13. Происхождение жизни

Загадка первой клетки

Теория Дарвина со всей ясностью говорит о том, что человек развился из самой первой клетки, появившейся миллиарды лет тому назад. Как же возникла эта самая первая клетка? Каково происхождение жизни? Является ли жизнь чем-то большим, нежели просто удачным результатом сложных химических реакций?

То, как отдельные клетки развились во многоклеточные организмы, — гораздо более простой вопрос, нежели вопрос о происхождении первых клеток: когда клетки появились, для них, в сущности, уже не составило проблемы развиться во все остальное, в том числе и в нас, в людей. Эволюция отбирала те клетки, которые эффективнее всего размножались, — те, чьи гены кодировали белки, лучше всего способствующие выживанию клеток.

Изучение древних каменистых отложений позволило обнаружить следы жизни, относящейся к периоду времени от трех до четырех миллиардов лет тому назад. В настоящее время на нашей планете существует более 10 миллионов различных видов живых организмов, и все они состоят из клеток. Живые существа возникали в силу естественного отбора, завоевывали территории, размножались — одни в ходе естественного отбора выживали, другие вымирали.

Клетки всех животных и растений развились из гораздо менее крупных одноклеточных организмов — таких, как, например, бактерии. Одной из наиболее ярких способностей первых клеток было умение формировать многоклеточные сообщества. Возможно, она стала эволюционным преимуществом каких-то групп клеток, поскольку клеткам было свойственно поедать друг друга в тяжелые времена.

Эволюция клеток зависит от мутаций генов, поскольку именно они являются носителями наследственной информации от одного поколения к другому. Изменения в генах приводят к изменениям в синтезируемых белках, а это ведет к изменению поведения клеток; если в результате всего этого выживаемость клетки повысится, то эволюция выберет именно ее, а другие клетки отомрут. Мутации генов обеспечивают материал для эволюции, поскольку в ее распоряжении имеются как прежние гены, так и новые, между которыми можно выбирать.

Эволюция на основе естественного отбора является поразительно мощным инструментом создания сложных функционирующих систем. Представьте, что ваш компьютер в случайном порядке выдает одно за другим решения какой-то конкретной проблемы. Изучив его предложения, вы выбираете наиболее подходящие и отбрасываете все остальные. Затем вы сводите все оставшиеся идеи воедино — можно сказать, скрещиваете их друг с другом путем обмена информацией и добавляете что-то от себя; все этой создает базу для появления новых идей. Эта процедура повторяется снова и снова, и вы каждый раз отбираете то, что, на ваш взгляд, приближает вас к решению изначальной задачи.

Очевидно, что это — весьма действенный подход, и клетки пользовались им для того, чтобы развиться в сложные организмы, подобные человеческому. В итоге эволюция создала такие системы, которые не смог бы разработать ни один инженер.

Наиболее распространенные организмы в мире бактерии — клетки, лишенные ядер и митохондрий, — зародились около трех миллиардов лет тому назад. Затем некоторые из них на каком-то этапе превратились в более сложные и гораздо более крупные по размерам клетки с ядрами, содержащими гены, и митохондриями для выработки энергии. У этих клеток уже не имелось жесткой оболочки, и они могли быстро менять свою форму самыми разнообразными способами. Неизвестно, как именно развились из бактерий подобные клетки, однако ясно, что чувствовали они себя вполне комфортно и развились в различные одноклеточные организмы вроде амебы. Они были и многочисленными, и разнообразными и прекрасно размножались за счет деления клеток. Почему же тогда на Земле появились многоклеточные организмы? В чем было преимущество сообществ клеток?

Насчет преимуществ еще можно ответить. Стандартный ответ заключается в том, что с течением времени это дало возможность для разделения труда между клетками и некоторые из них начали специализироваться на конкретных задачах — например, на переваривании пищи. Однако это не объясняет, как и почему изначально появились многоклеточные организмы.

Возможный сценарий выглядит так. Одна из клеток подвергается мутации, в результате чего при ее последующем делении образовавшиеся дочерние клетки не разделяются, а остаются вместе и продолжают оставаться вместе с каждым новым делением. В результате образуется колония из многих клеток. Когда эта колония становится слишком большой, она просто распадается на части, и эти части вновь вырастают в новые колонии.

Преимущество, которым обладали в силу естественного отбора колонии из многих клеток, заключалось в том, что при нехватке пищи клетки, входящие в колонию, могли питаться своими более слабыми собратьями и таким образом выживать. Этот процесс можно наблюдать на примере гидр и плоских червей. Когда эти животные голодают, они уменьшаются в размерах из-за того, что одни их клетки поглощают другие. Изучая их, несложно представить, как отдельные клетки, находящиеся в центре примитивной многоклеточной колонии клеток, принимались в тяжелые времена пожирать своих соседей и не отказывались от этого и тогда, когда голод отступал. Эти клетки стали прародителями яйцеклетки, поскольку они могли питаться, расти и затем делиться, с тем чтобы породить набор клеток, способных образовать многоклеточную колонию.

Яйцеклетка — это единственная клетка, выживающая при всех равных условиях, поскольку именно она порождает новое животное. Одна из основных функций всех клеток организма самки заключается в том, чтобы обеспечить питание яйцеклетки, и поэтому они легко жертвуют собой ради ее процветания. Таким образом, истоки нашего происхождения могут лежать, с одной стороны, в каннибализме, а с другой — в альтруистическом самопожертвовании клеток.

Все это, однако, не дает разгадки появления первой клетки, а значит, и происхождения жизни. Одно время ученые полагали, что в космосе присутствует особая сила, которая способствует самопроизвольному ее зарождению. Хотя эти взгляды восходят еще к Аристотелю, они были в ходу еще несколько столетий назад, пока изобретение микроскопа не произвело переворот в научных представлениях. Теория спонтанного самозарождения жизни была окончательно ниспровергнута в 1859 году, когда Луи Пастер сварил в колбе мясной бульон и затем изогнул узкое горлышко колбы так, что в колбу мог проникнуть воздух, но не могли попасть бактерии. Ни одной бактерии так и не удалось развиться в бульоне. Но когда Пастер наклонил колбу так, что в нее могли проникать из воздуха бактерии, то мясной бульон стал быстро кишеть бактериями. Ученые осознали, что бактерии попадали в бульон из окружающей воздушной среды, и теория спонтанного самозарождения жизни была отвергнута.

Подтверждение присутствия в воздухе бактерий явилось фактом исключительной важности. После этого ученые стали искать источник происхождения жизни в далеком прошлом, но так и не решили окончательно, возникла первая клетка благодаря длительному процессу или это было единичное явление, в ходе которого произошла самоорганизация материи.

Под понятием «жизнь» мы подразумеваем систему, которая размножается, обладает такой характеристикой, как наследственность, приносит потомство, имеющее отношение к своим родителям. Все эти качества являются необходимыми для осуществления эволюционного процесса в соответствии с учением Дарвина, и клетки ими обладают.

Самые старые каменные отложения, в которых удалось обнаружить присутствие следов жизни, имеют возраст примерно четыре миллиарда лет. Есть версия, что элементы первых клеток обязаны своим происхождением электрической активности в атмосфере Земли. Например, некоторые из минералов типа пирита, найденные в местах выходов на поверхность вулканов, способны преобразовывать двуокись углерода в такие вещества, как аминокислоты, являющиеся необходимым составным элементом белков, на которых основана земная жизнь. Имеются данные о том, что воздействие солнечного света на некоторые минералы способно породить прекурсоры РНК и ДНК. Самые древние клетки — бактерии — обходились без кислорода, поскольку в ту пору свободного кислорода практически не было. Они использовали механизм фотосинтеза и разлагали с его помощью химические вещества до тех пор, пока около двух миллиардов лет тому назад кислород наконец не появился в земной атмосфере.

Исходными веществами, из которых образовались клетки, являлись вода, двуокись углерода, азот и, возможно, небольшое количество аммиака — не слишком многообещающий набор материалов в не самой благоприятной среде. Число молекул, сыгравших ключевую роль в зарождении жизни и в том ее продолжении, которое мы наблюдаем сейчас, удивительно мало. Это нуклеиновые кислоты, ДНК и РНК с их длинными нитями нуклеотидов, белки с их длинными нитями аминокислот, два основных типа сахаров для получения энергии, а также некоторые молекулы жиров.

В 1950-х годах ученые исследовали возможность зарождения жизни в земных морях под воздействием солнечного излучения. Но затем это предположение затмила гипотеза, выдвинутая лауреатом Нобелевской премии по химии Гарольдом Юри; она сводится к тому, что жизнь зародилась атмосфере под воздействием электрических разрядов. Один из учеников Юри — Стэнли Миллер поставил эксперимент с целью попытаться создать аминокислоты из составных частей древней атмосферы. Он сконструировал аппарат, соединявший сосуд с нагретой водой с газовым резервуаром, в котором находились метан, аммиак и водород. Газовая смесь пропускалась через два электрода, между которыми периодически проскакивал электрический разряд — искусственная молния. Через несколько дней вода приобрела желтый цвет, а на дне сосуда с нагретой водой появился черный осадок. Исследование этого осадка выявило наличие аминокислот — ключевых компонентов белков, а также других органических молекул. Публикация этих результатов в 1953 году вызвала настоящую сенсацию. Поразительным совпадением является то, что в том же году была открыта структура ДНК. С тех пор при помощи аналогичных методов были синтезированы другие жизненно необходимые молекулы — такие, как молекулы сахаров, обеспечивающие клетки энергией. Важным изменением при проведении новой серии экспериментов стало то, что они велись при более низких температурах. Спустя двадцать лет после опытов Миллера удалось добиться образования молекул, относящихся к классу нуклеиновых кислот.

Тем не менее какими бы поразительными и обнадеживающими ни были результаты подобных экспериментов, показавших, что по крайней мере часть органических молекул могла возникнуть в земных условиях далеких эпох, многие вопросы так и остались без ответа. Ученые не добились синтеза более крупных молекул — белков и нуклеиновых кислот типа ДНК. Неприятным фактом оказалось и то, что воздействие молний и солнца приводило скорее к расщеплению молекул, нежели к тому, чтобы они становились больше.

Новый взгляд на зарождение жизни стал возможен в 1977 году, когда геологи изучили дно моря в районе Галапагосских островов. Исследования проводились на глубине в полторы мили, в районе повышенной вулканической активности, где подогретая в трещинах вулкана горячая вода смешивалась с окружающей холодной морской водой. Здесь ученые обнаружили большое число одноклеточных организмов, и многие из них стали после этого склоняться к мысли, что ключевую роль в зарождении жизни на планете сыграли все-таки глубины океана, но поспособствовал им в этом не солнечный свет, а вулканы.

Это побудило ученых искать следы возникновения жизни на еще больших глубинах; так были обнаружены микробы под гигантским слоем арктического льда и в глубоководных горячих источниках. Однако это не дало ответов на поставленные вопросы и не позволило установить связь между образованием простейших молекул, появлением более крупных молекул и возникновением живой клетки. Не удалось прояснить и вопрос об образовании белков — основного компонента живой клетки, который обеспечивает синтез самих себя и большинства других молекул.

Обнадеживающие результаты принесли исследования камней, особенно ряда минералов. Их поверхность представляет собой благоприятное место для сборки крупных молекул. Особенно большие надежды ученые возлагали на глину, и действительно, было обнаружено, что аминокислоты формировали белки на поверхности глины, когда вода испарялась. Другие минералы могли оказать поддержку при синтезе относительно крупных белковых цепей. Более того, когда в смесь органических веществ, которые образовывали небольшие белки на поверхности глины, добавлялись РНК, это приводило к тому, что частицы глины, покрытые РНК, оказывались внутри формировавшихся пузырьковообразных белковых структур. Это была еще не клетка, но результат выглядел многообещающим. В этой связи были выдвинуты даже теории, гласящие, что частички глины могли сами сформировать первоначальную жизнь на Земле. Однако от всего этого до синтеза белка, кодируемого нуклеиновыми кислотами, чересчур большая дистанция.

Чтобы понять, как могла быть создана первая клетка, следует иметь в виду, что существование клетки невозможно без трех процессов — роста, размножения, или самовоспроизводства, и эволюции. Наибольшую сложность представляет размножение, которое связано с созданием структур на основе использования источника энергии и со способностью передавать такие структуры от одного поколения к следующему — это, собственно, и есть основа генетики. Многообещающими выглядят самовоспроизводящиеся цепи взаимодействующих молекул. Если выяснится, что входящие в них молекулы способствуют воспроизводству других молекул, то мы близко подходим к созданию примитивной клетки.

Самовоспроизводящиеся молекулы — это ключевые элементы эволюции, поскольку их репликация позволяет передавать характерные признаки родителей потомству. В 1980-е годы наиболее популярной была идея о том, что это может происходить на основе использования РНК. Она возникла после открытия рибозимов — нитей РНК, которые не только являются носителями генетической информации, но и действуют как катализаторы, способствующие образованию самих РНК. Это позволило выдвинуть теорию о древнем мире живых организмов, существовавших на базе РНК.

Предположение о том, что самым первым энзимом могла стать молекула РНК, выдвинул британский молекулярный биолог, врач и нейробиолог Фрэнсис Крик. В ныне существующих клетках подобного энзима нет, но в лабораторных условиях подобные образования создать удалось. Поместив в колбу большое количество РНК с разной последовательностью нуклеотидов в нитях, исследователи добились формирования вещества с некоторыми из свойств РНК-энзима, пригодного для обеспечения воспроизводства РНК. Но, несмотря на всю привлекательность итогов эксперимента, до сих пор остается загадкой, как именно такое вещество могло возникнуть.

Ощутить эту проблему можно, взглянув на химическую структуру РНК. Она создана из нитей нуклеотидов, каждая из которых содержит девять или десять атомов углерода, большое количество атомов азота и кислорода, а также фосфат, соединенные вместе в весьма сложную структуру. Существует бесконечное число различных путей, какими эти атомы могут соединяться друг с другом, образуя структуры, не имеющие ничего общего с РНК; поэтому формирование схожей с РНК нити нуклеотидов кажется делом невозможным — совпадением, которое в принципе быть не может. И тут к месту вспомнить слова лауреата Нобелевской премии по медицине Кристиана де Дюва, который призывал «отвергнуть невероятные события, невероятность которых настолько велика, что их можно назвать разве что чудом, феноменами, которые находятся вне сферы научных исследований».

Ученые, исповедующие другой подход к проблеме возникновения жизни, призывают фокусировать внимание не на сообществах молекул, способных к самовоспроизведению, а на маленьких молекулах, которые взаимодействуют друг с другом и за счет этого образуют своего рода систему. Эта система, по их мнению, росла и развивалась, а поддерживать ее жизнь мог механизм, обеспечивающий химические реакции за счет резких температурных перепадов или радиоактивности. Однако даже если принять эту идею за основу, происхождение жизни все равно останется загадкой.

Разумеется, есть и те, кто заявляют, что нет никакой проблемы или загадки, поскольку был творец жизни — например, библейский Господь Бог. И пусть отсутствуют доказательства существования такого творца или проектировщика, однако тем, кто верит в Него, уже не нужно напрягать голову, раздумывая об истоках жизни. Разумеется, их не заботит и проблема возникновения клетки.

Впрочем, и они вряд ли станут отрицать очевидную вещь: что бы мы ни делали, ни думали или ни чувствовали — все это целиком и полностью определяется нашими клетками. Мы должны всегда помнить, что, какими бы умными мы ни считали клетки, они на самом деле намного умнее, чем нам кажется, — и это значит, что впереди нас ожидает еще множество сюрпризов.

Сознавая, что мы являемся результатом эволюции сообщества клеток, мы должны уважать наши клетки и заботиться о них точно так же, как они заботятся о нас.

Загрузка...