены, скажем, в проверенный временем рецепт или в программное обеспечение системы автоматизированного проектирования.

Но что если проверенный рецепт или стандартное ПО в той или иной мере ограничивают нашу способность создавать принципиально новые, более интересные, возможно, более совершенные пироги и стулья? Что если бы мы могли создать инструменты, которые помогут нам снова и снова открывать Вселенную? Что если эти инструменты помогут творческим людям избавиться от старых привычек или выйти за рамки общепринятых представлений без необходимости каждый раз создавать Вселенную?

Такие инструменты уже существуют: стул Elbo, разработанный компанией Autodesk, — наглядный пример того, что возможно в настоящее время. Стул Elbo — это поразительный предмет мебели: он очень красив, а его создание отличается от любого другого стула. Простой каркас сделан из ореха, что подчеркивает его естественные, органичные линии. Две передние ножки как будто вырастают из пола, а в месте соединения с сиденьем мягко изгибаются и образуют плавные наклонные подлокотники, которые сливаются воедино и переходят в сплошную спинку стула. Две задние ножки также будто вырастают из пола, а возле сиденья расходятся на три ветви потоньше, две из которых поддерживают подлокотники, а одна — спинку. Едва заметные изгибы и неровности на сиденье и подлокотниках в местах соединения придают стулу еще более естественный вид. Создается впечатление, что именно такой стул создало бы умное дерево для человека, если бы его попросили об этом.

Однако в Elbo поражает не столько эстетика, сколько тот факт, что этот стул сконструировали дизайнеры, использовавшие ПО с искусственным интеллектом. Команда сотрудников Autodesk, разработавших стул Elbo, применила программу Dreamcatcher с функцией генеративного дизайна[106], чтобы открыть ранее недоступное пространство проектных решений (сотни возможных форм стула), в то же время строго придерживаясь технической спецификации: сиденье должно находиться на высоте 45,7 см от пола, а стул должен был выдерживать 136 кг. Предполагалось, что при его создании источником вдохновения должен был стать круглый стул Ханса Вегнера и стул Lambda. Алгоритм генеративного дизайна, основанный на методах машинного обучения, начал с гибридной модели этих двух стульев и создал большое количество неожиданных форм, соответствовавших заданным техническим параметрам. В процессе разработки конструкция стула менялась так, словно он был живым организмом. А дизайнеры стали кураторами, которые на основе эстетического чутья и интуитивных предпочтений выбирали одну из множества конструкций, самую подходящую, с их точки зрения. В конечном счете они остановили свой выбор на Elbo — конструкции, требующей на 18% меньше материала, чем исходная модель, с которой начинала команда[107].

По мнению технического директора Autodesk Джеффа Ковальски, программное обеспечение для генеративного дизайна — совершенно новый подход к проектированию. «Эти технологии не угроза; они скорее напоминают сверхспособности»[108].

Да, действительно сверхспособности. Разработчик обретает способность видеть возможности дизайна, радикально отличающиеся от того, что было доступно ему в прошлом, — беспрецедентную перспективу пространства дизайна и совершенно новую вселенную вариантов. Сгенерированные компьютером модели стимулируют появление новых идей. Но кем становится человек-дизайнер, у которого теперь есть такой дополнительный творческий инструмент? Он становится оператором, куратором и наставником вспомогательного интеллектуального агента проектирования. Именно так происходит переосмысление дизайна.

Oзнакомьтесь с правой частью «недостающей середины» (см. рис. 8), где машины дополняют людей. Инструменты искусственного интеллекта расширяют возможности специалистов во многих областях, от продуктового дизайна до медицины, инженерного дела и производственных операций. Такое дополнение представлено в самых разных формах, от дополненной и виртуальной реальности до аналитических систем, роботов-манипуляторов и чат-ботов. Но как расширение возможностей и дополнение системами искусственного интеллекта скажется на самих специалистах? Чем внедрение искусственного интеллекта отличается от управления устройствами и технологиями, которым компании уже занимаются, — например, когда выдают ноутбуки, устанавливают программы и открывают доступ к информации для входа в систему при адаптации новых сотрудников? В данной главе идет речь о том, что инструменты искусственного интеллекта не просто обеспечивают автоматизацию повседневных задач (хотя они могут делать и это), а создают симбиотическую связь между людьми и машинами, которая в корне меняет традиционный бизнес-процесс. Новые гибридные функции и взаимосвязи, формирующиеся в «недостающей середине», позволяют руководителям совершенно по-новому взглянуть на бизнес-процессы и открывают перед сотрудниками невиданные прежде широкие возможности.


Рис. 8. «Недостающая середина» — правая часть

Три типа дополнения

Дополнение и трансформация бизнес-процессов с помощью искусственного интеллекта происходит уже сейчас в таких областях сотрудничества человека и машины, как расширение возможностей, взаимодействие и физическое воплощение.

В области расширения возможностей интеллектуальные агенты предоставляют людям результаты аналитики, обычно с использованием данных, поступающих в режиме реального времени. Это как мозг, только лучше.

Пример со стулом Elbo дает представление о некоторых трендах расширения возможностей: программное обеспечение для генеративного дизайна расширяет пространство проектирования и выводит его за пределы того, что может представить человек. Другие компании расширяют возможности специалистов в области анализа настроений клиентов при взаимодействии с компаниями в Facebook и Twitter, по предоставлению рекомендации для сторителлинга, а также по модерированию комментариев для обеспечения конструктивной дискуссии. Фармацевтические компании расширяют возможности на основе использования искусственного интеллекта для контроля качества лекарственных препаратов после их вывода на рынок. А рентгенологам помогает программное обеспечение, которое изучает, как они описывают рентгеновские снимки, и предоставляет данные о состоянии здоровья пациентов в наглядной форме, с тем чтобы ускорить постановку диагноза и повысить его точность. Все эти специалисты используют искусственный интеллект для повышения эффективности работы и принятия решений.

В области взаимодействия интеллектуальные агенты используют самые современные интерфейсы (такие как обработка естественного языка с использованием голосового управления) для облегчения взаимодействия между людьми или от имени людей. Интеллектуальные агенты во многих случаях наделены личностными качествами и могут функционировать «масштабно» — другими словами, оказывать помощь многим людям одновременно. Таких агентов можно увидеть в роли личных помощников; кроме того, их активно используют в сфере обслуживания. Агент службы поддержки Amelia компании IPsoft (в банке SEB используется под именем Aida, см. главу 2) — это пример интеллектуального агента, функционирующего в области взаимодействия.

Физическое воплощение — это третья область. Тогда как расширение возможностей персонала и взаимодействие обеспечиваются в основном на уровне программного обеспечения с использованием интерфейсов, которые кажутся порой почти невидимыми, физическое воплощение осуществляется на материальном, физическом уровне. Речь идет о «проникновении» искусственного интеллекта в датчики, двигатели и приводы, которое позволяет роботам делить с людьми рабочее пространство и участвовать в совместной физической работе. Такие роботы функционируют в заводских цехах и на складах вместе с людьми. Они представлены в виде манипуляторов, автономных тележек для перевозки контейнеров, а также дронов для доставки лекарств.

Автоконцерны используют концепцию физического воплощения искусственного интеллекта на своих ультрасовременных производственных линиях. Благодаря легким контекстно зависимым роботам-манипуляторам, а также «коботам», способным работать на сборочной линии вместе с людьми, производители могут переосмыслить бизнес-процессы, носившие в прошлом статичный характер. При этом работники берут на себя новые функции, сотрудничая с умными машинами, а компании могут принимать многоплановые, адаптивные решения по продуктам, которые предлагают клиентам.

При всех трех типах сотрудничества человека и машины в «недостающей середине» (расширение возможностей, взаимодействие и физическое воплощение) компании получают не только сотрудников, наделенных сверхспособностями, но и совершенно новый тип бизнес-мышления. Искусственный интеллект позволяет сотрудникам заниматься теми видами деятельности, которые больше подходят людям, а не роботам. По мере того как выполнение определенных задач перекладывается «на плечи» машин, а люди, часто работающие с системами искусственного интеллекта в качестве помощников, осваивают множество видов работ, у компаний появляется стимул переосмыслить свои бизнес-процессы в контексте совершенно новых возможностей взаимодействия человека и машины. Более того, новые взаимоотношения, основанные на такой синергии, требуют нового человеко-машинного интерфейса. Какой пользовательский интерфейс займет доминирующее положение в «недостающей середине»? Является ли искусственный интеллект этим новым интерфейсом? Как дополнение в виде искусственного интеллекта повлияет на вашу отрасль? В данной главе мы расскажем о компаниях, переосмысливших свои бизнес-процессы с учетом сверхспособностей, ставших реальностью благодаря машинам. В этой главе мы также рассмотрим некоторые из поднятых выше вопросов.

Агенты расширения возможностей

В программном продукте Dreamcatcher, разработанном компанией Autodesk, для перебора всех возможных вариантов дизайна используются генетические алгоритмы. Это прекрасный пример того, как меняется процесс, когда специалиста поддерживает интеллектуальный агент. Согласно сложившейся практике, когда дизайнер хочет создать новый объект (будь то стул, велосипедная рама или перегородка в салоне самолета), он сначала проводит исследования, создает эскизы, а затем переходит от них к компьютерным моделям и физическим прототипам. Этот процесс состоит из множества итераций, во время которых дизайнер делает мысленные расчеты (граничащие с интуитивными догадками) и направляет процесс проектирования в ту или иную сторону (рис. 9).


Рис. 9. Функции в случае расширения возможностей


При использовании искусственного интеллекта выполнение подобных расчетов перекладывается на программы, что позволяет реорганизовать проектирование таким образом, чтобы в нем больше внимания уделялось человеческой креативности и эстетике. При таком подходе дизайнер начинает с установления параметров, после чего программа приступает к быстрому выполнению итераций. По мере того как программа выдает варианты, дизайнер уточняет параметры, чтобы понять, как это скажется на результате. По существу, он направляет процесс проектирования в определенное русло и по итогу выбирает окончательный вариант. Таким образом, проектирование перестает быть громоздким, медленным и ограниченным процессом (в зависимости от ресурсов, имеющихся в распоряжении дизайнера) и становится процессом, в ходе которого дизайнер чаще задействует свои самые ценные навыки — мнение и вкус. Такой адаптивный и органичный подход отличается от традиционного продуктового дизайна, определяющим моментом которого было многократное выполнение заранее заданных шагов.

Безусловно, искусственный интеллект существенно повышает эффективность работы и бизнес-процессов не только в области дизайна. У компании Philips есть программный инструмент Illumeo для рентгенологов. Наряду с рентгенограммами он хранит контекстную информацию о пациенте, а значит, рентгенологу не приходится искать результаты лабораторных исследований или предыдущие рентгенограммы. Самое поразительное: во многих случаях эта программа является контекстно зависимой. Например, она способна распознавать отображенные на рентгенограмме анатомические особенности и автоматически предлагать подходящий набор инструментов — например, для анализа состояния сосудов. Программа может также отслеживать, как рентгенолог предпочитает просматривать изображения (так называемый протокол просмотра рентгенограмм). Illumeo — хороший пример того, как интеллектуальные агенты могут проникать в уже существующий интерфейс, изучая предпочтения человека, использующего программный продукт, и включая полученную информацию в пользовательский опыт. Illumeo применяет искусственный интеллект в своем пользовательском интерфейсе, с тем чтобы взаимоотношения человека и машины были адаптивными и улучшались со временем[109].

До сих пор мы уделяли основное внимание офисным профессиям, однако выгоды от пользовательского интерфейса с элементами искусственного интеллекта очевидны и для рабочих профессий. В частности, такие инструменты искусственного интеллекта, как умные очки, которые обеспечивают опыт дополненной реальности, полностью меняют процесс технического обслуживания и инструктаж на месте выполнения работ: такие очки отображают цифровую информацию или инструкции в поле зрения сотрудника.

В глобальной компании по предоставлению производственных услуг типичный процесс подключения блока управления ветрогенератором организован так, что техник вынужден переключать внимание между блоком управления и печатной копией руководства. Дисплей дополненной реальности оставляет руки свободными, а визуализированные инструкции проецируются на рабочее пространство техника. В сравнении с традиционным руководством по эксплуатации шлем дополненной реальности повышает эффективность работы на 34% уже при первом использовании. Поскольку нет необходимости специально обучаться работе с этой технологией, эффективность повышается без промедления. Аналогичный пример из компании Boeing демонстрирует рост эффективности на 25%, в других случаях идет речь об увеличении в среднем на 32%[110].

Искусственный интеллект в Airbus

Дизайнеры Airbus использовали интеллектуальные функции программы Dreamcatcher, чтобы изменить конструкцию перегородки, отделяющей салон от бортовой кухни в модели А320. Инженерам необходимо было сделать эту перегородку легкой (для экономии топлива и сокращения углеродного следа), но в то же время достаточно прочной, чтобы на ней можно было закрепить два откидных сиденья для бортпроводников. Дизайнеры наблюдали на экране компьютера, как программа перебирает тысячи странных, неожиданных конструкций. В конечном счете инженеры остановили выбор на одной из этих причудливых конструкций. В окончательном виде перегородка напоминала скорее не сплошную панель, разработанную высококлассными специалистами, а детские каракули в книжке-раскраске, но в то же время отвечала таким критериям, как прочность, масса и технологичность.

Новая конструкция перегородки казалась весьма необычной отчасти по той причине, что в генетический алгоритм изначально была заложена модель, основанная на биологических структурах, как и в случае со стулом Elbo. За основу были взяты особенности строения слизевиков — простейших организмов, которые закрепляются в многочисленных точках контакта с поверхностью, и костей млекопитающих, плотных в местах соединения и пористых во всех остальных. Итоговая конструкция выглядела как случайное смешение линий, однако она была оптимизирована таким образом, чтобы перегородка стала прочной, легкой и требовала минимума материала. Затем инженеры изготовили саму перегородку. Команда специалистов Airbus напечатала на 3D-принтере более сотни ее фрагментов, изготовленных из высокопрочного сплава, и выполнила сборку. В 2018 году, после того как авиационные агентства проведут испытания на прочность и сертификацию, новая перегородка будет установлена в самолетах[111].

Агенты взаимодействия

Мы описали систему Aida в главе 2, где представили ее как одну из составляющих виртуальной службы клиентской поддержки шведского банка Skandinaviska Enskilda Banken. Со временем специалисты SEB обучили интеллектуального агента Aida и после внутренних тестирований убедились, что ему можно «делегировать» весь процесс взаимодействия с миллионом клиентов. В настоящее время система Aida выступает в качестве первой точки контакта клиентов с банком SEB. Эта программа может отвечать на часто задаваемые вопросы, проводить пользователей через тот или иной процесс, выполнять действия в пределах внутренних систем и задавать уточняющие вопросы для решения проблемы пользователя. Важно: когда система Aida сталкивается с вопросом, который не может с уверенностью решить, она связывается с человеком и учится на примере его взаимодействия с клиентом[112]. (См. рис. 10.)


Рис. 10. Функции в случае взаимодействия


Безусловно, в настоящее время существует множество агентов взаимодействия, которые можно применять на практике. По мере совершенствования программного обеспечения для обработки естественного языка подключение таких агентов к действующим процессам становится все проще. В качестве примера можно привести таких интеллектуальных агентов, как система Cortana компании Microsoft, чат-бот Nina компании Nuance Communications, а также естественно-языковая система искусственного интеллекта Watson компании IBM, которая используется в самых разных областях — от банковской сферы и страхования до путешествий и медицинской помощи. Например, в Accenture функционирует Alice — интеллектуальный агент, который использует систему Watson для предоставления ответов на распространенные вопросы, а Colette — это еще один основанный на системе Watson интеллектуальный агент, отвечающий на вопросы покупателей домов об ипотечных кредитах.

Агенты взаимодействия не обязательно должны быть просто голосом в телефоне или иконкой на экране. Некоторые интеллектуальные агенты имеют также физический образ. Сейчас большинство людей знают о существовании таких естественно-языковых систем, как Amazon Alexa, Google Home и Apple Siri, ориентированных на прямое взаимодействие с пользователями. Однако существуют и другие «помощники» такого типа. Например, BQ Zowi — это небольшой настольный робот, который первоначально был разработан для детей, но имеет открытую архитектуру и поддается перепрограммированию, что позволяет приспособить его для других целей. Сейчас он может отвечать на вопросы клиентов некоторых банков с помощью чат-ботов. Аналогичным образом человекоподобный робот Nao использует службу вопросов и ответов системы Watson компании IBM для предоставления ответов на вопросы о банковских операциях, путешествиях и здоровье, а также на технические вопросы о системах, приложениях и продуктах компании.

В перечисленных выше случаях взаимодействия программа или роботизированный агент имеют доступ к огромным хранилищам данных и используют естественно-языковой интерфейс для быстрого обращения к информации и ее распространения. Компании, обслуживающие множество клиентов одновременно, могут извлечь для себя пользу из способов взаимодействия, находящихся в области «недостающей середины». Глубокое понимание такого взаимодействия позволяет полностью изменить обслуживание клиентов, причем не только в центрах обслуживания, но и в точках продажи и даже в домах клиентов. Кроме того, взаимодействие может облегчить сотрудникам выполнение рутинных монотонных задач. Избавившись от таких задач, можно переосмыслить бизнес-процессы с учетом необычных, интересных и сложных кейсов.

Взаимодействие с роботами

Расширение возможностей и взаимодействие — это те функции «недостающей середины», которые дополняют человеческий интеллект. Напротив, дополненное физическое воплощение расширяет физические возможности. Такие примеры чаще всего встречаются на промышленных предприятиях, в частности на заводе Mercedes-Benz на юго-западе Германии, где обрабатывается полторы тысячи тонн стали в день и производится более 400 тысяч автомобилей в год. При таких показателях можно предположить, что на заводе функционирует хорошо отлаженная сборочная линия, где преобладают роботы и задействован минимум людей. Однако компания Mercedes убирает некоторых роботов и перестраивает производственные процессы таким образом, чтобы они были сосредоточены вокруг людей. В итоге сборочная линия этой автомобилестроительной компании меняется (рис. 11).


Рис. 11. Функции в случае дополненного физического воплощения


Движущим фактором этих перемен стало появление автомобилей, изготовленных с учетом индивидуальных требований. Сейчас вы можете выйти в интернет и выбрать, какими характеристиками будет обладать ваш будущий автомобиль. Остались в прошлом те времена, когда с конвейера сходили идентичные машины модели «T». Выходит из моды тренд на выпуск автомобилей в трех стандартных комплектациях (распространенных в Соединенных Штатах Америки).

При таком большом разнообразии вариантов в индустрии автомобилестроения единственный способ собирать машины быстро — вернуть людей на заводы. «Мы отказываемся от попыток обеспечить максимальную автоматизацию; люди снова принимают активное участие в производственных процессах, — говорит Маркус Шефер, руководитель отдела производственного планирования компании Mercedes. — Когда люди и машины сотрудничают друг с другом (например, когда человек управляет роботом с частичной автоматизацией), мы становимся гораздо более гибкими и производим гораздо больше изделий на одной производственной линии. Ассортимент слишком большой, чтобы полностью полагаться на машины»[113].

Вместо того чтобы создавать на производственных предприятиях зону для роботов с большой грузоподъемностью, в целях безопасности отделенных от людей перегородкой, а также еще одну зону для людей, успешно справляющихся с прокладкой электропроводки и с выполнением еще более сложных задач, новое поколение коботов позволяет людям и роботам работать бок о бок, в сотрудничестве друг с другом. В таких коботах используются интеллектуальные программы, которые обучаются с течением времени, а также датчики, позволяющие программам адаптироваться к ситуации и реагировать на людей. На практике это означает, что кобот выполняет повторяющиеся и точные задачи, а также берет на себя тяжелую работу, а человек привносит в этот процесс интеллект и свои умения. Таким образом, коботы в буквальном смысле слова расширяют физические возможности человека.

Исследования Массачусетского технологического института подтверждают, что взаимодействие человека и машины повышает эффективность компании. Изучив работу BMW (конкурента Mercedes), ученые пришли к выводу, что взаимодействие людей и роботов на автомобилестроительном заводе повышает продуктивность примерно на 85% в сравнении с тем, если бы люди и роботы работали по отдельности[114].

На заводе Mercedes рабочий использует консоль с кнопками и дисплеем для управления роботом-манипулятором и с его помощью поднимает тяжелый стальной лист, который станет днищем багажника. Эта роботизированная система оборудована датчиками, чтобы видеть окружающее пространство, и программным обеспечением, которое может быстро передавать инструкции приводам робота, если, например, человек окажется на его пути или автомобиль будет установлен некорректно. Подобная система с использованием кобота функционирует под контролем специалиста, управляющего созданием каждого автомобиля. Работа на производстве определенно требует все меньше ручного труда и все больше напоминает работу пилота, а робот выступает в качестве продолжения тела человека[115].

Использование коботов несет пользу и производству, обеспечивая гибкость и адаптивность производственных процессов, и людям. Один специалист, работающий вместе с коботами в компании по производству двигателей SEW-Eurodrive, так описывает рабочую среду: «Это приносит большее удовлетворение, поскольку я создаю весь двигатель. На старом конвейере я отвечал только за часть процесса»[116].

Коботы полезны также с точки зрения эргономики. Инженеры завода BMW в Южной Каролине проанализировали производство автомобилей, чтобы понять, как можно применить промышленного робота на производственной линии, которую обслуживают люди. В итоге они пришли к выводу, что расположенный на конвейере кобот лучше всего справится с установкой дверной панели, защищающей электропроводку. В прошлом эту работу выполняли люди, что вызывало растяжение запястья. Кроме того, люди справлялись с этой задачей не так хорошо[117].

Теперь человек выполняет только первичный монтаж дверной панели, после чего дверь перемещается по конвейеру к расположенному рядом коботу, который заканчивает работу. Кобот оборудован камерами и другими датчиками, чтобы определить, есть ли рядом человек. В отличие от традиционных промышленных роботов, многократно выполняющих предписанные движения без понимания, что происходит вокруг, кобот на заводе BMW искусно избегает столкновений с людьми или создания препятствий на их пути. Более того, даже люди без IT-образования могут перепрограммировать коботов с помощью планшета — для этого не нужны навыки программирования. А поскольку такие роботы весят немного, их можно перемещать в любое место для выполнения разных задач[118].

Такая система «человек — робот» повышает трудоспособность людей: теперь они меньше устают и реже получают травмы. Работа на промышленном предприятии становится доступной не только людям, находящимся в превосходной физической форме. Как показывает применение систем «человек — робот» во многих производственных компаниях, физическое воплощение систем искусственного интеллекта открывает еще больше возможностей для трудоустройства: некоторые люди, исключившие физический труд как один из вариантов занятости (из-за возраста или по состоянию здоровья), получают возможность выполнять такую работу с помощью коботов.

Аналогичная коллаборативная динамика имеет место и на складах. В центрах обработки и выполнения заказов компании Amazon заполненные товарами стеллажи как будто сами плавно перемещаются по проходам между рядами по направлению к работнику-человеку. Эти стеллажи перемещают приземистые передвижные роботы, предназначенные для доставки товаров к работнику склада, который снимает их с полок и упаковывает в коробки для отправки. Компьютерное зрение позволяет роботам видеть, где они находятся на складе, датчики помогают им не сталкиваться друг с другом, а алгоритмы машинного обучения позволяют определять оптимальный путь и преимущественное право движения по территории склада. Работнику-человеку больше не нужно проходить в день несколько километров, отыскивая и доставая с полок нужные товары.

Еще один пример физического воплощения систем искусственного интеллекта — дроны, которых тестируют в качестве средства доставки медицинской помощи в отдаленные районы Руанды, недоступные для традиционного медицинского обслуживания. Компания Zipline, первопроходец в этой области, поставила перед собой задачу устранить одну из самых распространенных причин смерти (послеродовое кровотечение) посредством своевременной доставки крови для переливания[119].

Дроны стали особенно интересной областью применения искусственного интеллекта: компьютерное зрение и интеллектуальные алгоритмы обрабатывают видео в режиме реального времени, позволяя людям расширить свои возможности в области доставки, поднимать грузы в воздух и преодолевать много километров непроходимой местности.

В рамках проекта, аналогичного проекту компании Zipline, международная неправительственная организация «Врачи без границ» провела эксперимент с использованием небольшого квадрокоптера, выпущенного компанией Matternet. Этот дрон перевозит биоматериалы пациентов с подозрением на туберкулез из отдаленных лечебных центров Папуа — Новой Гвинеи в крупную клинику для проведения исследований[120]. Организация Wings for Aid использует беспилотные летательные аппараты, чтобы сбрасывать продовольствие в труднодоступных районах, пострадавших от стихийных бедствий[121].

По всей видимости, в ближайшем будущем ряд самых эффективных способов применения роботов будут подразумевать их взаимодействие с людьми. Роботы хорошо выполняют тяжелую работу и превосходно справляются с повторяющимися задачами. Люди способны быстро адаптироваться, принимая субъективные решения и используя свои руки для работы с проводами, тканями и другими сложными материалами. Взаимодействие человека и машины помогает самым разным компаниям переосмыслить свои представления о людях и бизнес-процессах.

От изменения задач к изменению процесса

Во всех трех областях, расположенных в правой части «недостающей середины» (таких как расширение возможностей, взаимодействие и физическое воплощение), мы видим, что искусственный интеллект обеспечивает существенное повышение эффективности людей, наделяя их сверхспособностями. Если объединить это с тремя областями левой части «недостающей середины» (обучение, разъяснение и обеспечение устойчивости), которые демонстрируют, как люди добиваются роста эффективности искусственного интеллекта, это позволит нам увидеть грядущую радикальную трансформацию.

Для того чтобы в полной мере использовать потенциал человеко-машинной рабочей среды, компаниям необходимо осознать, что эти шесть новых подходов к выполнению работы требуют полного переосмысления бизнес-процессов. Искусственный интеллект позволяет дизайнеру выбрать одну из тысяч неожиданных и необычных конструкций стула (каждая из которых отвечает важным структурным требованиям). Производитель автомобилей может реорганизовать заводской цех так, чтобы люди и роботы трудились вместе. Применение искусственного интеллекта обеспечивает масштабный выпуск автомобилей под заказ, оптимизированных под желания клиентов, превращая сборочную линию в совместное рабочее пространство роботов и людей.

В некоторых ситуациях (как у техников, которые надевают шлемы дополненной реальности при подключении блоков управления ветрогенераторами) такие инновации сокращают время выполнения работы на треть. А иногда (как у компании Stitch Fix, о которой шла речь во введении ко второй части) технологии искусственного интеллекта позволяют создавать совершенно новые бизнес-модели. Когда искусственный интеллект дополняет возможности специалистов, мы наблюдаем не просто постепенное увеличение доходов или повышение эффективности. Мы видим более защищенных, более заинтересованных сотрудников, способных хорошо выполнять ту работу, которую они умеют делать лучше всего. Дополнение в виде искусственного интеллекта позволяет полностью переосмыслить бизнес-процессы, выявить скрытые источники дохода, сделать сотрудников более смелыми и обнаружить совершенно новые бизнес-модели, подходящие для наступающей эпохи. Но какими будут управленческие последствия таких инноваций для компаний? Как подготовить людей к новым видам взаимодействия на рабочем месте? Какие новые навыки необходимы для успешного сотрудничества с искусственным интеллектом? В следующих двух главах эти и другие вопросы мы рассмотрим сквозь призму модели MELDS. В главе 7 основное внимание уделим таким элементам этой модели, как мышление, экспериментирование, лидерство и данные, а глава 8 посвящена навыкам.

Глава 7. Руководство по переосмыслению бизнес-процессов от лидеров

* * *

Пять шагов для успешного старта

В предыдущих двух главах мы тщательно проанализировали вопрос о том, как в одной части «недостающей середины» люди строят машины и управляют ими, а в другой машины фактически наделяют людей сверхспособностями. Концепция «недостающей середины» лежит в основе наших размышлений о том, что в эпоху искусственного интеллекта люди и машины лучше всего работают вместе, а также что понимание этого факта играет важнейшую роль в переосмыслении бизнес-процессов. Однако остается один важный вопрос: в чем заключаются реальные шаги по переосмыслению бизнес-процессов? Как должны действовать руководители?

На основании наблюдений за компаниями, находящимися на переднем крае внедрения самых современных технологий, мы обнаружили пять важнейших методов управления. Трансформация бизнеса под воздействием искусственного интеллекта все еще находится на начальном этапе, однако мы убеждены в том, что эти методы определят направление трансформации. Пять методов, о которых идет речь, — это элементы упомянутой во введении модели MELDS. В этой главе мы сфокусируемся на первых четырех методах:


• Руководители должны придерживаться определенного образа мышления, сосредоточившись не просто на совершенствовании бизнес-процессов, а скорее на полном их переосмыслении и на способах выполнения работы.


• Руководители должны способствовать формированию культуры экспериментирования с искусственным интеллектом, позволяющей им быстрее понимать, как и где эта технология может изменить процесс, а также где целесообразно его масштабировать.


• При продвижении ответственного искусственного интеллекта важно лидерство, которое будет проявляться через создание атмосферы доверия, а также через решение юридических и этических проблем с учетом социальных последствий грядущих изменений.


• Руководителям необходимо осознать исключительную важность данных, причем не только внутренней информации, обеспечивающей работу систем искусственного интеллекта, но и более широкого диапазона данных.


Иначе говоря, в данной главе рассматривается фрагмент MELD нашей модели MELDS (на навыках, то есть фрагменте S, от англ. skills, мы сосредоточимся в следующей главе). Мы расскажем, как ведущие компании внедряют четыре указанных метода, а также предложим рекомендации по внедрению систем искусственного интеллекта с ориентацией на долгосрочный рост. Наши рекомендации выходят за пределы того, что обычно содержат методики применения информационных технологий и трансформации бизнеса, и касаются непосредственно самых современных систем искусственного интеллекта и сопутствующих аспектов (в том числе тех, которые обычно не принимаются во внимание), таких как корпоративная культура, этика, доверие потребителей и доверие сотрудников.

1. Мышление: представьте, какими могут быть процессы

Переосмысление бизнес-процессов требует совершенно иного мышления — говоря словами инженера-исследователя Шошаны Зубофф, «разрыва с тем миром, который мы воспринимаем как должное»[122]. Именно такой «разрыв» с действующими подходами к выполнению работы позволяет компаниям представить новые бизнес-модели и создать революционные инновации. Другими словами, когда люди просто принимают существующий процесс как должное, а затем используют искусственный интеллект для его автоматизации, они могут добиться разве что небольших улучшений. Для перехода на новый уровень эффективности необходимо внедрить новые способы выполнения работ, а затем определить, где и в чем может помочь искусственный интеллект. Мы рекомендуем руководителям использовать трехфазный подход: определение и описание, совместное создание ценности, масштабирование и обеспечение устойчивости.

Определение и описание

Вполне естественно, что при попытке переосмыслить процесс людям трудно отказаться от прежних паттернов, и это мешает представить иные возможности. Чтобы избежать этого, следует всегда помнить о различиях между традиционными бизнес-процессами и новым подходом, основанным на использовании искусственного интеллекта. Наши исследования показывают, что в настоящее время результат носит не линейный, а экспоненциальный характер. Изменения больше не осуществляются эпизодически под руководством людей; они представляют собой адаптивный процесс, основанный на информации, предоставляемой в режиме реального времени как людьми, так и машинами. Рабочие обязанности больше не делятся на те, что предназначены исключительно для людей, и те, что поручаются только машинам; они должны охватывать также работу, выполняемую людьми и машинами совместно и попадающую в область «недостающей середины». А решения необходимо принимать, не только когда работу выполняют люди, но и при взаимодействии человека и машины.

С учетом подобной перспективы руководители могут приступить к определению и описанию того, как мог бы выглядеть переосмысленный бизнес-процесс. Эффективно применять один из таких методов, как дизайн-мышление или эмпатический дизайн, для выявления продукта или процесса, который действительно необходим пользователю. Цель — изменить негативный (в прошлом) опыт общения потребителей с компанией на позитивный, предложив инновационный продукт, отвечающий их потребностям. В этом контексте особую важность приобретают любые «болевые точки» в клиентском опыте. Впервые обнаружив такие проблемные области, можно проанализировать способы их устранения на основе использования искусственного интеллекта и данных в режиме реального времени. В прошлом устранение многих «болевых точек» было нецелесообразным или даже невозможным, поскольку это требовало слишком больших расходов или же еще не существовало технических возможностей. Однако в настоящее время благодаря развитию технологий искусственного интеллекта компании получили возможность устранить те самые «болевые точки», которые в прошлом становились для них препятствием.

Возможности для переосмысления процессов можно найти как внутри, так и за пределами организации. «Болевой точкой» может оказаться громоздкий длительный внутренний процесс (например, HR-отдел слишком долго закрывает штатные вакансии). Кроме того, это может быть раздражающий и отнимающий много времени внешний процесс (например, клиентам приходится заполнять множество бланков, чтобы страховая компания возместила расходы на лечение). Во многих случаях обнаружение возможностей для переосмысления процессов носит итеративный характер.

Рассмотрим кейс крупной аграрной компании, которая разрабатывала систему искусственного интеллекта, чтобы помочь фермерам улучшить работу. Эта система получила доступ к огромному объему данных из разных источников, в том числе к информации о свойствах почвы, данным метеорологических наблюдений за весь период сбора данных и прогнозирования погоды и т. д. Первоначально планировали создать приложение, которое помогало бы фермерам лучше прогнозировать урожайность культур. Однако дальнейшие исследования и наблюдения выявили более актуальную проблему, которую смогла решить система искусственного интеллекта: на самом деле фермеры нуждались в адаптивных рекомендациях, предоставляемых в режиме реального времени. Им были нужны конкретные, действенные советы, какие культуры выращивать и где, сколько азотных удобрений вносить в почву и т. д. Обнаружив «болевую точку», компания разработала систему и испытала ее примерно на тысяче полей. Первоначальные результаты были многообещающими, поскольку фермеры были довольны полученным урожаем. Затем данные первоначальных испытаний использовали для усовершенствования алгоритмов.

Из этого примера можно извлечь важный урок. Обнаружение возможностей для переосмысления бизнес-процессов требует времени: следует определить условия ведения бизнеса, сделать выводы из наблюдений и посчитать экономический эффект от трансформации процесса. Один специалист, работавший над созданием системы рекомендаций по повышению урожайности культур, дал такой совет: «Необходимо быть чрезвычайно любознательными и терпеливыми, пока вы не убедитесь в том, что усвоили достаточно знаний в соответствующей предметной области, а также сделали правильные выводы на основе имеющихся данных».

Искусственный интеллект может принести большую пользу, дополняя наблюдательность человека при обнаружении скрытых ранее закономерностей в имеющихся данных. Например, можно использовать современные алгоритмы машинного обучения для проверки сотен источников данных, таких как электронные письма клиентов, посты в социальных сетях или цифровой след, чтобы определить, где переосмысление процесса может быть наиболее эффективным с точки зрения устранения болевых точек клиента. (В главе 3 мы говорили об искусственном интеллекте как о факторе, способствующем таким наблюдениям.)

Совместное создание ценности

Обнаружить возможности для переосмысления бизнес-процессов — еще не всё; чтобы их реализовать, потребуется кое-что еще: способность представить рабочий процесс в области «недостающей середины». Чтобы по-новому взглянуть на него, следует поощрять совместные усилия всех участников процесса.

Поставьте себя на место технического специалиста в дилерском центре Audi и представьте, что возникла проблема с двигателем, которую вы не можете решить. Ваш следующий шаг — позвонить в службу технической поддержки Audi. Ее сотрудники получают около 8000 звонков в месяц от более чем 290 дилеров со всей страны. Как правило, специалисты помогают устранить неполадки удаленно по телефону. Однако, как говорит директор Audi по контролю качества Джейми Деннис, в 6% случаев техническому специалисту необходимо присутствовать на месте. Такая мера действенна, но экономически невыгодна. Время в пути занимает от двух часов до двух дней — а клиенту приходится ждать[123].

Проблема в том, что в ближайшем будущем потребность в квалифицированных технических специалистах не исчезнет. Надежность автомобилей повышается, они становятся более сложными технически и технологически, а это значит, что автомеханики должны также разбираться в информационных технологиях. Сочетание высокой надежности и высокой сложности означает, что автомеханикам уже сейчас не хватает компетенций для устранения более сложных технических неисправностей, возникающих в последних моделях автомобилей. Это объясняет, почему клиентам порой приходится ждать завершения ремонта много часов (или дней), однако вряд ли избавит их от разочарования. Так как лучше всего обучать автомехаников и есть ли более эффективный способ применять навыки удаленных специалистов в автосалонах, чтобы свести к минимуму время ожидания клиентов?

В компании Audi нашли решение — совместная работа в области «недостающей середины». Компания разместила целый парк роботов телеприсутствия Audi Robotic Telepresence (ART), которые не только помогают обучать автомехаников методам диагностики и ремонта, но и сокращают время ремонта. Это пример того, как расширение возможностей сотрудников наряду с их обучением посредством системы искусственного интеллекта инициирует совершенно новый процесс. При использовании системы ART квалифицированному техническому специалисту нет необходимости ездить в дилерские центры; вместо этого его голос и изображение передаются на большое расстояние, поступая на динамики и дисплей робота ART. Квалифицированный техник, сидя в своем кабинете, удаленно управляет роботом, который перемещается, поворачивается, смотрит, слушает и вовремя отодвигается в сторону, находясь рядом с работающим на месте автомехаником в тот момент, когда он заглядывает под капот автомобиля. Такой мобильный робот оборудован видеосенсорами для обеспечения безопасности, что вызывает у людей, работающих с ним бок о бок, доверие к этому «инструменту». Кроме того, сеть видео- и голосовой коммуникации между экспертом и автомехаником поддерживается системой искусственного интеллекта, что укрепляет взаимодействие механика и удаленного технического специалиста, физические возможности которого возрастают благодаря роботу. Представьте, будто кто-то заглядывает вам через плечо, когда вы погружаете бороскоп в цилиндр двигателя, чтобы определить степень его износа. Квалифицированный технический специалист может в режиме реального времени давать советы, как улучшить диагностику и ремонт. Автомеханики в дилерском центре учатся на ходу; экспертные знания можно применить мгновенно в любом регионе страны, и клиенты быстрее получают отремонтированные автомобили. Такое инновационное решение стало возможным благодаря процессу совместного создания ценности, в который вовлечены квалифицированные технические специалисты, автомеханики и специалисты по технологиям искусственного интеллекта. Например, при реализации пилотного проекта возникла необходимость внести изменения в стандартный протокол, и автомеханики помогли в этом, обеспечивая непрерывную обратную связь и сообщая, что работает, а что нет.

Масштабирование и обеспечение устойчивости

Последний этап переосмысления бизнес-процессов подразумевает, что руководители компании должны масштабировать свое решение и поддерживать его с помощью постоянных улучшений. Например, в июне 2014 года компания Audi запустила экспериментальную пилотную программу по внедрению системы ART в 68 дилерских центрах. Ее успех определил планы по внедрению роботов у всех дилеров США к концу 2016 года[124]. Еще один подход — испытать систему на сотрудниках и устранить все неполадки до ее установки или подключения клиентов. Такую стратегию использовал шведский банк SEB при разработке виртуального помощника Aida, который, как говорилось в главе 2, был сначала внедрен в качестве виртуального агента IT-поддержки, оказывая помощь 15 тысячам сотрудников SEB, прежде чем система начала обслуживать миллион клиентов этого банка. Аналогичная стратегия используется в магазине нового типа Amazon Go, о котором мы поговорим в следующей главе.

2. Экспериментируйте!

В Сиэтле есть магазин, в который можно зайти, взять сок и выйти. Не нужно оплачивать покупку на кассе. Вам не придется даже проходить через кассу самообслуживания. Вместо этого камеры отслеживают ваши действия и действия других покупателей, а также фиксируют товары, которые вы берете с полок. На бутылке сока есть встроенный датчик, который обменивается данными с вашим телефоном, выставляя вам счет. Точно так же автоматизирован процесс покупки других товаров. Этот магазин называется Amazon Go; весной 2017 года он обслуживал ограниченное количество посетителей (в основном сотрудников Amazon), демонстрируя, что покупать в офлайн-магазине так же просто, как нажимать кнопку «Купить» на веб-сайте Amazon[125].

Безусловно, Amazon Go — пример смелого эксперимента в сфере розничной торговли, но здесь важен и другой аспект: в Amazon поощряют культуру экспериментирования. Эта компания создает условия для реализации самых смелых идей. Amazon разрабатывает, финансирует и проводит необходимые «опыты». Многие из них терпят фиаско, но дело не в этом. «Мои неудачи в Amazon.com исчисляются миллиардами долларов. В буквальном смысле слова, — говорит Джефф Безос. — Важно то, что компании, которые сворачивают экспериментирование или готовы примириться с неудачами, оказываются на пороге краха и им остается только идти на крайние меры. Я не верю в игру ва-банк»[126]. Безос твердо верит в силу экспериментирования.

Контролируемый хаос

Store № 8 компании Walmart — это «инкубатор», в котором инженеры и инноваторы испытывают новые технологии, такие как робототехника, виртуальная и дополненная реальность, машинное обучение и разные системы искусственного интеллекта. Store № 8, об открытии которого было объявлено в марте 2017 года, во многих отношениях функционирует подобно любому другому стартап-инкубатору, экспериментируя с идеями и помогая компаниям «сменить курс» после неудачных испытаний тех или иных концептов. Как утверждает Марк Лор (основатель компании Jet.com, которую в 2016 году Walmart приобрела за $3 миллиарда, бизнес-тренды и инновации, созданные в инкубаторе Store № 8, «будут ограждены от остальной части организации и получат поддержку крупнейшего ритейлера в мире»[127]. Другими словами, стартап получает финансовые ресурсы гигантской корпорации и полную свободу действий благодаря изоляции от ее бюрократии. В планы Store № 8 входит сотрудничество с внешними стартапами, венчурными инвесторами и исследователями для создания линейки запатентованных роботов, виртуальной и дополненной реальности, машинного обучения и технологий искусственного интеллекта[128].

Названный по имени центра в Арканзасе, в котором Сэм Уолтон опробовал новые идеи, инкубатор Store № 8 напоминает о том, что Уолтон уделял большое внимание сбору данных о своих магазинах и экспериментированию. Однако по мере роста такие компании (особенно основанные до того, как цифровые технологии трансформировали розничную торговлю) становятся слишком громоздкими, чтобы быстро действовать и брать на вооружение такие технологии, как искусственный интеллект. Создание собственного инкубатора говорит о том, что в компании Walmart осознают всю сложность и важность внедрения культуры экспериментирования в свою организационную структуру. На самом деле покупка онлайн-ритейлера Jet.com прежде всего была попыткой вплести цифровую культуру в существующую корпоративную ткань. При этом инкубатор Store № 8 создает среду, поощряющую апробацию новых идей, ставки высоки, но никто не играет ва-банк.

Создать — оценить — извлечь уроки

Технологии, обеспечивающие функционирование Amazon Go (компьютерное зрение, сбор и обобщение сенсорных данных и глубокое обучение), — это системы, которые находятся в стадии разработки. К числу ограничивающих факторов относятся камеры, которым трудно отслеживать нефасованные фрукты и овощи в руках покупателей, а также распознавать покупателя с низко надвинутым головным убором или шарфом, закрывающим лицо. Такое поведение, будь то непреднамеренное или умышленное, позволяло обмануть систему во время испытаний Amazon Go в Сиэтле. Тем не менее единственный способ внедрить новые технологии — исследовать их пределы. Поэтому в качестве временной меры Amazon нанимает сотрудников, чтобы те просматривали видео- и оцифрованные изображения и проверяли правильность отслеживания товаров и их оплаты (напоминает специалистов по обучению и экспертов по устойчивости, не так ли?). Магазин Amazon Go — это пример внедрения автоматизированных процессов с участием человека; делается это с целью усовершенствовать систему, чтобы обеспечить ее более корректное и автономное функционирование, прежде чем начать повсеместное внедрение.

В Amazon приняли решение не только испытать этот концепт внутри компании, но и открыть магазин, рассчитанный на большой поток покупателей. Важно, что компания выбрала собственных сотрудников для пробных продаж. Сотрудники Amazon, уже знакомые с такими способами выявления потребностей клиентов, как использование минимально жизнеспособных продуктов и A/B-тестирование, предоставляют полезную обратную связь и, в отличие от обычных покупателей, не перестают пользоваться технологией, если она время от времени дает сбой. Компании, внедрившие в свою практику интеллектуального помощника IPsoft Amelia, придерживались аналогичного подхода: сотрудники пользовались технологией внутри компании, пока не были устранены все ее недостатки, и только после достижения требуемого качества система была представлена клиентам.

Компания Amazon демонстрирует понимание того, как руководители применяют самые современные технологии искусственного интеллекта, так же как специалисты по обучению и эксперты по устойчивости помогают внедрять и испытывать их. Поощряя культуру экспериментирования, Безос получил в свое распоряжение «секретное оружие» в сфере инноваций: огромное количество сотрудников, готовых работать в области «недостающей середины», а также руководителей, которые знают, как справляться с неопределенностью.

Компания Amazon поэтапно внедряла новую технологию, чтобы очертить границы ожиданий клиентов в рамках компромисса между ощущением дискомфорта, обеспечением конфиденциальности и удобством использования. После открытия магазина Amazon Go во многих публикациях отмечалось, что, когда вы заходите в магазин, где автоматически устанавливают вашу личность и отслеживают каждое ваше движение, это вызывает дискомфорт. Но, как показывают другие продукты Amazon (такие как Echo), вскоре клиенты привыкают к такому наблюдению, особенно когда считают, что в какой-то степени контролируют ситуацию. Например, в случае системы Echo люди знают, что их разговоры не записываются до тех пор, пока они не используют одно из кодовых слов для активации системы — Alexa, Amazon, Echo или «компьютер». Кроме того, приложение Alexa предоставляет клиентам доступ к записанным разговорам, которые они могут удалить.

Быстрое принятие системы Echo показывает, насколько легко люди соглашаются на новые нормы, которые требует технология, особенно если считают, что получают нечто весьма ценное и в какой-то степени контролируют происходящее. В конечном счете аналогичные инструменты пользовательского контроля и прозрачные интерфейсы могут сыграть положительную роль и в случае Amazon Go.

В магазинах Amazon Go, площадь которых предположительно будет от тысячи до почти четырех тысяч квадратных метров, у покупателей будет выбор: совершать покупки в интернете и забирать их в магазине или делать это непосредственно в магазине. Продуктовые магазины — это непростой бизнес, в котором автоматизация определенных элементов покупательского опыта требует глубокого понимания того, какие задачи лучше выполнять людям, какие — машинам и в каких случаях необходимы их совместные усилия. В настоящее время в Amazon пытаются определить правильное соотношение между возможностями человека и машины. Компания объявила о том, что количество сотрудников в магазинах Amazon Go будет оставаться таким же, как в обычных магазинах, хотя кассиров здесь не будет. Время покажет, какие новые функции будут выполнять люди в Amazon Go[129].

Времена стандартных бизнес-процессов остались в прошлом; компании больше не могут ставить своей целью простое воспроизведение лучших в своем роде процессов лидера отрасли. Именно поэтому так важно экспериментирование. Конкуренция требует, чтобы руководители компаний приводили бизнес-процессы в соответствие со спецификой своего бизнеса. Однако загвоздка в том, что внедрение нестандартных процессов требует от руководителей и лидеров глубокого знания своих сотрудников и корпоративной культуры в целом, чтобы понимать, как и когда начинать эксперименты. Например, чтобы заручиться поддержкой сотрудников, руководители должны ставить четкие цели и не мешать совершать ошибки и промахи. Не стоит забывать, что в науке эксперимент, не подтвердивший правильность гипотезы, не называют неудачным. Полученный в ходе такого эксперимента результат называют данными.

3. Лидерство: представьте гибридную культуру людей и машин

Перед многими компаниями стоит сложная лидерская задача: сформировать корпоративную культуру, способствующую внедрению ответственного искусственного интеллекта. Достичь этой цели непросто, поскольку многие люди не доверяют технологиям, а обеспокоенность сотрудников возможным упразднением рабочих мест часто усиливает такие опасения. Чтобы помочь сотрудникам привыкнуть к своим коллегам в лице систем искусственного интеллекта, необходимо задействовать функционал и аспекты взаимодействия обеих частей «недостающей середины». Как мы увидим немного позже, навыки специалистов по обучению, разъяснению и экспертов по устойчивости играют решающую роль, однако не менее важен положительный опыт использования искусственного интеллекта. Сообщите сотрудникам, что внедряете искусственный интеллект для замены определенных задач и переосмысления текущих бизнес-процессов. Продемонстрируйте, что инструменты искусственного интеллекта могут расширить возможности сотрудников и сделать их повседневную работу менее утомительной и более увлекательной.

В настоящее время в бизнес-среде дело обстоит следующим образом. В 2017 году, выступая в конгрессе США по вопросу безопасности автономных транспортных средств, руководитель Toyota Research Institute Джилл Пратт сказал законодателям, что люди склонны прощать ошибки человеку в большей степени, чем машине[130]. Результаты исследований подтверждают противоречивость и неоднозначность нашего доверия машинам. Согласно статье, опубликованной в 2009 году, когда люди считают, что биржевые отчеты составлены человеком, их оценки стоимости ценных бумаг будут колебаться сильнее, чем когда отчет формировался с помощью статистических методов прогнозирования. В статье, вышедшей в 2012 году, отмечено, что люди считают решения врачей более точными и этичными, чем решения, принимаемые компьютером. Даже доказательства обратного не влияют на мнение людей. В рамках проведенного в 2014 году исследования ученые выяснили, что «при совершении одной и той же ошибки в прогнозах люди скорее перестают доверять алгоритму, чем человеку». В том же году три исследователя из Пенсильванского университета ввели термин, описывающий склонность людей доверять себе подобным больше, чем машинам, — «неприятие алгоритмов»[131].

В сфере финансового трейдинга сформировалась, пожалуй, одна из самых прогрессивных бизнес-культур работы с алгоритмами. Тем не менее даже среди трейдеров неприятие алгоритмов остается самым сильным сдерживающим фактором. В 2015 году Леда Брага создала компанию по управлению инвестициями Systematica, которая занимается исключительно алгоритмическим трейдингом. Брага признает, что люди по-прежнему выполняют определенные функции в трейдинге (например, работа активных трейдеров и трейдеров, продающих ценные бумаги без покрытия, основана на тщательном изучении основных показателей эффективности компаний и их руководства), однако эти функции постепенно сходят на нет. Брага убеждена в том, что будущее финансового трейдинга за автоматизацией. Между тем подход, которого придерживается Systematica, встречает сопротивление: люди склонны отдавать предпочтение тем решениям, которые принимают люди. «Неприятие алгоритмов — серьезное препятствие», — говорит Брага. Она признает: во многих областях «все мы предпочитаем, чтобы ту или иную работу выполнял для нас человек, даже если он делает эту работу хуже… Мы должны мыслить более рационально»[132].

Безусловно, дозированное неприятие приносит пользу. Наши собственные исследования, так же как и исследования Pew Center, говорят о том, что руководители должны поддерживать разумное равновесие между скептицизмом и принятием глубоких перемен, обусловленных внедрением искусственного интеллекта[133]. Однако следует обратить внимание на такие положительные моменты, как возможность более полного сбора данных, что позволит банкам принимать более объективные решения по кредитам, тогда как в прошлом предвзятость банкиров лишала многих людей возможности получить кредит из-за расовой принадлежности, пола или места жительства. В медицинских учреждениях также видят, что искусственный интеллект помогает оптимизировать расходы, сокращая или увеличивая число определенных задач (действий), которые врачи просто не могут выполнить для такого количества пациентов, как бы они этого ни хотели.

Разумеется, мы до сих пор пытаемся определить, что искусственный интеллект может и чего не может делать, а также как лучше всего внедрить его в бизнес-процессы. Именно поэтому нецелесообразно слепо доверять всем системам искусственного интеллекта в равной мере. Взвешенные суждения людей остаются важнейшей составляющей процесса внедрения искусственного интеллекта.

Однако самые разные системы искусственного интеллекта, от программных ботов до многошарнирных роботов-манипуляторов, получили в компаниях такое широкое применение, что это меняет рабочие обязанности и преображает организационную структуру. Так как же сформировать культуру доверия, распространяющуюся даже на роботов-коллег? Один из способов — протестировать систему искусственного интеллекта внутри компании и обучить сотрудников работе с ней, как показано в разделе «Экспериментируйте». На следующем этапе, когда решение готово к полномасштабному внедрению, можно использовать также некоторые из представленных ниже базовых инструментов и методов, чтобы укрепить доверие людей к новой технологии и помочь им мыслить более рационально.

Установление границ

Один из подходов сводится к тому, чтобы установить ограничения внутри процесса, основанного на искусственном интеллекте. Это позволит контролировать наступление нежелательных последствий. В качестве примера можно привести чат-бот «Tay» компании Microsoft. В 2016 году система «Tay» была внедрена в Twitter в качестве бота, который должен был обучаться, взаимодействуя с другими пользователями. За несколько часов бот научился использовать нецензурные, расистские и сексистские выражения, поэтому создатели сразу же удалили его[134]. Какие способы защиты могла использовать компания Microsoft в данном случае: фильтры по ключевым словам, фильтры по контенту или программу, отслеживающую настроения пользователей? В сфере промышленного производства также полезно установить границы: что системе искусственного интеллекта разрешено делать, а что нет. При этом необходимо, чтобы об этих ограничениях знали все участники процесса. Как правило, эксперт по устойчивости определяет границы, ограничения и нежелательные последствия работы системы искусственного интеллекта, а затем разрабатывает границы, чтобы она не «сбивалась» с правильного пути.

Использование контрольных точек, роль которых играют люди

Девяносто два процента специалистов по автоматизации не доверяют роботам полностью. Одна из проблем — неуверенность людей в том, что робот «думает» или планирует делать, — они считают машину непостижимым черным ящиком. По мнению этих же специалистов (76%), лучшее решение данной проблемы сводится к тому, чтобы использовать визуальный вывод аналитических данных, а также панель, отображающую другие показатели[135]. Это простое решение может снизить непрозрачность системы и обеспечить информирование людей на должном уровне. В этом случае ключевую роль играет специалист по разъяснению. Даже если невозможно в полной мере понять, как работает система искусственного интеллекта, некоторое представление о ее внутреннем устройстве может принести большую пользу. Специалисты по разъяснению должны понимать, что следует знать людям, а также чем должна поделиться система.

Максимальное сокращение «зоны моральной деформации»

У таких сервисов, как Uber, Lyft и Mechanical Turk компании Amazon, программное обеспечение с элементами искусственного интеллекта дополняет некоторые управленческие функции: распределяет задачи, обеспечивает обратную связь и формирует рейтинги, а также помогает людям отслеживать успехи в достижении поставленных целей. Повышение эффективности управления с помощью систем искусственного интеллекта — необходимое нововведение в тех компаниях, бизнес-модель которых подразумевает масштабирование и наём сотен тысяч сотрудников во всем мире. Однако если можно разгрузить определенные виды деятельности, переложив выполнение задач на искусственный интеллект, то ответственность за управление ими переложить нельзя.

Это сложный вопрос, требующий осмотрительного и вдумчивого подхода к выбору структуры бизнес-процессов. Когда топ-менеджеры с возможностями, расширенными за счет искусственного интеллекта, меняют конфигурацию взаимодействия между руководством, сотрудниками и обществом, компании должны знать о более масштабных, оказывающих сильное воздействие и потенциально нежелательных последствиях, сопутствующих этим переменам. Необходимы новые механизмы, гарантирующие, что люди не попадут под удар, если использование искусственного интеллекта будет признано неудачным. Однако чтобы разработать такие механизмы, сначала нужно понять концепцию зоны моральной деформации.

Зона деформации — это часть автомобиля, которая должна принять на себя удар, чтобы защитить водителя и пассажиров. Иногда именно люди (сотрудники и клиенты) оказываются уязвимы из-за сбоя системы искусственного интеллекта, что подрывает доверие к ней.

Этнографы Мадлен Клэр Элиш и Тим Хванге ввели термин «зона моральной деформации». Проводя исследования, они обнаружили, что в нашем цифровом мире контроль над определенными сервисами, такими как райдшеринг (поиск попутчиков для путешествия на автомобиле), распределяется среди множества участников процесса в лице людей и машин, хотя ответственность за социальные и юридические последствия лежит, прежде всего, на человеке.

В опубликованном в 2016 году отчете Элиш приводит реальный пример зоны моральной деформации[136]. Она воспользовалась сервисом райдшеринга, чтобы добраться до аэропорта в Майами. Водитель выбрал первый предложенный маршрут, и они отправились в путь. Элиш уснула, а после пробуждения обнаружила, что водитель, у которого еще не было опыта использования данной платформы, отвез ее в место, находившееся в 20 минутах ходьбы от пассажирского терминала. Чтобы Элиш не опоздала на рейс, водителю пришлось отменить следующий заказ, предложенный приложением, и по сути бесплатно отвезти Элиш, хотя он не был обязан делать это. Тем не менее водитель поступил именно так, и Элиш успела на свой рейс.

В этой ситуации сервис подвел как водителя, так и клиента, однако простого способа зафиксировать это неприятное событие не было. Основные варианты обратной связи оказались рассчитаны на то, чтобы водитель и пассажир оценили друг друга. Но чья вина была в том, что приложение выдало неправильный адрес, водитель не знал, куда едет, а Элиш уснула и не скорректировала маршрут?

Элиш так объясняет суть зоны моральной деформации:

В рамках крайне сложной автоматизированной системы человек может случайно или умышленно стать тем элементом, который несет самое тяжкое бремя моральной и юридической ответственности при ее сбое. Суть метафоры с зоной моральной деформации сводится не просто к поиску «козла отпущения». Этот термин призван привлечь внимание к тому, как автоматизированные и автономные системы регулярно уклоняются от ответственности. Тогда как зона деформации в автомобиле предназначена для защиты водителя, зона моральной деформации защищает репутацию технологической системы[137].

В случае управляемых алгоритмами краудсорсинговых платформ люди-операторы также могут стать тем элементом системы, который несет ответственность за ее действия, — например, получая обратную связь от клиента, когда на самом деле ошибку допустила система. Кроме того, водители берут на себя основное бремя расходов по обслуживанию автомобилей (страхование, бензин и ТО), а также несут юридическую ответственность как представители приложения по поиску попутчиков, если что-то случится с их автомобилем.

Вот некоторые способы устранения существующих недостатков. Во-первых, сделайте так, чтобы алгоритмы отвечали за свои действия и определяли глубинные причины возникающих проблем, ведь так их можно исправить. Подотчетность существует не только для сотрудников. Во-вторых, предоставьте людям возможность ставить под сомнение действия системы искусственного интеллекта. Исходите из того, что сотрудники имеют свое мнение, предоставляют ценный контекст и могут обеспечить качество сервиса. В-третьих, создайте условия для выставления рейтингов при оценке действий алгоритмов или машин, а не только людей. В-четвертых, постоянно ищите несоответствия между контролем и ответственностью. Чтобы полностью нивелировать эффект от разработки систем, которые приводят к появлению зон моральной деформации, необходимо привести в соответствие ценности и нормы.

Анализ юридических, психологических и других вопросов

Начните с организации постоянного диалога с отделом нормативно-правового обеспечения. Система искусственного интеллекта поможет обеспечить соблюдение нормативно-правовых актов (посредством получения отчетов и систематизации данных), однако эта же система может создавать определенные трудности. В некоторых случаях адаптивные системы искусственного интеллекта вызывают нежелательную ответную реакцию. Выясните, как система искусственного интеллекта согласуется с действующими протоколами управления рисками и где следует улучшить эти протоколы, чтобы привести их в соответствие с динамичной системой искусственного интеллекта, принимающей решения. Важную роль в этом процессе играют сотрудники, функции которых относятся к левой части «недостающей середины», — специалисты по обучению, разъяснению и эксперты по устойчивости систем искусственного интеллекта.

В целом, если вы предоставляете сотрудникам возможность вносить коррективы в результаты работы системы искусственного интеллекта (что позволяет им чувствовать себя активными участниками процесса, а не просто его безмолвными исполнителями), их доверие к ИИ возрастает. Рассмотрим в качестве примера инженера, который добивается такой скромной цели, как увеличение производительности нефтяной скважины на 2%. Для этого инженер может воспользоваться программой искусственного интеллекта, корректируя ее параметры и внимательно отслеживая результаты. В частности, он может сыграть роль эксперта по устойчивости, делая все необходимое, чтобы программа работала. Таким образом, когда инженер добивается поставленной цели с помощью системы искусственного интеллекта, он учится доверять системе. Как показывают исследования, предоставление пользователям определенного контроля над алгоритмом повышает вероятность того, что они сочтут его превосходным и продолжат использовать искусственный интеллект в будущем[138].

Однако не всегда есть возможность контролировать реальные алгоритмы. Обратимся к такой сложной задаче, как распределение больничных коек. Одна компания разработала цифровую модель больницы и схему размещения пациентов. В эффективно работающей больнице коэффициент использования больничных коек колеблется от 70 до 80%, однако с помощью этой программы больница может повысить этот показатель до 90% и более. Эту программу установили в одной из больниц, рассчитывая на рост в 10–15%, однако никакого повышения не произошло. Выяснилось, что свою роль сыграл человеческий фактор. В частности, медсестра, которая долгое время работала с одними и теми же врачами, полагалась на собственный опыт в принятии решений. Когда поступали рекомендации по размещению пациентов, она просто игнорировала их, не веря, что алгоритм справится лучше[139].

Как менеджеры помогли медсестрам научиться доверять искусственному интеллекту? Они просто объяснили, почему размещение определенного пациента на определенной больничной койке является оптимальным. (Специалист по разъяснению может принять участие в разработке программного интерфейса и включить в него краткое описание системы или обоснование соответствующего метода распределения больничных коек.) Менеджеры обнаружили, что без предоставления таких разъяснений люди больше доверяют суждениям человека, чем рекомендациям алгоритма. С другой стороны, менеджеры пришли к выводу, что им необходимо предоставить определенную свободу действий сотрудникам, отвечающим за распределение больничных коек, наделив их полномочиями принимать решения[140].

Таким образом, для формирования доверия к системам искусственного интеллекта необходимо сделать так, чтобы люди, работающие с этими системами, были заинтересованы в результате и чтобы у них было ощущение контроля над внутренним устройством системы, как в примере с инженером-нефтяником. В идеале системы искусственного интеллекта необходимо проектировать таким образом, чтобы они объясняли свои решения и помогали людям сохранять определенную автономию в принятии решений. Разработка процессов, полностью основанных на доверии, требует времени и экспериментирования, однако примеры из текущей практики показывают, что если все стороны (люди, машины, а также люди и машины, работающие вместе) пользуются доверием друг друга, это позволяет улучшить результаты для всех.

4. Данные: представьте цепочку снабжения данными

Прежде всего следует отметить, что качество данных играет важнейшую роль в системах искусственного интеллекта. По существу, данные — это топливо для искусственного интеллекта. Чтобы обеспечить его поставку, представьте данные в качестве сквозной цепочки снабжения. Мы имеем в виду принципиально новое представление о данных не как о статическом процессе с обособленным управлением в рамках одного из функциональных подразделений компании, а как об охватывающей всю компанию динамичной направленной деятельности по сбору, очистке, интеграции и хранению информации. Поскольку данные используются алгоритмами машинного обучения, глубокого обучения и другими приложениями на основе искусственного интеллекта, они должны быть богатыми (по разнообразию, качеству и полезности) и большими (по объему). Здесь важно помнить, что системы искусственного интеллекта обучаются на основе циклов обратной связи, а значит, алгоритмы совершенствуются одновременно с повышением качества и увеличением количества данных. Другими словами, качество систем искусственного интеллекта напрямую зависит от качества данных, на основе которых они обучаются. В силу этого компании должны сфокусироваться на тех специалистах из области «недостающей середины», которые помогают собирать данные и готовить их к анализу. Их работа чрезвычайно важна, поскольку предвзятость данных может привести к серьезным последствиям, таким как искажение результатов и принятие ошибочных решений. В настоящее время около 90% времени, которое люди тратят на обучение систем искусственного интеллекта, приходится на подготовку данных и конструирование признаков, а не на составление самих алгоритмов[141].

Знание данных — это четвертый метод управления, однако в конечном счете именно данные позволяют предпринимать действия, и «действия» здесь ключевое слово. Ниже перечислены действия, о которых идет речь.

Динамичное мышление

Цепочка снабжения данными должна быть динамичной, постоянно развивающейся и непрерывно подпитываемой новыми данными, поступающими в режиме реального времени. Разные технологии, в том числе сбора (сенсоры), хранения, подготовки, анализа и визуализации данных, позволяют компаниям по-новому собирать и использовать информацию.

Итальянская компания Ducati, которая занимается разработкой и производством мотоциклов премиум-класса, поставила перед собой задачу найти более быстрый, дешевый и эффективный способ испытания гоночных мотоциклов. И специалисты гоночного подразделения компании Ducati Corse обратились к искусственному интеллекту. Интеллектуальный испытательный комплекс состоит из аналитической системы, в которой используются инструменты машинного обучения и визуализации данных, обеспечивающие интуитивно понятный пользовательский интерфейс. Почти сто IoT-датчиков (датчиков интернета вещей), установленных на мотоциклах, позволяют получать в режиме реального времени комплекс данных, таких как скорость вращения двигателя, температура при торможении и т. д.[142]

Эта новейшая технология дает возможность инженерам-испытателям поддерживать взаимодействие с системой, чтобы проверить те или иные гипотезы, а также определять, как мотоцикл будет вести себя на разных гоночных трассах при разных погодных условиях. Теперь инженеры могут получить больше результатов при меньшем количестве испытаний на трассе, что позволяет им экономить время, усилия и деньги. Благодаря таким данным и моделям система составляет все более точные прогнозы ходовых качеств мотоциклов.

Безусловно, создание такой динамичной цепочки снабжения данными, как у Ducati Corse, требует значительных усилий и ресурсов, однако вы можете начать процесс переосмысления с гораздо меньших масштабов. И без того большой объем данных может постоянно увеличиваться, однако компании должны фокусироваться на небольших проектах по работе с данными. Чтобы успешно стартовать, определите простой конечный результат, при котором система искусственного интеллекта позволит вам достичь практических целей.

Создатели приложения-календаря Tempo пошли именно по такому пути. Это приложение для iPhone использует информацию, полученную с самого телефона: данные из социальных сетей, содержимое электронной почты, геолокацию и другую информацию, позволяющую «узнать» о тех или иных событиях. Затем приложение предоставляет пользователю iPhone актуальные данные о соответствующем событии в надлежащее время. Приложение Tempo управляет огромным объемом сложных данных, однако компания задалась простой целью, ограничившись только информацией о событиях[143]. Пусть вас не пугает масштаб данных, с которыми вы имеете дело. Сфокусируйтесь на простых задачах, которые система искусственного интеллекта поможет вам решить, и затем двигайтесь дальше.

Расширение доступа и увеличение разнообразия

Когда ваши эксперименты с искусственным интеллектом станут более масштабными, позаботьтесь о том, чтобы цепочка снабжения данными состояла из независимых друг от друга, легкодоступных источников информации.

В настоящее время руководители могут получить доступ даже к тем данным, которые они не контролируют или которыми не владеют. Например, если региональная сеть продовольственных магазинов планирует проанализировать ежедневные операции за прошедший месяц, она не должна ограничиваться цифрами из своей базы данных. Многие компании отслеживают настроения клиентов в социальных сетях; кроме того, они анализируют данные в контексте погоды, особенностей покупателей, новостных событий или любого другого параметра данных — если только обнаруживают информацию, имеющую отношение к их бизнесу. В некоторых случаях можно обратиться к поставщикам данных или прибегнуть к помощи открытых источников данных (которые может бесплатно использовать любой желающий по своему усмотрению).

Например, глобальный производитель средств по уходу за кожей Beiersdorf использует свои внутренние данные наряду с синдицированными данными таких исследовательских компаний, как Nielsen, чтобы помочь членам совета директоров составить представление о развитии разных продуктов и брендов (функция расширения возможностей). Компания планирует автоматизировать этот процесс, что обеспечит быстрое получение более точной информации[144].

Работая над увеличением разнообразия источников данных, компании должны знать о любых препятствиях, которые могут возникнуть на пути потока информации. Одни препятствия носят технический характер (например, инфраструктура может не справляться с обработкой больших объемов данных), тогда как другие могут быть социальными (при росте общественного недоверия из-за того, что компании накапливают все больше персональных данных и делятся ими).

Повышение быстродействия

Некоторые данные поступают очень быстро — например, новости о стихийном бедствии. Перемещение таких важных данных, требующих немедленной обработки, необходимо ускорить по всей цепочке снабжения данными. С другой стороны, медленные данные менее актуальны и могут быть менее полезными. В прошлом IT-специалисты решали проблему данных со смешанной скоростью, присваивая более высокий приоритет «горячим» данным, которые часто используются и хранятся на высокопроизводительных системах, обеспечивающих быстрое извлечение данных. Напротив, «холодные» данные (такие как налоговые отчеты) можно хранить на менее быстродействующих серверах.

Компания Facebook знает, как установить приоритетность данных и реорганизовать в соответствии с этим свои процессы. Например, там обнаружили, что на 8% всех фотографий, публикуемых в этой социальной сети, приходится 82% сетевого трафика. Очевидно, по мере устаревания фотографий их популярность падает, поэтому в Facebook разработали трехуровневую систему хранения данных. Система искусственного интеллекта маркирует фотографии и сохраняет их на соответствующем уровне. Самые популярные фотографии сохраняются на высокопроизводительных серверах и могут быть извлечены мгновенно, тогда как менее популярные сохраняются на немного более медленных, энергосберегающих серверах. Благодаря такому подходу удовлетворенность пользователей остается на должном уровне, а компания получает экономию за счет сбережения энергоресурсов[145].

Создание условий для обнаружения данных

Какие способы взаимодействия с данными вы используете? Приносят ли аналитические инструменты пользу только экспертам и специалистам по обработке данных? Ваша задача — обеспечить такой способ получения ценной информации, чтобы все желающие, особенно далекие от технологий пользователи, могли с выгодой для себя применять ту историю, которую данные пытаются до них донести.

Компания Ayasdi обеспечивает демократизацию процесса обнаружения данных, разрабатывая программное обеспечение, которым могут пользоваться как специалисты по обработке и анализу данных, так и бизнес-лидеры, не обладающие глубокими знаниями в IT. Один из клиентов компании, Техасский медицинский центр (Texas Medical Center, TMC), специализируется на анализе больших многомерных наборов данных, таких как данные о пациентах с раком груди. Программа компании Ayasdi способна за несколько минут выделить подгруппу пациентов, которые перенесли рак и которым свойственны определенные общие характеристики, что может оказаться очень важным[146]. Техасский медицинский центр планирует использовать инструменты компании Ayasdi для разных целей, от анализа клинических и геномных данных до повторных исследований существующих лекарственных препаратов[147]. Успех Техасского медицинского центра подтверждает целесообразность поиска таких аналитических инструментов, которые демократизируют данные, с тем чтобы привлечь группу квалифицированных сотрудников к экспериментированию с данными и переосмыслению бизнес-процессов.

Заполнение «недостающей середины»

Для создания цепочки снабжения данными требуется нечто большее, чем новейшие технологии и поток качественной информации. Руководители должны ввести специальные должности в области «недостающей середины» для развития и управления системой.

Обратите внимание: обратная связь на основе искусственного интеллекта создает добродетельный цикл обучения и совершенствования. Вот почему специалистам по обучению предстоит разработать план действий, чтобы помочь «умным» машинам совершенствоваться посредством циклов обратной связи между данными и алгоритмами. Например, в компании Google специалисты по обучению работают над улучшением способности систем обработки естественного языка распознавать диалекты. В рамках этой работы собрано 65 тысяч значений данных по 30 словам (иначе говоря, разных вариантов произношения этих слов)[148].

Помимо специалистов по обучению, разъяснению и экспертов по устойчивости также потребуются специалисты по непредвзятости в цепочке снабжения данными. Во многих процессах искусственного интеллекта уже встроены механизмы, обеспечивающие совершенствование системы. Например, если вы выбираете не тот маршрут, который предлагает приложение Waze, эта информация помогает усовершенствовать алгоритм, чтобы в будущем он давал более подходящие рекомендации. Но и в этом случае предвзятость может проникнуть в систему. Так, программы для прогнозирования криминального поведения обвиняемого демонстрируют предвзятость по отношению к чернокожим[149]. По этой причине компаниям, внедряющим современные системы искусственного интеллекта, всегда будут нужны эксперты по устойчивости, которые создадут условия для надлежащего функционирования этих систем. Для решения проблемы отклонения данных и иных ошибок подобного рода компания Google приступила к реализации инициативы по изучению взаимосвязи человека и искусственного интеллекта PAIR (People + AI Research). Компания опубликовала набор инструментов с открытым исходным кодом, которые помогут организациям получить более полное представление о данных, используемых их системами искусственного интеллекта[150].

Кроме того, компаниям следует подумать над назначением руководителя, ответственного за цепочку снабжения данными. Этот человек должен заниматься обеспечением устойчивости, контролируя работу других специалистов. В его обязанности входит создание интегрированной, сквозной цепочки снабжения данных, а также решение проблем, связанных с данными. Где имеет место разрозненность данных? Как можно упростить доступ к данным? Какие данные используются недостаточно эффективно и как можно использовать ценные «темные данные»[151]?

Новая игра

Безусловно, переосмысление бизнес-процессов — задача непростая. Как и следовало ожидать, многие компании столкнулись с серьезными трудностями на этом пути. С другой стороны, многие добились успеха и это привело к заметному улучшению их бизнеса. Мы обнаружили, в чем отличие компаний из второй группы: они твердо придерживаются четырех базовых методов работы, каждый из которых полностью согласуется с принципами нашей модели MELDS. Эта модель подразумевает комплексный подход к внедрению новейших систем искусственного интеллекта с учетом важных факторов (таких как корпоративная культура, обучение работников и доверие сотрудников), которые часто упускают из виду или которые оказываются неожиданностью.

В частности, для успешного переосмысления бизнес-процессов прежде всего нужно обладать надлежащим мышлением, чтобы представить новые способы выполнения работы в области «недостающей середины» с использованием искусственного интеллекта и данных, поступающих в режиме реального времени, для обнаружения и устранения основных болевых точек. Кроме того, следует сфокусироваться на экспериментировании, чтобы проверить и улучшить свое видение, одновременно создавая что-то новое, оценивая его и извлекая уроки. На протяжении всего процесса нужно думать о том, как обеспечить доверие к используемым алгоритмам. Для этого необходимы лидеры — руководители, создающие условия для развития ответственного искусственного интеллекта посредством формирования культуры доверия к нему с помощью установления границ, максимального сокращения зоны моральной деформации и других действий, позволяющих решить юридические, этические и нравственные проблемы, возникающие при внедрении подобных систем. И последний, но, безусловно, важный момент: переосмысление процессов требует качественных данных, поэтому компаниям необходимо выстраивать цепочки снабжения данными, которые обеспечат непрерывный поток информации из самых разных источников. Все это охватывает фрагмент MELD нашей модели MELDS.

В следующей главе мы рассмотрим набор интегрированных навыков, которыми должны обладать люди в эпоху искусственного интеллекта. Под термином «интегрированные навыки» мы подразумеваем сочетание способностей человека и машины в области «недостающей середины», позволяющее компаниям трансформировать свои бизнес-процессы. Навыки (skills) — это и есть элемент S, самый важный в нашей модели MELDS. В следующей главе мы узнаем, как изменение навыков, необходимых для достижения успеха, скажется на будущем самой работы.

Глава 8. Расширение взаимодействия человека и машины

* * *

Восемь новых интегрированных навыков для интеллектуальной рабочей среды

Представьте, что вы специалист по техническому обслуживанию на электростанции. Вы только что получили сообщение о непредвиденно высокой степени износа турбины. Если система оповещения работает под управлением программного обеспечения Predix компании GE, в котором используется концепция цифрового двойника, вы можете даже услышать произнесенное компьютерным голосом предупреждение: «Оператор, изменение моей задачи наносит ущерб ротору моей турбины».

Вы просите сообщить детали, и компьютер предоставляет статистические данные о работе турбины за последние шесть месяцев. Система также сообщает, что износ увеличился в четыре раза, и, если так будет продолжаться, ротор потеряет 69% своего эксплуатационного ресурса. Если вы надели шлем дополненной реальности, компьютер покажет вам, где именно появилось повреждение на роторе, отметив этот участок красной полосой.

Десять лет назад вам бы просто повезло, если бы вы обнаружили такое повреждение при плановой проверке технического состояния турбины. Худший (и наиболее вероятный) сценарий: никто ничего не обнаружил бы, пока ротор не сломался бы и турбина не прекратила бы вращаться. Однако в настоящее время, когда во все узлы и детали оборудования встроены датчики, а программное обеспечение позволяет создать цифрового двойника и отслеживать состояние оборудования, проблему можно выявить задолго до аварийного отключения, избежав дорогостоящего ремонта.

Выявив неисправность, вы спрашиваете компьютер, как ее устранить, и система предоставляет вам несколько вариантов, в том числе тот, который автоматически и адаптивно снизит нагрузку на ротор, меняя режим его работы. Эта рекомендация основана на данных за прошедший период, данных о состоянии комплекса оборудования, метеорологических данных и других факторах; при этом степень достоверности прогнозов составляет 95%. Однако прежде чем принимать решение, вы просите уточнить расходы — и компьютер сообщает, что предложенный вариант позволит сэкономить на топливе и сократить расходы на электроэнергию, а также в конечном счете даст экономию примерно $12 миллионов предотвратив незапланированный сбой в работе электростанции. Десятиминутный диалог с компьютером убеждает вас в правильности предложенного решения, и вы отдаете системе команду приступить к его реализации[152].

Что произошло в этом случае? Программное обеспечение GE на базе искусственного интеллекта превратило стандартную работу по техническому обслуживанию в нечто радикально отличающееся от того, что было всего пять лет назад. Такое применение искусственного интеллекта не только ускоряет выполнение задач, но по существу позволяет рядовым сотрудникам, а также руководителям среднего и высшего звена полностью переосмыслить бизнес-процессы и суть работы.

Наши исследования свидетельствуют об однозначном признании и принятии того факта, что в настоящее время характер труда кардинально меняется. В рамках глобального опроса Accenture Research «Будущее труда», проведенного совместно со Всемирным экономическим форумом, мы обнаружили, что, по мнению 64% персонала, изменения ускоряются под воздействием новых технологий, таких как искусственный интеллект. Тогда как почти все респонденты (92%) считают, что следующее поколение профессиональных навыков будет выглядеть совершенно иначе, большинство работников (87%) полагает, что новые технологии, такие как искусственный интеллект, улучшат трудовой опыт в течение следующих пяти лет. Кроме того, 85% работников готовы тратить свободное время на освоение новых навыков в ближайшие несколько лет, а 69% респондентов придают большое значение возможностям для обучения на рабочем месте, если оно непосредственно связано с будущими цифровыми потребностями компании[153].

Но что будет иметь значение в мире, в котором следующее поколение необходимых навыков практически не связано с навыками прошлого?

В процессе работы и научных исследований мы собрали свидетельства того, что в будущем персоналу понадобятся как минимум восемь новых интегрированных навыков (соответствующих элементу S нашей модели MELDS). Каждый из них основан на слиянии способностей человека и машины в рамках бизнес-процесса и обеспечивает более значимые результаты по сравнению с традиционным положением, когда человек и машина работают независимо друг от друга. Явное отличие от предыдущих периодов взаимодействия человека и машины — в настоящее время машины учатся у людей, а люди учатся у машин, что создает цикл непрерывного повышения эффективности.

На позиции специалиста GE по техническому обслуживанию вам понадобилось бы умение задавать машине умные вопросы с разной степенью абстрагирования. Мы обозначаем этот навык термином умное запрашивание. В качестве техника, использующего цифрового двойника GE, вы начали бы с постановки вопросов о поврежденном роторе, но затем быстро перешли бы к более широкому кругу вопросов о текущих операциях, процессе и финансовых проблемах. Вы не просто специалист по техническому обслуживанию ротора; с помощью цифрового двойника вы становитесь экспертом в гораздо более сложной системе, а ваши знания того, «как все работает», приобретают очень большое значение.

Ниже представлено описание восьми интегрированных навыков, которое руководители и сотрудники смогут использовать при моделировании и формировании персонала, способного успешно работать в области «недостающей середины» (табл. 2). Три навыка позволяют человеку помогать машине (левая часть «недостающей середины»); еще три дают возможность использовать машины в качестве дополнения (правая часть «недостающей середины»), а два последних помогают людям грамотно выполнять свою работу в обеих частях «недостающей середины». Все эти навыки непосредственно связаны с совершенно новыми формами взаимодействия человека и машины, однако они не требуют специальных знаний в области машинного обучения, программирования или в других технических дисциплинах. Здесь скорее нужны мыслящие люди, которые стремятся адаптировать базовые навыки к конкретным потребностям компании.


Таблица 2. Интегрированные навыки в области «недостающей середины»

Интегрированный навык № 1. Регуманизация времени

Определение. Переосмысление бизнес-процессов с целью увеличить количество времени, доступного для задач, выполняемых исключительно человеком (межличностное общение, творчество и принятие решений).

В начале эпохи индустриализации людям пришлось привыкать к работе в режиме машины. Другими словами, они должны были работать в ритме сборочных линий наравне с другими автоматизированными процессами. Идея машинного времени позднее переместилась в офисы, когда в 90-х годах информационные технологии и компьютеры стали неотъемлемой частью бизнес-процессов. По мнению Марины Горбис из Института будущего, индустриализация и цифровые технологии в корне изменили продолжительность времени, затрачиваемого людьми на работу. Например, в начале XIII столетия британский крестьянин работал около 1600 часов в год. В 90-х годах ХХ столетия британский рабочий на заводе трудился порядка 1850 часов в год. А инвестиционный банкир в Нью-Йорке в настоящее время работает почти 3000 часов в год. «Расширяя наши возможности, [машины] устанавливают новые ожидания в отношении пределов возможного и создают новые стандарты эффективности и потребностей, — пишет Горбис. — До создания посудомоечных машин мы не рассчитывали на то, что наши бокалы будут безупречно чистыми; пока в каждом доме не появились пылесосы, мы даже не думали о том, что нам нужны полы без единой пылинки»[154].

Времена меняются, и с ними меняются взаимоотношения человека и машины. Мы наблюдаем формирование нового навыка, корректирующего наше отношение ко времени и работе. По существу, такая «регуманизация времени» дает людям возможность грамотно распределять свое время между задачами, более свойственными человеку, такими как повышение удовлетворенности клиентов, выполнение комплексного ремонта оборудования или проведение фундаментальных научных исследований.

Медицина — та область, которая может существенно пострадать без «регуманизации времени». Сейчас у врачей только возрастает эмоциональное выгорание. Согласно результатам исследования, проведенного в 2015 году, 46% врачей в 2011 году сообщили как минимум об одном случае выгорания, а в 2014 году этот показатель повысился до 54%. Эмоциональное выгорание влечет за собой серьезные последствия: врачи чаще ошибаются при вводе данных, а также в других случаях, что по эффекту домино влечет за собой еще больше ошибок[155].

Медицинский центр Питтсбургского университета (University of Pittsburgh Medical Center, UPMC) и компания Microsoft попытались выяснить, может ли искусственный интеллект помочь врачам избежать эмоционального выгорания. Финансовый директор UPMC Тол Хеппенстолл считает, что современная проблема эмоционального выгорания связана с цифровизацией медицинских карт, из-за чего врачи вынуждены тратить время на ввод данных, а не на осмотр пациентов. «Что они чувствуют и что вызывает у них эмоциональное выгорание — понимание, что они стали рабами компьютера, а так не должно быть», — говорит Хеппенстолл[156].

Сотрудничество UPMC и Microsoft направлено на использование инструментов искусственного интеллекта (таких как обработка естественного языка) для прослушивания разговора врача с пациентом во время приема и переноса части полученной информации в специальные формы и в истории болезни. Это похоже на ассистента, который делает заметки во время приема, — возможность, доступная далеко не каждому врачу.

На конференции Intel AI Day в 2016 году специалисты из Mayo Clinic, Penn Medicine, Kaiser Permanente и Cigna обсудили, как искусственный интеллект может изменить медицину. Подавляющее большинство участников согласились с тем, что искусственный интеллект — идеальный инструмент сокращения объема рутинных задач. Он может взять на себя описание рентгенограмм и томограмм; на основе данных медицинских карт способен выявить повышенный риск сердечной недостаточности, не установленный во время традиционного обследования; он поможет обнаружить опасные родинки (перерождающиеся в меланому), которые могли остаться незамеченными. Все эти моменты могут вернуть врачам драгоценные минуты личного общения с пациентами[157].

Безусловно, искусственный интеллект существенно изменит тесно связанные между собой концепции работы и времени, но не совсем ясно, как использовать высвободившееся время. У сотрудников компании AT&T высвобождается время в течение рабочего дня благодаря искусственному интеллекту, собирающему информацию о потенциальных клиентах из разных систем. Это позволяет продавцам-консультантам уделять больше времени общению с клиентами, вместо того чтобы искать информацию в базах данных. Однако если руководители среднего и высшего звена продолжат работать в режиме машин, тогда объем работы, скорее всего, увеличится. Врачи начнут принимать больше пациентов; сотрудникам фронт-офиса будет поступать больше жалоб и рекламаций; механикам придется чинить больше роботов, чем когда бы то ни было прежде. По всей видимости, производительность немного вырастет, однако истинное переосмысление бизнес-процессов не в этом, а в том, чтобы компании проанализировали, в каких случаях время их сотрудников приносит максимальную отдачу. Может быть, стоит дать им возможность дополнительного обучения? Как насчет создания условий для волонтерской и социально ответственной деятельности, которая может принести пользу обществу и положительно скажется на имидже компании? Мало кто способен работать максимально эффективно, если приходится постоянно действовать на пределе возможностей. А так как искусственный интеллект меняет характер взаимодействия человека и машины, то регуманизация времени напоминает нам: мы можем повысить эффективность работы и благополучие сотрудников наряду с продуктивностью.

Интегрированный навык № 2. Ответственная стандартизация

Определение. Определение целей и восприятия взаимодействия человека и машины — на уровне отдельного человека, бизнеса и общества в целом.

Удивительно, как быстро можно привыкнуть к беспилотному автомобилю. Впервые увидев, как он выполняет поворот, вы вздрогнете, однако уже второй поворот покажется вам вполне нормальным. Многие люди, пережившие этот опыт, полагают, что для человека управление автомобилем — гораздо более сложная и опасная задача. К сожалению, беспилотные автомобили еще не получили широкого распространения. Кроме того, во многих регионах они встречают непонимание.

Существует разрыв между использованием технологий искусственного интеллекта, с одной стороны, и их широким принятием — с другой. Именно для устранения этого разрыва необходим такой навык, как ответственная стандартизация, то есть ответственное формирование представлений людей о взаимодействии человека и машины, а также общего восприятия целей подобного сотрудничества. Особую ценность это качество приобретает при использовании роботов в общественном пространстве (на дорогах, в больницах, кафе, учебных заведениях, домах престарелых и хосписах). Ответственная стандартизация требует множества других навыков, таких как компетенции в гуманитарных дисциплинах и в области STEM (наука, технологии, инженерия, математика), предпринимательский дух, умение поддерживать связи с общественностью, а также понимание социальных проблем и проблем местных сообществ.

С некоторых пор беспилотные автомобили попадают в наши зеркала заднего вида. В начале 2000-х управление перспективных исследовательских проектов Министерства обороны США (DARPA) провело серию испытаний Grand Challenge, чтобы повысить интерес исследователей к разработке роботизированных транспортных средств, способных принимать участие в гонках. Эта инициатива DARPA стала одним из первых шагов по популяризации беспилотных автомобилей. Сегодня автомобилями Tesla управляет система Autopilot, а компания Audi вывела на рынок автомобиль A7 Sportback, прозванный «Джеком», который запрограммирован на движение, учитывающее особенности вождения человека: торможение или набор скорости, чтобы пропустить перестраивающийся автомобиль. Audi организовала рекламную кампанию, способствующую принятию концепции систем «пилотируемого вождения». Этот автоконцерн представляет пилотируемое вождение как взаимодействие человека и машины, признавая, что в настоящее время ни один автомобиль не готов передвигаться самостоятельно во всех без исключения случаях. И все же система всегда готова помочь водителю. «Представляя свою деятельность в области пилотируемого вождения, в прошлом мы всегда уделяли основное внимание технологии и эффективности, — говорит Михаэль Финке, руководитель международного креативного подразделения Audi. — В настоящее время мы рассматриваем эту тему с совершенно другой эмоциональной точки зрения»[158].

Руководителям компаний предстоит сыграть важную роль в деле популяризации ответственной стандартизации. В настоящее время искусственный интеллект воспринимается нейтрально, хотя многие люди еще находятся во власти суждений, основанных на противопоставлении человека и машины. По этой причине любое резонансное событие (например, гибель ребенка под колесами беспилотного автомобиля или забастовка дальнобойщиков, выступающих против беспилотных грузовиков) может породить кризис доверия к технологиям в целом. Топ-менеджеры должны предвидеть подобное сопротивление, понимая потребности и опасения тех сообществ, которых затрагивают вызванные искусственным интеллектом перемены, и найти способ его смягчить.

Не менее важна ответственная стандартизация и для работников, переживающих этап внедрения искусственного интеллекта. Одно из его следствий — руководители должны изложить четкое понимание сути работы для персонала в будущем. Сотрудники, будучи важнейшим активом любой организации, могут стать активными сторонниками перемен, если их опасения услышат и учтут. Глава одной телекоммуникационной компании рассказал нам, что, когда они начали внедрять технологии искусственного интеллекта, всему персоналу было очевидно, что это затеяно прежде всего с целью сделать их успешнее, а не сократить. «Руководство представляет сотрудникам искусственный интеллект как инструмент увеличения доходов и сокращения издержек для обеспечения роста компании и повышения ее конкурентоспособности, — говорит он. — …Увеличение “пирога” означает, что люди, которых вытеснила система искусственного интеллекта, смогут освоить новые навыки и перейти в другие отделы и сферы деятельности компании по мере ее роста».

Интегрированный навык № 3. Вынесение совместных решений

Определение. Основанная на суждении способность выбирать последовательность действий в условиях машинной неопределенности.

Когда машина не понимает, что ей делать дальше, или когда в ее модели умозаключений не хватает делового или этического контекста, люди должны уметь определить, где, как и когда следует вмешаться. «В действительности машинное обучение исключает человеческое суждение и ошибки человека из процесса принятия решений, — говорит Адам Уэнчел, вице-президент компании Capital One по инновациям в области данных. — Они все больше и больше выводятся из процесса, и, на мой взгляд, это часть глобального сдвига, который происходит уже какое-то время»[159].

Для того чтобы снова включить человека в процесс, команда Уэнчела применяет и развивает как навыки статистического анализа, так и мягкие навыки[160]. По мере развития, изучения, переобучения и повторного использования моделей машинного обучения для других направлений бизнеса компании члены команды анализируют, «чем эти модели отличаются от простых систем, основанных на правилах, или предыдущих версий соответствующей модели». Базирующаяся на анализе данных оценка предоставляет сотрудникам информацию о том, где следует установить границы, изучить отклонения или предотвратить использование такой модели при работе с клиентами.

Что касается интуиции, сотрудникам предлагают определять и называть свои опасения, когда что-то кажется им спорным с этической точки зрения или не соответствует выбранному курсу. Уэнчел рассуждает следующим образом: «Даже если ваша модель обеспечивает очень хорошие результаты и очень высокую точность, люди должны чувствовать, что могут спокойно вмешаться и сказать: “Послушайте, может, мы действительно получаем высокую точность, но меня беспокоит то, как именно мы добиваемся этого”»[161].

Несмотря на поразительные успехи в области искусственного интеллекта, о которых мы говорили на протяжении всей книги, ему до сих пор трудно формулировать проблему[162]. Искусственный интеллект может правильно выполнять многие задачи, но он еще не умеет правильно оценивать ситуацию и понимать людей. А значит, человеческое суждение и эффектуация (рациональная постановка целей) всегда будут ключевым элементом любого переосмысленного процесса. Например, когда компания Royal Dutch Shell использует роботов для мониторинга оборудования и проверки систем безопасности на своем удаленном объекте в Казахстане, ей по-прежнему требуются компетенции сотрудников-людей, отслеживающих риски. Робот Sensabot — первый в своем роде робот, который нефтегазовые компании могут использовать в потенциально опасной среде. Удаленный оператор управляет его действиями, отсматривая видео и оценивая риски[163]. Точно так же опыт и знания человека остаются важнейшим элементом переосмысленных процессов в компании Caterpillar. На этапе проектирования новой сборочной линии и генерирования ее цифровой модели (с помощью системы искусственного интеллекта) требуется участие инженеров-программистов. Такая виртуальная пошаговая отладка позволяет на раннем этапе проанализировать сборку, обслуживание и эргономику, обнаруживая проблемы до того, как сборочная линия будет построена. Это позволяет экспертам еще на старте устранить любую неоднозначность или другие проблемы, опираясь на свои суждения.

Интегрированный навык № 4. Умное запрашивание

Определение. Понимание того, как задавать вопросы системе искусственного интеллекта на разных уровнях абстрагирования, чтобы получить нужную информацию.

Как изучить чрезвычайно сложную систему? Как составить прогноз взаимодействия между сложными массивами данных? Люди просто не могут сделать это самостоятельно, поэтому они должны задавать вопросы дружественному искусственному интеллекту: «Двойник, насколько ты уверен?»; «Двойник, что ты рекомендуешь сделать?». В компании GE специалисты по техническому обслуживанию, владеющие навыком умного запрашивания, понимают возможности и ограничения системы искусственного интеллекта и знают, как получить информацию, необходимую для принятия взвешенного решения. Такие специалисты используют свои сильные стороны и не дублируют сильные стороны машины. При этом машина обучает людей тому, как использовать ее, точно так же как люди обучают машину. В конечном счете именно человек с его опытом принимает решение, ремонтировать ротор или же заменить его.

В рамках проводимых исследований в самых разных областях мы наблюдаем умное запрашивание в действии. Специалисты задают умные вопросы, выбирая оптимальный груз для товарных составов, изучая взаимодействие лекарственных препаратов и молекулярные взаимодействия, а также стремясь найти модель оптимального ценообразования в сфере розничной торговли. В частности, розничное ценообразование служит полезным сценарием для умного запрашивания, поскольку в основе этого процесса лежит большой объем сложных данных, влияющих на результаты продаж.

Стив Шнёр, руководитель розничной торговли крупного курортного отеля, использует систему искусственного интеллекта компании Revionics для оптимизации цен в магазинах этого отеля. Даже небольшое изменение цен на препарат «адвил»[164] или пластырь дает значительный эффект, что невозможно было бы понять (и в конечном счете контролировать) без системы искусственного интеллекта и оператора, задающего этой системе «умные» вопросы. Команда Шнёра использует систему искусственного интеллекта для определения оптимальных цен на адвил, пластырь, газированную воду и другие товары в любой момент при любом количестве ограничений, опираясь на еженедельные отчеты о продажах более семи тысяч единиц товаров. Шнёр ставит такой вопрос: «Если поднять цену на адвил, что произойдет с тайленолом[165]?» Система способна определить связь между адвилом и тайленолом (хотя их можно отнести к тому или иному классу только по артикулу) и показать, например, что после прошлого повышения цены адвила на 25 центов объем продаж тайленола увеличился. Эта система позволяет Шнёру анализировать решения по ценообразованию и другими способами, например задавая такие вопросы: «Покажи мне самые выгодные изменения цены» и «Скажи мне, какие товары будут продаваться меньше всего при повышении цены». Чем умнее вопросы, тем глубже Шнёр сможет понять суть происходящего и тем лучшее представление обо всех розничных бизнес-процессах получит благодаря системе искусственного интеллекта[166].

В компании GE программное обеспечение, поддерживающее создание цифровых двойников, моделирует не только турбины и роторы двигателя. Благодаря моделированию поведения и взаимодействия специалистов сама программа может определить, как оптимизировать свою работу. Так возникают дружественное ПО и дружественное оборудование, благодаря которым неопытные сотрудники и новые пользователи могут быстрее освоиться с соответствующими инструментами.

По мере распространения цифрового управления работой люди могут начать перегружать системы искусственного интеллекта слишком большим количеством задач. СЕО GE Digital Билл Ру знает об этой опасности и подчеркивает важность человеческого суждения и обучения, которое предотвращает деградацию навыков. «Необходимо обучать людей и не допускать, чтобы автоматизация становилась для них ориентиром во всем, поскольку здравое человеческое суждение по-прежнему играет существенную роль, — говорит Ру. — На мой взгляд, необходимость развивать у людей способность выносить суждения, чтобы автоматизация не стала “костылем” в их работе, — самый трудный сценарий, с которым предстоит иметь дело». Умное запрашивание включает в себя и умение понять, что конечный результат лишен смысла или что определенные входные данные могут привести к искажению результатов. «Полагаю, мы должны осознавать, что машина не всесильна», — подытоживает Ру[167].

Интегрированный навык № 5. Расширение возможностей с помощью ботов

Определение. Эффективное взаимодействие с интеллектуальными агентами ради расширения ваших возможностей и формирование сверхспособностей в контексте бизнес-процессов и карьеры.

Интеллектуальные агенты позволяют людям делать то, что выходит за пределы их возможностей. Представьте: вы фрилансер или подрядчик, в распоряжении которого есть штат сотрудников, но эти сотрудники — боты, а не люди. Благодаря этому вы получаете административную и операционную поддержку, доступную скорее СЕО, чем человеку, работающему на себя. В статье, опубликованной в 2016 году, инвестор из Bloomberg Beta Шивон Зилис пишет: «Интеллектуальные агенты сделают это возможным, используя сочетание алгоритмов обучения и распределенного персонала для выполнения расширяющегося диапазона задач при низких затратах. С помощью этих агентов мы сможем выглядеть такими же умными, как современные СЕО».

Использование искусственного интеллекта для поиска работы

Навыки расширения возможностей с помощью ботов могут пригодиться при поиске работы. Если в эпоху искусственного интеллекта работники могут быть в чем-то уверены, так это в том, что ландшафт рынка труда меняется чрезвычайно быстро. Пять лет назад практически не было таких должностей, как специалист по обработке, анализу и хранению больших массивов данных (data scientist), а в настоящее время они очень востребованы. А должности, функционал которых сводится к таким рутинным задачам, как ввод данных, стремительно исчезают из списка вакансий. Как можно начать новую карьеру, найти новые возможности для обучения, расширить свое присутствие в интернете или развивать личный бренд в социальных сетях? Ответ — расширив возможности с помощью ботов.

Во многих случаях поиск работы и наём персонала сводятся к работе с цифрами, а значит, вы уже в числе отстающих, если до сих пор не автоматизировали некоторые элементы этого процесса с помощью LinkedIn или таких многообещающих интеллектуальных агентов, как Wade&Wendy или Ella.

В начале 2017 года компания LinkedIn упростила процедуру отклика на опубликованные вакансии — теперь достаточно одного клика. Кроме того, компания предоставляет кадровым агентствам возможность отправлять сообщения кандидатам, обладающим необходимой квалификацией. В то же время такие сервисы, как Wade&Wendy или Ella, предлагают совершенно другой опыт поиска работы, который начинается с диалогового интерфейса — интеллектуального чат-бота. В частности, Wade от имени людей ищет работу, которая отвечает их интересам, навыкам и образованию. Wendy — аналог рекрутера, автоматизирующий отбор кандидатов[168]. Ella — это чат-бот, он задает вопросы о навыках и желаемых должностях, а затем ищет соответствующие вакансии, в том числе те, информация о которых не опубликована. Система искусственного интеллекта совершенствует поиск, чтобы результаты максимально отвечали поставленной задаче. Старший вице-президент по цифровым инновациям компании Lee Hecht Harrison Шон Пейли объясняет преимущества таких сервисов, как Wade&Wendy или Ella: «Автоматизация просмотра большого объема данных позволяет людям сфокусироваться на более сложных и персонифицированных элементах поиска работы, таких как подготовка к собеседованию с коучем по вопросам карьеры и налаживание контактов»[169]. Расширение возможностей с помощью ботов — яркий пример навыков, позволяющих людям уделять больше внимания человеческой стороне поиска работы.

Кроме того, такой подход позволяет людям более связно рассказывать о своей карьере. Специалист по маркетингу Эстер Кроуфорд искала более эффективный способ позиционировать себя на рынке труда. Бот EstherBot отвечает на вопросы о ее послужном списке, образовании и даже о хобби, которые задают рекрутеры. «Мне необходим был бот, — сказала Кроуфорд, — чтобы рассказать историю о том, как я перешла от получения степени магистра по международным отношениям к работе менеджера по продукту в стартапах»[170]. Люди, обладающие навыками расширения возможностей с помощью ботов, знают, как и когда следует использовать интеллектуальных агентов (таких как EstherBot), и умеют эффективно управлять небольшой армией таких ботов.

Далее Зилис продолжает: «Мы станем продуктивнее. Работники умственного труда тратят меньше половины своего времени на то, что у них действительно хорошо получается (то есть на работу, для которой их наняли). Остальное время уходит на поиск информации, участие в совещаниях, координацию действий с коллегами и другие мелочи офисной жизни. Со всеми этими задачами вполне могла бы справиться машина или интеллектуальный сервис»[171].

Существует множество ботов, способных помочь людям добиваться большего. Например, интеллектуальные агенты календарного планирования, такие как Clara и x.ai. Существуют также инструменты для организации регулярных встреч, которые позволят вам имитировать работу руководителя штатных сотрудников с помощью ботов от Slack: Howdy, Standup Bot, Tatsu и Geekbot. Вы можете распределить время выступлений и выделить ключевые слова с помощью таких инструментов, как Gridspace Sift и Pogo. У вас есть возможность улучшить свои навыки написания текстов с помощью Textio или Watson Tone Analyzer компании IBM. Благодаря Doli.io вы можете даже размещать в социальных сетях сообщения или фотографии, поручив боту формировать ваш профессиональный и личный бренд. (Описание расширенных возможностей в сфере занятости можно найти в разделе «Использование искусственного интеллекта для поиска работы».)

Даже люди, находящиеся на высших ступенях корпоративной лестницы, могут повысить эффективность с помощью искусственного интеллекта. СЕО Salesforce Марк Бениофф использует ИИ-платформу своей компании Einstein Forecasting для регулярных совещаний с командой руководителей. Эта платформа способна выполнять сложное моделирование и прогнозирование, что помогает Бениоффу быстрее добраться до сути рассматриваемого вопроса. «В работе СЕО, — отмечает Бениофф, — обычно складывается такая ситуация: в совещании принимают участие разные люди, которые говорят вам то, что хотят сказать, чтобы убедить вас в том, в чем хотят убедить. Система Einstein лишена такой предвзятости». Бениофф говорит, что доверяет ее объективности, ведь она помогает ему свести к минимуму внутреннюю борьбу во время совещаний руководителей и позволяет более точно прогнозировать продажи. «Рекомендации системы Einstein полностью изменили меня как СЕО», — утверждает Бениофф[172].

Одно дело — располагать подходящими инструментами, и совсем другое — эффективно их использовать. К сожалению, не все обладают навыками, необходимыми для формирования и применения оптимального пакета ботов, призванного повысить эффективность и продуктивность.

Интегрированный навык № 6. Целостное слияние

Определение. Способность разрабатывать устойчивые ментальные модели для интеллектуальных агентов с целью повысить результаты взаимодействия человека и машины.

Первая в мире роботизированная офтальмологическая операция была выполнена в 2016 году в больнице Джона Рэдклиффа в Оксфорде. Пациенту нужно было удалить чрезмерно разросшуюся мембрану на сетчатке глаза. Это было непросто, поскольку толщина мембраны составляла всего сотую долю миллиметра и любая ошибка могла привести к повреждению сетчатки. При обычных обстоятельствах хирургу пришлось бы снизить частоту сердечных сокращений, чтобы делать мельчайшие разрезы в перерывах между ударами собственного сердца. Однако во время роботизированной операции хирург находился за консолью и передвигал рычаг управления. Хирургические инструменты медицинского робота, разработанные так, чтобы устранять дрожание или прерывистые движения, позволяют опытному хирургу-оператору быстрее проводить операцию, избегая повреждений и связанных с ними кровотечений[173].

Роботы кардинально меняют хирургию, предоставляя возможность подобраться к самым труднодоступным органам, ювелирно выполнять самые мелкие разрезы и сшивать края раны с невиданной ловкостью. Однако ключом к успешному проведению таких операций по-прежнему остаются хирурги и их способность освоить навыки, необходимые для управления роботом, — по сути, способность перенести свое мастерство на машину.

Понятие «слияние» знакомо каждому, кто использовал какой-либо инструмент таким образом, что он становился своего рода продолжением человеческого тела или разума. Такое слияние имеет место, если вы без всякой помощи выполняете параллельную парковку автомобиля (вы как будто знаете, насколько далеко выступает бампер) или когда замахиваетесь теннисной ракеткой, чтобы ударить по мячу. В свою очередь, машины также улучшают свою способность «сливаться» с человеком. Когда вы вводите поисковый запрос, Google не только анализирует самые распространенные ассоциации для автозаполнения, но и учитывает ваше местоположение, предыдущие поисковые запросы и другие факторы. Порой создается впечатление, что программа читает ваши мысли.

В эпоху взаимодействия человека и машины роль холистического (физического и ментального) слияния будет только возрастать. Полное переосмысление бизнес-процессов станет возможным, только когда люди создадут действенные ментальные модели того, как машины работают и учатся, а также когда машины начнут собирать данные о поведении пользователей, чтобы совершенствовать взаимодействие с человеком. Благодаря целостному слиянию процессы становятся гибкими и адаптируемыми, напоминают танец с опытным партнером, где пара меняется ролями ведущего и ведомого.

Специалисты канадского стартапа Kindred AI надеются на то, что целостное слияние поможет роботам научиться очень быстро выполнять задачи, требующие отменной ловкости. Эта компания дополняет свои системы пилотами-людьми с наушниками виртуальной реальности и устройствами, чувствительными к любому движению; информация об их перемещениях передается непосредственно роботам[174]. На заводах BMW, где в цехах сотрудники работают вместе с коботами, люди и машины «мониторят» рабочую среду и научились координировать свои движения. В этих случаях робот выступает как продолжение работника.

Нет одного способа обеспечить целостное слияние людей и машин, что до определенной степени осложняет работу руководителя и СЕО. Выбор подхода зависит от потребностей конкретной команды и во многом основывается на методе проб и ошибок. Возьмем, к примеру, команды из роботов и людей, управляющих марсоходами NASA. Люди, входящие в состав этих команд, программируют робота на выполнение задач с учетом ограничений оборудования, мощности, времени, встроенной памяти и контрольно-измерительных приборов. По мнению этнографа Принстонского университета Джанет Вертеси, чтобы принимать решения о том, как робот должен выполнять поставленные задачи, команде следует «определиться с тем, как принимать решения». Она пишет, что в действительности такие команды разрабатывают организационную структуру, кодекс поведения и принципы управления[175].

Интегрированный навык № 7. Взаимное обучение

Определение. 1. Совместное выполнение задач с интеллектуальными агентами, чтобы помочь им освоить новые навыки. 2. Обучение сотрудников на рабочем месте, с тем чтобы они успешно справлялись со своими обязанностями в процессах, усиленных искусственным интеллектом.

Разработанный компанией IPsoft интеллектуальный помощник Amelia с естественно-языковым интерфейсом обладает широким набором функций, таких как интеллектуальный агент службы поддержки IT-продуктов, ипотечный брокер, а также эксперт, отвечающий на вопросы пользователей сайта, и оператор колл-центра муниципального совета одного из британских городов. Как одна программа может выполнять столько задач? Эксперты обучают систему Amelia тому, как она должна делать свою работу. Такие системы искусственного интеллекта, как Amelia или Cortana компании Microsoft, могут успешно функционировать во многих сферах только благодаря практическому обучению, поэтому в будущем подобная работа потребует глубокого понимания динамики, присущей взаимному обучению человека и машины.

Например, машинное обучение происходит в скрытом режиме, когда сотрудники не знают наверняка, что часть или вся их работа используется для обучения машин, поскольку это может вызвать у них недоверие как к машинам, так и к руководству. Однако в более благоприятных обстоятельствах обучение может снимать тревогу, бороться с пассивностью и снижать чувство беспомощности при взаимодействии человека и машины. Наделите людей определенным контролем, позвольте им ощутить свою причастность к результатам работы системы или процесса — и они будут видеть в искусственном интеллекте скорее коллегу, чем соперника.

Взаимное обучение как один из интегрированных навыков олицетворяет собой окончательный отказ от прежних методов использования технологий. В прошлом обучение шло в одном направлении: люди учились применять машины. Однако машины на базе искусственного интеллекта учатся у людей, а люди, в свою очередь, учатся у машин. На практике это означает, что клиент-менеджеры или любые другие специалисты, действующие вместе с интеллектуальными агентами, станут для своих цифровых коллег «ролевыми моделями». Безусловно, это требует от «учителя» обладать надлежащими техническими навыками, а от системы искусственного интеллекта — способностью к обучению: интерфейс играет большую роль при взаимном обучении человека и машины.

Например, система Amelia использует интерфейс, который в скрытом режиме наблюдает за цифровым поведением операторов, — так называемое фоновое обучение. Помимо этого, программа продолжает учиться, передавая вопросы, на которые не может ответить, коллеге-человеку и наблюдая за решением проблемы. В то время как традиционное автоматизированное оборудование со временем теряет в стоимости, ценность интеллектуальных активов автоматизации непрерывно увеличивается[176].

Безусловно, при целостном слиянии обучать необходимо не только машины. Искусственный интеллект способствует возрождению системы профессионального образования, рассчитанной на людей. Его роль в восполнении недостающих навыков огромна с учетом того, что их нехватка будет ощущаться все сильнее по мере распространения интеллектуальной автоматизации. Поддерживаемые правительством программы (такие как британская программа, которая финансируется за счет налога на профессиональное обучение без отрыва от производства) станут первым прецедентом. Компании с фондом заработной платы более 3 миллионов фунтов должны будут перечислять небольшой налог, который смогут впоследствии возместить (помимо 15 000 фунтов и дополнительных 10% за каждый фунт, внесенный в общий фонд), если используют эти деньги на приобретение аккредитованной программы профессионального обучения. Иначе говоря, такие компании могут вернуть свои деньги и заработать еще больше, если наймут неквалифицированных работников и обучат их. Разумеется, для этого необходимо разработать программы профессионального образования с учетом специфики разных отраслей и даже отдельных компаний.

Каждая организация должна выбрать подходящую ей программу обучения. IT-директор одной финтех-компании отметил, что искусственный интеллект нарушил систему распределения должностных обязанностей в команде. Однако благодаря переосмыслению бизнес-процессов им удалось найти такую схему профессионального обучения, от которой была отдача и для сотрудников, и для машин, и для руководства. «Поскольку банк начал нанимать специалистов с непривычными (для этой сферы) навыками и опытом (в таких областях, как управление данными, анализ и обработка данных, программирование и аналитика), в обязанности старших специалистов отдела кредитования теперь входило обучение и курирование новых сотрудников, для которых кредитование было зоной неведомого, кроме того, именно они создавали отраслевой контекст. Благодаря их работе алгоритм искусственного интеллекта научился эффективному обучению», — рассказал IT-директор в разговоре с нами.

Этот пример профессионального обучения демонстрирует фундаментальный аспект работы в эпоху слияния человека и машины: одна из самых важных характеристик, будь то человека или машины, — не обладать необходимыми навыками, а уметь учиться. «Не будьте всезнайками, — говорит CEO Microsoft Сатья Наделла. — Будьте теми, кто готов учиться»[177].

Интегрированный навык № 8. Неустанное переосмысление

Определение. Тщательное соблюдение принципов разработки бизнес-процессов или бизнес-моделей с нуля, а не просто автоматизация уже существующих.

Последний и, пожалуй, самый важный интегрированный навык — способность постоянно переосмысливать текущие бизнес-процессы. По существу, это лейтмотив всей книги — переосмысление возможностей, которые дает искусственный интеллект, для трансформации и совершенствования труда, рабочих процессов, бизнес-моделей и даже целых отраслей.

Как было отмечено во введении ко второй части книги, компания Stitch Fix трансформирует процессы онлайн-торговли и выполнения интернет-заказов. Компания Capital One известна активным и постоянным использованием искусственного интеллекта, облачных вычислений, больших данных и технологий с открытым исходным кодом, что позволило ей достичь значительных результатов. В частности, она первой в отрасли внедрила систему, основанную на Amazon Alexa, предоставив клиентам возможность проверять состояние своих банковских счетов, оплачивать счета и выполнять другие транзакции через эту платформу. Не так давно Capital One обошла конкурентов и внедрила собственного виртуального собеседника по имени Eno для общения с клиентами. Этот чат-бот использует технологию обработки естественного языка, что позволяет ему поддерживать диалоги с клиентами в текстовом формате (по смартфону). Еще одно приложение такого рода использует технологию машинного обучения, чтобы предупреждать владельцев счетов о подозрительных транзакциях, которые могут свидетельствовать о мошеннических действиях.

Чтобы сохранить конкурентное преимущество, компания Capital One не так давно основала Центр передового опыта (Center of Excellence, COE) с целью изучать, каким образом можно применять эту технологию для переосмысления клиентского опыта. Укомплектованный сотрудниками из подразделений компании в Нью-Йорке, Вирджинии и Вашингтоне, центр будет анализировать, как использовать искусственный интеллект, чтобы помочь клиентам более эффективно управлять своими расходами. В центре также начнется разработка программ, которые помогут объяснить, как система искусственного интеллекта приходит к тем или иным решениям. «Цель — сделать Capital One ведущей компанией в области машинного обучения», — говорит Уэнчел[178].

Capital One не ограничивается предоставлением финансовых услуг и становится IT-компанией. «Мы занимаемся бизнесом, в котором два наших крупнейших продукта — это программное обеспечение и данные», — отмечает IT-директор Роб Александер. Именно это, по мнению топ-менеджера, инициировало фундаментальные перемены в компании: «Это требует сотрудников с совсем другими талантами, другим типом мышления и совершенно другой операционной модели»[179].

В Capital One произошли и значительные организационные перемены, которые помогли компании вступить в эпоху искусственного интеллекта. Вот один из примеров: в настоящее время в компании работают команды IT-специалистов, использующие некоторые принципы agile-разработки программного обеспечения, подразумевающие, что неудача — всего лишь шаг на пути к успеху. Подход «пробуй и учись» — основной принцип корпоративной культуры Capital One. В конце 2014 года компания создала инновационный центр «Гараж», который расположен в административном комплексе в Плейно (штат Техас). (Название отражает скромное происхождение многих стартапов Кремниевой долины.) Сотрудникам этого центра не дают никаких конкретных указаний, у них есть только общий ориентир — «обеспечивать существенное улучшение восприятия наших продуктов клиентами»[180].

Такая приверженность неустанному переосмыслению бизнес-процессов, функционала сотрудников, набора навыков и основного направления бизнеса широко распространена среди компаний, которые являются лидерами в области внедрения передовых технологий искусственного интеллекта.

В действительности переосмысление — это базовый навык, который служит основой для других навыков, таких как умное запрашивание и расширение возможностей с помощью ботов. Именно способность к переосмыслению позволяет людям легче адаптироваться к меняющемуся миру, в котором передовые технологии искусственного интеллекта непрерывно преобразуют рабочие процессы, бизнес-модели и целые отрасли.

Возможности, которые открывает нейроприспособление

Концепция интегрированных навыков (способностей, позволяющих совмещать относительные преимущества человека и машины для получения более значимых результатов по сравнению с тем, что каждый из них достиг бы в одиночку) хорошо согласуется с результатами исследований в области когнитивистики. В этом контексте рассматриваются такие концепции, как нейроприспособление (свойственная людям склонность использовать технологии, чтобы дополнить и расширить свои возможности), а также расширенный интеллект и телесный интеллект. Как показывают исследования, люди используют устройства и технологии в качестве средств познания[181]. Эти устройства (от очков и велосипедов до реактивных истребителей) — своего рода продолжение нашего разума и тела. Искусственный интеллект раскрывает еще один аспект симбиоза биотехнических систем: умным машинам также свойственно нейроприспособленческое поведение. У таких машин есть уникальное преимущество: они изначально разрабатывались как способные собирать информацию о среде и использовать ее в своем процессе познания. Следовательно, восемь навыков, образующих элемент S нашей модели MELDS, подчеркивают важность компетенций нового типа, которые практически никогда не упоминаются в современных экономических исследованиях или корпоративных программах развития сотрудников. Интегрированные навыки требуют нового осмысления человеческого опыта и знаний, а также, в более широком смысле, — совершенно иного подхода к обучению и переподготовке персонала.

Загрузка...